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From visual perception to language, sensory stimuli change their meaning depending on prior experience. 

Recurrent neural dynamics can interpret stimuli based on externally cued context, but it is unknown whether 

similar dynamics can compute and employ internal hypotheses to resolve ambiguities. Here, we show that 15 
mouse retrosplenial cortex (RSC) can form hypotheses over time and perform spatial reasoning through 

recurrent dynamics. In our task, mice navigated using ambiguous landmarks that are identified through 

their mutual spatial relationship, requiring sequential refinement of hypotheses. Neurons in RSC and in 

artificial neural networks encoded mixtures of hypotheses, location, and sensory information, and were 

constrained by robust low dimensional dynamics. RSC encoded hypotheses as locations in activity space with 20 
divergent trajectories for identical sensory inputs, enabling their correct interpretation. Our results indicate 

that interactions between internal hypotheses and external sensory data in recurrent circuits can provide a 

substrate for complex sequential cognitive reasoning. 

 

Introduction 25 
External context can change the processing of stimuli1,2 via recurrent neural dynamics3. To study how hypotheses 

can serve as internal context signals, we developed a task that requires sequential integration of ambiguous stimuli 

across time and space4. Freely moving mice have to distinguish between two perceptually identical landmarks, 

formed by identical dots on a computer-display arena floor, by sequentially visiting them and reasoning about their 

relative locations. The landmarks were separated by <180 degrees in an otherwise featureless circular arena (50 cm 30 
diameter), to create a clockwise (‘a’) and a counterclockwise (‘b’) landmark. Across trials, the relative angle 

between landmarks was fixed and the same relative port was always the rewarded one; within trials, the locations 

of landmarks was fixed. The mouse’s task was to find and nose-poke at the ‘b’ landmark for water reward (‘b’ was 

near one of 16 identical reward ports spaced uniformly around the arena; other ports caused a time-out). At most 

one landmark was visible at a time (enforced by tracking mouse position and modulating landmark visibility based 35 
on relative distance, see Methods, Supplementary Fig. 1). Each trial began with the mouse in the center of the arena 

in the dark (‘LM0’ phase, Fig. 1b), without knowledge of its initial pose. In the interval after first encountering a 

landmark (‘LM1’ phase), an ideal agent’s location uncertainty is reduced to two possibilities, but there is no way to 

disambiguate whether it saw ‘a’ or ‘b’. After seeing the second landmark, an ideal agent could infer landmark 

identity (‘a’ or ‘b’; this is the ‘LM2’ phase, Fig. 1b) by estimating the distance and direction traveled since the first 40 
landmark and comparing those with the learned relative layout of the two landmarks; thus, an ideal agent can use 

sequential spatial reasoning to localize itself unambiguously. To randomize the absolute angle of the arena at the 

start of each new trial (and thus avoid use of any olfactory or other cues), mice had to complete a separate instructed 

visually-guided dot-hunting task, after which the landmarks were randomly rotated together (Supplementary Fig. 

1). Mice learned the task (Fig.1c, p < 0.0001 on all mice, Binomial test vs. random guessing), showing that they 45 
learn to form hypotheses about their position during the LM1 phase, retain and update these hypotheses with self-

motion information until they encounter the second (perceptually identical) landmark, and use them to disambiguate 

location and determine the rewarded port. 
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We hypothesized that RSC, which integrates self-motion5, position6–8, and sensory9 inputs, could perform this 

computation. RSC is causally required to process landmark information10, and we verified that RSC is required for 50 
integrating spatial hypotheses with visual information but not for direct visual search with no memory component 

(Supplementary Fig. 2). 

Spatial hypotheses are encoded conjunctively with other navigation variables in RSC 

We recorded 50-90 simultaneous neurons in RSC during navigational task performance using tetrode array drives11 

(Fig. 1a) and behavioral tracking (see Methods, Supplementary Figs. 1,3,4). RSC neurons encoded information 55 
about both the mouse’s location (Fig. 1d) and about the task phase, corresponding to possible location hypotheses 

(Fig. 1d,e). This hypothesis encoding was not restricted to a separate population: most cells encoded both hypothesis 

state as well as the animal’s location (Fig. 1g). This encoding was distinct from the encoding of landmark encounters 

in the interleaved dot-hunting task and was correlated per-session with behavioral performance (Supplementary 

Fig. 6). The encoding of mouse location changed across task phases (Fig. 1d,f), similar to the conjunctive coding 60 
for other spatial and task variables in RSC6. This mixed encoding suggests that RSC can transform new ambiguous 

sensory information into unambiguous spatial information through the maintenance and contextual use of internally 

generated spatial hypotheses. 

Figure 1 Retrosplenial cortex represents 

spatial information conjunctively with 65 
hypothesis states during navigation with 

locally ambiguous landmarks. (a) Two 

perceptually identical landmarks are only visible 

from close-up and their identity is only defined 

by their relative location. One of 16 ports, at 70 
landmark ‘b’, delivers reward in response to a 

nose-poke; the animal must infer which of the 

two landmarks is ‘b’ to receive reward; wrong 

pokes result in timeout. Tetrode array recordings 

in retrosplenial cortex (RSC) yield 50-90 75 
simultaneous neurons. (b) Schematic example 

trial (top) and best possible guesses of the mouse 

position (bottom). ‘LM0,1,2’ denotes task 

phases when the mouse has seen 0, 1, or 2 

landmarks and could infer its position with 80 
decreasing uncertainty. (c) Left: Example 

training curve showing Phit/Pfalse-positive; random 

chance level is 1/16 for 16 ports. Mice learned 

the task at values > 1, showing they could 

disambiguate between the two sequentially 85 
visible landmarks. This requires the formation, 

maintenance, and use of spatial hypotheses. 

Summary statistics at right show binomial CIs on 

last half of sessions for all 4 mice. (d) Mouse 

location heatmap from one session (red) with 90 
corresponding spatial firing rate profiles for 5 

example cells. (e) Task phase (corresponding to 

hypothesis states, i.e. panel b), can be decoded 

from RSC firing rates. Shading: 95% confidence 

intervals (CIs). (f) Spatial coding changes 95 
between LM1 and LM2 phases (Euclidean 

distances between spatial firing rate maps, 

control within vs. across condition, 

Supplementary Fig.5a for test via decoding). (g) 

Spatial vs. task phase information content of all 100 
neurons and encoding for example cells. Grey: 

sum-normalized histograms.  
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Hypothesis-dependent spatial computation via recurrent dynamics 

To test whether recurrent neural networks can solve sequential spatial reasoning tasks that require hypothesis 105 
formation, and to provide insight into how this might be achieved in the brain, we trained a recurrent artificial neural 

network (ANN) on a simplified 1-dimensional version of the task, since the relevant position variable for the 

landmarks was their angular position (Fig. 2b; inputs were random noisy velocity trajectories and landmark 

positions, but not their identity). The ANN performed as well as a near Bayes-optimal particle filter (Fig. 2b), 

outperforming path integration with correction (corresponding to continuous path integration12,13 with  110 
boundary/landmark resetting14,15), and represented multi-modal hypotheses, transitioning from a no-information 

state (in LM0) to a bimodal two-hypothesis coding state (LM1), and finally to a full information, one-hypothesis 

coding state (LM2) (Fig. 2c,d, Supplementary Fig.7). This result shows that recurrent neural dynamics are sufficient 

to internally generate, retain, and apply hypotheses to reason across time based on ambiguous sensory and motor 

information, with no external context inputs. 115 

Figure 2 Recurrent neural dynamics can be used 

to navigate via locally ambiguous landmarks by 

forming and employing multimodal hypotheses. 

(a) Schematic examples of hypothesis-dependent 

landmark interpretation. Left: Mouse encounters 120 
first landmark, then identifies the second as ‘a’ 

based on the short relative distance. Right: A 

different path during LM1 leads the mouse to a 

different hypothesis state, and to identify the 

perceptually identical second landmark as ‘b’. 125 
Hypothesis states preceding LM2 are denoted LM1a 

and LM1b, depending on the identity of the second 

landmark. (b) Structure of an ANN trained on the 

task. Inputs encode velocity and landmarks. Right: 

Mean absolute localization error averaged across 130 
test trials, for random trajectories. (c) Activity of 

output neurons ordered by preferred location shows 

transition between LM0,1,2 phases. Red: true 

location. During LM1 (when the agent has only seen 

one landmark), two hypotheses are maintained, with 135 
convergence to a stable unimodal location estimate 

in LM2 after encountering the second landmark. (d) 

3D projection of ANN hidden neuron activities. 

During LM2, angular position in neural state space 

reflects position estimate encoding. (e) Example 140 
ANN trajectories for two trials show how identical 

visual input (black arrows) leads the activity to 

travel to different locations on the LM2 attractor 

because of different preceding LM1a/b states.  

Instantaneous position uncertainty (variance derived from particle filter) could be decoded from ANN activity 145 
(Supplementary Fig. 8a), analogous to RSC (Fig.1e). Both ANN and RSC neurons encoded multiple navigation 

variables conjunctively (Supplementary Fig.5b), and preferentially represented landmark locations (Supplementary 

Fig.5c; consistent with overrepresentation of reward sites in hippocampus16,17), and transitioned from encoding 

egocentric landmark-relative position during LM1 to a more allocentric encoding during LM2 (Supplementary Fig. 

