
Reducing peptide sequence bias in quantitative mass spectrometry

data with machine learning

Ayse Dincer1, Yang Lu2, Devin Schweppe2, Sewoong Oh1, and William Stafford Noble2,1

1Paul G. Allen School of Computer Science and Engineering, University of Washington
2Department of Genome Sciences, University of Washington

Abstract

Quantitative mass spectrometry measurements of peptides necessarily incorporate sequence-specific
biases that reflect the behavior of the peptide during enzymatic digestion, liquid chromatography, and
in the mass spectrometer. These sequence-specific effects impair quantification accuracy, yielding pep-
tide quantities that are systematically under- or over-estimated. We provide empirical evidence for the
existence of such biases, and we use a deep neural network, called Pepper, to automatically identify and
reduce these biases. The model generalizes to new proteins and new runs within a related set of MS/MS
experiments, and the learned coefficients themselves reflect expected physicochemical properties of the
corresponding peptide sequences. The resulting adjusted abundance measurements are more correlated
with mRNA-based gene expression measurements than the unadjusted measurements. Pepper is suit-
able for data generated on a variety of mass spectrometry instruments, and can be used with labeled or
label-free approaches, and with data-independent or data-dependent acquisition.

1 Introduction

Tandem mass spectrometry (MS/MS) can be used to quantify thousands of peptides in a complex biological
mixture. Regardless of how the quantitative values are extracted from the data—using labeling strategies
such as iTRAQ or TMT, peak areas from precursor scans, or spectral counts—all such quantitative mea-
surements exhibit biases. In general, “bias” in our context means that quantitative measurements from a
mass spectrometry experiment are systematically skewed, either positively or negatively, relative to the true
abundance of the measured molecular species. Some of these biases depend in part on properties of the
peptide sequence, such as how susceptible the peptide is to enzymatic cleavage, how efficiently the peptide
traverses the liquid chromatography column, how easily the peptide ionizes in electrospray, and how easily
and uniformly the peptide fragments in the dissociation phase of the MS/MS.

Numerous efforts have been made to identify and quantify these sequence-specific effects [1–7]. For exam-
ple, a protein’s “proteotypic peptides”—peptides that are repeatedly and consistently identified for a given
protein—can be identified using machine learning methods that take into account a wide range of physic-
ochemical properties of amino acids, including charge, secondary structure propensity and hydrophobicity.
Peptide hydrophobicity, in particular, strongly affects ionization in electrospray settings [8, 9].

In this work, we focus on biases that arise directly from the amino acid sequence itself. Many biases
exist that our approach is not designed to address. This includes, for example, the effect of secondary or
tertiary protein structure, which could inhibit cleavage by trypsin, as well as competitive effects due to
chromatographic coelution of other peptides. We focus on sequence-induced biases because our machine
learning framework depends on peptide-level labels, as described below.

Our goal is to train a machine learning model to quantify these peptide-specific properties, with the aim
of adjusting the observed quantities to remove these effects. Our approach rests on two primary assumptions.
First, we assume that each peptide is measured in its linear dynamic range and that the observed measure-
ment qik of peptide i in run k can be decomposed into a peptide coefficient ci and an adjusted peptide
abundance αik such that qik = ciαik. Second, we assume that unique sibling peptides, i.e., peptides that

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

Year Model Experiment type
Mallick et al. [1] 2006 Gaussian mixture model DDA
Sanders et al. [2] 2007 Neural network DDA
Webb-Robertson et al. [3] 2008 Support vector machine DDA
Fusaro et al. [4] 2009 Random forest Targeted MS
CONSeQuence [5] 2011 Ensemble model Absolute quantification
PREGO [6] 2015 Neural network Targeted MS
PPA [7] 2015 Neural network DDA

Table 1: Methods for predicting proteotypic peptides.

occur exactly once in the protein database and that co-occur on a given protein sequence, should have equal
abundances within a single MS/MS run. We use these assumptions to train a deep neural network, Pepper,
that takes as input a peptide sequence pi and charge state zi and produces as output the corresponding
peptide coefficient ci, thereby revealing the adjusted peptide abundance αik.

We demonstrate that, by removing peptide-specific effects from the observed MS/MS quantities, the
adjusted abundance values αik provide more accurate abundance measurements than the observed values.
First, we provide empirical evidence for the consistency of peptide coefficients inferred from disjoint sets of
runs, and we show that a Pepper model trained to predict these coefficients can generalize to new peptides in
new runs. We demonstrate the robustness of the approach to the type of noise that one would expect to arise
from the presence of proteoforms in the sample that are not represented in the reference proteome database.
We show that the learned coefficients exhibit significant correlation with several key peptide properties, in
agreement with previous research [1–7]. We also show that the adjusted peptide abundances yield a small
but highly significant improvement in the degree of correlation between MS/MS and mRNA-based gene
expression measurements. We provide open source code for training models from MS/MS data, which can
be used to de-bias any given matrix of peptide-level abundances (http://github.com/Noble-Lab/Pepper).

1.1 Related work

The measurements produced by a mass spectrometry experiment invariably exhibit biases. In particular,
among the many thousands of distinct tryptic peptides in a complex biological mixture, only a small fraction
are typically observed [10], and some peptides are preferentially identified regardless of whether they occur
on the most abundant proteins [1]. These commonly observed peptides are called proteotypic peptides, and
automatically identifying them can be important for accurate protein detection and quantification [1]. In
particular, better understanding of the biases underlying proteotypicity can lead to changes in experimental
design, and knowing the potentially observable peptides for a protein beforehand might increase our confi-
dence in the identification of missing proteins in a sample [2]. Accordingly, numerous methods have been
developed to predict proteotypic peptides using machine learning.

The first such method used physicochemical properties of amino acids summarized at the peptide level
and selected properties that can most successfully differentiate observed versus unobserved peptides using
Kolmogorov-Smirnov and Kullback-Leibler distances [1]. Using these most discriminative features, Mallick
et al. fitted a Gaussian mixture likelihood function to predict the probability of detection for each peptide,
thereby achieving a test accuracy above 85%. The trained model showed robust performance across various
datasets and organisms.

