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Abstract

Large-scale monitoring of seasonal animal movement is integral to science, conservation, and out-

reach. However, gathering representative movement data across entire species ranges is frequently

intractable. Citizen science databases collect millions of animal observations throughout the year,

but it is challenging to infer individual movement behavior solely from observational data. We

present BirdFlow, a probabilistic modeling framework that draws on citizen science data from

the eBird database to model the population flows of migratory birds. We apply the model to 11

species of North American birds, using GPS and satellite tracking data to tune and evaluate model

performance. We show that BirdFlow models can accurately infer individual seasonal movement

behavior directly from eBird relative abundance estimates. Supplementing the model with a sample

of tracking data from wild birds improves performance. Researchers can extract a number of behav-

ioral inferences from model results, including migration routes, timing, connectivity, and forecasts.

The BirdFlow framework has the potential to advance migration ecology research, boost insights

gained from direct tracking studies, and serve a number of applied functions in conservation, disease

surveillance, aviation, and public outreach.

Key words: bird migration, movement ecology, graphical models, big data, species distributions,

forecasting

1 Introduction

The movements of animals span the globe, and movement is integral to behavior, survival, and

reproduction. Monitoring movement is particularly important in the face of climate and landscape

change, forces that shape how animals interact with their environments (Bauer et al., 2019; Dunn

& Møller, 2019). Capturing movement patterns is critical for effective conservation actions, which

may hinge on accurate knowledge of animals’ locations and how geographic and environmental

interactions change over time (Fraser et al., 2018; Katzner & Arlettaz, 2020). For these reasons,

incomplete movement information frequently impedes progress in science and conservation (Fraser

et al., 2018; Katzner & Arlettaz, 2020). Often, these challenges arise from constraints on the number

of animals that can be monitored, captured, or re-captured in the field; the weight and shape of

tracking devices; the number of tracking devices that can be deployed; and the geographic areas
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that can be adequately covered.

Migratory birds exemplify the challenges facing movement researchers, as well as the urgent

need for additional movement information to inform science and conservation. Migratory birds are

important indicators of ecosystem health that connect peoples and places in ways few phenomena

can. Migrants rely on a predictable series of seasonally and regionally varying resources which,

unfortunately, makes them susceptible to rapid global change (Bairlein, 2016; Rosenberg et al.,

2019; Sanderson et al., 2006). In North America alone, an estimated three billion birds have been

lost in the last half-century, representing nearly a third of the continent’s avifauna (Rosenberg et al.,

2019). To conserve migratory birds and study their responses to global change, data and methods are

needed that can capture their movements at population scales. For example, a better understanding

of the migratory connectivity of different populations of bird species is crucial (Schuster et al.,

2019; Webster & Marra, 2005), but detailed connectivity information is lacking for most species.

Unfortunately, wireless tracking devices are too heavy for most bird species, limiting the information

that scientists can gather on their movements (McKinnon & Love, 2018). Other sources of direct

movement data, such as Doppler weather radars, provide no information on species identities or

individual behavior (Bauer et al., 2019; Dokter et al., 2018; Van Doren & Horton, 2018).

Citizen and community science projects provide a source of data on animal occurrence and abun-

dance across the globe. In particular, the eBird database (Sullivan et al., 2014) comprises over one

billion global bird observations and has been used highly successfully for population distribution

modeling (Fink et al., 2020a; Fink et al., 2020b). Although these citizen science projects are collect-

ing increasing volumes of data across a variety of taxa (e.g. iNaturalist, camera trapping projects,

etc.), most of these datasets only provide snapshots of occurrence across a population. Without

information on the locations of individuals, it is difficult to infer movement from these datasets.

Methods that accurately infer movement behavior from large-scale observational data would unlock

troves of citizen science data for use by movement researchers and conservation practitioners.

Previous studies have approached modeling movement from observational data by first exten-

sively cleaning the data to correct for variability from the observation process, and then investigating

specific quantities of interest like centroid movement or estimated movement speed (Supp et al.,

2021). Some recent work has used relative abundance models from eBird Status & Trends to study

migratory connectivity. One approach used deterministic models based on the concept of global

energy efficiency, in which simulated birds are distributed to optimize both resource acquisition and
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energy expenditure (Somveille et al., 2021). Another approach used clustering methods along with

an assumption of parallel migration to investigate connectivity (Vincent et al., 2022). All these ap-

proaches provide valuable but limited lenses to understand migration because they analyze specific

aspects of migration and do not model full trajectories that individual birds may take. By modeling

full migration trajectories, we are be able to analyze more aspects of bird behavior.

Here, we present BirdFlow, a probabilistic modeling framework that uses relative abundance

estimates from eBird to infer movement behavior across the geographic range of a species. Our

method builds on previous work on collective graphical models, which reason about individual be-

havior from aggregate information about a population (Sheldon & Dietterich, 2011; Sheldon et al.,

2013; Sun et al., 2015), and on a related modeling framework from private data analysis in human

populations (McKenna et al., 2019). More details regarding the connection to this prior work can

be found in Appendix A. Inputs to BirdFlow are weekly high-resolution relative abundance esti-

mates produced by the eBird Status & Trends project (Fink et al., 2020a). The output is a trained

model that can be interrogated for biological insight, including estimates of migratory paths, tim-

ing, connectivity, and forecasting. BirdFlow models can be trained on any species, even those not

tracked by eBird, as long as relative abundance models are available. We evaluate the performance

of BirdFlow models on several bird species. We show that while performance can be sensitive

to hyperparameter settings, these hyperparameters can be set with the use of direct tracking data.

We also show that in many cases, hyperparameter settings which work well for one species can be

expected to transfer well to other species. Finally, we perform a case study to show how these prob-

abilistic models can produce a range of high-resolution and temporally explicit biological inferences

across species’ entire ranges.

2 Methods and Materials

Our central goal in developing BirdFlow is to take advantage of the availability of relative abun-

dance estimates produced by the eBird Status & Trends project (Fink et al., 2020a) to model bird

movement. The key challenge is that relative abundance information captures the spatial distribu-

tion of a bird population as a whole but does not identify individual birds and track them through

time. We demonstrate that it is still possible to infer information about the movement of individ-

uals in a population from population-level data. Figure 1 shows the overall process. The key steps
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Figure 1: Data preparation and modeling procedure. First, we pre-process eBird Status & Trends
data to produce weekly population distributions at a spatial resolution appropriate for the model.
We specify a loss function that uses those weekly distributions, along with a proxy for energetic costs,
to score potential models. We select a model structure. We fit the model through an optimization
procedure to minimize the loss function, producing a trained model. We use observations from
tracked birds to evaluate the quality of the model and refine hyperparameters. The final trained
model produces various outputs of scientific interest.
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are: (1) pre-processing relative abundance estimates to produce weekly population distributions,

(2) specifying a loss function that uses weekly distributions along with a proxy for energetic costs

to score potential models, (3) selecting a model structure, (4) optimizing the loss function via a

numerical procedure to select the optimal model parameters, and (5) validating the trained model.