9). Average spatial tuning curves of ANN neurons were shallower in the LM1 state relative to LM2, corresponding 150 
to trial-by-trial ‘disagreements’ between neurons, evident as bimodal rates per location. RSC rates similarly became 

less variable across trials per-location in LM2 (Supplementary Fig. 10), indicating that in addition to the explicit 

encoding of hypotheses/uncertainty (Fig.1e,g), there is a higher degree of trial-to-trial variability in RSC as a 

function of spatial uncertainty. 
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The ANN computed, retained, and used multi-modal hypotheses to interpret otherwise ambiguous inputs: after 155 
encountering the first landmark, the travel direction and distance to the second is sufficient to identify it as ‘a’ or 

‘b’ (Figs. 1b, 2a). There are four possible scenarios for the sequence of landmark encounters: ‘a’ then ‘b’, or ‘b’ 

then ‘a’, for CW or CCW travel directions respectively. To understand the mechanism by which hypothesis 

encoding enabled disambiguation, we examined the moment when the second landmark becomes visible and can 

be identified (Fig. 2a). We designate LM1 states in which the following second landmark is ‘a’ as ‘LM1a’ and those 160 
that lead to ‘b’ as ‘LM1b’. Despite trial-to-trial variance resulting from random exploration trajectories and initial 

poses, ANN hidden unit activity fell on a low-dimensional manifold (correlation dimension d ≈ 3, Fig. 3d) and 

could be well captured in a 3D embedding via PCA (Fig. 2d). Activity states during the LM0,1,2 phases (green, 

blue, grey, respectively) were distinct, and transitions between phases (mediated by identical LM encounters; black 

arrows) clustered into discrete locations. Examining representative trajectories (for the CCW case, Fig.2e) reveals 165 
that LM1a and LM1b states are well-separated in activity space. If the second landmark appears at the shorter CCW 

displacement (corresponding to the ‘a’ to ‘b’ interval), the state jumps to the ‘b’ coding point on the LM2 attractor 

(Fig.2e). On the other hand, the absence of a landmark at the shorter displacement causes the activity to traverse  

LM1a, until the 2nd landmark causes a jump onto the ‘a’ coding location on the LM2 attractor. In both cases, an 

identical transient landmark input pushes the activity from distinct hypothesis-encoding regions of activity space 170 
onto different appropriate locations in the LM2 state, constituting successful localization. 

Figure 3 Stable low-dimensional dynamics for 

hypothesis-based stimulus disambiguation. (a) 

Correlation structure in ANN activity is maintained 

across task phases, indicating maintained low-175 
dimensional neural dynamics across different 

computational regimes. Top: Pairwise ANN tuning 

correlations in LM1 and LM2 (same ordering, by 

preferred location). Bottom: tuning curve pairs 

(normalized amplitude). (b) Same analysis as a, but 180 
for RSC in one session (N = 64 neurons, computed 

on entire spike trains). The re-organization of 

spatial coding as hypotheses are updated (See also 

Fig. 1d,f) is constrained by the stable pairwise 

structure of RSC activity. Neurons remain 185 
correlated (1st and 2nd pair), or anti-correlated (3rd 

and 4th pair), across LM1 and LM2. (c) Summary 

statistics (sessions and quartiles) for maintenance 

of correlations across task phases. This also extends 

to a separate visually guided dot-hunting task (see 190 
also Supplementary Fig. 13). (d) Activity in both 

the ANN and RSC is locally low-dimensional (via 

correlation dimension, Supplementary Fig.13 for 

analysis via PCA).  

We next consider the nature of the dynamics 195 
and representation that allows the circuit to 

encode the same angular position variables 

across LM1 and LM2 regimes while also 

encoding the different hypotheses required to disambiguate identical landmarks. Does the latter drive the network 

to functionally reorganize throughout the computation? Or, does the former, together with the need to maintain and 200 
use the internal hypotheses across time, require the network to exhibit stable low-dimensional recurrent attractor 

dynamics? To test this, we computed the pairwise correlations of the ANN activity states (Fig. 3a) and found them 

to be well conserved across LM1 and LM2 states. As these correlation matrices are the basis for projections into 

low-dimensional space, this shows that the same low-dimensional dynamics were maintained, despite spanning 

different computational and hypothesis-encoding regimes (metastable two-state encoding with path integration in 205 
LM1 vs. stable single-state path integration unchanged by further landmark inputs in LM2, Supplementary Fig. 7). 

Low-dimensional pairwise structure was also conserved across different landmark configurations and varied ANN 

architectures, and the low-dimensionality of ANN states was robust to large perturbations (Supplementary Figs.12, 
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15). In sum, these computations were determined by one stable set of underlying recurrent network dynamics, 

which, together with appropriate self-motion and landmark inputs, can maintain and update hypotheses to 210 
disambiguate identical landmarks over time, with no need for external context inputs.  

RSC fulfills requirements for hypothesis-dependent spatial computation via recurrent dynamics 

We hypothesized that RSC and its reciprocally connected brain regions may, similarly to the ANN, use internal 

hypotheses to resolve landmark ambiguities via recurrent dynamics. To test this, we first computed pairwise rate 

correlations and found a preserved structure between LM1 and LM2, as in the ANN (median R or Rs = 0.74 in 215 
RSC, vs 0.73 in ANN, Fig. 3c). Firing rates could be well-predicted from rates of other neurons, using pairwise rate 

relationships across task phases; this maintained structure also extended to the visual dot-hunting behavior 

(Supplementary Fig. 13), indicating that RSC activity is coordinated by the constraints of stable recurrent neural 

dynamics and not a feature of a specific behavioral task. 

Consistent with highly conserved cell-cell relationships, RSC population activity was low-dimensional (~6 220 
significant principal components, and correlation dim. ~5.4, Fig. 3d, Supplementary Fig. 13), similar to findings in 

hippocampus18. Together, we find that despite significant changes in neural encoding as different hypotheses are 

entertained across task phases (Fig.1d,f, Supplementary Fig. 5a) and across different tasks (Supplementary Fig. 6), 

the evolution of firing rates in RSC is constrained by stable attractor dynamics that could implement qualitatively 

similar computations as the ANN (Fig. 4a). 225 

Figure 4 RSC exhibits stable attractor dynamics 

sufficient for computing hypothesis-dependent 

landmark identity. (a) Top: To study the encoding 

of hypotheses and its impact on sensory processing 

without sensory or motor confounds, we used trials 230 
with matched egocentric paths just before and after 

the second landmark (‘a’ or ‘b’) encounter. One 

example session is shown. Bottom: corresponding 

3-D neural state space trajectories (via isomap). 

RSC latent states do not correspond directly to those 235 
of the ANN. (b) RSC represents the difference 

between LM1a and LM1b, and between subsequent 

LM2 states, as in the ANN (Fig. 2e, Supplementary 
Figs. 7-9). Blue: within-group and red: across-group 

distances in neural state space. CIs via bootstrap. 240 
State can also be decoded from raw spike rates 

(Supplementary Fig. 14j). (c) Neural dynamics in 

RSC are smooth across trials: pairwise distances 

between per-trial spike counts in a 750ms window 

before LM2 is visible remain correlated with later 245 
windows. (d) RSC activity preceding the second 

landmark encounter predicts correct/incorrect port 

choice (cross-validated regression trees). (e) 

Schematic of potential computational mechanisms. 

Left: If RSC encoded only current spatial and 250 
sensorimotor states and no hypotheses (LM1a or 

LM2b, derived from seeing the first landmark and 

self-motion integration that lead to identifying the 

second landmark as ‘a’ or ‘b’), an external 

disambiguating input is needed. Right: Because 255 
hypotheses are encoded, and activity follows stable 

attractor dynamics (Fig. 3), ambiguous visual inputs 

can drive the neural activity to different positions, 

disambiguating landmark identity in RSC 

analogously to the ANN.  260 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488024doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488024
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

We next examined the dynamical evolution of neural states in RSC during the spatial reasoning process. States 

evolved at speeds correlated with animal locomotion (Supplementary Fig. 14a), consistent with the observation that 

hypotheses are updated by self-motion in between landmark encounters (Fig. 1) and were driven by landmarks 

(Supplementary Fig. 14a), consistent with findings in head-fixed tasks10. To test the hypothesis that different neural 265 
states in LM1a and LM1b together with stable low-dimensional attractor dynamics can resolve the identity of the 

second perceptually ambiguous landmark, we identified subsets of trials in which mouse motion around the LM1 

to LM2 transition was closely matched and aligned them in time to the point when the second landmark became 

visible (Fig. 4a, Supplementary Fig. 14). In these trials, locomotion and visual inputs are matched, but the preceding 

hypothesis state (LM1a or b) differs. RSC firing rates differed between LM1a and LM1b states, as did subsequent 270 
rates in LM2 (Fig. 4b, comparing within- to across-group distances in neural state space across matched trials, and 

by decoding state from firing rates: Supplementary Fig. 14). The evolution of RSC firing rates was also predictable 

across trials such that neighboring trials remained nearby in activity space (Fig. 4c), which further confirms stable 

recurrent dynamics and indicates a topological organization of abstract task variables18. This indicates that stably 

maintained hypothesis-encoding differences in firing over LM1 in the low-dimensional attractor dynamics could 275 
interact with identical visual landmark inputs to push neural activity from distinct starting points in neural state 

space to points that correspond to correct landmark interpretations, as in the ANN. 

Further, we observed that neural trajectories from LM1a that were close in activity-space to LM1b were dragged 

along LM1b trajectories and vice-versa (they had similar movement directions, Supplementary Fig. 14g,h), 

suggesting that behavioral landmark identification outcomes might be affected by how hypotheses were encoded in 280 
RSC during LM1. We tested this hypothesis and found that RSC activity in LM1 (last 5 sec preceding LM2) was 

indeed predictive of the animal’s behavioral choice of the correct vs. incorrect port (Fig. 4d). Notably, this 

behaviorally predictive hypothesis encoding was absent during training in sessions with low task performance 

(Supplementary Fig. 6), indicating that the dynamical structures and hypothesis states observed in RSC were task-

specific and acquired during learning. Our unrestrained non-stereotyped behavior is not amenable to direct 285 
comparison of activity trajectories in ANNs and the brain as others have done in highly stereotyped trials of macaque 

behavior3. Instead, we found that the dynamics of firing rates in mouse RSC are consistent with, and sufficient for, 

implementing hypothesis-based disambiguation of identical landmarks using a similar computational mechanism 

as observed in the ANN. 