Thereafter, a series of machine learning methods were developed to improve the accuracy of proteotypic
peptide prediction and to target the predictions to particular applications (Table 1). Sanders et al. [2]
developed a neural network-based predictor, which can encode non-linear relations among the input features.
Similarly, Webb-Robertson et al. [3] developed a non-linear support vector machine classifier to predict
proteotypic peptides, after first applying the Fisher Criterion Score to select a subset of peptide features
to train on. Unlike previous approaches, they jointly predict proteotypicity (i.e., detection probability) and
the elution time of a peptide. Several methods focused on predicting which peptides will be most useful in
a targeted MS setting. In one such study, Fusaro et al. used a random forest classifier for the prediction
of high-responding peptides to be used as targets [4], and Searle et al.’s PREGO model [6] adopted a
similar approach, using data independent acquisition (DIA) fragment intensities to define their training

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

http://github.com/Noble-Lab/Pepper
https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

Matrix of
observed

abundances

runs

!
!"#

$
!
%∈'

!
(!∈%

"!" − $!%#" 2

One-hot encoded
peptide sequence

of peptide pi

… … ...

Peptide
coefficient

ci

...
se

qu
en

ce

le
ng

th

amino acids

...

…

…

kx20
convolutional

filters concatenated
representation

dense layers
charge
states

Q

pe
pt

id
es

Protein
labels

v

pe
pt

id
es

Matrix of
adjusted protein

abundances

runs

&

pr
ot

ei
ns

Loss function

Figure 1: Peptide coefficient predictor. The neural network architecture for predicting peptide coeffi-
cients. The network takes as input the one-hot encoded peptide sequence and the charge state, and runs
through convolutional layers followed by densely connected layers to output a peptide coefficient.

set. The Peptide Prediction with Abundance (PPA) method also uses a neural network and predicts not
only the probability of detection for the peptide but also the corresponding protein abundance that would
enable detecting that peptide [7]. Finally, CONSeQuence uses a consensus machine learning approach—an
ensemble of support vector machine, random forest, genetic programming, and neural network models—to
select peptides for absolute quantification experiments [5].

All of the studies cited above have focused on identifying proteotypic or high-responding peptides. In
contrast, our goal is to quantify the peptide biases in quantitative MS experiments. Thus, rather than
classifying the peptides as low-responding versus high-responding, we aim to learn peptide coefficients that
can allow us to reduce bias in our measurements. To our knowledge, ours is the first machine learning
approach to quantifying sequence-induced bias for mass spectrometry.

Another key point that differentiates our work from the previous studies is that instead of using the
physicochemical properties of the amino acids, we take the peptide sequence itself as input. Using the
physicochemical properties of peptides has many intrinsic limitations. Most importantly, all previous studies
used the amino acid properties summarized at the peptide level (e.g., using the mean or sum) which results in
losing sequence-specific information. In practice, small changes in the order of amino acids within a peptide
sequence might significantly affect how the peptide behaves in a mass spectrometer. Therefore, our model
can potentially explain biases that a model trained solely on summary-level peptide properties might fail
to capture. Our sequence-based approach has the added advantage that we do not need to worry about
pre-processing large tables of peptide features in order to reduce redundancy, as was done in many previous
studies [1–3, 5, 6].

2 Methods

2.1 A neural network model for predicting peptide coefficients

We designed a neural network architecture, Pepper, that aims to learn peptide coefficients from quantitative
mass spectrometry measurements (Figure 1). The inputs to Pepper are a matrix of measured peptide
abundances and corresponding databases of peptides and proteins. Say that we are given a matrix Q of
peptide measurements, where qik is the observed abundance of peptide i in run k. We column normalize
Q so that the sum of all abundances within a given run is constant across runs. We are also given a
peptide database P and corresponding protein database P. For the purposes of training our model, we
preprocess P to eliminate all peptides that appear in more than one protein. In addition, to reduce issues
related to unexpected proteoforms, we identify any peptide that contains a variable modification, such as
phosphorylation or oxidation of methionine, and we eliminate both the modified and unmodified form of the
peptide from P . Similarly, we eliminate all peptides that overlap one another, due to missed or non-enzymatic
cleavages. Finally, we retain in P only proteins that contain at least two unique peptides.

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

Total Filtered
Dataset Runs Proteins Peptides Proteins Peptides #Quants % missing Accession

Slevlek et al. 18 3,529 34,490 2,669 23,971 269,039 37.65 PXD001010
Thomas et al. 103 4,479 25,311 3,199 19,742 884,245 59.65 PXD010437
Guo et al. 120 3,171 22,554 2,122 14,472 1,736,638 0.00 PXD003539
CPTAC S16 95 36,350 164,395 4,129 19,151 193,069 89.39 CPTAC S016
CPTAC S19 30 53,143 93,704 5,727 13,583 141,645 65.24 CPTAC S019
CPTAC S37 100 40,089 172,589 3,670 18,392 202,465 88.99 CPTAC S037
CPTAC S47 226 43,984 189,784 3,587 22,601 1,286,418 74.81 CPTAC S047
CPTAC S48 109 67,395 462,909 4,887 42,015 1,773,366 61.28 CPTAC S048
CPTAC S49 330 72,659 585,621 5,768 58,909 6,314,106 67.52 CPTAC S049
CPTAC S51 35 51,632 291,317 3,810 30,184 603,070 42.91 CPTAC S051
CPTAC S54 191 68,240 489,102 5,166 45,184 3,018,826 65.02 CPTAC S054
CPTAC S58 217 75,951 639,233 5,519 51,255 3,556,689 68.02 CPTAC S058
CPTAC S61 248 68,424 618,020 5,232 52,820 3,389,987 74.12 CPTAC S061

Table 2: Datasets. The table lists datasets used in the study. The numbers of peptides and proteins are
given before (“Total”) and after (“Filtered”) eliminating shared peptides and peptides with missed cleavages,
peptides that occur in modified and unmodified forms, and peptides with no siblings.

Pepper takes as input one-hot encoded peptide sequence, pi, along with the charge state, and produces
as output the corresponding coefficient ci (i.e., f(pi)). The network is then trained using a loss function that
captures our assumption that the adjusted abundances of all sibling peptides should be equal to one another
and, thus, should be equal to the adjusted abundance of the corresponding protein, ρ:

L(Q,P, f(·)) =

κ∑
k=1

∑
ρ∈P

∑
pi∈ρ

(qik − f(pi)αρ,k)2 (1)

where αρ,k is the adjusted abundance of protein ρ in run k and κ is the number of runs in Q. The model
is trained subject to the constraints ∀i ci > 0 and ∀ρ,k αρ,k > 0. Note that the resulting coefficients can be
used to adjust the measured abundances of all peptides, not just unique peptides, via αik = qik

ci
.