Before expanding on those steps, we describe our approach for modeling animal movement as

a probability distribution over movement tracks. A movement track is a sequence of locations

x1, . . . , xT representing the movement of a single animal over time, recorded at discrete time intervals.

Although the methodology supports any time interval, we will use a weekly time interval for the

entire paper because that is the time interval of the eBird Status & Trends data. The variable xt

records the location of the animal in week t and takes values from a pre-specified finite set X of

possible locations, such as the set of all grid cells in a discretized map. For example, if map grid

cells are represened by integer identifiers, the movement track 7, 14, . . . , 43 indicates the animal was

in grid cell 7 in week 1, grid cell 14 in week 2, and so on, before ending in grid cell 43 in the final

week.

We use a probability distribution over tracks to to model the variability in movement behavior

among the population of a single species. In this setting, a track becomes a sequence of random

variables X1, . . . , XT (we use capital letters for random variables) following some joint probability

distribution, with the interpretation that each individual in the population follows a movement track

sampled independently from this distribution. The probability distribution over tracks defines the

movement model, which must assign a probability to each possible movement track; for example

it could assign probability 0.001 to the track 7, 14, . . . , 43, which would be written mathematically

as Pr
(
X1 = 7, X2 = 14, . . . , XT = 43

)
= 0.001 and means that a randomly chosen bird from the

population has probability 0.001 of following this track. There are a total of |X |T possible tracks, so

the movement model can be conceptualized as a vector p of |X |T numbers, each of which represents

the probability of a different track.

Our representation of a movement model as a distribution over tracks serves as a general-purpose

foundation that we will use to link movement distributions to other population-level properties such

as the eBird weekly distributions. The model is agnostic to the size of the population, due to the

assumption that individuals are independent. One key limitation to this approach is the size of the

probability vector: since it grows exponentially in T , it will quickly become too large to manage

explicitly. For this reason, we must make some assumptions in order to simplify the problem and
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allow us to efficiently represent p. One such assumption, which is commonly used, is to model

animal movement as Markovian, so that an animal’s next location is generated based only on the

current location, without regard to the past sequence of locations (Patterson et al., 2008). A model

with Markovian structure can be encoded by a much smaller vector of probabilities. A Markovian

structure is often treated as an assumption about bird behavior. Instead of choosing a model

structure based on a model of bird behavior, we construct a loss function which that numerically

represents how well a probability distribution models movement, then we determine which model

structure is appropriate for that loss function. The processes of constructing a loss function and

determining which structure is appropriate for that loss function are explored thoroughly later in

this section. We will see that for the loss function we choose, the appropriate structure is the familiar

Markovian model.

The movement model is linked to weekly distributions and other population properties through

marginal distributions. Specifically, the track model p specifies all the random variables X1, . . . , XT

jointly, from which we can derive the distribution of any subset of those random variables (a distribu-

tion of a subset of random variables is called a marginal distribution). So, the weekly distributions we

derive from eBird correspond to marginal distributions of the track model. To denote the marginal

distribution of a weekly variable Xt, we will use the vector µt, which has entries that specify the

probability that a randomly sampled bird from the population is at a particular location xt during

week t. We will index this vector with the following notation µt(xt) = Pr(Xt = xt). As we will

expand on in later sections, an important component of the loss function will be making sure that

the track model p we learn has marginals µt that match the weekly distributions from the eBird

Status & Trends estimates. Note that, in order to simplify the modeling task, we do not consider

the uncertainty present in the relative abundance maps or the GPS tracks. The Status & Trends

project is clear that the relative abundance estimates are not “ground truth” information about

the species distribution, they are estimates with associated uncertainty. Similarly, the GPS tracks

have both measurement uncertainty and sampling uncertainty which we do not account for in our

validation process. Based on the empirical results, it seems like this omission may be minor.

In the remainder of this section, we will expand on each of the key processing steps illustrated

in Figure 1 and outlined above.
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2.1 eBird Status & Trends Data

We use weekly distributions to train our movement model. Estimating these distributions is a

difficult task and a prerequisite to the modeling approach. In the rest of this section, we describe

how we use the eBird relative abundance estimates to approximate these distributions. This can be

seen in the top row of Figure 1. In the discussion, we describe how the method might be applied to

other sources of data and what would be required for compatibility with our method.

The eBird Status & Trends project1 estimates the relative abundance of over 600 species at

a spatial resolution of 3km x 3km and a weekly temporal resolution (Fink et al., 2020a; Fink

et al., 2020b), providing spatial and temporal detail on the seasonally changing population-level

abundance patterns of migratory species. We used Status & Trends version 2020, which uses eBird

data from 2006–2020 and produces estimates that are broadly representative of that time period.

We downloaded relative abundance estimates for 11 bird species that also had available GPS or

satellite tracking data (see Table 1 for list of species) as raster files from eBird Status & Trends

using the ebirdst R package (Auer et al., 2020). Maps of the geographic distributions of these

species can be seen in Appendix Figure 10. Among our 11 tracked species, there is substantial

variation in the strength of migratory connectivity. For example, Wood Thrush shows “weak-

to-moderate” migratory connectivity, and American Woodcocks also show substantial spread in

migratory directions while Broad-winged Hawks show relatively strong migratory connectivity (R. A.

McCabe et al., 2020; Moore et al., 2021b; Stanley et al., 2021). We chose to use the eBird-based

relative abundance estimates instead of the eBird observations directly because the estimates provide

a spatiotemporally complete data set by filling spatiotemporal gaps based on modeled relationships

with remotely sensed environmental data (Fink et al., 2014; Fink et al., 2013; Johnston et al., 2015)

and the estimates remove bias by accounting for systematic patterns of variation inherent in citizen-

science observations (Fink et al., 2020b). We loaded rasters at 27 km resolution and re-projected

to the Mollweide equal-area projection. Then we aggregated the data to obtain a coarser grid size.

This was necessary because of a technological limitation of our compute environment; the GPU that

we used to perform the training was limited to grids with about 4000 or fewer cells for a 52-week

modeling period. We decided to use as many cells as possible for our experiments, which led to an

approximate grid resolution of 100–250 km, depending on the total size of the species’ distribution.

The modeling implication of this choice is that weekly movements smaller than the size of a grid cell

1https://ebird.org/science/status-and-trends
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will not be captured by the model. In the context of migration modeling, this is appropriate because

the goal of the model is to capture long-distance trajectories and not local movements. Table 1

shows the average distances covered by the GPS tracks of the 11 species that we model. For each of

these species, the GPS tracks cover several times the length of one grid cell, so we are confident that

the model can capture migration-level movement. We recommend setting a grid size that captures

the relevant movement scale while fitting into the memory of a GPU whenever possible. We used a

110-m resolution shapefile of global coastlines from Natural Earth (naturalearthdata.com) to mask

open water, restricting the modeled area to terrestrial environments. Importantly, this restriction

allows birds to fly over water, but restricts a bird’s position at the end of a week’s movement to be

over land. While this may be restrictive for some species that take extended trips over water, it is

not a significant modeling limitation for many bird species. For each week, we normalized relative

abundance values by dividing each cell value by the total summed abundance so that the cells sum

to one. This gave us “ground truth” estimates µ̂t of the weekly distributions, where µ̂t(xt) is the

fraction of the population that is located in grid cell xt in week t as estimated by eBird Status &

Trends (Auer et al., 2020).

