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Abstract

Dynamical systems modeling, particularly via systems of ordinary differential equations, has been
used to effectively capture the temporal behavior of different biochemical components in signal trans-
duction networks. Despite the recent advances in experimental measurements, including sensor devel-
opment and ‘-omics’ studies that have helped populate protein-protein interaction networks in great
detail, systems biology modeling lacks systematic methods to estimate kinetic parameters and quantify
associated uncertainties. This is because of multiple reasons, including sparse and noisy experimental
measurements, lack of detailed molecular mechanisms underlying the reactions, and missing biochem-
ical interactions. Additionally, the inherent nonlinearities with respect to the states and parameters
associated with the system of differential equations further compound the challenges of parameter
estimation. In this study, we propose a comprehensive framework for Bayesian parameter estimation
and complete quantification of the effects of uncertainties in the data and models. We apply these
methods to a series of signaling models of increasing mathematical complexity. Systematic analy-
sis of these dynamical systems showed that parameter estimation depends on data sparsity, noise
level, and model structure, including the existence of multiple steady states. These results highlight
how focused uncertainty quantification can enrich systems biology modeling and enable additional
quantitative analyses for parameter estimation.
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1. Introduction

Mathematical modeling is an integral part of systems biology; indeed, the use of approaches from
dynamical systems analyses resulted in a paradigmatic shift in our understanding of biochemical signal
transduction and enabled the identification of the emergent properties of a signaling network [1, 2, 3, 4].
Additionally, mathematical models allow us to investigate the dynamics of biological systems beyond
what is experimentally possible [5, 6, 7, 8]. A classical approach to modeling the dynamics of signal
transduction is the use of systems of ordinary differential equations (ODEs) [9, 10]. Often these
equations include nonlinear functions to capture complex biochemical interactions using Michaelis-
Menten kinetics and Hill functions for cooperative binding [11]. One of the ongoing challenges in
developing and constraining predictive models of signal transduction has been the estimation and
identification of the kinetic parameters associated with these reactions and quantifying the associated
uncertainty [12, 13, 14]. The use of rigorous, quantitative approaches to estimate kinetic parameters
and their uncertainties is in its early stages in systems biology [15, 12, 16, 17, 18] even though such
methods are far more prevalent in the greater computational science community under the field of
uncertainty quantification (UQ) [19, 20, 21, 22].
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There are many sources of uncertainty in dynamical systems modeling of signal transduction, in-
cluding the model structure itself, the values of model parameters, and the quality of the data used
for model calibration. Uncertainty in the model equations, known as model form or topological un-
certainty [23, 24, 25, 26] often arises during model development. However, the reaction fluxes for
many biochemical reactions (ODE formulations) can be established in terms of classical rate equa-
tions [9, 10, 11]. The more significant challenge is establishing suitable model parameters, including
the kinetic rate constants, for various flux terms [16]. Direct measurement of these parameters of-
ten occurs in isolated reaction systems and does not capture the complexity of the large network
of reactions represented by dynamical systems models. Estimating these biological parameters and
identifying any remaining uncertainties requires selecting a statistical model and then learning the
distribution of these parameters from available data [19, 27]. From this viewpoint the biological pa-
rameters are random variables that either have parametric or nonparametric distributions. However,
parameter estimation is complicated by the noisy, sparse (few time points), and incomplete nature of
data found in systems biology (few or select readouts due to experimental limitations) that introduce
uncertainties in the biological parameters [28, 29, 14, 30, 31]. In the face of these complicating factors,
there is a need for statistical modeling of parameters that enables uncertainty quantification.

A comprehensive parameter estimation and UQ framework should consider the impact of struc-
tural parameter identifiability and parameter sensitivity [16, 29, 32, 33, 34]. Structural parameter
identifiability analysis reveals which of the parameters can be estimated given a specific dynamical
systems model and a set of measurable outputs [28, 29, 35, 36]. A parameter is globally structurally
identifiable if there is only one unique model output for each value of that parameter [29]. Parameters
that do not meet this criterion are deemed structurally nonidentifiable and cannot successfully be
estimated from the specified model outputs. Structural nonidentifiabilities can arise due to complex
nonlinear equations and incomplete experimental data that only measures a subset of the system’s
states. Additionally, parametric sensitivity analysis [19, 37, 38] quantifies how sensitive a model out-
put is to variations in the model parameters. Gutenkunst et al. [28] found that most models in systems
biology contain parameters with a wide range of sensitivities, which they termed ‘sloppy’. Despite this
challenge, sensitivity analysis helps rank the set of identifiable parameters by their contributions to
specified model outputs, [39] as was done in Mortlock et al. [40] for the prolactin-mediated JAK-STAT
signaling pathway. This analysis enabled them to select a subset of 33 out of 60 total parameters that
significantly contribute to variations in the model outputs.

Commonly used methods to estimate parameters for systems biology models include frequen-
tist [17] and Bayesian approaches [18]. In the frequentist setting, parameter estimation is formulated
as an optimization problem, and the solution to the parameter estimation problem is the set of
parameters that best recapitulates the data [19]. Additionally, frequentist approaches quantify un-
certainty via estimated confidence intervals around the optimal parameters [41, 42, 19]. In contrast,
in the Bayesian perspective, parameters are assumed to be random variables whose unknown prob-
ability distributions, called posterior distributions, quantify the probability of assuming any value
in the parameter space [19, 21, 27]. The advantage of Bayesian approaches comes from their abil-
ity to characterize the entire posterior distribution and quantify the uncertainty in parameter esti-
mates via credible intervals [27]. Many methods have been developed for Bayesian parameter estima-
tion [18, 43, 44, 45, 46, 47, 48, 49] that all aim to characterize the posterior distribution, by leveraging
Bayes’ rule [19, 27]. For example, Mortlock et al. [40] successfully used Bayesian estimation to study
the uncertainty in the model predictions and assess the statistical significance of their modeling results.

Despite the successes of Bayesian parameter estimation in systems biology [12, 15, 16, 18], failure
to account for all sources of uncertainty in a model can significantly inhibit parameter estimation and
uncertainty quantification [16, 26, 28]. Thus, a comprehensive framework for UQ in systems biology
should include rigorous accounting of uncertainties in the model structure, nonidentifiable parameters,
mixed parameter sensitivities, and noisy, sparse, or incomplete experimental data. While identifiability
and sensitivity analyses are typically performed prior to parameter estimation [16, 29], accounting
for model form uncertainty requires us to consider a stochastic model instead of a deterministic

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487931doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487931
http://creativecommons.org/licenses/by-nc-nd/4.0/


one [23, 26, 50, 30]. One promising approach to account for model form uncertainty is the Unscented
Kalman filter Markov chain Monte Carlo (UKF-MCMC) method [26, 51]. This method includes
statistical models for noisy data and model form uncertainty simultaneously; however, it has not been
adapted for dealing with the unique challenges in system biology. Similarly, the parameter estimation
and model selection method in [30] accounts for model form uncertainty with extended Kalman filtering
but does not provide complete uncertainty estimates because it takes a frequentist approach for
parameter estimation. Thus, there is a need for a framework that combines structural identifiability
analysis, global sensitivity analysis, a statistical model for data and model form uncertainty, and
Bayesian parameter estimation for comprehensive UQ of dynamical models in systems biology.

In this work, we propose a comprehensive workflow that addresses limitations of Bayesian parame-
ter estimation due to parameter nonidentifiabilities and accounts for uncertainties in the data and the
model structure by building on the Bayesian framework and the UKF-MCMC method. This workflow
begins with structural identifiability analysis [36, 52] and global sensitivity analysis [37, 53] and then
extends the UKF-MCMC [26, 51] approach for systems biology by leveraging the constrained interval
unscented Kalman filter (CIUKF) [54]. We applied this framework to three systems biology models of
increasing complexity, including a simple two-state model [55], a model of the core mitogen-activated
protein kinase (MAPK) signaling pathway [56], and a phenomenological model of synaptic plasticity
to capture long-term potentiation/depression [57]. We found that even in simple models, estimation
of parameters depends on the level of data noise and data sparsity. Finally, the framework enabled
uncertainty quantification for model structures that include non-linearities and multistability. In all of
these cases, we leveraged identifiability and sensitivity analyses to narrow the subset of parameters for
estimation and then used Bayesian estimation to determine the role of model structure in parameter
estimation. These results establish an uncertainty quantification-focused approach to systems biology
that can enable rigorous parameter estimation and analysis.

2. Methods

This section describes the technical details of the comprehensive framework for uncertainty quan-
tification (see Fig 1) proposed in section 2.1. Next, section 2.2 introduces dynamical systems biology
models and the parameter estimation problem. Sections 2.3 and 2.4 overview structural identifiability
and global sensitivity analyses, respectively, to reduce the dimension of the parameter space. Then
section 2.5 introduces Bayesian estimation, section 2.6 outlines the CIUKF-MCMC algorithm, and
section 2.7 describes the constrained interval unscented Kalman filter in detail. Following this, sec-
tion 2.8 discusses how to construct prior distributions and section 2.9 details Markov chain Monte
Carlo sampling. Lastly, section 2.10 discusses output uncertainty propagation with ensemble mod-
eling, section 2.11 highlights choosing point estimators for the parameters, section 2.12 delineates
synthetic data generation and section 2.13 outlines limit cycle analysis.

2.1. A framework for comprehensive uncertainty quantification for dynamical models in systems biol-
ogy

This section previews the proposed comprehensive framework for parameter estimation and un-
certainty quantification of dynamical models in systems biology. Figure 1 outlines the framework
and its components, which are then described in much more detail in the subsequent sections. The
proposed framework follows three main steps. First, we assume that dynamical models of intracel-
lular signal transduction (Fig 1.A1) use classical biochemical rate laws, such as mass action kinetics,
Michaelis-Menten kinetics, and Hill functions [9, 10, 11] (Fig 1.A2). The key challenge to applying
these models is estimating the associated parameters, such as the rate constants k and Vmax, equilib-
rium coefficients Km and KA, and Hill coefficients n in Fig 1.A2, from available experimental data
(Fig 1.A4). The comprehensive framework uses Bayesian inference to estimate a statistical model (a
probability distribution; see Fig 1.B) for the model parameters given a set of noisy measurement data
and a specific model form.
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Figure 1: A comprehensive Bayesian parameter estimation and uncertainty quantification framework for dynamical
models in systems biology. (A) Model development in systems biology begins with model construction and data
collection. Dynamical models in systems biology typically involve a system of ODEs that capture the dynamics of the
concentrations of different chemical species in the system (A1). The reaction rates associated with these concentration
changes are usually mass action, Michaelis Menten kinetics, or cooperative kinetics represented by the Hill equation
(A2). The free parameters in these models include kinetic rate constants, e.g. k, Vmax, equilibrium constants, e.g. Km,
KA, and Hill coefficients, e.g. n. These parameters are first constrained by best guess values based on physiological
ranges and typical values of model parameters from the literature (A3). Finally, the model needs experimental data
for validation; this data can either be from published work or new experiments. (B) Parameter preprocessing and
Bayesian parameter estimation with the CIUKF-MCMC algorithm. First structural identifiability and global sensitivity
analyses on the entire parameter set reduce the set of free parameters that can be estimated (B1). Next, we perform
Bayesian parameter estimation for this reduced set of parameters to learn their posterior distributions. The posterior
distribution is the parameter distribution conditioned on the data (B2). Bayes’ rule relates the posterior distribution
to the product of the prior distribution and the likelihood function. The prior distribution encodes known information
about the parameters and the likelihood function (which requires simulating the model) measures the misfit between
predictions and the data. A state-constrained Unscented Kalman filter approximates the likelihood function to account
for uncertainty in the model equations. Although Bayes’ rule provides a means to evaluate the posterior distribution
at specific points in the parameter space, we use Markov chain Monte Carlo (MCMC) sampling (B3) to characterize
the entire distribution. (C) The posterior distributions enable uncertainty analysis of model outputs through ensemble
simulation. We perform simulations using the posterior parameter samples to propagate parameter uncertainty through
the model (C1). Statistical analysis of the ensemble enables us to compute uncertainty intervals and study various
system behaviors, for example, the statistics of the steady state values (C2).

We argue that identifiability and sensitivity analysis are necessary steps to perform before param-
eter estimation (Fig 1.B1). To eliminate uncertainty due to nonidentifiable parameters, we perform
global structural identifiability analysis using the Structural Identifiability Analyzer (SIAN) [36, 52]
(see section 2.3 for details). The nonidentifiable parameters are fixed to their nominal values from
the literature or based on their physiological ranges. Next, variance-based global sensitivity anal-
ysis [19, 37] is performed to rank the identifiable parameters in order of their contributions to the
variance of the model outputs (see section 2.4 for details). A subset of the identifiable parameters with
the largest sensitivity indices is selected for parameter estimation. The remaining model parameters
are fixed to their nominal values in the same fashion as nonidentifiable parameters.

Bayesian parameter estimation completely characterizes uncertainty in the model parameters by
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estimating a nonparametric statistical model. Bayes’ rule (see Fig 1.B2) provides the best guess
distribution, called the posterior distribution, for the parameters starting from an initial guess (the
prior distribution) that is transformed by the available experimental data with the likelihood function.
The likelihood function measures the mismatch between the data and the model predictions and
returns higher probabilities for parameter sets that produce outputs closer to the data. We use the
CIUKF-MCMC algorithm [26, 51] to approximate the likelihood function and account for uncertainty
in the model formulation, data, and parameters. Markov chain Monte Carlo sampling, with either
delayed rejection adaptive Metropolis [58] or the affine invariant ensemble sampler [59], generates a
set of samples that represents the posterior distribution (Fig 1.B3).