We note that the elements of the α matrix are parameters of our model which we optimize along with the
network weights while training the model. When calculating the loss function in Equation 1, we initialize
the α matrix to the median observed peptide abundance per protein. To obtain the final adjusted protein
abundance matrix α̂ for a test set, we optimize over the fixed set of Q matrix and predicted ci values, and
we use the resulting α̂ to calculate the final loss for the test set.

2.2 Data sets

The primary dataset was obtained from Guo et al. [11]. The data was generated from NCI-60 cancer cell
lines using the PCT-SWATH workflow. Two replicates were obtained for each cell line, resulting in a total of
120 runs. SWATH-MS acquisition was used in a Sciex TripleTOF 5600 mass spectrometer with 32 windows
of isolation width of 25. Peptides were detected at a peptide-level FDR threshold of 1% with OpenSWATH,
using a human cancer cell line spectral library containing 86,209 proteotypic peptide precursors.

The other datasets were selected to reflect a range of instrument types, experimental protocols, and
quantification methods (Table 2). The Slevlek et al. and Thomas et al. datasets provided peptide-level
matrices of intensities. The CPTAC datasets were processed to obtain peptide quantities from the PSM
files by repeating the preprocessing pipeline implemented by the CPTAC consortium, which starts with
selecting the highest observed intensity for each sample and peptide across all fractions. Each sample was
analyzed in 24 or 25 fractions, depending on the dataset. For each peptide, we selected the PSM with
the highest “TotalAb” (i.e., total intensity across all TMT channels) among all fractions. The result is a
peptide-by-sample matrix of measured intensities.

For each data set, we normalize the peptide measurements so that the sum of peptide abundances is
equal across all runs.

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

2.3 Filtering peptides

For a given quantitative matrix, we construct a filtered set of unique peptides by reducing the number of rows
(peptides) in the matrix in four steps. First, we identify all peptides that occur in more than one protein,
and we eliminate these from the matrix. Second, we identify all peptides that occur in both modified and
unmodified forms, and we eliminate these from the matrix. Third, we eliminate all pairs of peptides that
overlap one another due to missed cleavages. Fourth, among the remaining peptides, we identify and remove
singletons, i.e., peptides with no siblings. The remaining peptides comprise the set of “filtered” peptides
(Table 2). Note that if a peptide occurs in more than one charge state, these are treated as distinct peptides.

For input to the model, each peptide is encoded in a 1206-dimensional vector. The first six dimensions
represent a one-hot encoding of the charge state (from +1 to +6). The remaining 1200 dimensions represent
the peptide sequence, where each position is encoded with a 20-dimensional vector corresponding to different
amino acids, up to a maximum length of 60.

2.4 Train and test set construction

To construct the train/test split, we split the data along two axes. First, we randomly segregate the runs
in a ratio of 80%/20%. In this step, if a dataset contains replicate sets of runs, we make sure to keep the
replicate runs within the same set. Second, we identify all proteins that contain at least one pair of sibling
peptides, and we segregate the proteins into train and test sets in the same ratio.

The training set is comprised of all peptides that occur in training proteins, using measurements drawn
from the training set runs. Conversely, the test set contains measurements of peptides within test proteins
and measured in test runs. We also defined a validation set with the same process by splitting the training
set into training and validation runs with a ratio of 90%/10%. We used this validation set for optimizing
our deep learning model, such as hyperparameter tuning and early stopping.

2.5 Neural network architecture and training

The Pepper network takes as input the one-hot encoded peptide sequence and charge states and outputs a
peptide coefficient. The neural network consists of a 2D convolutional layer containing 20 × k filters, each
of which effectively extracts k-mers from the sequence. The output is flattened and concatenated with the
charge state, which is then passed to the dense layers. ReLu activaton is used in each layer, and dropout
layers are included after every layer. Pepper is trained using the Adam optimizer with an initial learning
rate of 0.001 with gradient normalization. Early stopping on the validation set is used with a patience of 100
epochs and a threshold of 0.01 improvement in the loss. The best model, as measured by the loss function
(Equation 1) on the validation set, is recovered when the training is done.

When calculating the loss function to update the model, we also take into account the protein labels P
and the peptide-level measurements Q; however, these are not inputs to the model and thus are not used
once the model has been trained. Note that missing values or zeros in the Q matrix are excluded from the
loss calculation. The calculated loss values are normalized by dividing them by the total number of peptides
and runs, which enables direct comparison between training, validation, and test sets.

Along with the dense and convolutional layers, we also define the α matrix as one of the parameters of
our model, which we update while optimizing our loss function. We initialize the α matrix as the median
abundance per protein.

For hyperparameter tuning, we used a random search over a grid of hyperparameters. Specifically, we
sampled from a grid of filter size (3, 4, 5, 6, 7), number of filters (5, 10, 20, 40), number of layers (1, 2, 3,
4, 5), number of hidden nodes (10, 20, 40, 80), dropout rate (0.0, 0.25, 0.5, 0.75), learning rate (5e-4, 1e-3),
and batch size (500, 1000), selecting the hyperparameters that yield the lowest loss (Equation 1) on the
validation set. The selected hyperparameters were 10 filters each with a size of 3, a total of 4 hidden layers
with 40 nodes in each dense layer, trained with a learning rate of 0.001, batch size of 1000, and a dropout
rate of 0.25.

We repeated the hyperparameter selection procedure for each dataset separately, extending the grid
when necessary, and selected the optimal hyperparameters. We used the same model architecture for all the
CPTAC TMT11 datasets. We implemented our model using Keras with a Tensorflow backend.

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

A

In
te

ns
ity

 ra
tio

 fo
r

no
n-

sib
lin

g
pe

pt
id

e
p j

Intensity ratio for non-sibling peptide pi

1011 10210-2 10-1

10-1

1

101

102

B

In
te

ns
ity

 ra
tio

 fo
r

sib
lin

g
pe

pt
id

e
p j

Intensity ratio for sibling peptide pi

1011 10210-2 10-1

10-1

1

101

102

Figure 2: Consistency of sibling peptide ratios across experiments. The figure plots the log ratio of
intensities of pairs of peptides across pairs of MS runs. Each point corresponds to a randomly selected pair
of (A) non-sibling or (B) sibling peptides observed in a randomly selected pair of runs. Each panel contains
10,000 randomly selected pairs.