2.2 Loss Function

The next step is using the weekly distributions derived from eBird Status & Trends to construct a

loss function. A loss function will assign numerical scores to track distributions based on how well

they model movement, with the convention that lower scores are better. Later, we will numerically

optimize the loss function to find the best possible model under this numerical criterion. One

component of the loss will be to ensure that the model p has marginals that match the ground truth

weekly distributions. This will ensure that the weekly positions of the birds matches what is expected

from eBird, but will not alone ensure realistic movements. To ensure that modeled movements are

reasonable, the BirdFlow loss function will also include a component that acts as a proxy for the

energetic costs associated with moving between locations. To make the notation more concise, we

introduce the vectors µ and µ̂, where the vector µ contains all relevant marginals from the movement

model, and the vector µ̂ contains all of the weekly ground truth marginals. For example, this allows

us to write a function of all the weekly marginals as f(µ) instead of f(µ1, ...,µT ), and makes the

equations more compact without changing their meaning.

We will refer to the loss component that measures the correctness of the weekly distributions as
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the “location loss”. This loss component is denoted Lloc(µ, µ̂) and computes the mismatch between

the model’s weekly marginals µ and the ground truth weekly distributions µ̂ as the mean of the

squared error over all of the marginal probabilities:

Lloc(µ, µ̂) =
1

T |X |

T∑
t=1

∑
xt∈X

(
µt(xt)− µ̂t(xt)

)2
. (1)

We will refer to the loss component that acts as a proxy for the energetic cost of movement as the

“movement loss”. This loss function is denoted Lmov(µ) and accumulates the total cost of migration

by summing the probability of movement between a pair of grid cells in a given week multiplied by

a user-specified cost for that movement, over all pairs of grid cells and all weeks. The probability

of moving between a particular pair of grid cells in a particular week is an example of a pairwise

marginal probability: in the same way that weekly marginals of a movement model encode all

information needed to measure the location loss, the pairwise marginals encode all the information

needed to measure movement cost. Formally, for any week t, the probability distribution over the

pair of locations Xt and Xt+1 is a pairwise marginal distribution, and specifies the probability of

moving between any pair of locations in that week. We will denote the pairwise marginal distribution

by the vector µt,t+1, which has entries µt,t+1(xt, xt+1) = Pr(Xt = xt, Xt+1 = xt+1) indexed by a

pair of locations xt and xt+1 that specify the probability that an individual is in location xt at week

t and moves to location xt+1 in the next week. With this notation, the equation for this loss function

is:

Lmov(µ) =
T−1∑
t=1

∑
xt∈X

∑
xt+1∈X

µt,t+1(xt, xt+1)c(xt, xt+1), (2)

where c(xt, xt+1) is a user-defined energy cost for transitioning from location xt to location xt+1.

Note that Lmov(µ) is equivalent to the average over the population of the total movement cost

incurred by an individual bird during the year. One choice of energy cost is the distance between

locations xt and xt+1, in which case Lmov(µ) gives the average total distance moved by an individual.

Minimizing this loss function encourages models where birds move the shortest possible distance on

average in order to arrive at their migratory destinations. However, we will see later that performance

is improved by using a modification with energy cost equal to c(xt, xt+1) =
(
d(xt, xt+1)

)ε
, a fractional

power of the distance d(xt, xt+1) between cells xt and xt+1, with exponent ε < 1.0. This energy cost

penalizes small distances more than large distances and therefore promotes a model where birds are
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likely to make fewer large movements instead of many small movements, a behavior that is observed

in many bird species (Newton, 2008).

These two loss components form the core of the BirdFlow loss function that is represented

in Figure 1. This leads naturally to the optimization problem of searching over all possible track

distributions p to find one with the lowest score according to this loss function. However, since we

wish to optimize over distributions p of full tracks but have defined the loss function in terms of

the marginals of the track distribution, one more piece of notation is required: we write µ(p) to

represent the set of marginals µ derived from the full track distribution p; the method for computing

the marginals from the track distribution will be described below after specializing to a particular

model structure. This leaves us with the following optimization problem:

min
p
Lloc(µ(p), µ̂) + αLmov(µ(p)) (3)

The scalar α is a non-negative hyperparameter to control the relative weight of the two loss compo-

nents.

2.2.1 Entropy Regularization

In preliminary experiments, we found that solving the optimization problem as presented so far leads

to a model where birds follow a geographically “narrow” set of optimal paths to exactly minimize

movement costs. A real population is expected to have more variability because it will not exactly

minimize energy and fitness costs. To address this, we designed an entropy-based regularization term

J(µ), which is added to the loss function to encourage models where birds follow more geographically

diverse paths. The details of how this term is computed are given in Appendix B; it is equal to

the Shannon entropy of the track distribution (Shannon, 1948), which is a classical measure of

the dispersion or uncertainty intrinsic to the distribution. This leads to the following modified

optimization problem:

min
p
Lloc

(
µ(p), µ̂

)
+ αLmov

(
µ(p)

)
+ βJ

(
µ(p)

)
, (4)

where β is another non-negative hyperparameter. Our experiments will show that entropy regular-

ization is important for obtaining biologically realistic movement models, but also that the learned
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models are very sensitive to the choice of the hyperparameter β, with values that are too large

leading to track distributions that are so spread out as to be unhelpful. We discuss hyperparameter

selection more in the discussion section.

2.3 Model Structure

We have now defined a loss function based on the weekly ground truth distributions obtained in the

first processing step together with the energy cost and entropy regularization terms defined in the

preceding section. Before proceeding with optimization, we must specify the model structure, which

describes the family of track distributions the optimization procedure will search to find the best

model.

In Equation 4, we wrote the optimization problem as searching over all possible track distribu-

tions p. We will now restrict to searching only over the family of Markov chains, and justify below

why this is without loss of generality. A Markov chain is defined by an initial distribution and a

sequence of conditional distributions. The initial distribution describes how the birds are distributed

in the first week, that is, it specifies Pr(X1 = x1) for each location x1 ∈ X . Then, for each week

t ≥ 1, the conditional distribution Pr(Xt+1 = xt+1 |Xt = xt) specifies the probability that a bird in

location xt during week t will move to location xt+1 during week t + 1, for every pair of locations

xt and xt+1. These conditional distributions, which are often called transition probabilities, can be

used along with the initial distribution to derive all the weekly and pairwise marginals of the model

needed for the loss function (Brémaud, 2013; Wainwright & Jordan, 2008).2

A key property of a Markov chain structure is that the position of a bird in one week depends

only on its position during the prior week, and not any of the earlier weeks. While this may seem

restrictive, we will argue that restricting the optimization procedure to search only over Markov

chains does not reduce the quality of the estimated model, and is the most principled choice for

our problem given the available information. Specifically, note that the loss function only depends

on the (weekly and pairwise) marginals µ, and not the whole distribution p. Thus, any two track

distributions with the same marginals will achieve the same loss, even if they are otherwise differ-

ent, which makes the optimization problem underdetermined. Conceptually, the optimization can

therefore be split into two stages: first, find the optimal marginals µ, then use some criterion to