Third, we leverage the posterior distribution to quantify how uncertainty in the model parameters
affects uncertainty in the model predictions (Fig 1.C). An ensemble simulations with the parameter
samples generates sets of trajectories (see Fig 1.C1) that capture the uncertainty in the predicted
dynamics. Computing uncertainty intervals such as the 95% credible intervals presented in Fig 1.C2
provides a visualization of this uncertainty. Notably, credible intervals are different from confidence
intervals because credible intervals capture a specified percentage of the samples whereas confidence
intervals are random variables that capture regions where estimators will lie at a specified probability
level [27] (see Fig 2 for an example of a credible interval). Additionally, statistical analysis of the en-
semble enables quantitative analysis of computational modeling results in the same way that running
multiple experimental trials enables analysis of experimental results. Before discussing the meth-
ods that enable comprehensive uncertainty quantification in the following sections, the next section
formally introduces parameter estimation for dynamical models in systems biology.

2.2. Parameter estimation for systems biology models in the form of partially-observed systems of
ordinary differential equations

We consider nonlinear ordinary differential equation models of the form

dx(t)

dt
=
∑

i

fi (x(t); θf ) (1)

y(t) = h (x(t); θh) + η(t), η(t) ∼ N (0,Γ(θΓ)) , (2)

where x ∈ Rd
≥0 is the state vector of nonnegative species concentrations and y ∈ Rm is the vector of

potentially incomplete, m ≤ d, measurements of x. The functions fi(·; ·) : Rd × Rp → Rd govern the
rates of the involved biochemical reactions and are derived using biochemical theory (see Fig 1.A2
for example terms). Further, θf ∈ Rpf is the vector of biological model parameters, including but
not limited to rate constants, binding coefficients, and equilibrium coefficients. The function h(·; ·) :
Rd × Rp → Rm is the measurement function that maps from the states to the set of observables
(experimental data), where θh is the vector of associated parameters. Lastly, the measurements
y(t) are corrupted by independently and identically distributed (iid) Gaussian measurement noise
η(t) ∈ Rm with zero mean and covariance matrix Γ ∈ Rm×m. The covariance matrix is parameterized
by θΓ ∈ Rm such that Γ (θΓ) = diag (θΓ). The parameter space is then defined as the multidimensional
space of all possible values of θ = [θf , θΓ], e.g., θ ∈ Rpf+m.

In this work, we make several simplifying assumptions to the model in Eqs (1-2). First, we assume
that the measurement function h(·; ·) is linear and that all the parameters in θh are known, so Eq (2)
becomes

y(t) = Hx(t) + η(t), (3)

with H ∈ Rm×d. Second, we assume that the initial condition x(t = 0) = x0 is known, so it is
excluded from parameter estimation.

Although Eqs (1-2) define a continuous-time dynamical system, we mostly deal with discrete
observations. The set of n measurements Yn = {y1, . . . ,yn} denotes the experimental data taken
at time instances t1,≤ t2, . . . ,≤ tn, where yk = Hxk + ηk. In this discrete setting, xk is the state
vector at time tk and ηk is an independent realization of the measurement noise. Additionally, the
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set of states at the discrete measurement times defined above is Xn = {x1, . . . ,xn}. Note that the full
(internal) states may not be available for estimation, only the measurements.

We are now ready to define the problem setting of the proposed parameter estimation framework.
This work assumes that the model form is known and seeks to estimate the model parameters and
associated uncertainties by learning a probability distribution for the parameters. The following
problem statement formalizes the parameter estimation problem.

Problem 1. Given a known model form as in Eq (1) and a set of noisy, sparse and incomplete,
experimental measurements Yn = {y1, . . . ,yn} at time instances t1 ≤ t2, . . . ,≤ tn, estimate the
complete probability distribution, p(θ|Yn), for the model parameters θ = [θf , θΓ].

The next section outlines the structural identifiability and global sensitivity analyses performed to
reduce the dimension of θ before estimating parameters.

2.3. Global structural identifiability analysis with the structural identifiability analyzer (SIAN)
Structural identifiability analysis determines if parameters can be uniquely estimated from the

available measurement function [29]. Structural identifiability is a mathematical property of the
model itself and does not consider the quality or quantity of the available experimental data. The
following definition from [60] provides an intuitive condition for global structural identifiability and
can be shown to be equivalent to alternative definitions [33, 36].

Definition 1 (Global structural identifiability [29, 61]). A parameter θi is globally structurally iden-
tifiable if, for all times t > 0,

y(t,θ′) = y(t,θ) =⇒ θ′i = θi.

Global structural identifiability, as in Definition 1, implies that a parameter θi can be uniquely
identified from data [36]. Alternatively, a parameter may be locally structurally identifiable if the
condition in Definition 1 only holds in the local neighborhood, v(θi), of parameter space around θi, e.g.,
for θi ∈ v(θi) [29, 33, 36]. We choose to use the differential algebra and power series-based approach
given in [36, 52] to assess global structural identifiability. An overview of alternative approaches for
structural identifiability analysis is provided in [29, 33, 36, 62] and the references within.

The SIAN (Structural Identifiability ANalyser) software [52] provides a numerical implementation
of the approach proposed in [36]. The mathematical details of the approach are beyond the scope of
this paper and out provides [36]; however, we provide a brief overview (see also, supplemental material
of [52]) of the algorithm [36, 52]. The SIAN algorithm for assessing global structural identifiability
uses a combination of symbolic and probabilistic computation. First, SIAN uses Taylor expansions
of the model equations to obtain a polynomial representation of the system. Second, the algorithm
truncates the polynomial system to produce a minimal system containing all parameter identifiability
information. Third, SIAN solves the identifiability problem for a single parameter set that is randomly
selected to guarantee correctness up to a user-specified probability level, p (see Theorem 5 in [36]).
Fourth, the algorithm uses the results in the third step to separate the parameters into globally
identifiable, locally identifiable, and nonidentifiable sets. SIAN is implemented in Maple (Maplesoft,
Waterloo, ON) and Julia (The Julia Project [63]).

In this work, we use the Julia implementation of the SIAN algorithm with the default probabil-
ity of correctness, p = 0.99 (available at https://github.com/alexeyovchinnikov/SIAN-Julia).
However, the algorithm cannot guarantee this probability of correctness because we set the additional
p_mod parameter to 229 − 3 to enable the algorithm to run faster [64]. Any parameters that are not
globally structurally identifiable are fixed to nominal values informed by the available literature fol-
lowing identifiability analysis. While these parameters may convey meaningful biological information,
nonidentifiability implies that it is mathematically impossible to identify them from the available data.
Next, global sensitivity analysis is used to further reduce the set of identifiable parameters.
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2.4. Variance-based global sensitivity analysis
Parametric sensitivity analysis quantifies the contributions of the model parameters to variations

in the model output [19, 37]. Specifically, global sensitivity analysis aims to quantify the effects of
the model parameters on the output quantity of interest over the entire parameter space [19, 37]
and is well suited for studying parameters in nonlinear models [37, 32]. This work applies Sobol’s
method [53] for variance-based sensitivity analysis because it provides a quantitative output to rank
parameters and leverages the prior distributions defined for the parameters. Sobol sensitivity analysis
decomposes the variance of model outputs based on contributions from individual parameters and
interactions between parameters [37, 53]. The total variance of the output quantity f(θ) is

D =

∫

Rp

f2(θ)dθ − f2
0 , (4)

where f0 :=
∫
Rp f(θ)dθ is the mean of the output. The following definition for the analysis of

variance (ANOVA) representation provides an expansion for the output variance in a high-dimensional
representation (HDMR), also known as a Sobol representation [19, 53].

Definition 2 (Analysis of variance (ANOVA) representation [19, 53, 37]). The ANOVA expansion
states that the output function f(θ), for θ ∈ Rp defined as θ = [θ1, θ2, . . . , θp], can be represented as

f(θ) =
∑

i

fi(θi) +
∑

i<j

fi,j(θi, θj) + . . .+ f1,2,...,p(θ1, θ2, . . . , θp),

where the zero-, first-, and second-order terms are defined recursively as

f0 =

∫

Rp

f(θ)dθ

fi(θi) =

∫

Rp

f(θ)dθ∼i − f0

fi,j(θi, θj) =

∫

Rp

f(θ)dθ∼{i,j} − fi(θi)− fj(θj)− f0,

respectively. The recursion is extended further for increasing numbers of parameters to compute higher-
order terms. This definition assumes that the contribution terms are orthogonal (see Def 1 in [53]),
and the notation ∼ i refers to the set excluding index i, for example: dθ∼i = {dθ1, . . ., dθi−1, dθi+1,
. . ., dθp}.

The ANOVA representation (see Def 2) expands the total variance, Eq (4), as

D =

p∑

i=1

Di +
∑

1≤i<j≤p
Di,j , (5)

where the variances Di and Di,j are

Di =

∫

Rp

f2
i (θi)dθi and Di,j =

∫ ∫

Rp

f2
i,j(θi, θj)dθidθj .

Note that it is possible to compute higher-order variances by increasing the dimension of the integral
and following the recursion in Def 2, however we limit our discussion to second-order or lower variances
for brevity. The first and second-order Sobol sensitivity indices are then defined using the variance
terms in Eq (5) as

Si =
Di

D
and Si,j =

Di,j

D
.
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The first-order sensitivity index Si quantifies the fraction of the total variance attributed to parameter
θi, and the second-order sensitivity index Si,j quantifies this for the interactions between θi and θj .
Lastly, the total-order sensitivity is

STi
= Si +

p∑

j=1

Si,j ,

which quantifies all contributions from parameter θi on the output variance.
This work uses the UQLab toolbox [65, 66] to perform Sobol sensitivity analysis in Matlab (Math-

Works, Natick, MA) and the DifferentialEquations.jl package [67] for analysis in Julia (The Julia
Programming Language https://julialang.org) [63]. Both softwares use Monte Carlo estimators
(see [19, 37] and references therein for details) to compute Sobol sensitivity indices from parameter
samples. In Matlab, unless otherwise specified, first and total sensitivity indices are computed using
Sobol pseudo-random sampling (e.g. SOpts.Sobol.Sampling = ‘sobol’) and the default estima-
tor (SOpts.Sobol.Sampling = ‘janon’), see [66] for details. Additionally, the number of samples,
SOpts.Sobol.SampleSize, is set specifically for each problem in section 3. In Julia, we perform
similar Sobol sampling with QuasiMonteCarlo.jl (https://github.com/SciML/QuasiMonteCarlo.
jl) with the SobolSample() sampler, and the default estimator for the sensitivity indices, e.g.
Ei_estimator set to :jansen1999.

Sobol sensitivity analysis computes sensitivity indices for single scalar output quantities x rather
than an entire trajectory. While it is possible to compute sensitivity indices at each time point
in the trajectory and analyze the time series of indices, performing sensitivity analysis on specific
quantities of interest is more interpretable. This work defines quantities of interest (QoI) for each
problem that capture the biologically relevant information in a trajectory, such as the steady state
value (at the final time in a trajectory). Parameters are ranked by the sensitivity indices for the given
QoI. For simplicity, parameters are separated where there is a pronounced decline in the sensitivity
index value. If this separation remains ambiguous, a threshold is chosen, for example, 0.1 ≤ Si, and
any parameters whose sensitivity indices are above the threshold are considered for estimation. All
parameters with large sensitivity indices are left free for estimation and the remaining parameters are
fixed to nominal values. The next section recasts the parameter estimation problem, Problem 1, in
the Bayesian framework to estimate the remaining free parameters.

2.5. Bayesian parameter estimation
Bayesian parameter estimation solves Problem 1 by considering the model parameters, θ, as ran-

dom variables that do not have a pre-specified parametric distribution. The approach characterizes
the posterior probability distribution for the parameters p(θ|Yn) conditioned on a given dataset Yn
and provides the best guess probability distribution for θ given the data. We can use Bayes’ rule to
express the posterior distribution as

p(θ|Yn) ∝ p(θ)L(θ;Yn), (6)

where p(θ) is known as the prior distribution, and L(θ;Yn) is the likelihood function (see Fig 1.B2
for a visual representation of Bayes’ rule).

Intuitively, Bayes’ rule updates our best guess about the distribution of the model parameters as
new data is being incorporated. The prior distribution p(θ) represents the best guess before any data
are collected and encodes any assumptions on the parameters. For instance, the prior may convey the
physiological ranges for parameter values or may weigh known values more heavily (see section 2.8).
The likelihood function L(θ;Yn) = p(Yn|θ) updates our belief state by measuring the misfit between
the data and model predictions of a specific parameter set. Parameter sets that are more likely to occur
will produce model predictions that better match the data and thus have larger likelihood values. For
example, although the prior in Fig 1.B2 places more probability on smaller values of θ, the likelihood
in Fig 1.B2 places more probability mass towards larger values. It is important to note that evaluation
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of the likelihood function requires model simulations. For example, assuming Gaussian measurement
noise with zero mean, a possible likelihood function is

L(θ;Yn) =
1

(2π)
m
2 |Γ| 12

n∏

k=1

exp

(
−1

2
||yk −Hx̂k||2Γ

)
, (7)

where x̂k is the predicted state at time tk with the parameters θ, | · | denotes the matrix determinant,
and the C-weighted norm is defined as ||a||2C := a>C−1a. Lastly, the posterior distribution conveys
the best guess after collecting and incorporating the data Yn into the statistical model and can be
further refined if more data are included. In Fig 1.B2, the posterior illustrates how the likelihood
function re-weights the prior to update our belief state.