Discussion 290 

We report that RSC represents internal spatial hypotheses, sensory inputs, and their interpretation and fulfills the 

requirements for computing and using hypotheses to disambiguate landmark identity via local recurrent dynamics. 

Specifically, we found that low-dimensional recurrent dynamics were sufficient to perform spatial reasoning (i.e. 

to form, maintain, and use hypotheses to disambiguate landmarks over time) in an ANN (Fig. 2). We then found 

that RSC fulfills the requirements for such dynamics, i.e. encoding of the required variables (Figs. 1, 4) with stable 295 
low-dimensional (Fig. 3) and smooth dynamics that predicted behavioral outcomes (Fig. 4). 

We observed that local dynamics in RSC can disambiguate sensory inputs based on internally generated and 

maintained hypotheses without relying on external context inputs at the time of disambiguation (Fig. 4), indicating 

that RSC can derive hypotheses over time and combine these hypotheses with accumulating evidence from the 

integration of self-motion (e.g., paths after the first landmark encounter) and sensory stimuli to solve a 300 
spatiotemporally extended spatial reasoning task. These results do not argue for RSC as an exclusive locus of such 

computations. There is evidence for parallel computations, likely at different levels of abstraction, across sub-

cortical19 and cortical regions such as PFC1,20,21, PPC22, LIP23, and visual24,25 areas. Further, hippocampal circuits 

contribute to spatial computations beyond representing space by learning environmental topology26 and 

constraining spatial coding via attractor dynamics27,28,18 shaped by prior experience29. Finally, the landmark 305 
disambiguation that we observed likely interacts with lower sensory areas30 and action selection computations31,32. 

The emergence of conjunctive encoding, explicit hypothesis codes, and similar roles for dynamics across RSC and 

the ANN suggests that spatial computations and, by extension, cognitive processing in neocortex may be 

constrained by simple cost functions33, similar to sensory34 or motor35 computations. The ANN does not employ 

sampling-based representations which have been proposed as possible mechanisms for probabilistic 310 
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computation36,37, showing that explicit representation of hypotheses and uncertainty as separate regions in rate-

space could serve as alternative or supplementary mechanism to sampling.  

A key open question is how learning a specific environment, task, or behavioral context occurs. We observed that 

hypothesis coding emerges with task learning (Supplementary Fig. 6). Possible, and not mutually exclusive, 

mechanisms include: i) changes of the stable recurrent dynamics in RSC, as is suggested in hippocampal CA126; ii) 315 
modification of dynamics by context-specific tonic inputs1,38; or iii) changes in how hypotheses and sensory 

information are encoded and read-out while maintaining attractor dynamics that generalize across environments or 

tasks, as indicated by the maintenance of recurrent structure across tasks in our data (Supplementary Fig. 13) and 

as has been shown in entorhinal27 and motor cortex35 and ANNs39,40, possibly helped by the high-dimensional mixed 

nature of RSC representations41,42. Further, how such processes are driven by factors such as reward expectation43 320 
is an active area of research. 

Our findings show that recurrent dynamics in neocortex can simultaneously represent and compute with task and 

environment-specific multi-modal hypotheses in a way that gives appropriate meaning to ambiguous data, possibly 

serving as a general mechanism for cognitive processes. 

Methods Summary 325 

Microdrive implants with 16 tetrodes were implanted in RSC targeting layer 5, and sorted single-unit spike trains 

were analyzed together with mouse position and task state. All sorted neurons were included in the analysis. The 

ANN consisted of rate neurons with an input layer into 128 hidden recurrent units (tanh nonlinearity) into 80 output 

neurons, trained on random velocity trajectories in random environments of up to 4 landmarks. For the analyses in 

the main text, LM inputs were relayed to the ANN as a map that encoded their relative position but not identity 330 
(‘external map’ ANN, 80 input neurons). The findings were replicated with an ANN that only received binary LM 

presence input (‘internal map’ ANN, 11 input neurons) and non-negative ANNs (Supplementary Figs. 15-16), on a 

subset of environments. 

 

References 335 
 

1. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent 

dynamics in prefrontal cortex. Nature 503, 78–84 (2013). 

2. Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 364, 

(2019). 340 
3. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation Through Neural Population Dynamics. 

Annu. Rev. Neurosci. 43, 249–275 (2020). 

4. Smith, R. C. & Cheeseman, P. On the Representation and Estimation of Spatial Uncertainty. Int. J. Robot. 

Res. 5, 56–68 (1986). 

5. Cho, J. & Sharp, P. E. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. 345 
Behav. Neurosci. 115, 3–25 (2001). 

6. Alexander, A. S. & Nitz, D. A. Retrosplenial cortex maps the conjunction of internal and external spaces. 

Nat. Neurosci. 18, 1143–1151 (2015). 

7. Voigts, J. & Harnett, M. T. Somatic and Dendritic Encoding of Spatial Variables in Retrosplenial Cortex 

Differs during 2D Navigation. Neuron 105, 237-245.e4 (2020). 350 
8. Mao, D., Kandler, S., McNaughton, B. L. & Bonin, V. Sparse orthogonal population representation of spatial 

context in the retrosplenial cortex. Nat. Commun. 8, (2017). 

9. Murakami, T., Yoshida, T., Matsui, T. & Ohki, K. Wide-field Ca2+ imaging reveals visually evoked activity 

in the retrosplenial area. Front. Mol. Neurosci. 8, (2015). 

10. Fischer, L. F., Mojica Soto-Albors, R., Buck, F. & Harnett, M. T. Representation of visual landmarks in 355 
retrosplenial cortex. eLife 9, e51458 (2020). 

11. Voigts, J., Newman, J. P., Wilson, M. A. & Harnett, M. T. An easy-to-assemble, robust, and lightweight drive 

implant for chronic tetrode recordings in freely moving animals. J. Neural Eng. (2020) doi:10.1088/1741-

2552/ab77f9. 

12. Burak, Y. & Fiete, I. R. Accurate Path Integration in Continuous Attractor Network Models of Grid Cells. 360 
PLOS Comput. Biol. 5, e1000291 (2009). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488024doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488024
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

13. Samsonovich, A. & McNaughton, B. L. Path Integration and Cognitive Mapping in a Continuous Attractor 

Neural Network Model. J. Neurosci. 17, 5900–5920 (1997). 

14. Widloski, J. & Fiete, I. R. A Model of Grid Cell Development through Spatial Exploration and Spike Time-

Dependent Plasticity. Neuron 83, 481–495 (2014). 365 
15. Hardcastle, K., Ganguli, S. & Giocomo, L. M. Environmental Boundaries as an Error Correction Mechanism 

for Grid Cells. Neuron 86, 827–839 (2015). 

16. Hollup, S. A., Molden, S., Donnett, J. G., Moser, M.-B. & Moser, E. I. Accumulation of Hippocampal Place 

Fields at the Goal Location in an Annular Watermaze Task. J. Neurosci. 21, 1635–1644 (2001). 

17. Lee, I., Griffin, A. L., Zilli, E. A., Eichenbaum, H. & Hasselmo, M. E. Gradual Translocation of Spatial 370 
Correlates of Neuronal Firing in the Hippocampus toward Prospective Reward Locations. Neuron 51, 639–

650 (2006). 

18. Nieh, E. H. et al. Geometry of abstract learned knowledge in the hippocampus. Nature 1–5 (2021) 

doi:10.1038/s41586-021-03652-7. 

19. Sleezer, B. J., Castagno, M. D. & Hayden, B. Y. Rule Encoding in Orbitofrontal Cortex and Striatum Guides 375 
Selection. J. Neurosci. 36, 11223–11237 (2016). 

20. Panichello, M. F. & Buschman, T. J. Shared mechanisms underlie the control of working memory and 

attention. Nature 1–5 (2021) doi:10.1038/s41586-021-03390-w. 

21. Scott, B. B. et al. Fronto-parietal Cortical Circuits Encode Accumulated Evidence with a Diversity of 

Timescales. Neuron 95, 385-398.e5 (2017). 380 
22. Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-

navigation decision task. Nature 484, 62–68 (2012). 

23. Yang, T. & Shadlen, M. N. Probabilistic reasoning by neurons. Nature 447, 1075–1080 (2007). 

24. Odoemene, O., Nguyen, H. & Churchland, A. K. Visual evidence accumulation behavior in unrestrained 

mice. bioRxiv 195792 (2017) doi:10.1101/195792. 385 
25. Xue, C., Kramer, L. E. & Cohen, M. R. Dynamic task-belief is an integral part of decision-making. bioRxiv 

2021.04.05.438491 (2021) doi:10.1101/2021.04.05.438491. 

26. Guo, W., Zhang, J. J., Newman, J. & Wilson, M. A. Latent learning drives sleep-dependent plasticity in 

distinct CA1 subpopulations. bioRxiv 2020.02.27.967794 (2020) doi:10.1101/2020.02.27.967794. 

27. Yoon, K. et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. 390 
Neurosci. 16, 1077–1084 (2013). 

28. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. bioRxiv 2021.02.25.432776 (2021) 

doi:10.1101/2021.02.25.432776. 

29. McKenzie, S. et al. Preexisting hippocampal network dynamics constrain optogenetically induced place 

fields. Neuron 109, 1040-1054.e7 (2021). 395 
30. Banerjee, A. et al. Value-guided remapping of sensory cortex by lateral orbitofrontal cortex. Nature 585, 

245–250 (2020). 

31. Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics underlying selective 

persistent activity in frontal cortex. bioRxiv 203448 (2017) doi:10.1101/203448. 

32. Finkelstein, A. et al. Attractor dynamics gate cortical information flow during decision-making. Nat. 400 
Neurosci. 24, 843–850 (2021). 