2It is common in the literature to restrict to time-homogeneous Markov chains, where the transition probabilities
are the same in every time step; we do not make this restriction.
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select among track distributions p with those marginals. A natural strategy is to select the distri-

bution that makes the fewest additional assumptions, the logic being that once we have encoded the

relevant information in the loss function, any additional assumptions are unjustified. The principle

of maximum entropy is a classical embodiment of this strategy; it dictates selecting the distribution

with maximum entropy among a set of otherwise equivalent alternatives, which is characterized as

being “maximally noncommittal with regard to missing information” (Jaynes, 1957). In our prob-

lem, the maximum-entropy distribution with any given set of marginals µ will always be a Markov

chain. This follows from a well known result in the theory of probabilistic graphical models, a class

of probability distributions studied in computer science and statistics (Koller & Friedman, 2009),

which states that the maximum-entropy distribution with a certain set of marginals is a probabilistic

graphical model with a dependence graph in which two variables are connected if and only if they

co-occur in one of the specified marginals (Wainwright & Jordan, 2008). In our setup, this means

that the maximum entropy distribution will be a Markov chain, since the loss function includes

only weekly and pairwise marginals. If we were to use a loss function that depended on different

marginals, it would lead to a different model structure for the maximum entropy distribution.

We have now justified restricting our optimization procedure to search only over Markov chains.

Let us assume that an arbitrary Markov chain can be represented by a vector θ of numerical pa-

rameters, and, given the parameters θ describing a particular Markov chain, we can compute the

marginals of the corresponding track distribution by a function denoted µ(θ). Then, the final form

of the optimization problem, now restricted to Markov chains, can be written as:

min
θ
Lloc

(
µ(θ), µ̂

)
+ αLmov

(
µ(θ)

)
+ βJ

(
µ(θ)

)
. (5)

The details of the parameterization of Markov chains, the method for computing its marginals, and

the process for solving this optimization problem are described in the next section.

2.4 Optimization

We now describe the remaining optimization details, including the Markov chain parameterization

and the optimization algorithm. As shown in Figure 1, this process will result in a trained model,

which we will proceed to validate.

Let n = |X | be the number of grid cells. To parameterize a Markov chain, we must specify n
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initial probabilities as well as n2 transition probabilities for each of T − 1 time steps. To form valid

probability distributions, the numbers in each initial and conditional distribution must satisfy the

constraints of being non-negative and summing to one. To avoid using an optimization procedure

that explicitly enforces these constraints, we re-parameterize each probability distribution using the

softmax function σ, which transforms an arbitrary vector u of n real numbers to produce another

vector of n numbers that are non-negative and sum to one. Specifically, the ith entry of the output

of the softmax function is:

σi(u) =
exp(ui)∑n
j=1 exp(uj)

. (6)

For a matrix U , we will also write σ(U) to indicate the mapping that applies the softmax function

separately to each row of U to produce a new matrix with rows that are non-negative and sum to

one.

We may now parameterize a Markov chain by the parameter vector θ = (θ(1),θ(1,2),θ(2,3), . . . ,θ(T−1,T )),

where θ(1) ∈ Rn is an unconstrained vector of real numbers that determines the initial distribution

of X1, and, for each t, the matrix θ(t,t+1) ∈ Rn×n is an unconstrained matrix of real numbers

that determines the conditional distribution of Xt+1 given Xt. The total number of parameters is

N = n + n2(T − 1). We then use the softmax function to transform from unconstrained param-

eters to probability distributions: the initial parameters θ(1) are mapped to the initial marginal

distribution as µ1 = σ(θ(1)), and the transition parameters θ(t,t+1) for all t are mapped to the

conditional distributions as Tt,t+1(i, j) = P (Xt+1 = j |Xt = i) =
(
σ(θ(t,t+1))

)
i,j

. Then, to compute

and optimize the loss function, we must also compute the marginals of an arbitrary Markov chain

in this parameterization; the procedure µ(θ) to compute the marginals from these parameters uses

standard Markov chain calculations, and is given in Algorithm 1 in Appendix C.

Because the parameters θ are unconstrained and the mapping µ(θ) from parameters to marginals

is differentiable, we can solve the problem in Equation (5) by gradient descent over θ ∈ RN . This

means that we repeatedly take steps in the direction of the negative gradient of the loss function

until we converge to an optimal solution. The model is implemented in Python using the JAX

library (Bradbury et al., 2018), which allows us to automatically compute those gradients. We

use a gradient descent implementation from the library Optax (Babuschkin et al., 2020) because

it is a reliable implementation of a gradient descent algorithm in JAX. Our code, along with a

interactive notebook which demonstrates how to use the code are hosted on this GitHub repository
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https://github.com/Miguel-Fuentes/birdflow. There are other methods to solve Problem (4), for

example the proximal algorithm of (McKenna et al., 2019); we selected the gradient descent approach

because it is simple and practical. We emphasize that after solving the problem in Equation (5) to

obtain the optimal parameters θ, the resulting Markov chain is a global minimizer of the original

problem in Equation (4), and has maximum entropy among all minimizers of that problem.

2.5 Validation

The quality of a BirdFlow model is sensitive to the choice of hyperparameters, so it is important

to validate the model. The most straightforward method of validation is the use of tracking data.

We obtained tracking data for the 11 different bird species we fit BirdFlow on from the MoveBank

repository (Kays et al., 2022) and other data sources (Table 1). All tracks were obtained with

high-precision GPS or satellite tracking devices to ensure minimal uncertainty in location estimates.

For Argos data, we retained locations with a location class of 1, 2, or 3, indicating estimated error

of <1500 m. For each tracking dataset, we subsampled observations to weekly resolution to match

the temporal resolution of eBird relative abundance estimates. To do this, we picked the tracking

observation closest in time to the date of relative abundance distribution, as long as the observation

was within 4 days of the distribution date. We then matched all tracking observations to the

corresponding cell of the distribution raster. When tracking data spanned multiple calendar years,

we considered the data from each calendar year as a separate track.

2.5.1 Average Log Likelihood

Once the track data were processed, the primary metric we used to evaluate the model is average

log-likelihood (ALL). Given the parameters θ of a Markov chain in the parameterization described

above, let pθ be the full track distribution described by that Markov chain. Then, for an observed

track x = (x1, . . . , xT ) and parameters θ, the log-likelihood is log pθ(x1, ..., xT ) = log pθ(X1 =

x1) +
∑T−1
t=1 log pθ(Xt+1 = xt+1 |Xt = xt). Each of the probabilities in the right-hand side of

the preceding equation can be computed easily from the Markov chain parameters by calculations

similar to those in Algorithm 1. In practice, many of the tracks span shorter time periods than an

entire year and some species have many more tracks than other species. Therefore, to more easily

compare results across different species with different numbers of observations, we used the average

log-likelihood of bird movements over the total number of observed transitions for that species.
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Table 1: Summary of tracking data used. A “track” is defined as the path of an individual during
a calendar year. Individuals monitored for multiple years will therefore have multiple tracks.