3 Results

3.1 Empirical investigation of peptide coefficients

Prior to training a machine learning model to predict peptide coefficients from sequence, we investigated
whether we observe consistency of quantities between pairs of sibling peptides across multiple MS runs. For
this and most of the remaining experiments, we used SWATH-MS data obtained from the NCI-60 cancer cell
lines [11]. The data consist of a total of 14,472 peptides and 120 runs, where two replicate runs were carried
out for each of the 60 cancer cell lines. We made a list of all peptides identified in any one of the runs, and
we eliminated shared peptides (i.e., peptides that appear in more than one protein) from the list. We then
randomly selected a pair of unique peptides (pi, pj) and a random pair of runs (rk, r`). If both peptides were
observed in both runs, then we recorded the corresponding observed quantities (qik, qi`, qjk, qj`). We assume
that each of these quantities can be decomposed into a peptide coefficient and an adjusted abundance; e.g.,
qik = ciαik. Furthermore, we hypothesize that the adjusted abundances for a sibling peptide pair should
be approximately equal to one another; i.e., if pi and pj are siblings, then αik ≈ αjk and αi` ≈ αj`. It
follows, therefore, that the ratio of the abundances for the two sibling peptides between the two runs should
be approximately equal:

qik
qi`

=
ciαik
ciαi`

=
αik
αi`
≈ αjk
αj`

=
cjαjk
cjαj`

=
qjk
qj`

By contrast, we do not expect to observe any correspondence between ratios of pairs of non-sibling peptides.
To test our hypothesis, we repeated this sampling procedure many times and segregated the observed

cross-run ratios into sibling and non-sibling pairs. The results of these analysis show evidence for consistency
of peptide coefficients across runs (Figure 2): the Pearson correlation between intensity ratios of peptides
are 0.39 and 0.03 for sibling and non-sibling peptides, respectively. This high correlation between ratios of
sibling peptides demonstrates that sibling peptide measurements can be used as anchors for quantifying the
peptide biases.

3.2 The model successfully generalizes to new peptides in new runs

Directly computing ratios of sibling peptide abundances is not a suitable strategy for inferring sequence-
induced bias because the empirical ratios potentially reflect additional bias and noise. Accordingly, we

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

De
ns

ity

Difference between sibling peptide abundances
20 4-4 -2

0.2

0.4

0.6

0.0

Adjusted
Observed

Coefficient of variation for observed abundances

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
fo

r a
dj

us
te

d
ab

un
da

nc
es

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0
A B

303 proteins

122 proteins

Figure 3: Predicting peptide coefficients across proteins and runs. (A) The figure plots a histogram
of the difference between the observed and adjusted peptide quantities of all sibling peptide pairs, on a
logarithmic axis, for the test peptides and runs. (B) The figure plots the coefficient of variation (CV) before
and after adjustment, for the test proteins and runs.

turned to our neural network model, which learns to predict the peptide coefficient directly from the peptide
sequence and charge state. We hypothesized that, if a Pepper model is truly learning sequence-specific biases,
then the model should be able to generalize to new runs and new peptides. Accordingly, we segregated our
data into a collection of training and test runs, and we similarly segregated proteins into train and test sets.
We then trained a model using only training proteins drawn from the training runs, and we used the trained
model to adjust the quantities associated with test proteins in the test runs.

The results of this experiment show that the model successfully generalizes (Figure 3). In particular, we
find that the model reduces the loss—i.e., it succeeds in pushing the sibling peptide abundance differences
closer to zero—in the test set. The kurtosis of the distribution of sibling peptide abundance differences is
also reduced to from 6.01 to 5.18, highlighting the peak at 0 after adjusting with Pepper coefficients.

We repeated the training of the model 10 times with different random initializations and obtained an
average loss reduction (i.e., Equation 1) of 28.71% in the test set. We also computed the coefficient of variation
(CV) per protein (i.e., the standard deviation divided by the mean), before and after adjusting with Pepper
coefficients, and observed that CV decreases for the majority (71.3%) of the test proteins (Figure 3B),
highlighting the ability of the model to reduce the within-protein variance in test set abundances. To further
examine the proteins which lead to an increase in the CV, we recorded the CV change in proteins with >5
peptides and observed that an even higher percentage of proteins had a decreased CV (80.8%).

To further visualize this result, we selected the 10 proteins from the test set with the highest number
of quantified peptides and plotted the abundance of all peptides occurring on each protein before and after
adjusting with the coefficients (Figure 4). In each case, we observe that the adjusted peptide abundances fall
closer to the mean, indicating that our coefficients can minimize the bias in sibling peptide measurements for
an unseen protein. We also report the per-protein change in loss values, alongside the change in CV for each
protein. For all but one of the proteins, an improvement in the loss function corresponds to a decrease in CV.
The only exception is protein O75533, where the increasing CV corresponds to one of the lowest loss changes.
We further examined the results for this protein and found that a peptide with charge +6 is responsible
for the high standard deviation; after excluding this peptide, the CV decreased by 25.4%. This observation
matches with our expectation that the Pepper predictions are less reliable for high charge peptides, because
our training set has only a small number of examples for higher charge states. These results support our two
central hypotheses—that measured peptide quantities can be decomposed into a sequence-specific bias term
and that the adjusted peptide quantities for sibling peptides should be approximately equal—and suggest

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

Dataset Instrument Acquisition Quantification Improvement
Slevlek et al. 5600 TripleTOF DIA SWATH-MS 33.00 (±4.31)
Thomas et al. 5600+ TripleTOF DIA SWATH-MS 27.90 (±4.89)
Guo et al. 5600 TripleTOF DIA SWATH-MS 28.71 (±4.10)
CPTAC S16 LTQ Orbitrap Velos SIM Label Free 22.05 (±2.56)
CPTAC S19 LTQ Orbitrap Velos DDA Label Free 9.55 (±5.05)
CPTAC S37 Q-Exactive Plus SRM Label Free 15.83 (±0.24)
CPTAC S47 Orbitrap Fusion Lumos DDA TMT11 20.49 (±1.68)
CPTAC S48 Orbitrap Fusion Lumos DDA TMT11 14.88 (±1.91)
CPTAC S49 Q-Exactive HF DDA TMT11 17.50 (±4.57)
CPTAC S51 Orbitrap Fusion Lumos DDA TMT11 24.84 (±1.76)
CPTAC S54 Orbitrap Fusion Lumos DDA TMT11 15.31 (±0.65)
CPTAC S58 Orbitrap Fusion Lumos DDA TMT11 20.39 (±0.97)
CPTAC S61 Orbitrap Fusion Lumos DDA TMT11 20.30 (±1.79)