A fundamental difficulty in Bayesian parameter estimation is that Bayes’ rule only enables eval-
uating the posterior distribution at specific points in parameter space. This is in contrast to, for
example, the formula for a Gaussian distribution (with mean µ and standard deviation σ)

p(x) =
1√

2πσ2
exp

(−(x− µ)2

σ2

)

that can be analytically evaluated at all values of x. Therefore, parameter samples are drawn from
the posterior help to characterize the distribution over the entire parameter space. Markov chain
Monte Carlo (MCMC) algorithms enable sampling from arbitrary distributions, such as the posterior
distribution (see section 2.9 for details). Before performing Bayesian estimation the next section
introduces the constrained interval unscented Kalman filter Markov chain Monte Carlo (CIUKF-
MCMC) algorithm that accounts for uncertainty in the model and the data.

2.6. Constrained interval unscented Kalman filter Markov chain Monte Carlo (CIUKF-MCMC)
A framework for complete uncertainty quantification of dynamical models in systems biology must

account for uncertainty in the model form, parameters and noisy data. In [26], Galioto and Gorodetsky
suggest adding a process noise term to Eq (1) to account for model form uncertainty in the system.
Following this suggestion, the model in Eqs (1-2) is recast as a discrete time stochastic process

xk = ψ (xk−1; θf ) + ξk, ξk ∼ N (0,Σ(θΣ)) (8)
yk = Hxk + ηk, ηk ∼ N (0,Γ(θΓ)) , (9)

where k is the discrete time index for tk, and ψ(·; ·) is the discrete state propagator that evolves the
state from time tk−1 to time tk. Additionally, ξk and ηk are Gaussian process and measurement
noise (stochastic noise processes) with covariances Σ(θΣ) and Γ(θΓ), respectively. The discrete state
propagator ψ(·; ·) in Eq (8) is the discrete operator that evolves the state according to the differential
equation in Eq (1), and, for example, could be a forward-Euler finite-difference approximation. This
work deploys the Matlab function ode15s() to construct a state propagator that guarantees the
necessary stability to handle systems biology models.

Bayesian estimation of the model parameters, θ = [θf , θΣ, θΓ], of the extended system in Eqs (8-
9) accounts for uncertainty in the data, model, and parameters. The introduction of process noise
increases the dimension of the parameters to estimate by requiring estimates for θΣ. Further, the
addition of stochastic process noise means the state variables are random variables; Bayes’ rule for
this system becomes

p(θ,Xn|Yn) ∝ p(θ)L(θ;Yn,Xn), (10)

to account for the additional uncertainty in the states. The key step of the UKF-MCMC algorithm
is the marginalization of uncertainty in the states out of Eq 10 to enable estimation of the parameter
posterior distribution [26].

The UKF-MCMC algorithm begins by constructing an expression for the joint likelihood of the
states and the parameters, L (θ;Yn,Xn). Two probability distributions implied by the stochastic
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system in Eqs (8-9) are needed to define an expression for the joint likelihood. First, the probability
of the current state xk given the past state xk−1 is

p (xk|xk−1,θf ,Σ(θΣ)) =
exp

(
− 1

2 ||xk − ψ(xk−1,θf )||2Σ
)

(2π)
d
2 |Σ(θΣ)| 12

, (11)

where the norm ||xk − ψ(xk−1,θf )||2Σ quantifies the misfit between the past state and the predicted
current state. Next, the probability of a measurement yk given xk is

p (yk|xk,Γ(θΓ)) =
exp

(
− 1

2 ||yk −Hxk||2Γ
)

(2π)
m
2 |Γ(θΓ)| 12

, (12)

where the norm ||yk −Hxk||2Γ quantifies the residual between the measurement and the true states.
By combining Eq (11) and Eq (12) the joint likelihood is

L (θ;Yn,Xn) =
n∏

k=1




exp
(
− 1

2 ||xk − ψ(xk−1,θf )||2Σ
)

(2π)
d
2 |Σ(θΣ)| 12

×
exp

(
− 1

2 ||yk −Hxk||2Γ
)

(2π)
m
2 |Γ(θΓ)| 12


 . (13)

Marginalizing out the uncertain states by integration yields the likelihood for the uncertain parameters

L (θ;Yn) =

∫

Rd
≥0

· · ·
∫

Rd
≥0

L (θ;Yn,Xn) dx1 . . . dxn. (14)

However, there is no obvious computationally tractable approach to integrate over a set of uncertain
states directly. Theorem 1, stated below, provides a recursive algorithm to marginalize the states out
of the likelihood, e.g., to perform the integration in Eq (14). Although Theorem 1 assumes that the
initial condition is uncertain (and it is therefore estimated), we do not use that estimate in this work,
as we start with a known initial condition x0.

Theorem 1 (Marginal likelihood (Theorem 1 of [26] and 12.1 of [68])). Let Yk denote the set of
all observations up to time k as defined in section 2.2. Let the initial condition be uncertain with
distribution p (x0|θ). Then the marginal likelihood is defined recursively in three stages:

for k = 1, 2, . . .

1. Predict the new state from previous data

p
(
xk+1

∣∣θ,Yk
)

=

∫

Rd
≥0

p
(
xk

∣∣θ,Yk
) exp

(
− 1

2 ||xk − ψ(xk−1,θf )||2Σ
)

(2π)
d
2 |Σ(θΣ)| 12

dxk,

2. update the prediction with the current data

p
(
xk+1

∣∣θ,Yk+1

)
= p

(
xk+1

∣∣θ,Yk
) exp

(
− 1

2 ||yk −Hxk||2Γ
)

(2π)
m
2 |Γ(θΓ)| 12

,

3. and marginalize out uncertainty in the states

Lk+1

(
θ
∣∣Yk+1

)
=

∫

Rd
≥0

p
(
xk+1

∣∣θ,Yk
) exp

(
− 1

2 ||yk −Hxk||2Γ
)

(2π)
m
2 |Γ(θΓ)| 12

dxk+1.
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The recursion defined in Theorem 1 closely resembles a Bayesian filter [68]; thus, it is evaluated it
with Kalman filtering algorithms [26]. For linear models, the standard linear Gaussian Kalman filter
can be used to evaluate the recursion (see Algorithm 2 in [26]). However, exact solutions to the recur-
sion are not possible if the model or measurement processes are nonlinear. Therefore, approximations
such as extended Kalman filters, unscented Kalman filters, or ensemble Kalman filters [26, 68] must
be employed. The original implementations of the UKF-MCMC algorithm use the UKF [69] for this
approximation because the UKF is generally stable and can handle nonlinear models and measurement
processes [26, 51]. However, the UKF is not suitable for systems biology models because it ignores
constraints on the state variables, such as the nonnegativity of chemical concentrations. Section 2.7
describes the constrained interval unscented Kalman filter (CIUKF) [54] implemented in this work to
enforce state constraints during filtering. Thus, we refer to the UKF-MCMC from [26] that uses the
constrained interval unscented Kalman filter [54] as CIUKF-MCMC.

2.7. Constrained interval unscented Kalman filter (CIUKF)
We implement the constrained interval Unscented Kalman filter (CIUKF) [54, 70] algorithm to

enforce all state constraints in CIUKF-MCMC. This algorithm assumes that the state is subject to an
interval constraint xLB ≤ x ≤ xUB. We only seek to enforce nonnegativity in systems biology, so the
interval constraint is 0 ≤ x ≤∞. We choose the CIUKF over alternative state constrained Kalman
filters [54, 71] because it enforces constraints in both the predict and update steps of the algorithm
and retains the same structure as the standard UKF [68]. We outline the steps of the CIUKF below.

The CIUKF algorithm predicts the state xk+1 from all preceding measurement data y1, . . . ,yk.
Following the structure of the linear Kalman filter, CIUKF is a recursive algorithm that iterates over
all data and performs prediction and update steps at each time point [68]. For simplicity, we outline
a single iteration of the CIUKF that moves the state forward in time from xk to xk+1. Let Cxx

k be
the state covariance matrix at time tk, Σ(θΣ) be the process noise covariance matrix, Γ(θΓ) be the
measurement noise covariance matrix, and θf be the model parameters. There are two steps to the
CIUKF, prediction, and update.

First, the prediction step uses the the interval constrained unscented transform [70, 54] (the state-
constrained equivalent to the unscented transform [72, 69]) to predict the state and its covariance
matrix at the next time point after propagation by the nonlinear model, e.g., Eq (8). The interval
constrained unscented transform constructs a set of sigma points that capture the covariance Cxx

k at
time tk. Each sigma point is propagated in time by the nonlinear model to approximate the new state
and its covariance at the next time tk+1. The set of 2d+ 1 sigma points, X , is given by

X (0)
k = xk (15a)

X (i)
k = xk + ξi[

√
Cxx

k ]i (15b)

X (i+d)
k = xk − ξi+d[

√
Cxx

k ]i, (15c)

where wi is the ith coefficient, [A]i is the ith column of A,
√

A is the matrix square root of A, and
i = 1, . . . d. The coefficients ξi control the distances of the sigma points around the initial state xk

and are chosen to ensure that no sigma points violate the state constraints. They are

ξi = min([Ξ]i) (16)

Ξ(i, j) :=





√
d+ λ if S(i, j) = 0

min
(√

d+ λ, xLB−xk

S(i,j)

)
if S(i, j) < 0

min
(√

d+ λ, xUB−xk

S(i,j)

)
if S(i, j) > 0

(17)

S :=
[√

Cxx
k −

√
Cxx

k

]
, (18)

where λ is a parameter of the algorithm. Alternatively, in the standard unscented transform, the
coefficients are all equal to

√
d+ λ [69, 72]. Next, a set of weights, wi, are assigned to each sigma
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point as

w0 = b (19a)
wi = aξi + b (19b)

a :=
2λ− 1

2(d+ λ)
(∑d

i=1 ξi − (2d+ 1)
√
d+ λ

) (19c)

b :=
1

2(d+ λ)
− 2λ− 1

2
√
d+ λ

(∑d
i=1 ξi − (2d+ 1)

√
d+ λ

) , (19d)

where ξi are as defined in Eqs (16-18). Importantly the sum of the weights equals one,
∑2d

i=0 wi = 1.
The prediction step then uses the nonlinear model, Eq (8), to propagate each sigma point forward in
time

X̂ (i)
k = ψ

(
X (i)

k ,θf

)
(20)

for i = 0, . . . , 2d. The prediction mean x∗k and covariance C∗xxk are then respectively computed as

x∗k =
2n∑

i=0

wiX̂ (i)
k (21)

Cxx∗

k =
2n∑

i=0

wi

[
X̂ (i)

k − x∗k
] [
X̂ (i)

k − x∗k
]>

+ Σ(θΣ). (22)

Equations (15)-(22) describe the constrained interval unscented transform that approximates the mean
and covariance of the state after propagation by the nonlinear model. The prediction mean, Eq (21),
and covariance, Eq (22), provide the predicted state and its covariance, respectively, that are then
updated using the available data yk.

The update step begins by constructing a new set of sigma points centered around x∗k, where

X ∗(0)
k = x∗k (23a)

X ∗(i)k = x∗k +
√
n+ λ

[√
Cxx∗

k

]

i

(23b)

X ∗(i+d)
k = x∗k −

√
n+ λ

[√
Cxx∗

k

]

i

. (23c)

Additionally, a new set of weights are

w
(m)
0 =

λ

d+ λ
w

(m)
i =

1

2(d+ λ)

w
(c)
0 =

λ

d+ λ
+ (1− α2 + β) w

(c)
i =

1

2(d+ λ)
,

where {w(m)
i } are used to compute the mean and {w(c)

i } are used to compute the covariance matrix.
These weights are indeed equal for all sigma points and are equivalent to those used in the standard
UKF. Next, the measurement function is applied to each sigma point, yielding a set of predicted
measurements

Y∗(i)k = h
(
X ∗(i)k ,θh

)
,

where the measurement function h(·; ·) is possibly nonlinear with parameters θh. Then the mean and
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covariance matrices of the predicted measurements are computed with the weighted sums,

y∗k =
2n∑

i=0

w
(m)
i Y∗(i)k

Cyy∗

k =
2n∑

i=0

w
(c)
i

[
Y∗(i)k − y∗k

] [
Y∗(i)k − y∗k

]>
+ Γ

Cxy∗

k =
2n∑

i=0

w
(c)
i

[
X ∗(i)k − x∗k

] [
Y∗(i)k − y∗k

]>
,

and the Kalman gain is

Kk = Cxy∗

k

(
Cyy∗

k

)−1

.

Lastly, the updated state xk+1 is found by solving the following constrained nonlinear optimization
problem,

xk+1 = arg min
x

f(x) (24a)

subject to xLB ≤ x ≤ xUB, (24b)

where the objective function is

f(x) = [yk − h(x,θh)] Γ−1 [yk − h(x,θh)]
>

+ [xk − x∗k] (Cxx∗

k )−1 [xk − x∗k]
>
. (25)

This optimization problem can be solved in Matlab using the fmincon() optimizer. Additionally, the
updated covariance matrix is given by

Cxx
k+1 = Cxx∗

k −KkCyy∗

k K>k .

In offline state estimation problems, such as CIUKF-MCMC, this filter is iterated over all available
data, e.g. from time t0 to time tn if n data points are available [26, 51].

In practice, the CIUKF algorithm is substantially more compute-intensive than the standard
UKF [54] because the CIUKF update step involves solving a constrained nonlinear optimization prob-
lem, e.g., Eq (24). However, the objective function in Eq (25) can be simplified given the linear
measurement assumptions made in section 2.2. The simplified objective function becomes

f(x) = [yk −Hx] Γ−1 [yk −Hx]
>

+ [xk − x∗k] (Cxx∗

k )−1 [xk − x∗k]
>
. (26)

Expanding this and recognizing that minimizing f(x) = y(x) + b is equivalent to minimizing f(x) =
y(x), gives

f∗(x) = x>
[
H>Γ−1H + (Cxx∗

k )−1
]

x− 2
[
y>k Γ−1H + x∗kCxx∗

k

]
x, (27)

which is equivalent objective function to Eq (26) and is a quadratic form. Thus, the constrained
optimization problem in Eq (24) becomes a quadratic program when using Eq (27) as the objec-
tive function. We use the quadprog() function in Matlab to solve the quadratic program with the
‘Algorithm’ option set to ‘trust-region-reflective’. We keep all other settings for the solver as
defaults. As expected, solving the quadratic program is substantially more efficient than solving the
general nonlinear problem.