Species # Indiv. # Tracks Mean wk/track Mean km/track Base ALL Ref.

American Woodcock 67 107 16.8 1334 -6.52 a

Black-bellied Plover 15 38 28.3 5766 -5.53 b

Broad-winged Hawk 20 35 18.1 5772 -5.93 c

Blue-winged Teal 42 51 21.8 2626 -5.43 d

Long-billed Curlew 91 240 34.0 2163 -4.86 e

Osprey 230 415 21.6 3501 -5.74 f

Swainson’s Hawk 43 76 17.0 8443 -4.96 g

Tundra Swan 50 176 34.2 5325 -5.42 h

Turkey Vulture 19 76 35.6 4502 -6.95 i

Whimbrel 32 62 28.3 10884 -5.66 j

Wood Thrush 20 37 12.0 1859 -5.93 k

aMoore et al., 2021a, 2021b.
bHarrison, 2022.
cR. McCabe and Goodrich, 2022; R. A. McCabe et al., 2020.
dRamey et al., 2019.
eCarlisle, 2022.
fBierregaard, 2019; Jensen, 2018; Martell and Douglas, 2019; Martell et al., 2001.
gKochert, 1998; Kochert et al., 2011.
hEly et al., 2020.
iBildstein et al., 2014; Dodge et al., 2014.
jTibbitts et al., 2018.
kStanley et al., 2021.

Specifically, each track is split into a collection of movements (t, x, x′) where t is the starting week,

x is the bird’s observed location in week t, and x′ is the bird’s location in week t+ 1, for each week

t for which consecutive observations were available. These movements are combined to form the

validation dataset D. Then, the average log likelihood is given by

ALL(D,θ) =
1

|D|
∑

(t,x,x′)∈D

log pθ(Xt+1 = x′ |Xt = x). (7)

This captures how well the model predicts the movement of the the observed birds and it is compa-

rable for tracks of different lengths and species with different numbers of tracks. Because of this, the

average log likelihood is a crucial indicator of model quality. To further contextualize this metric, we

constructed a baseline from the eBird relative abundance estimates. The baseline approach ignores

the initial position x and considers only the log-probability of the destination position x′ according
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to the eBird weekly distribution µ̂t+1

ALLBaseline(D) =
1

|D|
∑

(t,x,x′)∈D

log µ̂t+1(x′). (8)

This corresponds to a model where each bird selects a location at random from the weekly population

distribution in each week, without regard to its location in the previous week. This “random

redistribution” baseline is not biologically realistic, but it captures the information included in the

ground truth marginals alone, and can be used to demonstrate how much improvement can be gained

by incorporating the information about pairwise marginals through the movement loss function. The

values of this baseline for the 11 species we evaluate can be seen in Table 1. Note that an ALL

improvement of three nats (the unit for log-likelihood) over this baseline means that the average

weekly movement is about 20 times (e3 ≈ 20) more likely under the model than under the baseline

and the average 52-week track is about 1040 times more likely under the model than under the

baseline.

2.5.2 Model Calibration

An important capability of BirdFlow is the ability to make probabilistic forecasts. For example,

forecasting the distribution of a bird’s location at week t+ 4 given that it was in a certain location

in week t. When making forecasts, it is important to understand the model’s calibration, or the

extent to which the variability of the forecasted distributions matches the observed variability of

true outcomes (i.e., a tracked bird’s locations in the future). To measure calibration, we used the

probability integral transform (PIT) (Gneiting et al., 2007). This transformation uses the cumulative

distribution function (CDF) F of the forecasted distribution for an eventually observed outcome

variable z, where z is a scalar. If z is actually distributed according to the forecasted distribution,

then F (z) will be a uniform random variable; otherwise, the distribution of F (z) can reveal specific

types of miscalibration, such as forecasts being over- or under-dispersed. The distribution of F (z)

is assessed by constructing histograms over many pairs of forecasts and observed values.

We were particularly interested in geographic calibration, that is, the calibration of forecasts of

a bird’s location in future weeks given its current location. Since PIT diagnostics apply to scalar

quantities, we assessed calibration of forecasts for north-south positions and east-west positions

separately. For example, for any grid cell x ∈ X , let u(x) be its east-west position, and let Ut = u(Xt)
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be the random variable for the east-west position of a bird at time t. Conditioned on the bird’s

location x at time t, the CDF of the forecast distribution for Ut+1 is

Ft(u |x) = Pr
θ

(Ut+1 ≤ u |Xt = x). (9)

The PIT transform computes the values Ft(ut+1 |xt) for all observed triples of the form (t, xt, ut+1)

where t is a time index, xt is the bird’s grid cell at time t, and ut+1 is the east-west position at time

t+ 1.

However, since our map is discrete, we must modify this procedure to correctly account for

the probability assigned to discrete outcomes, specifically, the nonzero probability that Ut = u in

Equation (9). For discrete variables it is common practice to use the randomized PIT transform

Ft(u |x) = Pr
θ

(Ut+1 < u |Xt = x) + ν Pr
θ

(Ut+1 = u |Xt = x), (10)

where ν is a random variable chosen uniformly in [0, 1]. This randomized PIT is evaluated in the

same way as the standard PIT.

Since each observed value Ft(ut+1 |xt) should be uniformly distributed, we can make a histogram

of these values and check for uniformity. We followed the same procedure to evaluate north-south

calibration, the only difference is that we use the north-south position Vt = v(Xt) of the grid cell

instead of the east-west position Ut = u(Xt).

2.6 Experiments

We conducted experiments to assess BirdFlow’s predictive performance, comparisons to baseline

models, and sensitivity to hyperparameters.

2.6.1 Hyperparameter Grid Search

We addressed several questions by performing a grid search of model hyperparameters and evaluating

the resulting models. The three hyperparameters we are interested in are α, β and ε (the weights on

the movement loss Lmov, the entropy regularization term J , and the distance exponent used within

the energy cost function c, respectively). Initial experiments showed that the model is less sensitive

to the choice of α than other hyperparameters and that a value of α � 1 consistently performed
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well. So, to reduce the search space, we fixed α = 0.005 and trained models with different values of

β and ε. Conceptually, this places a very high relative weight on the location loss function, which

means that BirdFlow weekly distributions will closely match the eBird estimates; then, subject

to that “constraint”, the model will minimize the movement costs and entropy costs. We trained

the model using every combination of values for β ∈ {0.0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006} and

ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We believe this range captures most reasonable values

for these hyperparameters because none of the models perform best with the extremal values and the

performance appears to vary smoothly as the hyperparameters change. We compared the average

log-likelihoods of the resulting models to determine which settings of the hyperparameters led to

models that best explain the observed tracks and to understand how hyperparameters affect model

quality.