Table 3: Performance on various datasets. The table lists a variety of datasets, reporting in the final
column the mean percentage reduction in loss on the test set, relative to the baseline, along with the standard
deviation.

that Pepper is able to learn to predict the sequence-induced bias terms. Note that, a priori, we do not expect
the model to be capable of reducing the loss to zero, even on the training set, because the observed data
presumably contains many biases that are not predictable from the amino acid sequence alone.

We next tested whether this approach generalizes to other instrument types, acquisition strategies, and
quantification schemes by training and testing the model using a variety of datasets (Table 3). In each case,
we segregated the runs and proteins into train and tests sets in a ratio of 80% to 20%, and we used a fixed
model architecture for training and testing. We observed that our model can successfully predict coefficients
for datasets with different characteristics, in each case substantially reducing the test set loss relative to the
baseline.

3.3 Pepper learns successfully in the presence of mislabeled proteoforms

One potential challenge faced by our model arises from the necessarily incomplete and inaccurate collection
of proteoforms in our database. Although we train Pepper using a reference proteome that contains many
known isoforms, the database cannot possibly account for the huge number of proteoforms that exist in a
complex mixture, including unexpected isoforms, post-translational amino acid modifications, and truncation
events. In practice, the incompleteness of our database will most often give rise to false positive labels in
our training set, i.e., pairs of peptides that we believe to be siblings but which actually lie on different
proteoforms (Figure 5A). To the extent that such false positives occur in real data, our model will be harder
to train.

To investigate the robustness of our approach to proteoform noise, we artificially injected false positives
into our training procedure and examined the behavior of the trained model. Specifically, we created a
training set consisting of 14,472 peptides, and then we randomly permuted the protein labels for a fixed
percentage of the training peptides. This procedure has the effect of creating false positive pairs, mimicking
pairs of peptides that occur on a single proteoform in our database but occur on distinct proteoforms in the
sample.

This experiment shows that the Pepper model is robust to such noise. We observe a smooth degradation
of performance as the percentage of false positive pairs increases, with the improvement on the test set
remaining above 10% even up to 70% false positives (Figure 5B). This result shows that even if our training
set contained label noise, we are able to successfully learn to identify sequence-induced bias.

While we demonstrate the generalizability of our model in the presence of mislabeled sibling peptides, the
test set performance is highly dependent on the number of noisy samples in the training set. Thus, we aimed
to adapt our model to better handle label noise. Borrowing from a popular machine learning technique,
Robust PCA [12], we extended our coefficient predictor to model the corrupted labels as parameters to be
inferred. Specifically, we trained the same network using a modified loss function that is more robust to

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

Protein P49327
24.02% reduction in loss (71% of peptides obtained lower error)

1.6% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 500 1000 1500 2000 2500

0
2

-2

0
2

-2

Protein Q13813
35.5% reduction in loss (74.3% of peptides obtained lower error)

5.6% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 500 1000 1500 2000 2500

0

2

-2

0

2

-2

Protein P35579
55.4% reduction in loss (77.4% of peptides obtained lower error)

24.3% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 500 1000 1500

0

5

0

5

Protein Q14204
35.2% reduction in loss (63.9% of peptides obtained lower error)

1.8% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 1000 2000 3000 4000

0
1

-1

0
1

-1

Protein Q14980
54.3% reduction in loss (74.3% of peptides obtained lower error)

1.8% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 500 1000 1500 2000

0

0.5

-0.5

0

0.5

-0.5

Protein P29401
38.3% reduction in loss (66.7% of peptides obtained lower error)

18.9% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 200 400 600

0

5

-5

0

5

-5

Protein P46940
41.5% reduction in loss (48.4% of peptides obtained lower error)

14.4% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 400 800 1200 1600

0

1

-1

0

1

-1

Protein Q6P2Q9
38% reduction in loss (76.7% of peptides obtained lower error)

14.4% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 500 1000 1500 2000

0

1

-1

0

1

-1

Protein P11586
44.1% reduction in loss (67.8% of peptides obtained lower error)

3.5% reduction in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 200 400 800

0
1

-1

0
1

-1

Protein O75533
3.3% reduction in loss (64.3% of peptides obtained lower error)

10.9% increase in coefficient of variation

Peptide index of protein

Peptides along
the protein

Centered
adjusted

abundances

Centered
observed

abundances

0 400 800 1200

0

2

-2

0

2

-2

600

Mean
abundance

Charge 2

Charge 3

Charge 4

Charge 5

Charge 6

Figure 4: Comparing observed and adjusted abundances. The figure plots the abundance for all
peptides occurring on 10 test set proteins with the highest numbers of peptides. The horizontal axis is
amino acid position along the sequence, and the vertical axis shows the mean-centered peptide abundance
for the original (top) and adjusted (bottom) abundances. The percent improvement is calculated with respect
to the loss function (Equation 1). The percent reduction in coefficient of variation (CV) is also reported for
each protein. Individual peptide sequences, segregated by charge state, are arrayed along the bottom of each
figure.

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

A

In
database

Not in
database

B

Te
st

 s
et

 p
er

ce
nt

 im
pr

ov
em

en
t

ov
er

 b
as

el
in

e

Percent of non-sibling peptides

0 0

Pepper
Robust Pepper

5
10

15
20

25
30

35

10 20 30 40 50 60 70 80 90 100Peptides occurring on proteoforms

Figure 5: The model’s robustness to proteoform noise. (A) A protein that has two isoforms, only one
of which is in the database. The four peptides yield six pairs of apparent siblings. However, because of the
presence of the unknown isoforms, some of the sibling relationships (marked in red) are invalid. (B) The
figure plots the percent improvement over the baseline (when all coefficients are set to 1), over ten runs, of a
fixed set of test peptides as the percentage of label noise increases. Error bars correspond to standard error.

label noise:

L(Q,P, f(·)) =
κ∑
k=1

∑
ρ∈P

∑
pi∈ρ

(qik − f(pi)αρ,k − sik)2 + λ
n∑
i=1

√√√√ κ∑
k=1

sik2 (2)

where si,k is the noise term associated with peptide i and run k. The model is trained subject to the same
constraints as the loss function in Equation 1. The second term in Equation 2 corresponds to the regularizer
for the S matrix. The lambda value determines the strength of regularization, which we tuned using a
validation set for each different noise ratio value.