Throughout this work, we set λ = 1, α = 1 × 10−3, β = 1. Furthermore the Cholesky decom-
position, A = LL>, is used to compute the matrix square roots in Eq (15) and Eq (23), because
covariance matrices are always positive definite. Two additional numerical steps are taken to ensure
all covariance matrices remain symmetric positive definite. First, εI is added to all computed covari-
ance matrices, P∗ = P + εI, where ε = 1 × 10−10, and P is a generic covariance matrix. Second,
computing P∗ = 1

2 (P + P>) enforces symmetry of the covariance matrix. The next section discusses
how to choose prior distributions for Bayesian estimation.
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2.8. Prior distribution
The prior distribution, p(θ) encodes our belief state about parameters before collecting data and

performing Bayesian estimation [19, 27]. The form of the prior distribution allows can be specified to
incorporate varying levels of prior knowledge into our models. If the values of a parameter are known,
informative priors can be used to shift to the possible values for that parameter towards the known
values [27]; for example, a log-normal prior distribution can be used to center the prior around ex-
perimental measurements of a parameter [73]. However, the Bayesian inference literature often warns
that informative priors should only be used in combination with good information on the parameter
values [27] as it can take a large amount of data to overcome a “bad" prior. Alternatively, nonin-
formative or weakly-informative priors reflect a lack of good prior knowledge about the parameters.
For example, if we only know a parameter’s physiological ranges, we could construct a uniform prior
that states there is an equal probability of any parameter value within this range. Noninformative or
weakly-informative priors rely on the data to provide information on the parameters, so the choice of
such priors is often safer when prior knowledge of the parameters is limited [27].

In applying the CIUKF-MCMC algorithm, this work constructs prior distributions for two sets
of parameters, the biological model parameters, and the noise covariance parameters. We choose to
use uniform priors for the biological model parameters, θf , to replicate the typical modeling setting
where only the possible ranges for model parameters are known. Supplemental Tables in Appendix A
list the upper and lower bounds of all biological model parameters. Furthermore, we follow the
choices in [26] and use right-half-normal priors for the measurement and process noise covariance
parameters, θΣ and θΓ, respectively (this is further motivated in section 7.1 of [74]). The choice
of covariance and upper bound of these priors was found to significantly affect the convergence of
MCMC sampling. Thus, the prior distributions for the noise covariance parameters were scaled to
match the respective state variable. For example, the prior for a measurement noise covariance θΣi

that corresponds to measurements {yi1, yi2, . . . , yin} would be a right-half-normal distribution with mean
zero and standard deviation equal to a fraction of the standard deviation σyi of the data. The prior
is then θΣi ∼ Right-Half-Normal(0, bσxi) truncated to [0, σxi ], where b < 1 and σxi is the standard
deviation of the state xi. We chose b = 1

3 unless otherwise specified. These choices are motivated by
the observation that measurement noise and process noise covariances will always be smaller than or
equal to the covariance of the available data if there is any meaningful information in the data. The
next section introduces MCMC sampling to characterize posterior distributions that use CIUKF to
approximate the likelihood function.

2.9. Markov chain Monte Carlo sampling
Markov chain Monte Carlo (MCMC) algorithms enable sampling from arbitrary probability dis-

tributions [19, 75, 76, 77]. The key idea of MCMC is to construct a Markov chain of samples
θ1, θ2, . . . ,θN whose distribution converges to the target distribution, π(θ), that we wish to sam-
ple [27, 76]. We apply MCMC sampling to Bayesian parameter estimation by constructing a Markov
chain where the target distribution is the posterior distribution, that is π(θ) = p (θ|Yn). In this work,
we use two MCMC sampling algorithms, delayed rejection adaptive Metropolis (DRAM) [58] and
affine invariant ensemble sampler (AIES) [59]. These samplers build upon the classical Metropolis-
Hastings algorithm [78, 79] that we introduce in section 2.9.1. We outline DRAM in section 2.9.2 and
AIES section 2.9.3. Lastly, we discuss convergence assessment with the integrated autocorrelation
time [59] in section 2.9.5. We focus these discussions on the practical aspects of MCMC and refer the
reader to [19, 27, 76] for additional theoretical details.

2.9.1. Metropolis-Hastings
The Metropolis-Hastings (MH) algorithm [78, 79] constructs a Markov chain whose probability

distribution is guaranteed to converge to the target distribution and forms the foundation for a large
family of MCMC samplers [27, 76]. The MH algorithm consists of two steps, a proposal and an
accept-reject step, repeated to draw the set of samples θ1, θ2, . . . ,θN . The Markov chain starts with
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an initial sample θ0 that the user chooses. We outline one iteration of the MH algorithm moving from
step i to step i+ 1.

The first step, called the proposal step, in Metropolis-Hastings is to propose a new sample θ∗. We
draw θ∗ from the proposal distribution q(θ∗|θi). The proposal distribution is specific to each MCMC
algorithm, but, for example, could be a normal distribution centered around the previous sample such
that θ∗ ∼ N

(
θi, σ2I

)
where σ is specified (this is random walk Metropolis (RWM) [76]).

Next, the accept-reject step decides if the proposal is accepted, set θi+1 = θ∗, or rejected, set
θi+1 = θi. In the MH algorithm, this decision is probabilistic, e.g., the proposal is accepted or
rejected with probability α(θ∗|θi). The acceptance probability is

α(θ∗|θi) = min

(
1,
π(θ∗)

π(θi)

q(θi|θ∗)
q(θ∗|θi)

)
, (28)

which guarantees that the stationary distribution of the samples (the distribution that the samples
converge to in the infinite sample limit) equals the target distribution [27, 76]. These steps, propose
and accept-reject, are repeated until the distribution of the set of samples has converged to its station-
ary distribution. Although convergence is guaranteed in the infinite sample limit [27, 76], assessing
convergence in practice is nontrivial. We chose to use an approach from [59] that uses the integrated
autocorrelation time to asses convergence as outlined in section 2.9.5 (see [19, 27, 76] for additional
approaches).

2.9.2. Delayed rejection adaptive Metropolis (DRAM)
The delayed rejection adaptive Metropolis (DRAM) algorithm is based on the random walk

Metropolis algorithm and combines delayed rejection with adaptive Metropolis [58]. DRAM closely
follows the Metropolis-Hastings algorithm but specifically uses a Gaussian proposal distribution such
that θ∗ ∼ N

(
θi,C

)
, where C is the covariance matrix. Delayed rejection (DR) [58, 80] and adaptive

Metropolis (AM) [58, 81] are two modifications to the random walk Metropolis algorithm that help
to improve the convergence rate of the Markov chain.

First, delayed rejection adds an additional round of Metropolis-Hastings (propose and accept or
reject) if the first proposal is rejected. That is, if θ∗ is rejected a new proposal, θ∗2 ∼ q2(θ∗2|θ∗,θi) is
drawn, where q2(·) is the new proposal distribution. The new proposal distribution is also Gaussian,
however the covariance is scaled to a fraction of the original proposal covariance, e.g. q2(θ∗2|θ∗,θi) =
N
(
θi, γC

)
, where γ < 1 and is a tuning parameter of the algorithm [58] . Thus the second proposal

is closer to the previous point and is more likely to be accepted. DRAM evaluates the new proposal
with a Metropolis-Hastings accept-reject step with the acceptance probability

α2(θ∗2|θ∗,θi) = min

(
1,
π(θ∗2)

π(θi)

q(θ∗|θ∗2)

q(θ∗|θi)

(
1− α(θ∗|θ∗2)

)
(
1− α(θ∗|θi)

)
)
,

where α(·|·′) is as defined in Eq (28). Although most implementations impose a single DR step [19],
delayed rejection can be repeated more than once, where the proposal distribution and acceptance
probability are modified accordingly at additional each round.

Adaptive Metropolis acts separately from delayed rejection and aims to move the proposal distri-
bution closer to the target distribution [58], by replacing the covariance matrix of the proposal, C,
with the covariance matrix of the samples. In practice, adaptation begins after a set number of i0
samples have been drawn and updates the covariance matrix at every step as

Ci =

{
C0 i ≤ i0
spCov[θ1, . . . ,θi] + spεI i > i0,

where C0 is the initial covariance matrix, sp is an algorithm tuning parameter that is often set to
sp = 2.382/p [58, 75] where p is the dimension of θ, and ε is a small positive number.
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We implement the DRAM algorithm with a single round of delayed rejection following [26] with
γ = 0.01, i0 = 200, and ε = 1×10−10. Furthermore, the initial covariance matrix C0 is tuned to accept
between 20 - 40% of proposals. We refer the reader to [19, 58] for further details on DRAM and tuning
the initial covariance matrix. Additionally, each Markov chain is initialized to the MAP point by using
fmincon() (default options except: ‘UseParallel’ set to true and ‘MaxFunctionEvaluations’ set
to 10, 000) in Matlab to minimize the negative log-posterior (equivalent to maximizing the posterior)
as in [26].

2.9.3. Affine invariant ensemble sampler (AIES)
While random walk Metropolis-based algorithms such as DRAM can adequately sample complex

posterior distributions, these methods will show very slow convergence when the target distribution
is highly anisotropic [59]. The posterior distribution with CIUKF-MCMC in systems biology are
anisotropic because the scales of model parameters can vary by several orders of magnitude, and
the noise covariance parameters often have different scaling than the model parameters. Fortunately,
AIES provides an algorithm to sample such anisotropic distributions [59] effectively. The motivation
for affine invariance is that anisotropic distributions can be transformed to isotropic distributions with
an affine transformation. Thus an algorithm that is invariant to such transformations will effectively
sample an isotropic distribution when sampling an anisotropic distribution [59].

The AIES algorithm differs from DRAM and random walk Metropolis because it leverages an
ensemble of Markov chains rather than a single chain. Each chain in the ensemble of Ne Markov
chains is called a walker, and we denote the set of walkers at step i with {θi

1, . . . ,θ
i
Ne} where the

subscript is the walker index and the superscript is the step-index. Note that the number of walkers
must be larger than the dimension of θ that is Ne > p, for θ ∈ Rp. At the end of N steps, a set
of Ne Markov chains with N samples is obtained. The first chain in the ensemble is, for example,
θ1

1,θ
2
1, . . . ,θ

N
1 . Note that the total ensemble will have N ·Ne samples. Each step of the AIES algorithm

involves a proposal and a Metropolis-Hastings update for each chain in the ensemble. One iteration
of these steps to move from i to i + 1 for a single walker, θi

n, is outlined below and these steps are
repeated to update the entire ensemble.

First, a proposal for the current walker θi
n is chosen using the stretch move [59] that ensures affine

invariance of the sampler. The stretch move proposes a new point that lies along the line

θ∗n = θi
k + Z · (θi

n − θi
k)

that connects the current walker θi
n and another walker in θi

k randomly chosen from the ensemble.
Here, Z is a realization of z ∼ g(z), where

g(z) =

{
1√
z

if 1
a ≤ z ≤ a

0 else

and a > 1 is an algorithm tuning parameter that the user must specify.
Second, the proposal is accepted or rejected using a Metropolis-Hastings-like accept-reject step.

The acceptance probability is

α(θ∗n|θi
n) = min

(
1, Zp−1π(θ∗n)

π(θi
n)

)
,

where Z is as defined above, and p is the dimension of θ. This formulation of the acceptance probability
guarantees convergence to the target distribution [59].

We use the Matlab implementation of the AIES algorithm [82] in the UQLab toolbox [65]. Unless
otherwise specified, the ensemble size is Ne = 150 because we observed improved sampling with a large
ensemble. To accelerate sampling, the likelihood is evaluated for each ensemble member in parallel
using a parallel for loop (e.g., parfor in Matlab) with at most 24 parallel threads. Additionally,
default value of a = 2 is used for the stretch move tuning parameter. Lastly, each Markov chain in
the ensemble is initialized to a random point drawn uniformly over the support of the prior as is the
default in UQLab [82].
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2.9.4. Markov chain burn-in
In MCMC, Markov chains (or ensembles of chains) often display an initial transient, called burn-

in, before converging to their stationary distributions [19, 27, 77]. Importantly, these samples during
burn-in are not distributed according to the stationary distribution and should therefore be excluded
from the final set of samples. Common practice in the MCMC literature is to simply discard these
initial samples to remove the effects of burn-in [19, 27]. The choice of the burn-in length is often
nontrivial and is best informed by an analysis of the Markov chain [77]. Unless otherwise specified
the integrated autocorrelation time (described below) dictates the number of samples to discard as
burn-in. Specifically, we compute the integrated autocorrelation time after collecting many samples
and set the burn-in length to 5 - 10 times the computed value.

2.9.5. Convergence assessment with the integrated autocorrelation time
A key challenge in Markov chain Monte Carlo sampling is determining the appropriate number of

samples N to collect. In this work, we use the integrated autocorrelation time [59, 77] to determine
when the Markov chain has approximately converged to its stationary distribution. We outline the
theory and motivation behind the integrated autocorrelation time for a single Markov chain and refer
the reader to [59] for a discussion of ensemble methods. The use of the integrated autocorrelation
time is motivated by the typical use of MCMC sampling to compute an expectation

E[x] =

∫
xπ(x)dx.

