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Abstract. Electroencephalography (EEG)/Magnetoencephalography (MEG) source
imaging aims to seek an estimation of underlying activated brain sources to ex-
plain the observed EEG/MEG recording. Due to the ill-posed nature of inverse
problem, solving EEG/MEG Source Imaging (ESI) requires design of regular-
ization or prior terms to guarantee a unique solution. Traditionally, the design of
regularization terms is based on preliminary assumptions on the spatio-temporal
structure in the source space. In this paper, we propose a novel paradigm to solve
the ESI problem by using Unrolled Optimization Neural Network (UONN) (1)
to improve the efficiency compared to traditional iterative algorithms; (2) to es-
tablish a data-driven way to model the source solution structure instead of using
hand-crafted regularizations; (3) to learn the hyperparameter automatically in a
data-driven manner. The proposed framework is based on unfolding of the iter-
ative optimization algorithm with neural network modules. The proposed new
learning framework is the first one that use the unrolled optimization neural net-
work to solve the ESI problem. The newly designed framework can effectively
learn the source extents pattern and achieved significantly improved performance
compared to benchmark algorithms.

Keywords: EEG/MEG Source Imaging, Inverse Problem, Unrolled Optimization, Deep
Learning, Epilsepsy Source Localization

1 Introduction

Understanding the complex firing neurons and interactions between neural circuits at
different brain regions paves an important path to uncover the brain mechanism and
brain dysfunctions [1]. Electroencephalography (EEG) or Magnetoencephalography
(MEG) is a measurement of the electric potentials on the scalp generated from the
electric current sources in the brain [2]. The EEG/MEG measurement is a measures
directly the electric firing pattern in the brain, while fMRI, measures the blood-oxygen-
level-dependent (BOLD) signal, which is a secondary measurement of the metabolic
signal. EEG/MEG has a very high temporal resolution up to 1 millisecond compared to
the temporal resolution of around 1 second for fMRI. EEG or MEG devices also have
the advantage of being inexpensive, easity portability and versatility. EEG is accepted
as a powerful tool to capture the instantaneous brain functionality by measuring the
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neuronal processes [3]. However, one disadvantage of EEG is its poor spatial resolu-
tion and it measures the electric potential on the scalp instead of the underlying sources
in the brain. EEG/MEG source imaing (ESI) bridges the gap between the scalp EEG
measurement to the brain source activations as it infers the brain sources activation by
solving the inverse problem based on the measurement of EEG or MEG [4]. However,
given that the dimension of source signal significantly outnumbers the EEG/MEG sen-
sors, the ESI is an ill-conditioned inverse problem that requires sophisticated design of
regularizations that utilize the spatial-temporal assumptions on the source space [5, 6].

Recently, numerous algorithms have been developed with different assumptions on
the source structure. One seminal work is minimum norm estimate (MNE) where `2
norm is used as a regularization [7]. Variants of MNE algorithm include dynamic statis-
tical parametric mapping (dSPM) [8] and standardized low-resolution brain electromag-
netic tomography (sLORETA) [9]. The `2-norm based methods tend to render spatially-
diffuse source estimation. To promote a sparse solution, Uutela et al. [10] introduced the
`1-norm, known as minimum current estimate (MCE). Also, Rao and Kreutz-Delgado
proposed an affine scaling method [11] for a sparse ESI solution. Bore et al. proposed
to use the `p-norm regularization (p < 1) on the source signal and the `1 norm on the
data fitting error term [12]. Babadi et al. [13] demonstrated that sparse distributed solu-
tions to event-related stimuli can be found using a greedy subspace-pursuit algorithm.
It is worthnoting that the sparse constraint can be applied to the orignal source signal
or the transformed spatial gradient domain [14, 15]. As the brain is activated not dis-
cretely or pointwisely, an extended area of source estimation is prefered [16], and it has
been used for multiple applications, such as somatosensory cortical mapping [17], and
epileptogenic zone in focal epilepsy patients [18].

Most of the recently developed algorithms requires an iterative procedure to reach
the final solution, which can be time consuming. Inspired by the recent advancement
of unrolled optimizaiton in solving the inverse problem [19–21], we attempt to use the
unrolled optimization deep learning framework to solve the ESI problem to improve
the accuracy and effiency solving ESI problem. The advantage of using the unrolled
optimization framework is to learn a data-driven regularization instead of using hand-
crafted one such as total variation [22], and also replace the iterative procedure with
neural network modules, thus improving the online reconstruction efficiency signifi-
cantly.