We hypothesized that, by properly accounting for the label noise that we know exists in our data, this
method will improve our ability to accurately infer peptide coefficients. Accordingly, we trained the robust
model and compared the percent improvement across all noise ratios (Figure 5B). We observe that the robust
model outperforms the regular model, indicating that the robust model is useful for eliminating label noise.
We expect this extension of the model to be especially useful for datasets with high ratios of proteoform
noise. On the other hand, this extension to the model significantly increases the number of parameters (by
roughly a factor of 5 on average), making the training procedure significantly slower.

3.4 The coefficients reflect physicochemical properties of the peptide sequences

Previous machine learning models that aim to characterize peptide-specific biases in the context of identi-
fying, rather than quantifying, peptides from mass spectrometry data have shown that the predictions from
the models correlate strongly with several key peptide features, including hydrophobicity and peptide length
[1–7]. Accordingly, we segregated Pepper’s coefficient predictions from our model according to these two
features. In both cases, we observe a strong trend (Figure 6A-B), with coefficients taking smaller values for
longer peptides or peptides with extreme values (high or low) of hydrophobicity, in agreement with previous
work. These results indicate that the instruments are yielding under-estimates of the quantities of long or
highly hydrophobic/hydrophylic peptides. By learning small coefficients for such peptides, our model aims
to correct the associated biases.

We further calculated the correlation between the learned coefficients and 494 different physicochemical
properties obtained from the AAIndex database [13]. Table 4 lists the highly correlated features, including
polarity, hydration, and structural features. Polarity and hydrophobicity of a peptide determine its behavior
in the solvent [2]. Structural features are also highly relevant because the structure can affect tryptic digestion
[1]. It is promising to see our model capturing these properties of the peptides affecting how they behave in
the mass spectrometer and adjusting their abundances to provide more accurate quantification.

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

C

Amino acid before substitution

Am
in

o
ac

id
 a

ft
er

 s
ub

st
itu

tio
n

A

M
ed

ia
n

pe
pt

id
e

co
ef

fic
ie

nt

Sequence length
10

0.8

1.0

1.2

0.6

15 20 25 30 35 40 45

1.4

B

M
ed

ia
n

pe
pt

id
e

co
ef

fic
ie

nt

Peptide hydrophobicity
-200

0.8

1.0

1.2

0.6

0 400 500-100 100 200 300
D

M
ed

ia
n

pe
pt

id
e

co
ef

fic
ie

nt

N-terminus position
0

0.02

0.03

0.05

0.00
10

0.01

0.04

20 30 40 50

E

M
ed

ia
n

pe
pt

id
e

co
ef

fic
ie

nt

C-terminus position
-50

0.02
0.03

0.05

0.00
-40

0.01

0.04

-30 -20 0-10

K H MWC D E Y N Q F S T G A I R P
V

P
R
I
A
G
T
S
F
Q
N

E

K
H
M
W
C
D

Difference in
peptide
coefficient

0.20

-0.20

L V

Y

L

Figure 6: Physicochemical properties of peptides. (A) The figure plots the relationship between median
peptide coefficient (y-axis) and sequence length. Bars represent standard error. (B) Same as panel A but for
peptide hydrophobicity. (C) Cluster map of the change in the peptide coefficient per amino acid substitution.
The values are the median over all instances of the given substitution in our simulation. (D) The figure plots
the distribution of the change in the peptide coefficient plotted separately for each N-terminus position in
the peptide sequence. (E) Same as panel D but for C-terminus positions.

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

Peptide feature |r|
Hydration number 0.451
Relative preference value at N3 (ends of alpha helices) 0.442
Relative preference value at N2 (ends of alpha helices) 0.438
Percentage of exposed residues 0.437
Side chain oriental preference 0.437
Alpha-helix indices for beta-proteins 0.436
Average accessible surface area 0.436
Polar requirement 0.435
Hydrophilicity scale 0.434
Helix initiation parameter 0.431

Table 4: Top physicochemical peptide features. The table lists the peptide features yielding the highest
correlation with the learned coefficients. All the features are obtained from the AAindex database [13]. For
each feature, the table reports the absolute value of the Pearson correlation coefficient (|r|).

While the previous methods relied on amino acid features summarized at the peptide level, they high-
lighted that amino acid composition is a potentially important feature affecting tryptic digestion [1, 2, 5].
Accordingly, we wanted to investigate the effect of amino acid substitutions on the peptide bias. To do
so, we randomly sampled real peptide sequences from the NCI-60 dataset and generated simulated peptide
sequences by substituting each amino acid at every position with every other amino acid. We then used
our trained model to predict coefficients for all pairs of sequences and calculated the differences between the
predicted coefficients.

The resulting clustered heat map (Figure 6C) suggests that the learned clusters align with physicochemical
features of the amino acids. We observe that the two prominent clusters consist of mostly polar versus non-
polar amino acids. Polarity was among the most discriminative features for some previous approaches
[1, 3, 5]. The polar cluster particularly consists of charged amino acids (D, E, H, K). The hydrophilicity
and the charge of the residues affect fragmentation, ionization, and detection processes and thus are critical
for determining the behavior of a peptide in mass spectrometer [1]. Similarly, the non-polar cluster contains
a group of small amino acids (S, T, G, P, A) where the size of the side chain is known to be related to
the flexibility of the amino acid [2]. The cluster map also highlights that the learned coefficients become
larger, in general, when a hydrophobic amino acid is substituted with a polar one, indicating that more polar
peptides are favored by the instrument. This finding agrees with studies that detected a negative correlation
between hydrophobicity of the peptide and the probability of detection [6].