Given a Markov chain of length N , we can estimate the expectation with the Monte Carlo estimator

µ̂ =
1

N

N∑

i=1

xi.

In general it is common to consider the variance of µ̂, var(µ̂), as the estimation error [59]. This
variance is given by

var(µ̂) =
var(x)

N/τs
,

where the integrated autocorrelation time τs is given by

τs =
∞∑

T=−∞

Cs(T )

Cs(0)
.

Here, the autocovariance function Cs(T ) with lag T ∈ N is given by

Cs(T ) = lim
t∗→∞

cov[xt∗+T , xT ],

where t∗ ∈ N. Thus, the Monte Carlo estimation error is proportional to integrated autocorrelation
time for a fixed chain length. The integrated autocorrelation time can be interpreted as the time
it takes for the samples in a Markov chain to become uncorrelated [77]. Additionally, the effective
number of samples, Neff, can be defined using the integrated autocorrelation time as, Neff = N/τs.

In this work, we use the integrated autocorrelation time for two purposes. First, the computation
of the integrated autocorrelation time is used to choose the correct burn-in length. We compute the
integrated autocorrelation time after collecting many samples and then discard between 5− 10 times
τs as burn-in. Second, after discarding the initial samples, the integrated autocorrelation time helps
to determine if enough samples have been collected, e.g., Neff is large. Should the effective sample
size be small, the MCMC sampler is run longer to collect more samples. We compute the integrated
autocorrelation time using a Matlab function associated with [83] (available at https://www.physik.
hu-berlin.de/de/com/UWerr_fft.m) with default algorithm parameters. We compute τs for each
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parameter and take the maximum of these values. For an ensemble, we compute the mean τs for the
walkers of each parameter and take the maximum value of the means. After completing MCMC and
evaluating the chains, the framework leverages the posterior samples to quantify uncertainty in model
predictions.

2.10. Ensemble simulation and output uncertainty analysis
Markov chain Monte Carlo sampling provides a set of samples, {θ̂1, . . . θ̂n}, that converge in

distribution to the posterior distribution (e.g. Fig 1.B3). One is often interested in how uncertainty
in the parameter estimates, which is conveyed by the posterior distribution, propagates to uncertainty
in the model predictions. Fortunately, an ensemble of simulations (see Fig 1.B1) distributed according
to the posterior can be run using the posterior samples. This approach to uncertainty propagation
is known as sampling-based uncertainty propagation [19] and is feasible because the simulation of
dynamical systems biology models is computationally efficient. We refer the reader to [40, 84] for
examples of sampling-based uncertainty propagation in systems biology.

Each simulation is run by solving the differential equation with the ode15s() integrator in Matlab
with a unique sample from {θ̂1, . . . θ̂n} for the parameters. We use default tolerances for the integrator
and supply the Jacobian matrix (specify the ‘Jacobian’ option) to improve computations. We
compute the Jacobian by hand and evaluate it with the same parameter as the differential equation.

Following ensemble simulation, statistical analyses of the ensemble of predicted trajectories and
any relevant quantities of interest (QoI) can be performed. For example, Fig 1.B2 highlights the un-
certainty in the trajectory with 95% credible intervals to show the region where 95% of the trajectories
fall. Additionally, we compute the statistics of relevant QoIs, such as the steady state values or limit
cycle period, from the ensemble. The next section discusses how to choose single point estimates that
best represents the estimated parameters.

2.11. Parameter point estimates from posterior samples
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Figure 2: Examples of point estimates depicted on an arbitrary probability density function (black line). The MAP
(maximum a posteriori) point is located at the most probable point (blue dashed line). The long tail of the distribution
shifts the mean (gray dotted line) away from the MAP point. Secondary modes (red dashed-dotted line) can effect
the quality of a point estimate. Additionally, the green shaded region highlights the 95% credible interval, the region
between the 2.5th and 97.5th percentiles, that is used to capture the uncertainty in an estimate.

One often wants to compute a point estimate for each of the parameters in addition to character-
izing the entire posterior distribution (black line in Fig 2). Common choices for point estimates in
Bayesian statistics include mean, median, or mode of the posterior distribution [27]. Fig 2 highlights
the mean and mode (denoted MAP), along with a secondary mode that may confound choosing a
point estimator. The mode of the posterior distribution is a strong choice because it provides the
most probable set of parameters and is often called the maximum a posteriori (MAP) point. How-
ever, the mean or median may provide better point estimates when the posterior is multimodal (there
are multiple modes).
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These point estimates are computed from posterior samples acquired via MCMC sampling. While
sample statistics, such as the mean and median, are computed directly from the samples, computing
the MAP point requires estimating the posterior of the probability density function and finding the
maximal point. Direct computation of the sample mode will not yield the MAP point because the
parameters are continuous random variables, so no two-parameter samples are expected to be identical.
One approach to estimate the MAP point involves computing a histogram of samples and using the
center of the bin with the most associated probability as the MAP. However, we found that the
histogram of posterior samples is often noisy and can be sensitive to the bin size, so that the MAP
estimate may be erroneous. We chose to take an alternative approach that fits a kernel density
estimator [85] to approximate the posterior distribution and subsequently compute that MAP point.
The kernel density estimator provides a non-parametric approximation of the posterior distribution
and, intuitively, smooths the posterior histogram. We use the ksdensity() function for kernel density
estimation in Matlab. The ‘support’ option is set to be the region bounded by the prior distribution
and the ‘BoundaryCorrection’ option is set to use the ‘reflection’ method to account for these
bounds. Lastly, we use the default values for the ‘Bandwidth’ unless otherwise specified. All other
options are kept to the defaults as defined in the Matlab documentation. The MAP point is the point
with maximum probability in the ksdensity() output. The next section moves from the details of
CIUKF-MCMC and Bayesian estimation to outline how synthetic data is generated for the examples
in this paper.

2.12. Synthetic data generation for numerical experiments
The synthetic data in this work aims to replicate noisy data found in biological experiments. We

generate noisy synthetic data by drawing samples from deterministic model simulations and simulate
measurement noise by adding independently and identically distributed (iid) perturbations to each
sample. First, a nominal set of biological model parameters and an initial condition are chosen for
data generation. These values become the ground truth for the estimation problem, and are informed
by the available literature when possible. Next, a numerical solution to the system provides true
trajectories of the state variables. Unless otherwise specified the ode15s() integrator in Matlab is
used with default tolerances, and the Jacobian matrix is supplied (specify the ‘Jacobian’ option
with the analytical Jacobian Matrix) to improve computations. We then apply the measurement
function and sub-sample the true trajectory to simulate sparse sampling. Lastly, we corrupt the data
by adding a realization of an iid noise stochastic process to each sample. To meet the assumptions of
the CIUKF-MCMC algorithm (see Section 2.6) we use mean-zero, normally distributed perturbations
with the diagonal covariance matrix, Γ. We chose the entries of Γ to be proportional to the variances
of the respective state variables, e.g.

Γ = b



var(x1

0, . . . , x
1
n) 0

. . .
0 var(xd0, . . . , xdn)


 ,

where b is a positive constant typically chosen to be less than one that controls the noise level. The
last section discusses how to compute the amplitude and period of a limit cycle oscillation.

2.13. Limit cycle analysis
Limit cycle amplitude and period are used to characterize limit cycle oscillations for global sensi-

tivity and output uncertainty analysis. These quantities are relevant in intracellular signaling because
the strength and timing of signals, amplitude and period, respectively, are thought to encode differ-
ent inputs [86]. The limit cycle amplitude, ylca, quantifies the difference between the maximum and
minimum values of the oscillations and is defined as

ylca := xmax − xmin, (29)
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where xmin and xmax denote the minimum and maximum values of the state x over a single complete
oscillation. Further, the limit cycle period, yperiod, is the time to complete an oscillation and is defined
as

yperiod := t∗ ⇐⇒ x(t) = x(t+ t∗) for all t. (30)

To compute these quantities we find trajectories that show limit cycle oscillations and then extract the
two quantities of interest. This approach leverages the findpeaks() function that returns the locations
of the local maxima (peaks) in a trajectory for these computations in Matlab. The findpeaks() can
also find the local minima by applying it to the negative of the trajectory.

The first task in computing the limit cycle features is to detect actual limit cycle oscillations. A tra-
jectory is discarded if it reaches a fixed point (steady state) when no peaks are detected (findpeaks()
returns an empty set). Next, the difference between the heights of the identified peaks is used to dis-
card trajectories that show decaying oscillations to a fixed point. A threshold on this difference,
called for the peakThreshold, is set to 17.0 unless otherwise specified; a trajectory is discarded if its
difference in peak values exceeds this threshold. Any remaining trajectories will show limit cycles or
will contain numerical artifacts which are falsely detected as limit cycles.

Lastly, the limit cycle amplitude and period are computed. The limit cycle amplitude is the mean
difference between each pair of detected peaks and minima that correspond to one oscillation of the
limit cycle. The limit cycle period is then computed as the mean time between two peaks and the
time between two minima. Trajectories with numerical artifacts are eliminated by discarding those
with a limit cycle amplitude that is smaller than the LCAminThresh, with a range of limit cycle values
greater than the Decaythresh or those that return no limit cycle period (e.g., the empty matrix
on Matlab). Unless otherwise specified, we set the LCAminThresh to 1.0 and the Decaythresh to
5.0. These computations assume that the period of the limit cycle is stable and that no frequency
modulation occurs.

3. Results

We applied the Bayesian parameter estimation framework to three different models that represent
signal transduction cascades of increasing biological and mathematical complexity. Section 3.1 uses
the first model, a simple kinetic scheme, to describe a series of computational experiments that il-
lustrate the effects of measurement noise and data sparsity on estimation uncertainty (Fig 3). Next,
we tested our framework on two models that are more representative of the nonlinearities and over-
parameterization observed in systems biology models. Section 3.2 analyzes a representative model of
the mitogen-activated protein kinase (MAPK) pathway [56] that exhibits multistability depending on
the choice of model parameters. Finally, section 3.3 analyzes a simplified model of synaptic plastic-
ity [57] that illustrates the effects of higher parameter uncertainty even in phenomenological biological
representations.

3.1. Measurement noise and sparsity increase estimation uncertainty in a simple model of signal
transduction

The first model we consider is a relatively simple two-state model from [55] shown in Fig 3.A. The
governing equations for this model are

dx1(t)

dt
= −(k1e + k12) · x1(t) + k21 · x2(t) + b · u(t) (31a)

dx2(t)

dt
= k12 · x1(t)− k21 · x2(t), (31b)

where the states are x(t) = [x1(t), x2(t)], the biological model parameters are θf = [k1e, k12, k21, b],
and u(t) is the input function. The input function (illustrated in Fig 3.A)

u(t) =

{
t+ 0.5 if 0 ≤ t ≤ 1

1.5e1−t if t > 1
,
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Figure 3: Parameter estimation for a simple two-state model. (A) Top row: Network diagram of the two-state model
with states, x1(t), x2(t), input function u(t), and four unknown parameters, θf = [k1e, k12, k21, b]. Bottom row:
Trajectories of the input function u(t) and corresponding state trajectories. The input has at least one non-zero
derivative to ensure that all model parameters are globally structurally identifiable following [55]. (B) Marginal posterior
distributions of the model parameters show increasing uncertainty in the parameter estimates (e.g. widening and
flattening) with increasing levels of additive normally distributed measurement noise with mean zero. We control the
noise level by setting the noise covariances to the specified percentage of the standard deviation of each state variable.
The dashed black vertical lines indicate each parameter’s nominal (true) value. Marginal posteriors are visualized by
fitting a kernel density estimator to 20, 000 MCMC samples obtained using CIUKF-MCMC with the delayed rejection
adaptive Metropolis (DRAM) MCMC algorithm after discarding the first 10, 000 samples as burn-in. (C) Posterior
distributions of the trajectory of x1(t) reflect increasing parameter estimation uncertainty in panel B. The true trajectory
(solid black line) shows the dynamics with the nominal parameters, dashed black lines show that trajectory with the
most probable set of parameters (MAP point), and the empty circles show the noisy data at the specified noise level.
The 95% credible interval shows the region between the 2.5th and 97.5th percentiles that contains 95% of the 5, 000
trajectories. (D) Marginal posterior distributions of the model parameters show increasing uncertainty (widening and
flattening) with increasing data sparsity (fewer samples). We simulate data sparsity by sampling the simulation from
0 ≤ t ≤ 2 with three time steps, ∆t = 0.05 (40 experimental samples), ∆t = 0.1 (20 experimental samples) and ∆t = 0.2
(10 experimental samples). Marginal posteriors are fit to 20, 000 MCMC samples obtained as in panel B. (E) Posterior
distributions of the trajectory of x1(t) reflect increasing parameter estimation uncertainty seen in panel (D).
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ensures that all four biological model parameters are structurally identifiable because the input func-
tion has at least one nonzero derivative [55]. Supplemental Table A.1 lists the nominal parameter
values and the initial condition was x0 = [0.5, 0.5]. Sensitivity analysis was not performed on this
model because the state variables are linearly dependent on the parameters.

Synthetic data with full state measurements (see section 2.12) was used to perform two parameter
estimation experiments—one with increasingly noisy data and another with increasingly sparse data—
to investigate how measurement noise and data sparsity affect parameter and output uncertainty.
The noise levels of each dataset were controlled by taking a fraction of the maximum values of the
true trajectory for the corresponding state variables. In each estimation experiment, we chose the
prior distributions as outlined in section 2.8 and used CIUKF-MCMC (section 2.6) with DRAM
(section 2.9.2) to draw 30, 000 posterior samples conditioned on this noisy data. To ensure sample
counts were constant across noise and sparsity levels, we chose a constant burn-in length of 10, 000
samples to discard from every Markov chain (see section 2.9.4 for details). Supplemental Fig B.10
shows the Markov chains for the measurement noise experiments, and Supplemental Fig B.11 shows
those for data sparsity experiments. The following remark highlights an important distinction between
data points and MCMC samples.