2 EEG/MEG source imaging problem

EEG data are mostly generated by pyramidal cells in the gray matter with an orientation
perpendicular to the cortex. The ESI forward model can be expressed as Y = LS +
E, where Y ∈ RC×T is the EEG/MEG measurements, C is the number EEG/MEG
channels, T is the number of time points, L ∈ RC×N is the leadfield matrix which
characterizes the mapping from brain source space to EEG/MEG channel space, S ∈
RN×T represents the electrical potentials inN source locations for all the T time points,
and E is the uncertainty/noise. The ESI inverse problem is to estimate S given the
EEG/MEG measurements. Since channel number C is much smaller than the number
of sourcesN , estimating S becomes ill-posed and has infinitely number of solutions. In
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order to find a unique solution, different regularizations were introduced by using prior
assumptions of the source solution. More specifically, S can be obtained by solving the
following minimization problem:

argmin
S

1

2
‖Y − LS‖2F + λR(S), (1)

where ‖ · ‖F is the Frobenius norm. The first term of Eq.(1) is called data fitting which
tries to explain the observed EEG data, and the second term is called regularization
term which is imposed to find a unique solution of Eq.(1) by using the sparsity or
other neurophysiology inspired regularizations. If R(S) equals `2 norm, the problem
is called minimum norm estimate (MNE) [7]; if R(S) is defined using `1 norm, the
problem becomes minimum current estimate (MCE) [10].
ESI model with edge sparse total variation: As the cortex is discretized with 3D
meshes, simply employing `1 norm on S will result in an estimated descrete source
located across the cortex instead of an extended continuous area in the cortex. In order
to encourage source extents estimation, Ding proposed to use a sparse constraint in the
transformed domain by introducing TV defined from the irregular 3D mesh [22]. Other
researchers used the same TV definition such as [4, 23–25]. The TV was defined to be
the `1 norm of the first order spatial gradient using a linear transform matrix V ∈ RP×N

with its definition can be found in [22], where N is the number of voxels/sources, P
equals the sum of the degrees of all source nodes. Qin et al [26] used a fractional-order
total variation term to promote “Gaussian” shape of activation. The model with sparsity
and total variation constraints are given as follows:

S = argmin
S

1

2
‖Y − LS‖2F + λ‖V S‖1 (2)

where ‖ · ‖1 represents `1 norm on both row and column of a vector or matrix. The first
term is the data fitting term, and the second term is the total variation term. Ideally, the
TV regularization promotes source extents estimation. However, it is worthnoting that
the TV transormation matrix is hand-crafted, either defined on the first or seond spatial
derivative, or using fractional-order TV, it can be limiting the flexibility of source con-
figurations. In this paper, we try to learn the total variation in a data-driven way by using
Unrolled Optimization Neural Network (UONN). The proposed network architecture is
given in Fig.1.

3 Proposed unrolled optimization neural network

In this study, we use the recent development of network based compressive sensing (CS)
approach [19], the framework is based on iterative shrinkage-thresholding algorithm
(ISTA) for solving generally `1 norm CS problem [27]. The traditional ISTA iterative
reconstruction into a deep neural network. To solve Eq. 2, the following update steps
are iterated in ISTA:

R(k) = S(k−1) − ρLT (LS(k−1) − Y ), (3)
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Fig. 1: Illustration of the proposed network architecture.

S(k) = argmin
S

1

2
‖S −R(k)‖22 + λ‖V S‖1, (4)

where k denotes the interation index, and ρ is the step size. Eq. (3) is the gradient decent
update of S, with an updated S denoted as R. Eq. (4) is a special case of promximal
mapping, i.e., proxλΦ(R

K) and . Instread of using the hand ‖V S‖1, we use Φ(S) to
learn the implicit V S in a data-driven manner. Thus, the above objective function is
re-written as:

min
S

1

2
‖Y − LS‖2F + λ‖Φ(S)‖1 (5)

Solving Eq. (5) using ISTA, the Eq. (4) becomes

S(k) = argmin
S

1

2
‖S −R(k)‖2F + λ‖Φ(S)‖1 (6)

The two iterative steps of Eq.(3) and Eq. (6) can be cast into two seprate modules in the
k-th iteration of UONN, which is the R(k) module and S(k) module. Similar to Zhang
& Ghanem [19], we allow the step size ρ to vary across iterations, so the output of this
module is given as:

R(k) = S(k−1) − ρ(k)LT (LS(k−1) − Y ) (7)

The S(k) module is to compute the S(k)with an input R(k). We use an approximated
optimization function defined as follows:

S(k) = argmin
S

1

2
‖Φ(S)− Φ(R(k))‖2F + θ‖Φ(S)‖1 (8)

The above equation has a closed-form solution for Φ(S(k)), which is

Φ(S(k)) = soft(Φ(R(k)), θ(k)) (9)

As our goal is to find S rather than Φ(S), we introduce a learnable implicit inverse
function Φ̃(S), satisfying Φ̃(Φ(S)) = S. As a result, the update on S(k) is written as:

S(k) = Φ̃(soft(Φ(R(k)), θ(k))) (10)
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The soft shreshold function soft(x, a) is defined as sign(x)max(|x|−a, 0). The update
on S is implemented using 2-layers fully connected network connected with a sigmoid
activation function (to learn Φ(·)), and same struture for Φ̃, and linked by a soft thresh-
old operator. The structure of proposed network is illustrated in Fig. (Meng will create
it, please refer to Fig.2 of Jian’s ISTA-Net paper).

With this learnable spatial structure expression for S using Φ(S), we aim to learn a
more flexible data-driven expression for the extended source activation. The learnable
parameters include Θ = {ρ(k), θ(k), Φ(k), ˜Φ(k)}Np

k=1, where Np is the total number of
UONN phases, where each phase corresponds to each iteration of ISTA algorithm, and
each module in each phase corrsponds to the R update and S update in Eq. (3) and
Eq. (4).
Loss function: With the training data tuples {yi, si} for i ∈ {1, . . . , T}, the UONN
generates the resoncstrution result denoted as s(Np)

i , the discrepancy loss is denoted
as Ld =

∑T
i=1‖si − s

(Np)
i ‖, or Ld =

∑T
i=1‖S − S(Np)‖. Inspired by the grad-

ual improvement of reconstructed solution, we introduced another smoothness loss
Ls =

∑Np

k=1‖S(k) − S(k−1)‖, to measure the consistency between two iterative steps
to improve the robustness of the algorithm. The final loss function is: Ld + αLs, and α
is the weight to balance the above two loss components.

4 Numerical Experiments

In this section, we conducted numerical experiments to validate the effectiveness of the
proposed method under different Signal Noise Ratios (SNR) for both synthetic EEG
data and also validate it in real EEG data for epileptogenic zone localization.
Simulation experiments: We first conducted experiments on synthetic EEG data with
known activation patterns, as the ground truth activation pattern for the

Forward model: We used a real head model to calculate the leadfield matrix. The
head model was calculated based on T1-MRI images from a 26-year old male sub-
ject. Brain tissue segmentation and source surface reconstruction were conducted using
FreeSurfer [28]. We used a 128-channel BioSemi EEG cap layout and coregister EEG
channels with the head model using Brainstorm and further validated on MNE-Python
toolbox [29]. The source space contains 1026 sources in each hemisphere, with 2052
sources combined, resulting in a leadfield matrix K with a dimension of 128 by 2052.

LN = 3LN = 1 LN = 2 activation center

Fig. 2: Brain source distributions with different levels of neighbors (LNs).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487935doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487935


6 Jiao and Liu

Table 1: Performance comparison between the proposed method and benchmark algo-
rithms

Level of Neighbors (LNs) Source with one LNs Source with two LNs Source with three LNs
SNR Method LE AUC LE AUC LE AUC

40dB

MNE 37.462 ± 35.318 0.938 ± 0.073 36.038 ± 34.599 0.912 ± 0.076 35.813 ± 34.074 0.898 ± 0.072
sLORETA 12.975 ± 10.221 0.963 ± 0.045 16.945 ± 11.186 0.937 ± 0.041 19.426 ± 12.386 0.920 ± 0.034

dSPM 36.745 ± 26.186 0.948 ± 0.045 40.136 ± 25.911 0.915 ± 0.044 42.872 ± 26.083 0.892 ± 0.042
Proposed 24.937 ± 23.106 0.957 ± 0.098 6.292 ± 3.155 1.000 ± 0.000 10.814 ± 6.444 0.992 ± 0.017