33. Uria, B. et al. The Spatial Memory Pipeline: a model of egocentric to allocentric understanding in 

mammalian brains. bioRxiv 2020.11.11.378141 (2020) doi:10.1101/2020.11.11.378141. 

34. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual 

cortex. Proc. Natl. Acad. Sci. 111, 8619–8624 (2014). 405 
35. Gallego, J. A. et al. Cortical population activity within a preserved neural manifold underlies multiple motor 

behaviors. Nat. Commun. 9, 4233 (2018). 

36. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with probabilistic population codes. 

Nat. Neurosci. 9, 1432–1438 (2006). 

37. Echeveste, R., Aitchison, L., Hennequin, G. & Lengyel, M. Cortical-like dynamics in recurrent circuits 410 
optimized for sampling-based probabilistic inference. Nat. Neurosci. 23, 1138–1149 (2020). 

38. Remington, E. D., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible Sensorimotor Computations through 

Rapid Reconfiguration of Cortical Dynamics. Neuron 98, 1005-1019.e5 (2018). 

39. Lu, K., Grover, A., Abbeel, P. & Mordatch, I. Pretrained Transformers as Universal Computation Engines. 

ArXiv210305247 Cs (2021). 415 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488024doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488024
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

40. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114, 

3521–3526 (2017). 

41. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 

(2013). 

42. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. 420 
Neurobiol. 37, 66–74 (2016). 

43. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 

20, 1643–1653 (2017). 

 

Acknowledgements  425 
We thank Emily J. Dennis, Mehrdad Jazayeri, Kimberly Stachenfeld, and Elias Issa for comments on the 

manuscript. This work was supported by the NIH 1K99NS118112-01 and a Simons Center for the Social Brain at 

MIT postdoctoral fellowship (J.V.), National Institute of General Medical Sciences T32GM007753 (E.H.S.T), and 

the Center for Brains, Minds and Machines (CBMM) at MIT, funded by NSF STC award CCF-1231216 (J.P.N), 

and NIH R01NS106031 and R21NS103098 (M.T.H).  E.H.S.T is a Paul & Daisy Soros Fellow. I.R.F. is an HHMI 430 
Faculty Scholar and this work was partially supported by awards to I.R.F. from the Office of Naval Research, the 

Simons Foundation through the International Brain Laboratory, and a CIFAR Senior Fellowship. M.T.H is a 

Klingenstein-Simons Fellow, a Vallee Foundation Scholar, and a McKnight Scholar. 

Author contributions  

J.V., I.K., I.R.F. and M.T.H designed the study. I.K. and I.R.F. designed and performed the ANN component of the 435 
study. N.J.M, J.V., and J.P.N collected mouse data. J.P.N provided technical support for mouse recordings. J.V. 

and E.H.S.T analyzed mouse data. J.V. and M.T.H wrote the paper with input from all authors. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488024doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488024
http://creativecommons.org/licenses/by-nc-nd/4.0/


Voigts et al. , Methods    1 
 

Methods 

Mouse navigation behavior and retrosplenial cortex recordings 

Drive implants: Light weight drive implants with 16 movable tetrodes were built as described before1. The 

tetrodes were arranged in an elongated array of approximately 1250x750 µm, with an average distance 

between electrodes was 250 µm. Tetrodes were constructed from 12.7 µm nichrome wire (Sandvik – 5 
Kanthal, QH PAC polyimide coated) with an automated tetrode twisting machine2 and gold-electroplated 

to an impedance of approximately 300 KΩ.  

Surgery: Mice (C57BL/6 RRID: IMSR_JAX:000664) were aged 8-15 weeks at the time of surgery. 

Animals were housed in pairs or triples when possible and maintained on a 12-h cycle. All experiments 

were conducted in accordance with the National Institutes of Health guidelines and with the approval of the 10 
Committee on Animal Care at the Massachusetts Institute of Technology (MIT). All surgeries were 

performed under aseptic conditions under stereotaxic guidance. Mice were anesthetized with isofluorane 

(2% induction, 0.75–1.25% maintenance in 1 l/min oxygen) and secured in a stereotaxic apparatus. A 

heating pad was used to maintain body temperature, additional heating was provided until fully recovered. 

The scalp was shaved, wiped with hair-removal cream and cleaned with iodine solution and alcohol. After 15 
intraperitoneal (IP) injection of dexamethasone (4 mg/kg), Carprofen (5mg/kg), subcutaneous injection of 

slow-release Buprenorphine (0.5 mg/kg), and local application of Lidocaine, the skull was exposed. The 

skull was cleaned with ethanol, and a thin base of adhesive cement (C&B Metabond and Ivoclar Vivadent 

Tetric EvoFlow) was applied. A stainless steel screw was implanted superficially anterior of bregma to serve 

as electrical ground. 20 

A 3 mm craniotomy was drilled over central midline cortex, a durotomy was performed on one side of the 

central sinus, and tetrode drives1 were implanted above Retrosplenial cortex, at around AP -1.25 to -2.5 mm 

and ML 0.5 mm, with the long axis of the tetrode array oriented AP, and the tetrode array tilted inwards at 

an angle of ~15-20°, and fixed with dental cement. The ground connection on the drive was connected to 

the ground screw, and the skin around the drive implant was brought over the base layer of adhesive as 25 
much as possible to minimize the resulting open wound, sutured, and secured with surgical adhesive. 

At the time of implant surgery, only two of the tetrodes were extended from the drive to serve as guides 

during the procedure. All other tetrodes were lowered into superficial layers of cortex within 3 days post-

surgery. Mice were given 1 week to recover before the start of recordings. 

Chronic Electrophysiology:  After implant surgery, individual tetrodes were lowered over the course of 30 
multiple days until a depth corresponding to layer 5 was reached and spiking activity was evident. Data 

were acquired with an Open Ephys3 ONIX4 prototype system at 30kHz using the Bonsai software5. The 

tether connecting the mouse headstage to the acquisition system was routed through a commutator above 

the arena and was counterbalanced via a segment of flexible rubber tread. 

Spike sorting: Voltage data from the 16 tetrodes, sampled at 30 KHz were band-pass filtered at 300-6000 35 
Hz, and a median of the voltage across all channels that were well connected to tetrode contacts was 

subtracted from each channel to reduce common-mode noise such as licking artifacts. 

Spike sorting was then performed per tetrode using the Mountainsort software6 (https://github.com/ 

flatironinstitute/mountainsort_examples), and neurons were included for further analysis if they had a noise 

overlap score below 0.05, an isolation score > 0.75 (provided by Mountainsort6), a clear refractory period 40 
(to ensure spikes originated from single neurons), and a spike waveform with one peak and a clear 

asymmetry (to exclude recordings from passing axon segments), and a smooth voltage waveform and 

histogram (to exclude occasional spike candidates driven by electrical noise). Units were not excluded 

based on firing rates, tuning, or any higher order firing properties. 

Histology: To verify the localization of the recording sites (Supplementary Fig. 3), electrolytic lesions were 45 
created by passing currents of 20 µA through a subset of tetrodes (~4 tetrodes per animal) for 30s each 
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under isoflurane anesthesia, and animals were perfused and brain processed 1h later. Brains were mounted 

with DAPI and imaged. 

Behavioral experiment hardware: Behavior was carried out in a circular arena of 50 cm diameter. The 

floor of the arena was formed by a clear acrylic sheet, under which a diffusion screen and a flat-screen TV 50 
was positioned on which visual stimuli were displayed. The circular arena wall was formed by 32 flat black 

acrylic segments, every other one of which contained an opening for a recessed reward ports, 16 in total. 

Each reward port contained an optical beam break (880nm IR, invisible to mouse) that detected if a mouse 

was holding its nose in the port, a computer-controlled syringe pump for water reward delivery, and a 

dedicated beeper as a secondary reward indicator. The behavior arena was housed in a soundproof and 55 
light-insulated box with no indicators that could allow the mice to establish their heading. Video was 

acquired by a central overhead camera at 30 Hz using a low level of infrared light at 850 nm and the mouse 

position was tracked using the oat software7 (https://github.com/jonnew/Oat). A custom behavioral control 

state-machine written in Python was triggered every time a new camera frame was acquired, and the 

position of the animal, time passed, and port visits were used to transition the logic of the state machine 60 
(Supplementary Fig.1). For analysis purposes, all behavioral data was re-sampled to 100 Hz and 

synchronized to the electrophysiological data. 

Inactivation of RSC and causal necessity for hypothesis-based computations: For pharmacological 

inactivation of RSC (Supplementary Fig.2), 4 mice were trained on a simplified parametric task that 

permitted us to causally test the role of RSC in individual recording and inactivation sessions. The task 65 
required integration of an allocentric position hypothesis with visual landmarks (Supplementary Fig. 2a,b). 

After mice learned the task, quantified as reaching a hit rate of above 30% in the simple conditions (high 

eccentricity, see Supplementary Fig.2b), they were given access to unrestricted water and implanted 

following the procedure described for the main experiment, but instead of a chronic drive implant, a 

removable cap was implanted and two burr holes were prepared above RSC and covered with dental cement 70 
(Supplementary Fig.2c). After recovery from surgery, mice were put back on water restriction over the 

course of one week and re-introduced to the task. Before each experiment, mice were briefly anesthetized 

with isoflurane, the cap was temporarily opened, and the exposed skull was wiped with lidocaine and an 

injection of either 50nl of 1ug/ml muscimol solution in cortex buffer per side, or the same volume of cortex 

solution was performed through the existing burr holes. Mice were left to recover from anesthesia for 15 75 
min and tested on the task. Performance was assessed as the hit rate on the 1st port visit per trial, and 

confidence level were computed via binomial bootstrap. 