Remark 1. Data points are different than MCMC samples. The experiments in this work produce
at most 40 (simulated) data points, i.e., noisy measurements of the states, for parameter estimation.
However, MCMC algorithms draw 10,000s-1,000,000s of sample parameter sets to characterize the
posterior distribution, which requires evaluating the likelihood and, therefore, simulating the model.

A first hypothesis we tested was that noisy data increases uncertainty because measurement noise
limits the ability to constrain the dynamics of the state variables. To test this hypothesis, we performed
Bayesian parameter estimation from synthetic data with increasing measurement noise (circle marks in
Fig 3.C). We observed that the marginal posterior distributions in Fig 3.B (kernel density estimator fit
to the posterior samples as in section 2.11) widen and flatten with increasing noise levels, indicating
increased uncertainty. However, the most probable value for each parameter, the MAP point, lies
close to the nominal parameter values (dashed lines in Fig 3.B) for every noise level, suggesting
that the data provide information about the parameter irrespective of the noise level. Additionally,
Fig 3.C shows that the width of the 95% credible interval for the dynamics of x1(t) grew as the
noise increased from the lowest level (2.5%) to 5.0% and then remained similarly wide at the highest
values (see Supplemental Fig B.9.A for the respective trajectories of x2(t)). While the uncertainty
bound did not widen above the 5.0% noise level, the shape of the trajectories began to shift further
from the truth (dotted line in Fig 3.C), indicating the estimates began to take on a bias. These
experiments validated our hypothesis that even in a simple dynamical system measurement noise
increases estimation uncertainty of kinetic parameters.

Next, we hypothesized that data sparsity (fewer data points) would increase the uncertainty in
parameter estimates. To test this, we fixed the measurement noise to the 2.5% level (see Fig 3) and
varied the number of measurements (e.g., the sampling rate) that were included in the data used for
estimation. We tested three sparsity levels with 40 experimental samples (∆t = 0.05), 20 experimental
samples (∆t = 0.1) and 10 experimental samples (∆t = 0.2) over the simulation time 0 ≤ t ≤ 2.
Fig 3.D highlights the widening of the estimated marginal posterior distributions for each model
parameter as we decreased the number of data points (increased sparsity). Additionally, Fig 3.E shows
that the increased parameter estimation uncertainty translates to increased uncertainty (wider 95%
credible interval) in the trajectory of x1(t) (see Supplemental Fig B.9.B for the trajectories of x2(t)).
In both of these experiments, the proposed uncertainty quantification framework qualitatively and
quantitatively confirmed that increasing the noise or sparsity level increases estimation uncertainty.

3.2. Parameter estimation for a model of the MAPK cascade
We chose a simplified model of the highly conserved mitogen-activated protein kinase (MAPK;

also known as the MEK/ERK cascade) signaling pathway [87] as a second test case for our parameter
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estimation framework. This pathway is known to exhibit bifurcations in its dynamical behavior [86,
88]; the system can reach a stable steady state or exhibit limit cycle oscillations. We focused on
a phenomenological model of the MAPK pathway from [56] (see diagram in Fig 4.A) that includes
the mixed feedback (negative and positive feedback) necessary to predict the range of dynamical
behavior observed in experiments. This model has three states, x1(t), x2(t), x3(t) that correspond
to phosphorylated RAF, MEK, and MAPK/ERK, respectively [89, 90] and 14 model parameters. The
differential equations are

dx1(t)

dt
= k1 · (S1t − x1(t)) ·

[
Kn1

1

Kn1
1 + x3(t)n1

]
− k2 · x1(t) (32a)

dx2(t)

dt
= k3 · (S2t − x2(t)) · x1(t) ·

[
1 +

α · x3(t)n2

Kn2
2 + x3(t)n2

]
− k4 · x2(t) (32b)

dx3(t)

dt
= k5 · (S3t − x3(t)) · x2(t)− k6 · x3(t), (32c)

with the biological model parameters θf = [k1, k2, k3, k4, k5, k6, K1, K2 S1t, S2t, S3t, α, n1,
n2]. A previous analysis of the model in [56] found that it can predict three regimes of dynamical
behavior that depend on the model parameters; these regimes are limit cycle oscillations, bistability
and mixed multistability. Here we focus on using CIUKF-MCMC to estimate model parameters that
produce two of the three dynamical regimes – bistability and limit cycle oscillations (see Fig 4.B for
example trajectories). Supplemental Tables A.2 and A.3 list the nominal parameter values and initial
conditions (as defined in [56],) respectively, used to produce each of these dynamics.

First, we performed identifiability and sensitivity analysis to find the subsets of relevant parameters
to estimate each dynamical regime. The SIAN software [52] (see Section 2.3) showed that 12 of the 14
biological model parameters are structurally identifiable from measurements of all three state variables;
however, K1 and K2 are only locally structurally identifiable. SIAN cannot assess parameters that
appear in an exponent [36, 52], so we fixed n1 and n2 to their nominal values listed in Supplemental
Table A.2. To avoid global versus local identifiability complications, we fixed K1 and K2 to their
nominal values. Additionally, we omitted the total concentration parameters, S1t, S2t, and S3t, from
further analysis because we assume they would be specified according to the cell type that corresponds
to the available data. As a result, we narrowed the free parameters down to a set of 9 parameters,
from a set of 14 originally.

Next, we used global sensitivity analysis as described in Section 2.4 to further reduce the number
of free parameters. We choose the quantities of interest for sensitivity analysis for the bistable and
oscillatory regimes separately. The quantities of interest for the bistable regime are the steady state
values of x2 and x3 (the values at t = 30 min). Those for the oscillatory regime are the limit cycle
amplitude and limit cycle period (computed following section 2.13). Additionally, we allowed the
biological model parameters to vary uniformly over the ranges listed in Supplemental Table A.2 with
5, 000 samples in each parameter direction. Figures 4.C and 4.D show the computed Sobol sensitivity
indices for the parameters ranked by decreasing sensitivity index. Parameters that have high sensitivity
with respect to the output quantities of interest were selected. For the bistable case, we selected the
four most sensitive parameters, which were [k2, k4, k5, k6]. For the oscillatory case, we selected
the parameters with a first-order sensitivity index Si greater than 0.1, which were [k2, k3, k4 k5].
All remaining biological model parameters were fixed to the nominal values listed in Supplemental
Table A.2. Sensitivity analysis highlighted that certain model parameters, namely k2, k4, and k5,
are important in predicting both dynamical regimes. Meanwhile, parameters such as k6 and k3 are
specifically important for the bistable and oscillatory regimes, respectively.

After identifiability and sensitivity analyses, we applied the CIUKF-MCMC method to estimate
model parameters that predict the correct steady state. To simulate noisy experimental data, we
generated two synthetic datasets (see section 2.12), sampled from the high steady state and the low
steady state (circle and square markers in Fig 5.B). Each dataset had 30 full-state measurements
evenly spaced over 0 ≤ t ≤ 30 (min) with measurement noise covariances set to 2.5% of the variances
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of the true trajectories. The prior assumptions were specified according to section 2.8 for all model
parameters with the bounds listed in Supplemental Table A.2. Using the CIUKF-MCMC algorithm
with AIES (section 2.9.3), we ran an ensemble of 150 Markov chains with 3, 500 samples per chain
(525, 000 total samples) for each of the datasets (as shown in Supplemental Fig B.13.A-B). The
maximum integrated autocorrelation times (section 2.9.5) were 190.46 for the low steady state and
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Figure 4: Parameter estimation for a simplified MAPK cascade that exhibits multistability. (A) Network diagram of
the model of the core MAPK signaling cascade. The red line indicates inhibition; the black lines indicate activation.
(B) Trajectories of x3(t) with the sets of nominal parameters that produce bistability (top) and limit cycle oscillations
(bottom). The two dynamical regimes correspond to two different sets of nominal parameter values. The low (black
dashed line) and high (solid green line) steady states are reached by manipulating the initial condition x0. The
initial condition for the high steady state is x0,high = [0.1245, 2.4870, 31.2623] and that for the low steady state is
x0,low = [0.0015, 3.6678, 28.7307]. (C and D) Sobol sensitivity for the MAPK model parameters. All parameters
except the total concentrations, S1t, S2t and S3t, and exponents, n1 and n2, are varied uniformly over the identified
ranges (see Supplemental Table A.2) and 5000 samples are used for each parameter. (C) Sensitivity indices for bistable
behavior dynamics. We use the steady state value of x2(t) and x3(t) for both the high and low steady states as quantities
of interest. By selecting the two most sensitive parameters for the four quantities of interest we reduce the set of free
parameters to θf = [k2, k4, k5, k6]. (D) Sobol sensitivity indices for a set of free parameters that contribute to
limit cycle behavior. We show the first-order sensitivity indices Si and the total-order indices STi

for the limit cycle
amplitude and period of x3(t). We reduce the number of free parameters by selecting those with a first-order index
greater than 0.1, Si > 0.1, for the limit cycle amplitude or the period, e.g., θf = [k2, k3, k4, k5].
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169.03 for the high steady state, leading us to discard 1, 333 samples for the low steady state and
1, 183 samples for the high steady state as burn-in.

The estimated marginal posterior distributions (solid black line; Fig 5.A and Fig 5.B for the low and
high steady states, respectively) indicated varying levels of uncertainty between the model parameters
and across the two steady states. For example, in both the low and high steady states, the marginal
posterior for k2 has most of its probability mass centered around the nominal value (dashed black
lines), while that for k6 has probability mass spread over a broader range of the prior support (range
of the prior bounds). Additionally, the MAP points (dotted blue line) for the low steady state closely
correspond to the nominal values for all model parameters, whereas there is a significant discrepancy
between the MAP and the nominal values for k4, k5 and k6 in the high steady state case.

An ensemble of 30, 000 simulations with randomly selected posterior samples (see section 2.10)
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Figure 5: Varying levels of uncertainty in the parameters associated with the MAPK model impact steady state
prediction. (A) Marginal posterior distributions of the model parameters for parameter estimation from noisy data of
the low steady state. Posterior distributions are visualized by fitting a kernel density estimator to 325, 200 (150 walkers
with 2, 167 steps each) MCMC samples obtained using CIUKF-MCMC with the affine invariant ensemble sampler
(AIES) for MCMC after discarding the first 1, 333 samples per walker as burn-in. (B) Marginal posterior distributions
of the model parameters for parameter estimation from noisy data of the high steady state reveal larger uncertainty
in the model parameters when compared to the low steady state. We visualize distributions by fitting a kernel density
estimator to 347, 700 (150 walkers with 2, 317 steps each) MCMC samples obtained using CIUKF-MCMC with the
affine invariant ensemble sampler (AIES) for MCMC after discarding the first 1, 183 samples per walker as burn-in. (C)
Posterior distribution of the trajectory of x3(t) with initial conditions that yield the low steady state highlights low
uncertainty in the predicted dynamics. The true trajectory (dashed black line) shows the dynamics with the nominal
parameters, the dotted blue line shows the trajectory evaluated at the MAP point, and the empty circles show the noisy
data (covariance is 50% of the standard deviation of the true trajectory). The 95% credible interval shows the region
between the 2.5th and 97.5th percentiles that contains 95% of 30, 000 posterior trajectories. (D) Posterior distribution
of the trajectory of x3(t) with initial conditions that yield the high steady state highlights the ambiguity between which
steady state is reached. All lines and computations are the same as in panel (A), except simulations were run using an
initial condition that results in the high steady state.
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represented the posterior distributions of the dynamics for both steady states. For the low steady
state, the trajectory evaluated at the MAP point (dotted blue line in Fig 5.C) closely matches the true
trajectory (dashed black line) and the 95% credible interval (green shaded region) tightly constrains
these trajectories. However, the trajectory at the MAP point for the high steady state (Fig 5.D)
reaches the low steady state rather than the high steady state (solid green line). Furthermore, the
95% credible interval for the high steady state closely follows the initial transient (0 ≤ t ≤ 10 (min)),
but it covers both steady states by the end of the simulation, e.g., for 10 ≤ t (min). The considerable
uncertainty and bias in the estimated dynamics of the high steady state are unsurprising, given the
uncertainty observed in the marginal posterior distributions. This comprehensive uncertainty analysis
of the bistable MAPK dynamics showed that the presence of multiple steady states makes parameter
estimation harder for the same set of parameters and governing equations. In particular the estimation
uncertainty is much lower when data from the low steady state is supplied for estimation than when
data from the high steady state is used.

Next, we used CIUKF-MCMC to estimate posterior distributions for the reduced set of model
parameters that predict limit cycle oscillations in x3(t). Synthetic data with 30 samples evenly spaced
over 0 ≤ t ≤ 90 (min) simulated noisy measurements from the oscillating trajectory at a noise level
of 1% of the variance of the true trajectory (circle marks in Fig 5.B). Using CIUKF-MCMC with
AIES, we ran 150 Markov chains (shown in Supplemental Fig B.14) with 6, 000 steps per chain to
sample the posterior distributions. We discarded 3, 148 samples per chain, seven times the integrated
autocorrelation time of 204.58, to account for burn-in. The marginal posterior distributions for [k2, k3,
k5], estimated from the remaining posterior samples (Fig 6.A) show a wide range of uncertainty in the
parameter estimates. For instance, the marginal posterior distributions for k2 and k5 indicate very low
uncertainty, while that for k4 indicates a greater degree of uncertainty with three substantial modes in
the distribution. Additionally, the distribution for k3 indicates a greater degree of uncertainty where
the estimates are not constrained to one region of the domain.