30dB

MNE 55.188 ± 54.155 0.885 ± 0.116 53.664 ± 53.748 0.848 ± 0.119 55.318 ± 53.923 0.826 ± 0.112
sLORETA 22.846 ± 30.216 0.947 ± 0.060 27.358 ± 30.128 0.910 ± 0.056 29.736 ± 29.882 0.884 ± 0.045

dSPM 37.027 ± 26.956 0.937 ± 0.057 40.431 ± 26.631 0.894 ± 0.057 43.231 ± 26.685 0.862 ± 0.056
Proposed 24.942 ± 23.066 0.957 ± 0.098 6.294 ± 3.147 1.000 ± 0.000 10.834 ± 6.501 0.992 ± 0.017

20dB

MNE 92.003 ± 60.367 0.763 ± 0.185 99.504 ± 57.910 0.716 ± 0.174 106.285 ± 54.699 0.685 ± 0.158
sLORETA 74.682 ± 60.454 0.853 ± 0.118 82.155 ± 59.295 0.791 ± 0.105 92.792 ± 57.287 0.750 ± 0.091

dSPM 40.286 ± 30.014 0.869 ± 0.103 42.674 ± 29.317 0.799 ± 0.095 45.388 ± 29.054 0.754 ± 0.089
Proposed 25.061 ± 23.241 0.956 ± 0.100 6.410 ± 3.257 1.000 ± 0.000 10.851 ± 6.618 0.992 ± 0.017

10dB

MNE 115.073 ± 49.547 0.593 ± 0.224 115.424 ± 48.802 0.567 ± 0.196 116.015 ± 48.633 0.550 ± 0.177
sLORETA 111.976 ± 49.858 0.631 ± 0.187 112.728 ± 48.738 0.593 ± 0.151 113.480 ± 48.163 0.570 ± 0.131

dSPM 72.674 ± 49.649 0.650 ± 0.172 74.898 ± 49.472 0.606 ± 0.132 77.547 ± 48.895 0.580 ± 0.112
Proposed 25.861 ± 23.873 0.953 ± 0.104 7.434 ± 4.059 1.000 ± 0.001 11.492 ± 7.309 0.989 ± 0.021

0 dB

MNE 116.648 ± 47.874 0.515 ± 0.219 116.610 ± 47.823 0.510 ± 0.195 116.950 ± 47.832 0.507 ± 0.179
sLORETA 114.490 ± 47.332 0.520 ± 0.185 114.123 ± 47.195 0.513 ± 0.155 114.392 ± 47.165 0.510 ± 0.138

dSPM 108.192 ± 48.302 0.523 ± 0.169 108.843 ± 48.346 0.515 ± 0.132 107.938 ± 47.561 0.511 ± 0.113
Proposed 32.706 ± 29.557 0.920 ± 0.145 15.298 ± 14.230 0.986 ± 0.041 19.266 ± 17.243 0.948 ± 0.065

Experimental settings: To generate EEG data, we activate all 2052 locations in the
source space as the central source in turn, and used 3 different neighborhood levels (1-,
2-, and 3-level of neighborhood) to represent different sizes of source extents, illus-
trated in Fig.2, We activated the whole “patch” of sources corresponding to neighbors
at different levels. The activation strength of the central region is set to 1, while the
activation strength of the 1-, 2-, and 3-level of adjacent regions is set to 0.8, 0.6, and 0.4
successively.

Then we used the forward model to generate scalp EEG data under different SNR
settings (SNR = 40 dB, 30 dB, 20 dB, 10 db and 0 dB). We set the length of EEG
data in each experiment setting to be 0.5 second with 100 Hz sampling rate. For each
setting of SNR and neighborhood level, we divided the simulated data into training set
and testing set according to the proportion of 80% and 20%. The number of layers in
the ISTA-net is set to 9, and the Φ(·) and Φ̃(·) is approximated using a fully connected
feedforward neural network with single hidden layer, the input nodes, hidden nodes as
well as the output nodes of the network module to approximate Φ(·) are set to 2052,
500, and 128, respectively, and the number of input nodes, hidden nodes as well as the
output nodes for the network module approximating Φ̃(·) is set to be 125, 500 and 2052.
The design of this module archtecture is in resemblace of an autoencoder network [30].
The number of phases is set to be 9.