The first question we investigated with the grid search results is the effect of the entropy regu-

larization term and the distance exponent on model quality. We performed an ablation study that

compares four model configurations for each species. We compared models with no entropy regu-

larization to models with entropy regularization and models with distance power equal to one to

models with distance power less than one. This lets us evaluate how impactful those components

are for model quality in isolation and also together.

The second question we investigated with the grid search results was the sensitivity of the model

to the choice of hyperparameters. We examined model performance across two methods of hyper-

parameter selection. First, we tuned each species model by determining hyperparameter values that

gave the best average log likelihood for that species; we refer to these as “tuned” model settings.

Second, we examined how well each species model performed using hyperparameters chosen based

on performance on all other species, excluding the focal species. These “leave one out” (LOO)

parameters for a species are the hyperparameter values from the grid search results that give the

best average log likelihood across all other bird species. We then compared performance using both

methods of hyperparameter selection. In particular, wanted to know whether the LOO settings

performed well, or if species-specific tuning was required for acceptable performance.

2.6.2 Entropy Calibration

The entropy regularization term is key to the calibration of model predictions. If we increase its

weight, the joint marginals will become more diffuse and predicted tracks will have greater directional
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dispersion. In reality, a given species will show an intermediate level of dispersion. Thus, we can

predict that too low settings for the entropy regularization weight parameter will lead to under-

dispersion and too high settings will lead to over-dispersion. In preliminary experiments we observed

that the trend of going from under-dispersion to over-dispersion held for all species, but the value

of the inflection point varied by species. As an example, we computed the PIT score for each of

the transitions for the American Woodcock (Scolopax minor) under several versions of the model

and plotted the score in a histogram. A convex-shaped histogram indicates under-dispersion, and

a concave-shaped histogram indicates over-dispersion. A uniform (flat) histogram indicates optimal

dispersion and a well-calibrated model.

2.6.3 k-Week Forecasting

We also investigated model performance for the task of k-week ahead forecasting for k > 1 to

understand how prediction accuracy decreases with time horizon. The procedure for computing the

average log-likelihood was slightly modified to compute the average log-likelihood for forecasts k

weeks into the future. Instead of splitting the tracks into bird movements in consecutive weeks,

tracks were split into positions of a single bird k weeks apart, that is, we created a data set Dk with

triples of the form (t, x, x′) where x was the bird’s position at time t and x′ was its position at time

t + k. Then, the model and baseline were evaluated on how well they predicted these positions.

These modified average log likelihoods were computed as follows

ALL(Dk,θ) =
1

|Dk|
∑

(t,x,x′)∈Dk

log pθ(Xt+k = x′, |Xt = x), (11)

ALLk,Baseline(Dk) =
1

|Dk|
∑

(t,x,x′)∈Dk

log µ̂t+k(x′). (12)

3 Results

We now present results of the model validation experiments. Figure 2 shows the results of the abla-

tion study comparing the performance of different model configurations on tracked wild birds. All

BirdFlow model types performed better than a baseline model that incorporated only species rel-

ative abundance. Models with non-zero entropy regularization and tuned distance penalty exponent

(ε) performed best overall, followed by models with entropy regularization and ε = 1.

20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


2 0 2 4
ALL Improvement over Baseline

Without entropy, = 1

Without entropy,  tuned

With entropy, = 1

With entropy,  tuned

Figure 2: Model type ablation study. For each
model version, the distribution of performance
(average-log likelihood) improvement over the
baseline model for 11 species is displayed as
a box and whisker plot. The vertical dashed
line marks no improvement over the baseline.
Whisker length is at most 1.5 times the interquar-
tile range, with outliers shown as diamonds.

Figure 3: Parameter sensitivity. Bars show im-
provement over the baseline model for Bird-
Flow models with “leave one out” parame-
ters (selected using validation data from other
species) vs “tuned” parameters (selected using
validation data from the target species). Perfor-
mance is measured as average log-likelihood of
one-week transitions.

Figure 3 assesses sensitivity to hyperparameters. For most species, the “leave one out” (LOO)

parameters, which were selected using only the validation tracks from other species, performed

nearly as well as models tuned using tracking data from that species. The difference in average

log-likelihood between the LOO parameters and the tuned parameters is small compared to the

difference between either setting and the baseline. The most notable exception is Swainson’s Hawk,

where the LOO parameters perform much worse than the tuned parameters.

Figure 4 shows the effect of entropy regularization on model calibration, which was substantial.

PIT histograms for five versions of the American Woodcock model are shown, the distance exponent

(ε) fixed to 0.3 because that is the optimal setting for this species (in terms of log likelihood) and

the entropy regularization weights varied since that is the parameter of interest for this experiment.

The PIT histograms are closest to uniform for entropy weights of 0.0005 and 0.001, which indicates

the best model calibration. Entropy weights that are higher or lower strongly negatively impact

calibration. With zero entropy, too many observations occur at the extremes of the forecast distri-

bution, which indicates underdispersed forecasts. With high entropy, too few observations occur at

the extremes of the forecast distribution, which indicates overdispersed forecasts.

Figures 5a and 5b show model performance relative to forecast horizon (in weeks). We identi-
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Figure 4: Effect of entropy regularization on model calibration. Randomized PIT histograms are
shown for 1-week ahead forecasts of American Woodcock east-west positions for models trained with
different entropy weights. Histograms that are nearly uniform indicate well calibrated models.

fied the best-performing model from the hyperparameter grid search (using average log-likelihood)

for every species and evaluated the improvement over the baseline for k-week-ahead average log-

likelihood for all forecast horizons k from 1 to 17. Figure 5a displays those results for each species.

For every species, the improvement over the baseline decreases with k. However, there is substantial

variation: some species continue to perform substantially better than the baseline up to a forecast

horizon of 17 weeks, while others approach the performance of the baseline.

We also compared the tuned woodcock parameters to the LOO woodcock parameters and the

baseline in an absolute sense (Figure 5b). The gap between the tuned parameters and the LOO

parameters is small at first, but increases with forecast horizon, which indicates that the tuned

model performs better relative to the LOO model at larger horizons. Both models performed better

than baseline model at all prediction horizons tested.

4 Case Study

The experiments investigated various aspects of the model’s performance across a wide range of

species. For that investigation, we performed a relatively coarse hyperparameter search. However,

we want to demonstrate that if particular care is taken to find hyperparameter settings that work

well for a species, the resulting model can output many useful results. To show this, we generated

and evaluated model outputs for American Woodcock in addition to what we did for the other
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(a) Performance by forecast horizon. The plot shows the im-
provement in log-likelihood over the baseline model vs. fore-
cast horizon for each species. American Woodcock is bolded
for easier comparison with 5b. Hyperparameters are selected
using 1-week-ahead average log-likelihood.
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(b) Performance by forecast horizon for
American Woodcock. The plot shows the
log-likelihood at various prediction horizons
of the best performing American Woodcock
model, the LOO AmericanWoodcock model,
and the baseline model.