Behavioral Training: After mice had undergone preparatory surgery, they were given at least one week to 

recover before water scheduling began. Initially, mice received 3 ml of water per day in the form of 3 g of 

HydroGel (ClearH2O, Watertown, MA, USA), which was gradually reduced to 1.0–1.5 g per day. During 80 
this period, mice were handled by experimenters and habituated to the arena. Throughout the entire 

experiment mice were given water rewards for completion of the task and were given additional water to 

maintain their total water intake at 1.25-1.5ml. 

After initial acclimatization to the recording arena over 2 days, mice were trained on the task. Throughout 

the task we used white circular cues on the floor (referred to as landmarks) of ~30mm diameter on a black 85 
background. These landmarks were the only source of light in the experiment. Mice were run every day or 

every other day, for a single session of 30 min to 3 hours per day. Training progressed in multiple phases:  

1) Initially, mice were trained that circular visual cues on the floor of the arena indicated reward locations. 

One of the 16 ports was randomly selected as reward port and a cue was shown in front of this port. Visiting 

an incorrect port resulted in a timeout (~1 second initially, increased later), during which the entire arena 90 
floor was switched to grey leading to a widespread visual stimulus. Visiting the correct port resulted in an 

audible beep from the beeper located in the port and around 0.005ml of water were delivered by the syringe 

pump. After a reward, a new reward port was randomly chosen, and the landmark was rotated together with 

the port, effectively performing a rotation of the entire task, and the next trial began. This meant that mice 
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learned to not rely on any cues other than the visual landmark to locate the correct port. Mice usually 95 
completed this phase in by day 4. 

2) We then introduced a new task phase: After each reward, the landmark disappeared and instead a blinking 

dot was shown in a random location in the arena. If the mouse walked over that dot, it disappeared and 

either a new dot in a new random location appeared, repeating the process, or the next trial was initiated. 

The number of required dots-chases was sampled uniformly from a range and was increased to 6-8 by the 100 
time recordings began, and the last dot was always positioned at the arena center. This task phase served to 

obfuscate the rotation of the task. Data acquired during this task phase was used during spike sorting but 

was not further analyzed. Mice learned this task phase, with 6-8 dots, by day 7 on average. 

3) Throughout phases 1 and 2, we progressively introduced a requirement for the mice to hold their snouts 

in the reward port for increasing durations to trigger a reward or timeout. For each port visit, the required 105 
duration was randomly drawn from a uniform distribution, so on any given trial the mice did not know 

when exactly to expect to know the outcome of the port visit. Initially, this hold time was 500 ms, and the 

time range was slowly increased throughout training, depending on animal performance. By the time 

recordings began, a range of around 4-6 seconds was used. Mice were able to tolerate this holding time by 

day 20 on average. 110 

4) Next, we introduced an identical 2nd landmark at a non-rewarded port. Initially, the two landmarks were 

set two ports apart (e.g. ports 1 and 3), and this distance was progressively increased to 4 or 5 ports. As 

before, the rewarded port and landmarks were randomly rotated after each trial, but their relative positions 

remained stable. Visiting the reward port at the incorrect, ‘a’ landmark (and holding there for the required 

duration) was handled identically to visits to any other non-reward port and triggered the same time-out. 115 
As a result, mice learned to visit the ‘b’ port. Mice learned to make an initial distinction between the ports 

approximately by day 14-16. In one mouse we maintained this training phase until overall task performance 

was significant over entire sessions (Supplementary Fig.1f) but we noticed that the mouse had trouble 

consistently re-learning the next task phase. We therefore transitioned subsequent mice to the next phases 

before a stable behavior was established. 120 

5) After the mice started learning to visit the port at the ‘b’ landmark, we introduced a view-distance 

limitation that made landmarks invisible from far away: The mouse’s position was tracked at 30Hz and for 

each landmark its brightness was modulated in real-time as a function of the mouse’s distance from it. The 

visibility was 0 for distances above a threshold, 1 for distances below a 2nd threshold, and transitioned 

linearly between the two values. Initially these thresholds were set so that both landmarks were visible from 125 
the arena center (~20 cm), then they were progressively reduced to values where at any time only one of 

the landmarks was visible to the mouse (~10 cm). At this stage, mice that encounter a landmark after a new 

trial starts have no way of knowing whether this is the rewarded or non-rewarded landmark. Recordings 

began when mice were able to complete 100 trials/hour at a hit/miss rate >1. Mice reached this criterion 

level on average by total day 30-40 of training. 130 

Statistical Analysis: Analyses were carried out using custom code in Matlab (Mathworks). Unless stated 

otherwise, confidence intervals were computed at a 95% level via bootstrap, and p-values were computed 

using a Mann–Whitney U test or Wilcoxon signed-rank test. In figures, significance values are indicated as 

‘NS’ (P>0.05), ‘*’ (P ≤ 0.05), ‘**’ (P ≤ 0.01) or ‘***’ (P ≤ 0.001). 

Behavior Analysis: Recording sessions were included once mice performed the task well enough to 135 
achieve a session average hit/miss ratio > 1, indicating that mice could infer the correct port between the 

‘a’ and ‘b’ landmarks (a correct rate of >1/16 would indicate that they can associate landmarks with 

rewarded ports, but not that they can infer landmark identity). Because landmarks are only visible 

sequentially after full training, a ratio >1 shows that mice employed a memory based strategy where they 

used a prior hypothesis derived from seeing or not seeing the 1st landmark to infer the identity of the 2nd 140 
landmark they encounter.  Only sessions with at least 50 recorded single neurons, and with at least 50 

minutes of task performance were included. This yielded 16 sessions from 4 mice. For some analyses, 
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particularly for analyses where trajectories of the mice were matched across trial types to control for 

potential motor and sensory confounds, additional selection criteria were applied yielding a lower N of 

sessions that could be used, this is stated for the respective analyses. For plots of the learning rates we 145 
included trials where mice encountered their 1st landmark after 20 seconds or faster to exclude periods 

where mice were not engaged, plots using all trials are also included in the supplement. 

Behavioral epochs: For analysis, each trial was split into epochs: The time between the onset of a trial 

(right after the mouse completes the preceding re-initialization procedure) and the onset of the reward (the 

first time the mouse could know whether it reached the correct port, other than by process of elimination 150 
after visiting other ports) was split up based on the amount of information the mouse could have 

accumulated: the initial state when mice had not seen any landmark was labeled ‘LM0’, time after the first 

landmark encounter was labelled ‘LM1’, and after the 2nd as ‘LM2’. The timepoints when landmarks 

became visible and the mouse transitioned from LM0 to LM1 or from LM1 to LM2, referred to as ‘landmark 

encounters’ were defined as the timepoint when landmark visibility exceeded 50%.  155 

For analyses of the correlation of neural state and eventual behavioral outcomes, each 2nd landmark 

encounter was further categorized as whether it occurred at the ‘a’ or ‘b’ landmark. For behavioral analyses 

in Fig.4d, trials were further categorized by whether they led to a correct port visit or to a incorrect visit 

and a time-out. 

Similarity of spatial tuning across conditions: Changes in spatial tuning in individual RSC neurons as 160 
mice encounter successive landmarks (Fig.1f) was quantified by the Euclidian distance of their spatial 

tuning profiles (in an 8x8 map, for each comparison non-visited ties were omitted). As an internal control, 

distance between tuning profiles within –condition and across-condition were compared using non-

overlapping 1 minute segments. For each comparison (LM1 vs. LM2 and LM0 vs. LM1), the split spatial 

tuning maps were compared either within the conditions, e.g. within LM1 and within LM2, and compared 165 
to distances between LM1 and LM2 maps.  

Neural decoding of mouse position: To decode the mouse position from RSC firing rates, neural firing 

rates were first low-pass filtered at 1Hz with a single-pole butterworth filter. The resulting firing rate time 

series were used to predict the mouse position as 100 categorical variables forming a 10x10 bin grid, (bin 

width = 50 mm). The network was made up of a single LSTM layer with 20 units, and a fully connected 170 
layer into a softmax output into the 100 possible output categories. For analyses of intermediate information 

content of the decoder, the network input into the final softmax layer was analyzed.  

Decoding was re-initialized for each trial. For each decoded trial, all other trials served as training set. For 

analysis of how the neural coding of position was dependent on the LM state of the mouse (Supplementary 

Fig. 5a), the same analysis was repeated with training and testing data further divided by LM state. For 175 
analysis of the decoding performance, the output likelihood from the decoder was evaluated at the mouse’s 

true position for all positions that were shared across conditions for this session. Statistical analysis was 

then performed on a per-session average likelihood (not weighted by number of trials per session). 

Neural decoding of LM state: For the analysis of LM state (Fig.1e), trials with at least 0.5 seconds of data 

from all 3 states were used (16 sessions, 486 total trials), and individual trials were held out from training 180 
for decoding. Firing rates were low-pass filtered with a causal single-pole butterworth filter at 0.05 Hz, and 

LM state (0, 1 or 2) was decoded independently for each timepoint using a categorical linear decoder 

(dummy variable coding, (Nneurons +1)*3 parameters), or a neural network with no recurrence, using a single 

20 unit layer receiving instantaneous firing rates, into a 6 unit layer, into 3 softmax outputs.  

Dimensionality analysis: (Supplementary Fig. 13c). Principal component analysis was performed by first 185 
computing the covariance matrices of the low-pass filtered (as before) firing rates, and plotting their 

eigenvalue spectra, normalized by sum. Each scaled eigenvalue corresponds to a proportion of explained 

variance. Spectra are plotted together with a control spectrum computed from covariances of randomly 

shuffled data. For a description of the method used to compute the correlation dimension of RSC rates 
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(Supplementary Fig. 13d) see the heading ‘Correlation dimension’ in the section about artificial neural 190 
network methods below. 