We also investigated the effect of the substitution position on the peptide coefficient. We grouped the
scores by position with respect to the N- and C-terminus and plotted the distribution of the coefficients
(Figure 6D–E). We find that amino acids at either end of the sequence are strongly related to sequence-
induced bias. This might be because these residues play an important role in susceptibility of the peptide
to enzymatic cleavage or absorption to solid phase extraction matrices [4]. Recapitulating the features that
were shown to be important for determining the detectability of a peptide in the context of quantification
highlights the biological relevance of the learned coefficients.

3.5 Pepper outperforms a simple linear model

The observed correlation between our predicted coefficients and amino acid composition suggests that perhaps
a simple linear regressor trained using compositional features might be sufficient to accurately model peptide
bias. To test this hypothesis, we trained a linear regression model from amino acid counts vector (i.e., vector
of length 20 containing the number of occurences of each amino acid) trained using the same loss function as
our neural network (Equation 1). We further trained linear regression models trained using 2-mer or 3-mer
counts (i.e., vectors of length 400 or 8000 containing the number of occurrences of each k-mer).

The comparison of the models (Table 5) shows that Pepper clearly outperforms the alternative approaches,
highlighting that the neural network architecture, which allows for nonlinearities and for dependencies be-
tween input features, is essential for the accurate prediction of the coefficients.

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

Model Test set percent improvement
Pepper 28.72 (±4.10)
Amino acid (1-mer) count linear predictor 13.30 (±5.46)
2-mer count linear predictor 8.48 (±3.05)
3-mer count linear predictor 15.03 (±1.24)

Table 5: Performance for baseline approaches. The table lists baseline approaches, reporting in the
final column the mean percentage reduction in loss on the test set, relative to the baseline, along with the
standard deviation.

G
en

e-
pr

ot
ei

n
co

rr
el

at
io

n
fo

r a
dj

us
te

d
ab

un
da

nc
es

Gene-protein correlation for raw abundances
0.25 0.30 0.35 0.40 0.45 0.50

0.25

0.30

0.35

0.40

0.45

0.50
Learned coefficients
Random coefficients

Figure 7: Factoring out sequence-specific biases. The figure plots the per-protein correlation between
gene expression and protein expression, before (x-axis) and after (y-axis) adjusting the quantities using the
deep neural network (red points) or using randomly selected coefficients (blue).

3.6 Factoring out sequence-specific bias improves correlation with gene expres-
sion

One of the criteria for evaluating the success of our approach is whether the adjusted abundances can provide
more accurate quantification. We hypothesized that improving the accuracy of protein quantification would
lead to higher correlation with the mRNA measurements. As has been discussed extensively in the literature,
we do not expect a very strong correlation between these two data modalities, due to effects such as post-
translation modifications and variations in protein degradation rates [14, 15]. Nonetheless, we reasoned that
a small proportion of the discordance between protein and mRNA expression might be explained by sequence-
specific biases in the quantitative proteomics data. Accordingly, we used a paired set of RNA-seq and mass
spectrometry measurements to calculate the correlation between the gene and protein-level abundances for
each sample before and after adjustment using Pepper. As expected, we observe that Pepper increases
the correlation between protein and mRNA-based measurements (Figure 7A). Strikingly, the correlation
improves in 59 out of 59 runs that we tested on (p < 1.2× 10−11, signed-rank test) highlighting the ability
of the learned coefficients to improve the accuracy of downstream analysis.

As a control, we further generated a random set of coefficients by sampling from the range of the learned
coefficients. Adjusting the abundances with these random coefficients and recalculating the correlations with
the mRNA measurements resulted in deterioration of correlation, highlighting the significance of our results
(Figure 7). This analysis suggests that our coefficients can be used to reduce the biases associated with
peptide measurements.

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

Pe
rc

en
t i

m
pr

ov
em

en
t

ov
er

 b
as

el
in

e

Number of subsampled train runs
642

26
4 8 16 32 96

28

30

32

34

Figure 8: Peptide coefficient predictor learning curve. The figure plots the percent improvement over
the baseline (when all coefficients are set to 1), over ten runs, of a fixed set of test peptides as the number
of training runs increase, where 96 runs is the entire training set. Error bars correspond to standard error.

3.7 The model learns successfully from a few runs

Finally, we investigated the effect of the number of training runs on the model performance, and whether it
is possible to reduce peptide bias using a few runs. Accordingly, we downsampled the training runs in our
data and repeated the model training while recording the percent reduction on a fixed set of test runs. We
observe the test set performance increasing as the number of training runs increase, as expected, indicating
that training from a higher number of runs can be helpful in increasing the generalizability of the model
(Figure 8). On the other hand, the Pepper model trained from only two runs can achieve a test set loss
reduction of 27%, indicating that our coefficient predictor can learn effectively from a small number of runs.

We also investigated Pepper’s ability to generalize across different mass spectrometry experiments. Ac-
cordingly, we trained our coefficient predictor on a combined set of all five CPTAC TMT11 datasets. We
then applied the trained model to the held-out CPTAC TMT11 dataset (CPTAC S51) containing 35 runs.

This analysis showed a marked decrease in the model’s performance in the cross-experiment setting. In
particular, when generalizing to new runs within the held-out dataset, the model achieved a reduction in
loss of 24.84% (±1.76). In contrast, when generalizing to the held-out experiment, the improvement was
only 13.51% (±1.45). The limited ability of our model to generalize across experiments might be related to
experiment-specific biases associated with each dataset, which restricts our ability to transfer the learned
coefficients to unseen datasets, as also observed in previous studies [1, 2].

4 Discussion

In this work, we aim to quantify the peptide-specific biases that arise in a quantitative MS/MS experiment,
with the goal of adjusting the observed abundances to reduce bias. We developed a deep learning model,
Pepper, that takes the peptide sequence and charge state as input and predicts a peptide coefficient to
account for peptide-specific biases. Pepper was trained based on our assumption that the abundances of
unique sibling peptides should be equal. We demonstrated that the predicted peptide coefficients successfully
reduce our pre-defined loss function for new peptides and runs, which corresponds to reducing the CV
of peptide intensities associated with a given protein. This generalization performance was replicated on
multiple datasets generated with different MS/MS instruments using different acquisition and quantification
techniques. We also detected significant correlation between various physicochemical features of peptides
and the learned coefficients, highlighting that our model captures features, such as hydrophobicity and
secondary structure, which were previously shown to affect how a peptide behaves in a mass spectrometer
[1, 4–7]. We demonstrated that our coefficients significantly improve the correlation between protein and
mRNA expression, and we examined Pepper’s ability to learn from datasets of varying sizes and to generalize
across MS/MS experiments.