Despite the substantial uncertainty in k3 and k4, the posterior distribution of x3(t) (Figure 6.B,)
represented with an ensemble of 30, 000 simulations, appeared to bound the true limit cycle oscillations
(see Supplemental Fig B.12.C for those of x1(t) and x2(t)). Additionally, the trajectory evaluated at
the MAP point (dotted blue line) closely matches the true trajectory (dashed black line). However,
the 95% credible interval (green shaded region) does not tightly constrain the dynamics as seen for the
low steady state in Fig 5.C, indicating that uncertainty in k3 and k4 effects the predicted dynamics.

A closer examination of a subset of 50 out of the 30, 000 posterior trajectories (green lines in
Fig 6.C) revealed that the posterior trajectories included limit cycles of different amplitudes and
periods along with trajectories that reach fixed points (for example, the dotted blue line in Fig 6.C). We
further leveraged the posterior samples to quantify this variability. First, we separated the ensemble
by the predicted dynamics, (Fig 6.D) and found that 93.22% (27, 966 samples) correctly produce limit
cycle oscillations while 6.78% (2, 034 samples) reach a fixed point. Quantification of the limit cycle
amplitude and period for each of the 27, 966 oscillating trajectories showed that uncertainties in the
dynamics of x3(t) manifested in characteristics of the predicted limit cycles. Histograms of the limit
cycle amplitudes and periods in Fig 6.E depict a prominent mode of amplitudes that are larger than
the true amplitude and a long tail of values smaller than the true amplitude (vertical dashed black
line). Additionally, there is a large mode of periods that are smaller than the period of the true
trajectory. This analysis shows how uncertainty in k3 and k4 results in a range of limit cycles with
different amplitudes and periods, but does not effect the ability to predict oscillatory dynamics.

Comprehensive UQ for the MAPK model highlighted how the existence of multistability introduces
additional uncertainties into parameter estimation. Specifically, sensitivity analysis identified two
parameters of the MAPK model, k6 and k3, that were specifically important for the bistable dynamics
and the oscillatory dynamics, respectively. In both cases, Bayesian parameter estimation was able to
predict the correct type of dynamics but showed remaining uncertainty in the specific characteristics
of the dynamics. Overall, the proposed framework for comprehensive UQ found parameters that were
important to each dynamical regime and directly quantified how uncertainties in these parameters
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contributes to uncertainty in the dynamics.

3.3. Parameter estimation in a phenomenological model of long-term potentiation/depression
A phenomenological model of coupled kinase and phosphatase switches whose activities affect the

level of membrane-bound AMPAR (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-
tor) as a reporter of synaptic plasticity was proposed in [57] to capture the key events in synaptic
plasticity. This kinase-phosphatase model has three states pK(t), P (t), and A(t) that correspond to
active forms of kinase (CaMKII in [57]), phosphatase (PP2A in [57]), and membrane-bound AMPAR,
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Figure 6: Parameter estimation results for the MAPK model in the limit cycle regime. (A) Marginal posterior dis-
tributions of the model parameters. Distributions are visualized by fitting a kernel density estimator to 427, 950 (150
walkers with 2, 859 steps each) MCMC samples obtained using CIUKF-MCMC with the affine invariant ensemble sam-
pler (AIES) for MCMC after discarding the first 3, 148 samples per walker as burn-in. (B) Posterior distribution of
the trajectory of x3(t) in the limit cycle regime. The true trajectory (dashed black line) shows the dynamics with the
nominal parameters, the dotted blue line shows the trajectory evaluated at the MAP point, and the empty circles show
the noisy data (covariance is to 1% of the variance of the true trajectory). The 95% credible interval shows the region
between the 2.5th and 97.5th percentiles that contains 95% of 30, 000 posterior trajectories. (C) Sample posterior
trajectories (50 out of 30, 000 total) reveal the variability in the limit cycle amplitude and period. Additionally, several
trajectories that reach a fixed point are shown. (D) Quantification of the percentage of the 30, 000 sample trajectories
that produce limit cycles oscillations, 93.22% (27, 966 samples), or reach a fixed point, 6.78% (2, 034 samples). (E)
Histograms quantify the variability in limit cycle amplitude and period for the 27, 966 trajectories that show limit cycle
oscillations. We define the limit cycle amplitude as the peak-to-peak difference for one oscillation, and the period is the
time to complete an oscillation. The vertical blue line shows these quantities for the true trajectory.
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respectively. The differential equations are

dpK(t)

dt
= k1 · pK(t) · Ktot − pK(t)

Km1 + (Ktot − pK(t))
− k2 · (P (t) + P0) · pK(t)

Km2 + pK(t)

+ k3 ·K0 + k4 · (Ktot − pK(t)) · Ca2+(t)n1

Kn1
m3 + Ca2+(t)n1

(33a)

dP (t)

dt
= k5 · P (t)

Ptot − P (t)

Km4
+ (Ptot − P (t))

− k6 · (pK(t) +K0) · P (t)

Km5
+ P (t)

+ k7 · P0 − k8 · (Ptot − P (t)) · Ca2+(t)n2

Kn2
m3 + Ca2+(t)n2

(33b)

dA(t)

dt
= (c1 · pK(t) + c3) · (Atot −A(t))− (c2 · P (t) + c4) ·A(t), (33c)

where the 24 biological model parameters are θf = [k1, k2, k3, k4, k5, k6, k7, k8, Km1
, Km2

, Km3
,

Km4 , Km5 , K0, P0, Ktot, Ptot, Atot, c1, c2, c3, c4]. The nominal values and physiological ranges for
these parameters are listed in Supplemental Table A.4.

This model predicts tristability (three steady states) in the level of excitatory postsynaptic poten-
tial (EPSP) as a function of the calcium Ca2+(t) input. The normalized EPSP is the membrane-bound
AMPAR A(t) level, normalized to the initial condition, e.g., normalized EPSP = A(t)/A(t = 0), as
defined in [57]. Fig 7.B shows simulations of the three expected responses with the nominal param-
eter values from [57]. The initial condition x0 = [0.0228, 0.0017, 0.4294] used for all simulations
was determined by allowing the system to reach steady state with the baseline Ca2+(t) level of
Ca2+(t) ≡ 0.1 [µM]. The three steady states are the initial baseline, the higher long-term potenti-
ation state (LTP; trajectory depicted in dashed black Fig 7.B), and the lower long-term depression
state (LTD; trajectory depicted in solid green Fig 7.B). The LTP state is obtained by applying a
constant stimulus of Ca2+(t) ≡ 4.0 [µM] from 1 ≤ t ≤ 3 (sec), while the LTD state is reached by
applying a constant stimulus of Ca2+(t) ≡ 2.2 [µM] in the same time interval; Ca2+(t) is set to the
baseline level before (t < 1 (sec)) and after (t > 3 (sec)) the stimulus is applied. We investigated how
well the proposed uncertainty quantification framework could estimate the model parameters for LTP
and LTD from synthetic data of an LTP-inducing calcium input.

Following the proposed framework, the parameter space is reduced by performing identifiability
and sensitivity analysis. First, identifiability analysis showed that all model parameters, except n1

and n2, are globally structurally identifiable from full-state measurements. Next, global sensitivity
analysis of the steady states in response to an LTP-inducing and an LTD-inducing input ranked the
22 globally identifiable model parameters. All free parameters were uniformly varied over two orders
of magnitude centered around the nominal values, θ∗i , for each parameter, e.g. θi ∼ U(0.1 ·θ∗i , 10 ·θ∗i ).
In order to maintain conservation of mass, the lower bounds of the total concentration parameters,
Ktot, Ptot, Atot, were chosen to be greater than or equal to the initial condition. Figure 7.C shows
the computed Sobol sensitivity indices for the LTP-inducing input and Fig 7.D shows those for the
LTD-inducing input. The sensitivity analyses point to the same group of seven model parameters for
both the LTP-inducing and LTD-inducing inputs. These are θf = [k2, k6, K0, P0, Ktot, Ptot, Atot],
whose first-order indices were greater than 0.05, e.g., Si > 0.05. We chose to estimate these seven
parameters and fix the remaining model parameters to the nominal values listed in Supplemental
Table A.4.

Next, we used the CIUKF-MCMC algorithm with AIES to estimate the posterior distribution
for the reduced set of parameters. The parameters were estimated from noisy synthetic data with
36 full-state measurements of the LTP response. The data are spread uniformly over the domain
0 ≤ t ≤ 9 (sec) at a noise level of 1% of the variance of the true trajectory for the respective
states. The maximum integrated autocorrelation time of the ensemble 150 Markov chains with 8, 000
steps per chain was 621.58, leading us to discard 4, 351 samples as burn-in. Traces of the ensemble of
Markov chains for all parameters are shown in Supplemental Fig B.15. Figure 8.A shows the estimated
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Figure 7: Parameter estimation for a coupled kinase-phosphatase switch for long-term potentiation and long-term
depression in neurons as a function of calcium input. (A) Network diagram of the simplified coupled kinase-phosphatase
signaling model where calcium Ca2+(t) acts as the input. (B) Trajectories of the three state variables in response to
long-term potentiation (LTP; pulse of Ca2+(t) ≡ 4.0 [µM] from 2 ≤ t ≤ 3 (sec)) and long-term depression (LTD;
pulse of Ca2+(t) ≡ 2.2 [µM] from 2 ≤ t ≤ 3(sec)) inducing calcium inputs. The calcium level is set to a baseline
of Ca2+(t) ≡ 0.1 [µM] before and after stimulus. We compute normalized EPSP by normalizing A(t) to its initial
condition as described in [57]. The synthetic noisy data for the LTP and LTD cases are indicated by the black square
and green circle marks, respectively, with the noise covariance equal to 1% of the variance of the data. (C and D) Sobol
sensitivity indices for all free model parameters in response to LTP-inducing and LTD-inducing inputs, respectively.
The quantities of interest are the steady state values of each state variable. We show both the first-order sensitivity
indices Si and the total-order indices STi

. We select a reduced set of free parameters by choosing the parameters whose
first-order sensitivity index is greater than 0.05, e.g., Si > 0.05. This gives us the same set of free parameters, θf = [k2,
k6, K0, P0, Ktot, Ptot, Atot], for both the LTP and LTD cases. Remaining model parameters are fixed to the nominal
values in Supplemental Table A.4.
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marginal posterior distributions for the free model parameters, k2, k6, P0, K0, Ptot, Ktot, Atot. We
observed different levels of uncertainty across the estimated parameters. For instance, the marginal
posterior for Atot indicated a very high level of certainty with almost all of the probability mass, and
thus the MAP point, aligned to the nominal value. However, the marginal posterior distributions for
P0 and K0 show much more significant uncertainty because we observe posterior probability spread
over the entire support of the prior. Additionally, the marginal posterior distributions for k2, k6, Ptot,
and Ktot show a large mode around the MAP point that is shifted from the nominal value and a
smaller mode at the nominal value.

Using the posterior samples, an ensemble of 30, 000 simulations (see section 2.10) represented the
posterior distribution of the predicted dynamics in response to an LTP-inducing input, as shown in
Fig 8.B. We observed that the 95% credible interval for the normalized EPSP covered both LTP
(normalized EPSP > 1) and LTD (normalized EPSP < 1) responses even though the input was
LTP-inducing. However, the trajectory evaluated at the MAP point (dotted blue line) matched the
true trajectory (dashed black line), indicating that most trajectories align with the expected LTP
response. Examination of the individual trajectories within the ensemble simulation (Fig 8.C, top
row) and the normalized EPSP steady state values (Fig 8.D, top row) confirmed that there are
both LTP (blue traces) and LTD (black traces) responses to the LTP-inducing input. Specifically,
we found that 76.59% (22, 972 samples) of the responses correctly predict LTP, and 23.41% (7, 024
samples) of response incorrectly predict LTD (Fig 8.E). Therefore, despite the high-quality data (many
measurements and low noise), we still observed substantial uncertainty in the predicted normalized
EPSP.

Lastly, we investigated if the posterior distribution estimated in the LTP regime can predict the
response to an LTD-inducing input. An initial hypothesis was that in response to an LTD-inducing in-
put, most trajectories would predict LTD, but a significant subset would predict the incorrect response,
LTP. An additional ensemble of 30, 000 simulations, with an LTD-inducing input of Ca2+(t) ≡ 2.2 [µM]
(pulse from 2 ≤ t ≤ 3 (sec)) was used to determine the posterior distribution of the dynamics. Vi-
sualization of 100 of the 30, 000 trajectories in Fig 8.C (bottom row) again showed both LTP (blue)
and LTD (black) responses; however, we unexpectedly observed more LTP than LTD in response to
the LTD-inducing input. The distribution of normalized EPSP responses (bottom row of Fig 8.D)
confirms that there are a large number of responses in the LTP regime with a minor mode around
the correct response. Quantification of these results highlights that only 31.07% (9, 320 samples) of
responses are in the LTD state (expected response) while 68.93% (20, 680 samples) of the responses
are in the LTP state (unexpected response). In summary, this model formulation can correctly cap-
ture the same LTP behavior over a range of model parameters while losing the ability to predict LTD
behavior.

Despite the LTP and LTD responses being sensitive to the same set of parameters (see Fig 7.C-D),
the posterior distribution estimated from measurements of LTP places more probability on parameter
sets that robustly predict LTP over those that correctly predict both responses. From these results,
we conclude that for this model, we need to learn the model parameters with a high degree of certainty
in order to disambiguate the LTP versus the LTD response because sensitivity analyses revealed that
the same set of parameters governs these two different outputs. This finding highlights that sensitivity
analyses are not sufficient to distinguish parameter uncertainty for systems with multistability and a
comprehensive framework as outlined here is necessary to shed light on such model complexities.