Prediction of firing rates across RSC population: For quantification of the independence of individual 

RSC neurons from the surrounding RSC population (Supplementary Fig. 13f,g), the firing rates of each 

neuron were predicted from those of all other neurons using linear regression. Rates were first filtered at 

0.01-0.5 Hz with a 3rd order butterworth filter, and sub-sampled to 3.3 Hz. Each neuron’s rate was predicted 195 
with L1 regularized linear regression 8 (lasso, 𝜆 ≈ 0.0001) from the rates of all other neurons and preceding 

firing rates using 8 lags (~0.2.5 sec). Goodness of fit was quantified as the proportion of variance explained: 

𝑅2 = 1 −  ∑ (𝑌𝑖 − 𝑌𝑖
𝑝𝑟𝑒𝑑

)
2

 𝑖  ∑ (𝑌𝑖 − 𝑌̅)2
𝑖⁄ . Predictions were computed both within condition (LM1, LM2, 

and dot-hunting phase), as well as across conditions, where the model was fit using coefficients determined 

from the other conditions. 200 

Computation of firing rate distribution entropies: Entropies of empirical firing rate distributions were 

computed in bits via their Shannon entropy: 𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log2 𝑃(𝑥𝑖)𝑛
𝑖=1  ,relative to a uniform 

histogram of the same size: 𝐻̂(𝑋) = −( 𝐻(𝑋) − 𝐻(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)). In cases where zeros appeared, a small 

offset term <<1 was added and all histograms were normalized to a sum of 1. For example, 𝐻̂([1 0]) =
 𝐻̂([1 1 0 0]) = 1 𝑏𝑖𝑡 and  𝐻̂([1 1 1 1.3]) ≅ 0.01 𝑏𝑖𝑡. 205 

Trial-to-trial variance of firing rates conditioned on position: For analysis of whether partial hypothesis 

representation in the LM1 state corresponds to trial-by-trial changes in firing rates, evident in bimodal firing 

rate histograms, histograms of hidden unit firing rates of the ANN, conditioned on binned 1-D position are 

displayed (Supplementary Fig. 10a). Data are from Experiment configuration 2 (See Methods, section 

‘Overview over experiment configurations used with ANNs’). Tuning curves were calculated using 20 bins 210 
of location/displacements and normalized individually for each neuron. The first time step in each trial and 

time steps with non-zero landmark input were excluded from the analysis. For histograms, each condition 

was binned in 100 column bins and neuron rates in 10 row bins. Histogram were normalized to equal sum 

per column. For analysis of RSC firing rates (Supplementary Fig. 10b-d), we did not observe bimodal rate 

distributions and instead quantified the dispersion of the rate distributions via their entropy: Firing rates 215 
were low-pass filtered at 0.5 Hz to bring them into the time scale of navigation behavior, and firing rate 

histograms were computed with 8 bins spanning from each neurons lowest to highest firing rate per neuron, 

for each spatial bin in a 4x4 grid. Because the computation of histogram entropy is biased by the N of 

samples, for each spatial bin, the same number of time points were used for the LM1 and LM2 conditions. 

The dispersion of the firing rate distribution was then computed as average entropies per cell across all 220 
space bin, and compared across the two conditions. 

Analysis of encoding of angular position and displacement from last seem landmark: Firing rate 

profiles were analyzed in two reference frames: Global angle of the mouse in the arena, and relative angle 

to the last visible landmark. Only time-points from the foraging state where the distance of mouse from the 

center of the arena exceeded 70% of the arena diameter were included. Time points from the LM1 and LM2 225 
conditions were sub-sampled to yield matched N of time points. Firing rates were analyzed in a –π to π 

range in 6 bins by computing their entropy as described before. 

Pairwise correlation of firing rates: Recordings were split into LM[0,1,2] states as before, firing rates 

were low-pass filtered at 1Hz, and the Pearson correlation coefficient between each pair of neurons was 

computed. For display purposes, the neurons were re-ordered by first computing the matrix for the LM1 230 
state, applying hierarchical clustering9, and the resulting re-ordering was applied to both LM1 and LM2 

conditions. This re-ordering has no impact on any further analyses. For summary statistics, we computed 

the correlation of correlations for each session. 

Low-dimensional embedding of neural activity: Neural firing rates were band-pass filtered as before, 

and an initial smoothing and dimensionality-reduction step was performed by training a small LSTM with 235 
a single layer of 30 units to decode the mouse position. The hidden unit activations were then embedded in 
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3-D space with the isomap algorithm10 , using the Toolbox for Dimensionality Reduction by Laurens van 

der Maaten11.  

Analysis of speed of neural state evolution: (Supplementary Fig. 14a) For quantification of how fast the 

neural state evolves, the firing rates of the entire population were computed by low-pass filtering the spike 240 
trains at 1Hz (3rd order butterworth filter), and the speed of the 5 largest principal components of the 

resulting vector in Hz/sec were related to the running speed of the mouse (m/sec, also low-pass filtered at 

1Hz), or the change in landmark brightness (percent/sec). Data were binned in 30 bins from 0-0.5m/sec and 

10 bins from 0.5-2 m/sec for running speed, and 10 bins from -50 to 50% and 10 bins for ±50-200%. 

Confidence intervals were computed by treating median data from each session as independent samples.  245 

Analysis of context-encoding in RSC across similar motor and sensory states: To study the encoding 

of context with minimal sensory and motor confounds (Fig. 4, and Supplementary Fig. 14), we split the 

appearances of the 2nd landmark into two groups depending on whether the 2nd landmark is ‘a’ or ‘b’, as 

described in the main text. We then manually selected subsets of trials where egocentric paths just before 

the appearance of the 2nd landmark are matched across the two groups. Fig. 4a shows an example of such 250 
matched approach paths/trials. Sessions in which at least 16 trials could be matched were used for these 

analyses, yielding a total of 133 trials from 6 sessions (per session: 16, 23, 24, 24, 25 and 21). For each 

session, all of these trials were aligned to the time when the 2nd landmark became visible, yielding a set of 

time ranges where the animals experienced similar visual inputs, performed similar locomotion behavior, 

but potentially encoded different prior experience leading them to subsequently disambiguate the 255 
perceptually identical 2nd landmark as ‘a’ or ‘b’.  

To test whether there was consistent encoding of this context in RSC, we then compared the distances 

across these groups in 3-dimensional neural activity space (see ‘Low-dimensional embedding of neural 

activity’) to distances within the groups (Fig.4d, Supplementary Fig.14). This test was performed at the 

point where the 2nd landmark became visible to assess encoding of prior context, as well as 200ms 260 
afterwards to assess how the identity of the (now visible) landmark affects encoding in RSC.  

Analysis of smooth neural trajectories across sessions: (Fig.4c, Supplementary Fig.14) To assess if 

neural trajectories were determined by population dynamics that were stable across trials and could 

therefore serve as substrate for the computation performed by the mice, we tested whether neural trajectories 

behaved consistent with a laminar flow regime where neighboring particles (in our case neural firing rate 265 
vectors) remain neighbors for a significant amount of time, or whether they decorrelate quickly (Fig.4c, 

Supplementary Fig.14e,f). To assess temporal dynamics of the neural spiking without imposing any 

smoothing, we investigated raw spike counts in 750ms windows for this analysis. For each session, an 

initial set of pairwise high-dimensional distances in spike-counts between the trials with egocentrically 

similar paths (see prev. section) was computed from the last 750ms preceding the appearance of the 2nd 270 
landmark. These distances were then correlated with those in a second sliding window, Supplementary Fig. 

14f). An offset of 0 seconds was defined as the point where both windows stopped overlapping. The 

correlation coefficient R was then computed for increasing window offset up to 2 seconds. Summary 

statistics were computed across sessions by first shifting each session individually by its 95% level for R 

(from a shuffled control) which results in the summary plot showing a highest value for R of ~0.8 even for 275 
offsets where the windows fully overlap and the uncorrected R value is 1. Because of this offset, the null 

level for each trial is now at R=0. We then computed the CIs for the group via bootstrap relative to this 

level.  

Analysis of direction of neural trajectories: (Supplementary Fig. 14g,h) To further test if neural 

trajectories were determined by population dynamics that were stable across trials, and were independent 280 
of the interpretation of the 2nd (locally ambiguous) landmark, we tested if neural activity evolved in similar 

directions across trials if it started close together in 3-dimensional neural activity space (see ‘Low-

dimensional embedding of neural activity’). We therefore looked at neural trajectories within the motor and 

sensory-matched LM2 approaches where the neural state at the point where the 2nd landmark became visible 

started neurally close to other trials from the opposing class. For example, for a LM2a trial, we looked if 285 
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this trial might follow other close-by LM2b trials. We computed neural proximity in the 3-dimensional 

neural embedding (see above) and defined close-by trials as ones that were within 1 arbitrary units in 

Euclidean distance in the isomap embedding around the time when the 2nd landmark became visible, 

yielding a total of 42 out of 79 trials with close neighbors from opposing classes from the 5 sessions, one 

session was excluded because the neural activity in the relevant time ranges was collapsed onto a point in 290 
the LSTM embedding. As a control, we also selected corresponding neurally furthest points. Similarity of 

neural evolution was then quantified as the angular difference between the trials in (3-dimensional) LSTM 

space over time, in order to assess co-evolution independently of the initial selection by distance. 

Significance was computed via bootstrap across trials, vs random alignments corresponding to a 90 degree 

difference. 295 

Behavior prediction:  For the behavior prediction analysis, sessions with at least 5 correct and incorrect 

port visits after the 2nd port visit were used (N=11) and an equal number of hit and miss trials (outcome of 

next port visit is a timeout or a correct) were selected, leading to a chance prediction level of 0.5. The spike 

rates from the 5 seconds preceding the 2nd landmark becoming visible, binned into one-second bins, were 

used to predict the behavioral outcome with a binary classification decision tree with a minimum leaf size 300 
of 6, previously determined via cross-validation. Predictions for each trial were fit using all other trials. 