One caveat of our approach is that Pepper learns a single peptide coefficient to be applied across all runs.

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

However, each mass spectrometry run exhibits specific biases. With our current approach, our analysis
showed that the model pretrained on a different dataset—even if much larger—and transferred to the target
dataset does not outperform a model trained directly on the target dataset itself. Previous studies also
highlighted the same drawback, where the ability to predict across datasets was quite poor [1, 2]. Some
of these studies even found that the most discriminative features for predicting the detection probability of
a peptide changed from experiment to experiment [1, 2, 4]. Although training Pepper separately to learn
distinct coefficients per run might seem like a plausible extension, our training procedure requires learning
a function to map a peptide sequence to a generalizable coefficient. Hence, it is not possible to train our
model using a single run. Alternatively, eliminating the run bias along with the peptide bias might be
possible by learning run-specific peptide coefficients, but such a training scheme would require labels other
than those produced using sibling peptide relationships. Such labels might, for example, be drawn from
metadata about the run, embedded in the mzML header. Improving our model to overcome the dependency
between the quantitative biases and the experiment would enable jointly training from hundreds of datasets
and making predictions for new experiments. If this approach is successful, our ultimate goal would be to
offer our trained model as a general preprocessor for any quantitative mass spectrometry data to improve
downstream analysis.

In addition, even within a single MS/MS experiment, Pepper is currently limited to capturing only
sequence-related biases. However, many additional biases exist that our approach is not designed to address,
such as protease cleavage rates and effects of chromatographic elution. Properties of the protein structure
may also be relevant, since burial or surface exposure of any given peptide depends on that structure. Thus,
one future direction is to generalize our model to take into account a wider variety of features.

The Pepper software enables researchers with quantitative peptide measurements to infer coefficients
and improve protein expression analysis. Better detection and understanding of bias in mass spectrometry
experiments can change how we carry out and interpret experiments, leading to a better understanding of
the proteome.

References

[1] P. Mallick, M. Schirle, S. S. Chen, M. R. Flory, H. Lee, et al. Computational prediction of proteotypic
peptides for quantitative proteomics. Nature Biotechnology, 25:125–131, 2006.

[2] W. S. Sanders, S. M. Bridges, F. M. McCarthy, B. Nanduri, and S. C. Burgess. Prediction of peptides
observable by mass spectrometry applied at the experimental set level. BMC Bioinformatics, 8(7):S23,
2007.

[3] B. J. Webb-Robertson, W. R. Cannon, C. S. Oehmen, A. R. Shah, V. Gurumoorthi, M. S. Lipton, and
K. M. Waters. A support vector machine model for the prediction of proteotypic peptides for accurate
mass and time proteomics. Bioinformatics, 24(13):1503–9, 2008.

[4] V. A. Fusaro, D. R. Mani, J. P. Mesirov, and S. A. Carr. Prediction of high-responding peptides for
targeted protein assays by mass spectrometry. Nature Biotechnology, 27(2):190–198, 2009.

[5] C. E. Eyers, C. Lawless, D. C. Wedge, K. W. Lau, S. J. Gaskell, and S. J. Hubbard. CONSeQuence:
Prediction of reference peptides for absolute quantitative proteomics using consensus machine learning
approaches. Molecular and Cellular Proteomics, 10(11):M110.003384, 2011.

[6] B. C. Searle, J. D. Egertson, J. G. Bollinger, A. B. Stergachis, and M. J. MacCoss. Using data in-
dependent acquisition (DIA) to model high-responding peptides for targeted proteomics experiments.
Molecular and Cellular Proteomics, 14(9):2331–2340, 2015.

[7] J. Muntel, S. A. Boswell, S. Tang, S. Ahmed, I. Wapinski, et al. Abundance-based classifier for the
prediction of mass spectrometric peptide detectability upon enrichment. Molecular and Cellular Pro-
teomics, 14(430–440), 2015.

[8] C. M. Shuford, D. L. Comins, J. L. Whitten, J. C. Burnett, and D. C. Muddiman. Improving limits
of detection for B-type natriuretic peptide using PC-IDMS: An application of the ALiPHAT strategy.
Analyst, 135(1):36–41, 2010.

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

[9] C. M. Shuford and D. C. Muddiman. Capitalizing on the hydrophobic bias of electrospray ionization
through chemical modification in mass spectrometry-based proteomics. Expert Reviews in Proteomics,
8(3):317–323, 2011.

[10] B. Kuster, M. Schirle, P. Mallick, and R. H. Aebersold. Scoring proteomes with proteotypic peptide
probes. Nature Reviews Molecular Cell Biology, 6:577–583, 2005.

[11] T. Guo, A. Luna, V. N. Rajapakse, C. C. Koh, Z. Wu, et al. Quantitative proteome landscape of the
NCI-60 cancer cell lines. iScience, 21:664–680, 2019.

[12] H. Xu, C. Caramanis, and S. Sanghavi. Robust PCA via outlier pursuit. In Proceedings of the 23rd
International Conference on Neural Information Processing Systems-Volume 2, pages 2496–2504, 2010.

[13] S. Kawashima and M. Kanehisa. AAindex: Amino Acid index database. Nucleic Acids Research,
28(1):374, 2000.

[14] D. Greenbaum, C. Colangelo, K. Williams, and M. Gerstein. Comparing protein abundance and mRNA
expression levels on a genomic scale. Genome Biology, 4(9):117, 2003.

[15] Y. Liu, A. Beyer, and R. Aebersold. On the dependency of cellular protein levels on mRNA abundance.
Cell, 165(3):535–550, 2016.

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487945doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.11.487945
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related work

	Methods
	A neural network model for predicting peptide coefficients
	Data sets
	Filtering peptides
	Train and test set construction
	Neural network architecture and training

	Results
	Empirical investigation of peptide coefficients
	The model successfully generalizes to new peptides in new runs
	Pepper learns successfully in the presence of mislabeled proteoforms
	The coefficients reflect physicochemical properties of the peptide sequences
	Pepper outperforms a simple linear model
	Factoring out sequence-specific bias improves correlation with gene expression
	The model learns successfully from a few runs

	Discussion