Figure 5: Forecasting performance plots

species. We chose this species because we had high-quality validation data from GPS-tracked birds

(Table 1). In order to select the hyperparameters, we performed a finer grid search around the best

parameters from the original coarser grid search. We selected the model from the finer grid search

with the best average log likelihood. We then demonstrate two powerful capabilities of the trained

woodcock flow model: sampling and forecasting.

Sampling refers to the generation of synthetic trajectories from the distribution learned from

the model. For this demonstration, we simulated 5000 migration trajectories, representing plausible

routes of individual woodcocks through the year. The spring portion of a subset of these tracks can

be seen in Figure 6a; the color of the line indicates the corresponding time of the year. From these

simulated trajectories, we calculated three measures of the spring migration: (1) the distribution

of migration departure timing (Figure 6b), (2) the distribution of migration arrival timing (Figure

6c), and (3) the migratory connectivity of breeding populations (Figure 6d). We calculated the

distributions of spring migration departure and arrival dates using the alongTrackDistance function

in the geosphere R package (Hijmans, 2017), assessing when each simulated bird moved at least

100 km from its starting location and arrived within 100 km of its ending location. Simulated

woodcocks left their wintering grounds between mid-January and early March, arriving largely

between early March and early May. To infer migratory connectivity, we used simulated trajectories

from the fall migration. We selected trajectories that began in the northwest and northeast sectors

of the woodcock breeding range to compare the modeled connectivity of populations originating
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from different parts of the breeding range. Our model inferred meaningful differences in migratory

connectivity between woodcocks breeding in the northeast US and in the Midwest (Figure 6d). The

model inferred that woodcocks breeding in the northeast primarily spend the winter in the mid-

Atlantic and southeast. In contrast, the model inferred that woodcocks breeding in the Midwest

winter primarily along the western Gulf Coast.

In addition to sampling tracks from the general population, we can also sample trajectories

that start at a particular time and location. To demonstrate this capability, we generated visual

representations of modeled tracks alongside actual GPS-tracked individuals to compare modeled

trajectories to observed migration routes. For each observed track, we generated 2500 simulated

trajectories originating at the same location as the GPS-tracked bird and continuing for the same

duration. Then, we plotted observed and simulated routes together in Figures 6e,f,g. The week

numbers in the bottom right of these plots give the starting week and ending week of the track

which we are simulating. The observed route is given by a thick line while the simulated trajectories

are given by thin lines. The observed routes were generally well represented among simulated

trajectories. Additional examples of this type of plot are given in Appendix Figure 8.

Forecasting refers to the prediction of a bird’s location in the future based on it’s position at a

given time. Our previous experiments analyzed the quality of BirdFlow’s forecasts numerically;

for this demonstration we produced visual representations of short-term forecasts. For observed

GPS-tracked birds, we took their position at a given start week, then predicted their position at 3,

6, or 12 weeks into the future. Then, we compared the predicted movement forecast to observed

movements. This can be seen in Figures 6h,i,j. The numbers in the lower left indicate the start week

and end week. The heatmap color indicates the probability the model gives to a particular location.

The arrow is directed from the starting position of the GPS-tracked bird to the ending position. The

short-term conditional forecast distributions successfully captured observed movements. Additional

examples of this type of plot are given in Appendix Figure 9.

5 Discussion

Our probabilistic BirdFlow models accurately inferred individual movement behavior using weekly

relative abundance estimates from eBird data. For all species studied, our movement model predicted

the movements of GPS- and satellite-tracked birds substantially better than a baseline model that
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Figure 6: Demonstration of model inferences. Shown are derived model outputs from American
Woodcock Scolopax minor. (a) Simulated spring migration trajectories (n=1000). (b) Timing of
spring migration departure and (c) arrival derived from simulated trajectories. (d) Migratory con-
nectivity: square cells show breeding origins of individuals in the northwest (orange) and northeast
(blue) parts of the breeding range. Filled density contours show the predicted wintering distribu-
tions of individuals breeding in those respective regions. (e-g) Observed movements of GPS-tracked
woodcocks (single thick path) and simulated trajectories (thin paths) for 2500 simulated birds origi-
nating at the same starting location as observed birds. (h-j) Conditional forecast distributions: each
heatmap shows the predicted movement distribution of a GPS-tracked individual originating within
the circle at the base of the arrow. Darker colors indicate a higher predicted likelihood of movement
to that area. The point of the arrow shows the observed ending location. Shown are examples of
3-week (h), 6-week (i), and 12-week (j) conditional forecasts.
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included only the weekly species distribution maps. For nearly all species, parameters transferred

from other species (LOO parameters) performed well, suggesting that BirdFlow could be used to

accurately infer movements without any tracking data inputs in many species. Models fine-tuned

with tracking data were most accurate, but the difference between LOO models and tuned models

was small compared to the improvements over the baseline model. Overall, the results show that by

combining relative abundance estimates derived from eBird data with models of movement costs, it

is possible to infer individual movement behavior in a way that is substantially more accurate than

baseline models.

Applications We show that it is possible to accurately model animal movement from aggregate

data. We demonstrate how a trained BirdFlow model can be sampled to investigate migratory

routes, timing, and connectivity, and that the model can produce forecasts. In addition to the

ecological questions investigated in our case study, samples from BirdFlow models can be used to

study other phenomena such as stopover behavior and responses to global change. The experiments

show the capability of the BirdFlow model to predict the likely position of a bird several weeks into

the future, given a starting time and location. The further into the future the prediction is made, the

more uncertainty about the bird’s position accumulates. It is therefore encouraging that the k-week

forecasting experiment showed that the model performs consistently better than the baseline even

many weeks into the future. The ability to accurately predict the positions of birds could support

efforts to monitor the spread of diseases such as avian influenza. Movement researchers with access

to even a small amount of tracking data could use our model to infer individual behavior across the

species’ entire range—in essence, combining insights from eBird with direct tracks to achieve a more

complete understanding of animal movements than either approach can alone. For now, BirdFlow

has only been used with eBird data, but the Status & Trends project (Fink et al., 2020a) currently

releases abundance estimates for over 1,000 species so movement ecologists can use those data to ask

a wide range of questions using a broad range of species with varying movement ecology. Finally,

BirdFlow can raise public awareness about biodiversity and ecosystem health by providing a tool

for outreach to engage scientists, bird-watchers, policy-makers, and the general public.

Model Tuning in Practice Our sensitivity experiment shows that the difference between the

LOO parameters and the tuned parameters was usually small compared to the difference between
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either setting of the parameters and the baseline. However, the results from Swainson’s Hawk

indicate that hyperparameter settings will not translate equally well for all species. Further work

is needed to fully determine under what conditions hyperparameter settings will transfer well and

how to select hyperparameters when no tracks are available. For this reason, we cannot yet provide

specific values of the parameters as “default values” which we would expect to perform well for any

species. Instead, we advocate for the use of a procedure similar to ours where tracks are used to

select models by evaluating key metrics (such as ALL and calibration). Including calibration in the

selection process is important because choosing models via their average log-likelihood sometimes

favors an entropy weight that produces routes that are more variable than expected. We anticipate

that as this method is adopted and tested, the scientific community will develop a set of best practices

for validating a BirdFlow model in the presence of some tracks and eventually when no tracks are

available. We also believe that the development of these validation practices is a worthwhile endeavor

considering the potential applications of these models. These best practices may develop from a

better understanding of how the hyperparameters relate to factors such as migratory distance, flight

behavior, geographic differences, and others. Of the species evaluated, Swainson’s Hawk migrates

the longest distances, with many individual traveling from northern North America to southern

South America. We hypothesize that hyperparameters that work well for other ultra-long-distance

migrants may transfer better to Swainson’s Hawk.