Specificity of landmark encounter coding to the foraging task: (Supplementary Fig. 6) We trained a 

decoder to predict either the number of encountered dots in the main task, or in the dot-hunting task. These 

tasks were interleaved and the same neurons were used. Train and test sets were split by trial, and decoding 

was performed with a regression tree on lowpass-filtered firing rates as before, performance was quantified 305 
as mean error on the N of landmarks. Only the first 2 landmarks were predicted in the dot-hunting task to 

allow use of the same classifier across both. Decoding performance was compared between the within-class 

(e.g. decode main task encounters with decoder trained on other trials in the main task) and cross-class (e.g. 

decode dot-hunting from decoder trained on the main task etc.). 

Analysis of neural coding as a function of task performance: (Supplementary Fig. 6) To test whether 310 
the encoding of hypothesis states in RSC is specific to task performance, we analyzed a larger number of 

sessions from the entire period during which two landmarks with local visibility were used (92 recording 

sessions in total). We analyzed the effect of task performance on the behavior prediction analysis (as 

described above, and in Supplementary Fig. 6). We also analyzed the more general decoding of landmark 

encounter count (same method as’ Specificity of landmark encounter coding to the foraging task’ or Fig.1) 315 
in all of the 92 sessions with 2 landmarks, and correlated decoding performance with task-performance on 

a per-session level. As an additional control, we performed the same analysis on the N of dots encountered 

in the interleaved dot-hunting task. For all of these analyses analogous method as for the non behavior-

correlated analyses was used. 

Artificial neural networks 320 

A simulated animal runs with varying velocity in a circular environment starting from a random, unknown 

position and eventually infers its position using noisy velocity information and two, three or four 

indistinguishable landmarks. A trial consists of a fixed duration of exploration in a fixed environment, 

starting from an unknown starting location; the environment can change between trials. Environments are 

generated by randomly drawing a constellation of 2-4 Landmarks, and the network must generalizably 325 
localize in any of these environments when supplied with its map. The network must adjust its spatial 

inference computations on the basis of the configurations of the different environments, without changing 

its weights; thus, the adjustments must be dynamic. In the internal map scheme (Supplementary Fig 15), an 

input cell simply encodes by its activation whether the animal is at any landmark; it does not specify the 

location of the landmark, the identity of the environment, or the spatial configuration of the various 330 
landmarks in the environment. The task in the internal map scheme is substantially harder, since the network 

must infer the configuration of landmarks in the environment purely from the time sequence of landmark 

visits, while simultaneously localizing itself within the environment. Information about the maps must be 
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acquired and stored within the network. To make the task tractable, we limit training and testing in the 

internal map setting to four specific environments.  335 

In the external map task (Figs. 2,3, Supplementary Figs. 6-12), landmark locations were random and the set 

of locations (map) were provided to the network, whereas in the internal map task (Supplementary Fig. 15) 

one of four landmark configurations was used, but the maps were not provided to the network. landmarks 

could only be observed a short distance. A three-layer network with a recurrent hidden layer was trained to 

infer location. Velocity and landmark encounter information were encoded in the input layer, and all 340 
weights of the network were trained. The training target for the output layer was activation of a unit with 

von Mises tuning and preferred location matching the true location.  

Network performance was compared to a number of alternative algorithms: Path integration + correction 

integrated the noisy velocity information starting from an initial location guess and corrected this estimate 

by a reset to the coordinates of the nearest landmark when a landmark was encountered. Particle filters 345 
approximated sequential Bayesian inference given the available velocity and landmark information, with 

each particle capturing a location hypothesis whose posterior probability is given by an associated weight. 

Particle locations are updated using velocity information and particles are reweighted after landmark 

encounters. The enhanced particle filter also reweights particles when a landmark is expected but not 

encountered, thus can infer location not only from the presence but also from the absence of landmarks. 350 
The output and hidden representations of the trained network were evaluated in a variety of conditions 

involving both random and fixed landmark locations and trajectories with random and fixed velocities. 

Definition of environments and trajectories: The task is defined by a simulated animal moving along a 

circular track of radius 0.5 m for 10 seconds. The animal starts at a random, unknown position along the 

circle at rest and starts running along a trajectory at non-constant velocity. A trajectory is sampled every dt 355 
= 0.1s in the following way: At each time t, acceleration at is sampled from a zero-mean Gaussian 

distribution with standard deviation σa = π/4 m/s2 that is truncated if |at| > π/2 m/s2 . Acceleration is 

integrated to obtain the velocity vt and truncated if |vt| > vmax = π/2 m/s. The actual location on the track is 

the integral of this velocity.  

In a trial of the external map task, the locations of K = 2, 3, or 4 indistinguishable landmarks were 360 
determined sequentially: the first landmark was sampled from a uniform random distribution on the circle, 

with subsequent landmarks also sampled from a uniform random distribution but subject to the condition 

that the minimum angular distance from any previously sampled landmark is at least δ = π/9 rad.  

The internal map task involved four environments, each with a unique configuration of landmarks: two 

environments had two landmarks, one had three and the last had four. Landmark locations in the four 365 
environments were chosen so that pairwise angular distances were sufficiently unique to allow the inference 

of environment identity. Landmark coordinates in environment ei were given by: e1 = {0, 2π/3} rad, e2 = 

{1.9562, 3.7471} rad, e3 = {0.2641, 1.2920, 3.7243} rad, e4 = {3.0511, 3.8347, 5.1625, 5.7165} rad.  

Experiment configurations used with ANNs: After training, the networks were evaluated in different 

testing configurations that each consisted of a distribution over landmark configurations and trajectories:  370 

Experiment configuration 1. Training distribution: This test set was generated exactly as in the training set, 

as described in section “Definition of environments and trajectories”. 5 different  

Experiment configuration 2. Fixed landmarks, random trajectories: The landmark configuration was given 

by two landmarks located at e = {0, 2π/3}, the trajectories were sampled in an identical way as in the 

training distribution. Note that this landmark configuration corresponds to the first environment in the 375 
internal map task. 

Experiment configuration 3. Fixed landmarks, constant velocity trajectories: The landmark configuration 

was given by two landmarks located at e = {0, 2π/3} and the trajectories were given by constant velocity 

trajectories with |vt| = vmax/2. The initial position and the direction of the trajectory was random.  
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Experiment configuration 4. Two variable landmarks, constant velocity trajectory: The landmark 380 
configuration was given by two landmarks located at e = {0, 2π/3 + απ/3}, where α ∈ [0, 1]. The trajectories 

were given by constant velocity trajectories with |vt| = vmax/2 and the initial position and the direction of the 

trajectory was random. 

Experiment configuration 5. Two environments, random trajectories: The landmark configuration was 

given by either e1 or e2 of the internal map task, trajectories are random. 385 

Landmark observation: The animal is considered to have encountered a landmark if it approached within 

dmin = vmax · dt/2 = π/40 m/2 = π/20 rad. This threshold is large enough to prevent an animal from “missing” 

a landmark even if it is running at maximum velocity. This ‘visibility radius’ is smaller than the one we 

used for the mouse behavior experiments (Fig.1). In the ANN experiments, landmark encounters were 

therefore roughly coincident with the agent’s position coinciding with the landmark, whereas in the mouse 390 
data, landmark encounters occur a significant distance away from the landmark, when it becomes visible 

(e.g. Fig.4a). In the same way as in the mouse behavior analysis, hovering around the same landmark or 

approaching the same landmark consecutively would only trigger a landmark encounter at the first 

approach; a new encounter was only triggered if the animal approached a landmark different than the 

previous one, equivalent to the definition used in the analysis of mouse behavior. Also, only trials in which 395 
the animal encountered at least two different landmark were included. 

Sensory noise: The largest sources of uncertainty in the tasks were the unknown starting position and the 

indistinguishability of the landmarks. In addition, we assumed that the velocity information and the 

landmark-location memory (in the external map scenario) were corrupted by noise. At each time step of 

size dt = 0.1, the velocity input to the network corresponded to the true displacement vdt corrupted by zero-400 
mean Gaussian noise of standard deviation σv = vmaxdt/10. In the external map task, the landmark map 

provided to the network and particle filter was corrupted by zero-mean Gaussian noise with standard 

deviation σl = π/50 rad, without changing the relative landmark positions: The map was coherently slightly 

rotated at a landmark encounter, and the rotation was independently sampled at each landmark encounter.  

ANN preferred firing at landmark locations:  (Supplementary Fig. 5c) This analysis was performed by 405 
evaluating the network of the external map task on the experiment configuration 1 of the internal map task. 

First, location tuning curves were determined after the second landmark encounter using 5000 trials from 

distribution 1 and using 50 location bins. Tuning curves were calculated separately for each of the four 

environment of the internal map task. Preferred location was determined to be the location corresponding 

to the tuning curve maximum. The density of preferred locations smaller than distance dmin away from a 410 
landmark was then compared to the density of preferred locations further away from landmarks.  

Network architecture and training: The network consisted of three layers of rate neurons with input-to-

hidden, hidden-to-hidden and hidden-to-output weights. All weights were trained.  

Network input: The input layer consisted of 80 neurons in the external map case and 11 neurons in the 

internal map case. Ten neurons coded for velocity corrupted by noise (noise as described above). The 415 
velocity neurons had a minimum firing rate between 0 and .2 and a maximum firing rate between .8 and 1 

in arbitrary units, and within this output range coded linearly for the whole range of velocity between −vmax 

and vmax. Negative and positive velocity here corresponds to clockwise and counterclockwise travel 

respectively.  