4. Discussion

In this work, we developed a framework (see section 2.1) for comprehensive uncertainty quantifi-
cation of dynamical models in systems biology. The proposed framework leverages identifiability and
sensitivity analysis to reduce the parameter space (sections 2.3 and 2.4) followed by Bayesian param-
eter estimation with CIUKF-MCMC (see section 2.6). We applied this framework to three systems
biology models to demonstrate its applicability and highlight how a focus on uncertainty can transform
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Figure 8: Comprehensive parameter estimation and uncertainty quantification reveal failures to predict the correct
long-term model behavior. (A) We estimated marginal posterior distributions of the model parameters from noisy data
with an LTP-inducing calcium input. Distributions are visualized by fitting a kernel density estimator to 547, 500 (150
walkers with 3, 649 steps each) MCMC samples obtained using CIUKF-MCMC with AIES for MCMC after discarding
the first 4, 351 samples per walker as burn-in. (B) Posterior distribution of the trajectories of the state variables show
LTP (normalized EPSP > 1) and LTD (normalized EPSP < 1) responses for an LTP inducing input. The true trajectory
(dashed black line) shows the dynamics with the nominal parameters, the dotted blue line shows the trajectory evaluated
at the MAP point, and the points show the noisy data (covariance is 1% of the variance of the true trajectory). The
95% credible interval shows the region between the 2.5th and 97.5th percentiles that contains 95% of 30, 000 posterior
trajectories. (C) Sample posterior trajectories (100 out of 30, 000 total) highlight the LTP (blue lines) and LTD (black
lines) in response to the LTP inducing input (top) and the LTD inducing input (bottom). The dashed green lines show
the true trajectories for the respective calcium inputs. (D) Histograms reveal the distribution of the long-term responses
to the LTP-inducing input (top) and the LTD-inducing input (bottom). The dashed black lines show the true response
for the respective calcium inputs. (E) Quantifying the percentage of the 30, 000 sample trajectories that produce LTD
and LTP responses for each calcium input. The LTP-inducing input yields 76.59% (22, 972 samples) of the responses in
the LTP state and 23.41% (7, 024 samples) in the LTD state. The LTD inducing input yields 68.93% (20, 680 samples)
of the responses in the LTP state and 31.07% (9, 320 samples) in the LTD state.
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modeling-based studies. First, we performed two computational experiments on a simple two-state
model that showed how noise and data sparsity contribute to estimation uncertainty. Next, we applied
our framework to two models, the MAPK and the synaptic plasticity models, which better resemble
the models used to capture biological readouts. Using these models, we highlight how comprehensive
uncertainty quantification enables quantitative analysis of two biologically relevant dynamical behav-
iors, limit cycles and steady state responses. We also found that good quality data cannot always
overcome uncertainty due to the model structure. These examples provide an essential starting point
for applying our framework in practice and interpreting systems biology studies under uncertainty.

Our results highlight how a focus on uncertainty quantification can give new insights in modeling-
based studies. For example, in section 3.2 we were able to learn a posterior distribution for the
parameters that predict limit cycles over a range of amplitudes and periods. The posterior distribution
is our best guess for the distribution of the model parameters after incorporating the available data
into the statistical model. Therefore, the posterior distribution for the dynamics (approximated via
an ensemble simulation as in section 2.10) provides our best guess for the dynamics, given everything
we know about the model. For the MAPK limit cycle oscillations, this best guess includes dynamics
with a range of limit cycle properties. As highlighted in section 3.1, we can expect the quality of this
guess to reflect the quality and quantity of the available experimental data. Therefore, incorporating
uncertainty quantification into modeling provides additional context for interpreting the predictions.

We also observe that predictions do not always capture the correct bistability in the example of
high MAPK steady state (section 3.2) and the LTP/LTD response (section 3.3). In both cases, the 95%
credible intervals of the ensemble of predicted dynamics cover both the higher and lower steady states
(LTP and LTD in the synaptic plasticity example). These results imply that the estimated posterior
distributions for these models include parameter sets that no longer show bistability at the specified
input (the initial condition for the MAPK model or the calcium level for the synaptic plasticity
model). Further analysis of these systems could test if these parameter sets lead to a complete loss of
bistability or merely shift the bifurcation point, the value of the input that changes which steady state
is reached. Overall our results point to a complex interplay between model parameters and inputs
that potentially confounds parameter estimation of multistable systems.

Throughout this work, we assume that the model equations are known prior to parameter estima-
tion. This assumption reflects standard modeling practices where models use biochemical theories that
assume equations for the kinetics of biochemical reactions. In using the CIUKF-MCMC we somewhat
weaken this assumption because it introduces process noise to account for uncertainty in the model
form [26]. In reality, all models have some level of uncertainty because they rely on assumptions about
the system. Therefore, accounting for model form uncertainty regularizes the dynamics to account
for a mismatch between the predicted dynamics and the data [26]. However, it may be necessary
to simultaneously estimate the model structure (formulation of the equations) and parameters from
the data. One approach to disambiguate a model structure is to learn the biochemical reaction net-
work [91, 92] or the mathematical model directly from data [93, 94, 95, 96, 97]. Additionally, it is
possible to cast these problems in the Bayesian perspective to learn the model form and the associated
uncertainties [26, 98].

While Bayesian methods are well suited for uncertainty quantification in systems biology, it is
also important to understand the caveats associated with MCMC methods (see section 2.9). Markov
chain Monte Carlo sampling is inherently compute-intensive [19, 27, 77] and requires careful analysis to
apply correctly [77]. Most importantly, there is always a possibility that the distribution of the samples
may not have completely converged to the true posterior despite indications that it has [27, 76, 77].
In this work, we take several steps, computing the integrated autocorrelation time and visualizing
the Markov chains, to mitigate these problems and improve our confidence in the MCMC results.
Different approaches to assessing Markov chains are presented in detail in [27, 76, 77]. Additionally,
the affine invariant ensemble sampler is only well suited to sample anisotropic posterior distributions
in small to moderate parameter spaces, up to about 50 parameters [59, 99]. In this work, we focus
on models with at most three state variables and no greater than 22 model parameters, but many
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systems biology models can have 10s of states with 10s-100s of parameters [13, 28]. While we showed
that identifiability and sensitivity analyses could significantly reduce the number of free parameters,
how these conclusions might change for larger systems remains to be tested. Potential approaches for
sampling such spaces include variational inference [100] and randomize then optimize approaches [101].

Lastly, we make several assumptions in choosing statistical models for measurement and process
noise and in simulating biological measurement data. First, we assume Gaussian measurement and
process noises; however, we may be better able to describe noise in biological systems and experiments
with alternate probability distributions (see e.g., [46]). Assuming a non-Gaussian distribution for the
measurement noise would require reformulating the likelihood function (it would alter the distribution
in Eq (12)); however, incorporating alternative distributions for the process noise would require signifi-
cant effort. The constrained interval unscented Kalman filter (also most other Kalman filters) revolves
around the assumption of normally distributed process noise [68]; thus, alternative noise models would
require approximations for the marginal likelihood that go beyond Kalman filtering. Next, this work
considers linear measurement functions, see e.g., Eq (3), but CIUKF-MCMC is also well-suited to
handle nonlinear measurement functions [26]. Lastly, we assume that we only have access to a single
time series of measurements, e.g., one trial of an experiment; however, most experiments in biology
perform several repeated trials. In these cases, one would like to incorporate all available data to
inform the statistical model. A straightforward approach would use the mean of each time point and
estimate parameters from the time series of means. Additionally, one could estimate parameters from
each time series separately and then analyze several posterior distributions. These separate distribu-
tions can then be merged via meta-analysis or information fusion principles [102, 103, 104]. Lastly,
one could construct a statistical model that accounts for the multiple time series [27] simultaneously.
In summary, research at the intersection of uncertainty quantification and systems biology modeling
will strengthen parameter estimation and enable models that more accurately represent experimental
measurements.
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Appendix A. Supplemental Tables

This section provides the tables that list initial conditions, nominal parameter values, and relevant
parameter ranges for the models presented in section 3. Table A.1 corresponds to the two state model
in section 3.1. Tables A.2 and A.3 correspond to the MAPK model in section 3.2. Lastly, table A.4
corresponds to the synaptic plasticity model in section 3.3.

Table A.1: Two-compartment model [55] model parameters and relevant ranges. All listed values have units of one over
time.

Parameter Nominal Value Range
k1e 1 [0, 5]
k12 1 [0, 5]
k21 1 [0, 5]
b 2 [0, 10]

Table A.2: MAPK model parameters and relevant ranges from [56]. Note: For the oscillatory dynamics, the range for
k5 is [1 × 10−5 0.05].

Parameter Nominal Value: Limit-cycle Nominal Value: Bistable Range
S1t 100 nM 0.22 nM [0, 100]
S2t 100 nM 10 nM [0, 100]
S3t 100 nM 53 nM [0, 100]
k1 0.1 nM · s−1 0.0012 nM · s−1 [0, 0.05]
k2 0.01 nM · s−1 0.006 nM · s−1 [0, 0.1]
k3 0.01 nM · s−1 0.049 nM · s−1 [0, 0.05]
k4 0.01 nM · s−1 0.084 nM · s−1 [0, 0.1]
k5 0.01 nM · s−1 0.043 nM · s−1 [0, 0.05]
k6 0.01 nM · s−1 0.066 nM · s−1 [0, 0.1]
n1 10 5 [5, 10]
K1 1 nM 9.5 nM [0, 10]
n2 15 10 [5, 10]
K2 8 nM 15 nM [0, 20]
α 10 95 [0, 100]

Table A.3: Initial conditions used for simulations of the MAPK model from [56].

State-variable Limit cycle Bistable: low steady state Bistable: high steady state
x1(0) 10 nM 0.0015 nM 0.1245 nM
x2(0) 80 nM 3.6678 nM 2.4870 nM
x3(0) 80 nM 28.7307 nM 31.2623 nM
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Table A.4: Long-term potentiation/depression model parameters from [57] and ranges. The ranges are given by [0.1 ·
θ∗i , 10 · θ∗I], where θ∗i is the nominal value. Note: we do not include ranges for n1 and n2 because these parameters
are always set to the nominal values.

Parameter Nominal Value Range
k1 2 s−1 [0.2, 20]
k2 15 s−1 [1.5, 150]
k3 1 s−1 [0.1, 100]
k4 120 s−1 [12, 1200]
k5 2 s−1 [0.2, 20]
k6 15 s−1 [1.5, 150]
k7 1 s−1 [0.1, 10]
k8 80 s−1 [8.0, 800]
c1 1 [0.1, 10]
c2 1 [0.1, 10]
c3 6 s−1 [0.6, 60]
c4 8 s−1 [0.8, 80]
Km1 10 µM [1.0, 100]
Km2 0.3 µM [0.03, 3]
Km3 4 µM [0.4, 40]
Km4 10 µM [1.0, 100]
Km5 1 µM [0.1, 10]
K0 0.5 µM [0.05, 5]
P0 0.5 µM [0.05, 5]
Ktot 20 µM [2, 200]
Ptot 20 µM [2, 200]
Atot 1 [0.1, 10]
n1 4 –
n2 3 –

Appendix B. Supplemental Figures

This section provides supplemental figures for the results presented in section 3. Figures B.9, B.10,
and B.11 correspond to section 3.1. Figures B.12, B.13, and B.14 correspond to section 3.2. Lastly,
Fig B.15 corresponds to section 3.3.
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Figure B.9: Posterior distributions of x2(t) in the two-state model experiments. (A) corresponds to the measurement
noise experiment, Fig 3.C. We observe that increasing the data noise level increased the uncertainty in the predicted
dynamics. We control the noise level by setting the noise covariances to the specified percentage of the standard
deviation of each state variable. The dashed black vertical lines indicate each parameter’s nominal (true) value. (B)
corresponds to the data sparsity experiment, Fig 3.E. We observe that decreasing the number of experimental samples
supplied for estimation increased estimation uncertainty. The noise level in the data was fixed to the 2.5% level shown
above.
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Figure B.10: Markov chains for the two-state model parameters at increasing noise levels in the measurement noise
experiment, Fig 3.B-C. Each row corresponds to a noise level; noise increases down the figure. The red boxes indicate
samples discarded as burn-in.
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Figure B.11: Markov chains for the two-state model parameters with decreasing samples in the measurement data
sparsity experiment, Fig 3.D-E. Each row corresponds to a sparsity level. The red boxes indicate samples discarded as
burn-in.
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Figure B.12: Posterior distributions of x1(t) and x2(t) for the MAPK. (A) Trajectories for the high steady-state;
corresponds to Fig 5.D. (A) Trajectories for the low steady-state; corresponds to Fig 5.C. (B) Trajectories for limit
cycle oscillations; corresponds to Fig 6.B.
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Figure B.13: Markov chains for the MAPK model parameters and UKF-MCMC noise covariances for bistability. (A)
Low steady-state, Fig 5.A. (B) High steady-state, Fig 5.B. The process noise covariances are θΓi

and θΣi
are the

measurement noise covariances. The red boxes indicate samples discarded as burn-in.
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Figure B.14: Markov chains for the MAPK model parameters and UKF-MCMC noise covariances for limit cycle
oscillations; corresponds to 6.A The process noise covariances are θΓi

and θΣi
are the measurement noise covariances.

The red boxes indicate samples discarded as burn-in.
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Figure B.15: Markov chains for the synaptic plasticity model parameters, Fig 8. The red boxes indicate samples
discarded as burn-in.
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