We chose the training set with 2-level of neighborhood and 40 dB SNR to train the
UONN, then the source reconstruction is conducted on all test sets at different levels of
source neighborhood configuration and settings of SNR. We picked 10 random source
locations to conduct source reconstruction. The benchmark algorithms including MNE
[7], dSPM [8], and sLORETA [9] were used for comparison. We quantitatively evalu-
ated the performance of each competing algorithm based on the following metrics:
(1) Localization error (LE): it measures the geodesic distance between two source lo-
cations on the cortex meshes using the Dijkstra shortest path algorithm.
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Fig. 3: Peformance comparison of different algorithms on LE (on the left side) and AUC
(on the right side), for SNR = 40 dB (on the top row), SNR = 30 dB (on the second row)
and SNR =20 dB (on the bottom row).

(2) Area under curve (AUC): it is particularly useful to characterize the overlap of an
extended source activation pattern.

Better performance for localization is expected if LE is close to 0 and AUC is close
to 1. The performance comparison between the proposed method and benchmark algo-
rithms on LE and AUC is summarized in Table 1, and the boxplot figures for SNR=40
dB, 20 dB and 10 dB is given in Fig.3.

From Table 1, we can see that compared to the benchmark algorithms MNE, dSPM,
and sLORETA, the proposed UONN method exhibits excellent performance, while the
benchmark algorithms can only provide satisfactory source reconstruction when the ac-
tivated area is small and the SNR level is low. With the expansion of the source range
and the increase of noise level, the LE values of the benchmark algorithms deteriorate
significantly, so as to the AUC values. By contrast, the superiority of the UONN method
is demonstrated by improved AUC values and smaller LE values. It shows better per-
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formance for larger source extents and higher noise level compared to the benchmark
algorithms. The corresponding LE values are always at a low level, and the AUC values
are always stable above 0.94, which demonstrates the excellent stability of the pro-
posed method. By comparing different source activation size, we can see larger source
extents are more difficult to be localized exactly, with a worse AUC then smaller areas
of activation, however, the localization error can be lower in the benchmark algorithms.
The noise can impact significantly on the performance of all the benchmark algorithms,
however, when SNR equal or above 10 dB, our algorithm performs very well in recov-
ering the source extents.

The comparison between the reconstructed source distributions based with 3-level
of neighborhood and 40 dB, 30 dB and 20 dB SNR is shown in Fig. 4.

Ground TruthProposedsLORETA dSPMMNE

Ground TruthProposedsLORETA dSPMMNE

Ground TruthProposedsLORETA dSPMMNE

Fig. 4: Brain sources reconstruction by different ESI algorithms with 3-level of neigh-
borhood for SNR = 40 dB (on the top row), SNR = 30 dB (on the second row) and SNR
=20 dB (on the bottom row).

4.1 Real data experiments

We analyzed a real dataset that is publicly accessible through the Brainstorm tutorial
datasets [31]. This dataset was recorded from a patient with focal epilepsy who was
seizure-free during a 5-year follow-up period after a left frontal tailored resection. We
followed the Brainstorm tutorial to obtain the head model and the lead field matrix,
then we calculated the average spikes (as shown in Fig. 5) of the EEG measurements of
29 channels. We used the peak (0 ms) of the averaged interictal spike for brain source
localization, and the comparison between the reconstructed source distributions based
on different methods is shown in Fig. 6.

From Fig. 6, we can see that both the MNE method and the proposed UONN method
can accurately locate the epileptogenic zone, which was validated by the follow-up
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Fig. 5: Average EEG time series plot around the inter-ictal spike.
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Fig. 6: Reconstructed sources by different ESI algorithms for epilepsy EEG data.

survey after resection on the left frontal region. From the source reconstruction results
of the proposed method, it can be seen that in addition to the accurate location of the
lesion area, the difference in signal strength between the central region and its adjacent
regions can also be seen clearly. This shows that the UONN method can reconstruct
source signals of different intensities corresponding to neighbors of different levels. In
contrast, the source distribution area estimated by sLORETA and dSPM is highly broad,
although the left frontal region is covered, part of the right frontal which is not related
to the epilepsy lesion is also included. Obviously, among these methods, the proposed
UONN method provides a cleaner and accurate estimation of the epileptogenic zone.

5 Conclusion

In this paper, we propose a new method based on deep learning unrolled optimization
framework for brain source reconstruction. The proposed framework enjoys the advan-
tage of great approximation capability and principled parameter training procedure in
deep learning. It eliminate the necessity of hand-crafted total variation in the traditional
method. We designed a neural network module to learn the spatial structure of source
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extents. We incorporated a smoothness constraint in the loss function to mimic the iter-
ative changes in the solution. The numerical experiments demonstrated a great boost in
the performance measured by AUC and LE.
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