The remaining neurons (70 in the external map case and 1 in the internal map case) coded for landmark 420 
input and were activated only at the time step of, and up to three time steps after an landmark encounter. In 

the external map case, the landmark input simultaneously encoded the locations of all landmarks in the 

environment, thus supplying a map of the environment, but contained no information about which landmark 

was currently encountered. The landmark neurons had von Mises tuning with preferred locations xj = (j − 

1) · 2π/70 rad, j = 1...70, that tiled the circle equally. Given n landmarks at locations li , i = 1…n, the firing 425 
rate of the j-th landmark input neuron was given by  
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𝑟𝑗 =  ∑ exp (
cos(𝑥𝑗 − 𝑙𝑖̃) − 1

2𝜎𝑤
2

)
𝑖

, 

where 𝑙𝑖̃ ∼ N(𝑙𝑖 , 𝜎𝑙
2)  is the noise-corrupted landmark coordinate (see “Sensory noise” section). This 

mixture of von Mises activation hills produces the pattern depicted as the “map” input in Supplementary 

Fig.7a.  430 

In the internal map case (Supplementary Fig. 15), the landmark input neuron consisted of a single binary 

neuron that responded for four time steps with activation 1 in arbitrary units whenever a landmark was 

encountered. This input encoded neither environment identity nor landmark location.  

Hidden layer: The hidden layer consisted of 128 recurrently connected neurons. The activation ht of hidden 

layer neurons at time step t was determined by ht = tanh(Wxxt + Whht−1 + b), where xt are the activations 435 
of input neurons at time step t, Wx are the input-to-hidden weights, Wh are the hidden-to-hidden weights and 

b are the biases of hidden neurons. The nonlinearity should be considered as an effective nonlinearity at 

long times; since the time step dt = 0.1s was large compared to a typical membrane time constant (τ ≈ 

0.02s), we did not include an explicit leak term. 

Hidden layer (non-negative network): In the non-negative network (Supplementary Fig. 16), the recurrent 440 
activation was determined by ht = tanh([Wxxt + Whht−1 + b]+), where [u]+ denotes rectification.  

Output layer: The output layer consisted of a population of 70 neurons with activity ot given by ot = 

tanh(Woht + bo), where Wo are the output weights and bo the biases of the output neurons.  

Network training: The training targets of the output layer were place cells with von Mises tuning of width 

σo = π/6 rad to the true location yt , 445 

𝑜̃𝛼,𝑡 = exp (
cos(𝑧𝑎 − 𝑦𝑡) − 1 

2𝜎𝑜
2 ), 

where zα, α = 1…70 are the equally spaced preferred locations of each training target.  

The network was trained by stochastic gradient descent using the Adam algorithm12, to minimize the 

average square error between output ot and training targets 𝑜𝑡̃ , with the average taken over neurons, time 

within each trial, and trials. The gradients were clipped to 100. The training set consisted of 106 450 
independently generated trials. During training, performance was monitored on a validation set of 1000 

independent trials and network parameters with the smallest validation error were selected. All results were 

cross-validated on a separate set of test trials to ensure that the network generalized across new random 

trajectories and/or landmark configurations. 

Network location estimate: Given the activity of the output layer at time t, we define the network location 455 
estimate for that time to equal the preferred location (the preferred location was set over training) of the 

most active output neuron: 

𝑦𝑡̂ = 𝑧𝛼̂𝑡
, 𝛼̂𝑡 = argmaxα𝑜𝛼,𝑡 

Performance comparisons: In Figure 2b, we compared the performance of the network in the external 

map task with a number of alternative algorithms. To ensure a fair comparison, we make sure that each 460 
alternative algorithm has access to exactly the same information as the network: the landmark identities are 

indistinguishable and both velocity and landmark location information are corrupted by the same small 

amount of sensory noise. Error statistics are computed from 5000 trials. 

Path integration + correction: This algorithm implements path integration and landmark correction using 

a single location estimate, similar to what is implemented in hand-designed continuous attractor networks 465 
that implement resets at boundaries or other landmarks [37, 36, 25, 9]. The algorithm starts with an initial 

location estimate at y = 0 (despite the true initial location being random and unknown), and integrates the 

noise-corrupted velocity signal to obtain location. At each landmark encounter the algorithm corrects its 

location estimate to equal the coordinates of the landmark nearest to its current estimate.  
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Basic Particle filter: Particle filters implement approximate sequential Bayesian inference using a 470 
sampling-based representation of the posterior distribution. Here, the posterior distribution over location at 

each time point is represented using a cloud of weighted particles, each of which encodes through its 

weights a belief, or estimated probability, of being at a certain location. In the beginning of the trial, Np = 

1000 particles are sampled from a uniform distribution along the circle and weighted equally. In the 

prediction step, particles are independently propagated using a random walk whose mean is the noise-475 
corrupted velocity update and whose standard deviation is the velocity noise σv. In the absence of a landmark 

encounter, particle weights remain unchanged and the particle cloud diffuses. If a landmark is encountered, 

the importance weights wt,β of particles β = 1…Np are multiplied by  

𝑤𝑡,𝛽 ∝ 𝑤𝑡−1,𝛽 ∙ ∑ exp (
cos(𝑦𝑡,𝛽 − 𝑙𝑖) − 1

2𝜎𝑙
2 )

𝑖
 , 

where yt,β are the current estimates of the particles, and the weights are subsequently normalized such that 480 
∑ 𝑤𝑡,𝛽

2
𝛽 = 1. If the effective number of particles becomes too small, i.e. 𝑁e𝑓𝑓 = 1 ∑ 𝑤𝑡,𝛽

2
𝛽⁄ < 𝑁𝑝/5, the 

particles are resampled using low variance sampling13 and the weights equalized. This resampling step both 

allows for better coverage of probabilities and permits the particle cloud to sharpen again. The particle filter 

estimate at a given time point is given by the weighted circular mean 𝑦̂𝑡 = arg (∑ 𝑤𝑡,𝛽exp (𝑖𝑦𝑡,𝛽)𝛽 ) of the 

particle locations. In addition we also calculate the circular variance as var(𝑦𝑡) = 1 − |∑ 𝑤𝑡,𝛽 exp(𝑖𝑦𝑡,𝛽)𝛽 |.  485 

Enhanced particle filter: This particle filter has identical initialization, prediction step and weight update 

at landmark encounters as the basic particle filter and proceeds in exactly the same way until the first 

landmark encounter. Subsequently, the enhanced particle filter can also use the absence of expected 

landmark encounters to narrow down its location posterior, similar to the network’s ability shown in 

Supplementary Fig. 7. This is implemented in the follow way: If a particle comes within the observation 490 
threshold δ of a possible landmark location but no landmark encounter occurs, the particle is deleted by 

setting its weight to zero; afterwards the particle weights are renormalized. A complication to this 

implementation is that a subsequent landmark encounter only occurs if the current landmark is different 

than the previous one (see section “Landmark encounters”); to prevent the deletion of particles that correctly 

report a landmark at the current position but do not receive a landmark encounter signal because it is the 495 
same landmark as previously encountered, particles are only deleted if they come within the observation 

threshold δ to a possible landmark that is different than the last landmark and do not encounter it. In case 

all particles have been deleted, particles are resampled from a uniform distribution and their weights are 

equalized. As for the basic particle filter, particles are resampled whenever the effective number of particles 

becomes too small 𝑁e𝑓𝑓 = 1 ∑ 𝑤𝑡,𝛽
2

𝛽⁄ < 𝑁𝑝/5. Also the particle filter estimate 𝑦̂𝑡 =500 

arg (∑ 𝑤𝑡,𝛽exp (𝑖𝑦𝑡,𝛽)𝛽 ) and the circular variance var(𝑦𝑡) = 1 − |∑ 𝑤𝑡,𝛽 exp(𝑖𝑦𝑡,𝛽)𝛽 | is calculated in an 

identical way.  

Analysis of location disambiguation in output layer: The timing and accuracy of location disambiguation 

in Supplementary Fig. 7 was calculated in the following way: We first constructed the trajectory of the 

“alternative location hypothesis”, corresponding to the location estimates of a model animal that made the 505 
wrong location disambiguation at the first landmark encounter, but otherwise updated its location by the 

correct velocity. This trajectory is shifted relative to the true trajectory by a constant distance equal to the 

distance between the two landmarks. At each point in time, we then identified the two neurons in the output 

population whose preferred locations were closest to that of the true and alternative trajectory, respectively; 

the activation of these neurons roughly corresponded to the height of the activation bump corresponding to 510 
the true and alternative location hypothesis as seen in Supplementary Fig. 7c&d. The disambiguation time 

was defined as the earliest time after which either the true or alternative location bump height fell below a 

threshold of 0.1 and stayed beyond that threshold until the end of the trial. To determine the accuracy of 

location disambiguation the network estimate at the last landmark interaction was analyzed. If this network 

estimate was closer to the true than to the wrong landmark location the trial was categorized as a correct 515 
trial, otherwise it was categorized as an incorrect trial.  
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State space analysis: We performed principal components analysis (PCA) on the hidden neuron states 

from training trials to obtain the top three principal directions. We then projected network states obtained 

from the distribution of testing trials 2 or 3 (see SI) onto these principal directions. The resulting reduced-

dimension versions of the hidden neuron states from testing trials are shown in Fig.2 and Supplementary 520 
Figs. 8, 12, and 15.  

Correlation dimension: To calculate the correlation dimension for the ANN and RSC activity we first 

performed linear dimensionality reduction (PCA) on hidden layer activations from the training trials, 

retaining 20 principal components. For RSC data, rates were low-pass filtered at 0.5Hz first. In the 20-

dimensional space, we randomly picked 1000 base points (500 for RSC). From each of these base points, 525 
we estimated how the number of neighbors in a ball of radius R scales with R. The minimum ball radius 

was determined such that the logarithm of the number of neighbors averaged over base points was near 1. 

The maximum radius was set to 10 times the minimum radius, and intermediate values for the radius were 

equally spaced on a log-scale. The slope of the linear part of the relationship between the logarithm of 

number of neighbors versus ball radius determined the fractal dimension 530 
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