Designing Loss Functions The terms in the loss function that do not depend on data should

reflect the biological properties of the target population. We expect loss terms that encode these

biological properties more accurately should improve performance. In our case, the movement loss

reflects the energy cost of moving and the different values of the distance exponent encodes how much

a species will tend to make few large movements compared to many small movements. The entropy

regularization term encodes that a real population is not expected to exactly minimize energy and

fitness costs, instead showing substantial individual variation in behavior. The ablation study we

performed shows that these terms did improve performance, which suggests they are encoding helpful

assumptions about bird movement. The addition of an entropy regularization term was crucial for

proper model calibration, and using a distance exponent less than one in the movement cost term

was important for producing realistic movement patterns. When these components were removed

(labeled “Without entropy, ε = 1” in Figure 2), several species under-performed the baseline. The
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Low entropy High entropy

Figure 7: The effect of entropy levels on American Woodcock model samples. The models were
trained with the distance exponent (ε) fixed to 0.3 and with the entropy weights (0.00, 0.01, 0.02,
0.04). The plot displays 2500 tracks sampled from each model.

entropy regularization term seems to be particularly important, because its inclusion alone ensures

that the model outperforms the baseline for every single species.

However, this does not mean that these loss components are perfect. Clearly, the energetic

cost of a movement depends on more than just distance: it also depends on atmospheric effects

and topography. We would expect that constructing an energy cost function that matches the

true energetic movement cost more closely would improve performance. As it currently stands,

there can be a difficult tradeoff where models trained with low entropy learn distributions that

are far too narrow but models trained with a higher entropy learn distributions that send birds

in unrealistic directions (see Figure 7). This suggests that there may be a better way to encode

biological knowledge about variability in migration paths: intuitively, a high entropy distribution

will be very uniform and lead to variability in all directions, but there may be some other loss

function that could encourage variability only in desirable directions. Designing loss terms that

better encode our biological knowledge is an interesting direction for future work.

Incorporating other Marginals In Section 2.3 we explain that our use of a Markov chain

to model the track distribution is based on the maximum entropy principle applied to our loss

function. While we believe this is a principled choice and we show that it performs well in practice,

Markovian models have several known limitations. Because the distribution of future locations

depends only on a bird’s current location, the model treats all birds in the same location at the

same time identically: their future routes may diverge, but only due to randomness of transitions,

and not due to long-term “memory”. This means, for example, that the current implementation of
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BirdFlow cannot model year-to-year site fidelity. That is, simulated full-year routes are unlikely

to return to the same location one year later. For this reason, we currently recommend applying

BirdFlow for single migration seasons. For the same reasons, BirdFlow cannot differentiate

between individuals of different subpopulations that have different migration strategies but coincide

both spatially and temporally. For example, BirdFlow could not correctly model two distinct

subpopulations that cross through the same location at the same time. We believe this limitation is

minor in practice, because populations with different migration strategies are often separated either

spatially or temporally.

These limitations are intrinsic to the Markov chain structure but, if we were to use a loss function

that included different kinds of data or encoded different biological assumptions, the choice of model

structure would change. For example, we could incorporate site fidelity by adding loss function

components that depend on the marginal distribution of a bird’s location at a given time together

with its location one year later. If we apply the same logic about maximum entropy to a loss

function that also incorporates this “site fidelity marginal”, the resulting model would be more

computationally intensive but it would be able to capture site fidelity information in a way that

the current model cannot. Constructing loss functions that use other marginals while remaining

computationally tractable is another direction for future work.
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Brémaud, P. (2013). Markov chains: Gibbs fields, monte carlo simulation, and queues (Vol. 31).

Springer Science & Business Media.

Cai, K., Lei, X., Wei, J., & Xiao, X. (2021). Data synthesis via differentially private Markov random

fields. Proceedings of the VLDB Endowment, 14 (11), 2190–2202.

30

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

https://cornelllabofornithology.github.io/ebirdst/
https://cornelllabofornithology.github.io/ebirdst/
http://github.com/deepmind
https://doi.org/10.1126/science.aah6647
https://doi.org/10.1126/science.aah6647
https://doi.org/https://doi.org/10.1111/ecog.04083
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study8868155
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study8868155
http://doi.org/10.5441/001/1.46ft1k05
http://github.com/google/jax
https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


Carlisle, J. (2022). Movebank: Long-billed curlew migration from the intermountain west. Retrieved

February 16, 2022, from https://www.movebank.org/cms/webapp?gwt fragment=page=

studies,path=study42451582

Dodge, S., Bohrer, G., Bildstein, K., Davidson, S. C., Weinzierl, R., Bechard, M. J., Barber, D.,

Kays, R., Brandes, D., Han, J., & Wikelski, M. (2014). Environmental drivers of variability

in the movement ecology of turkey vultures (cathartes aura) in north and south america

[Publisher: Royal Society]. Philosophical Transactions of the Royal Society B: Biological

Sciences, 369 (1643), 20130195. https://doi.org/10.1098/rstb.2013.0195

Dokter, A. M., Farnsworth, A., Fink, D., Ruiz-Gutierrez, V., Hochachka, W. M., La Sorte, F. A.,

Robinson, O. J., Rosenberg, K. V., & Kelling, S. (2018). Seasonal abundance and survival

of north america’s migratory avifauna determined by weather radar [Number: 10 Publisher:

Nature Publishing Group]. Nature Ecology & Evolution, 2 (10), 1603–1609. https://doi.org/

10.1038/s41559-018-0666-4

Dunn, P. O., & Møller, A. P. (Eds.). (2019). Effects of climate change on birds (2nd edition). Oxford

University Press.

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private

data analysis. Third Theory of Cryptography Conference.

Ely, C. R., Terenzi, J., Tibbitts, L., & Douglas, D. C. (2020). Tracking data for tundra swan (cygnus

columbianus) [Medium: csv,zip Type: dataset]. https://doi.org/10.5066/P9KBR79C

Fink, D., Auer, T., Johnston, A., Strimas-Mackey, M., Robinson, O., Ligocki, W., Hochachka, W. M.,

Wood, C., Davies, I., Iliff, M. J., & Seitz, L. (2020a). eBird status and trends, data version:

2019; released: 2020. Cornell Lab of Ornithology. Ithaca, New York. https://doi.org/10.

2173/ebirdst.2019

Fink, D., Auer, T., Johnston, A., Ruiz-Gutierrez, V., Hochachka, W. M., & Kelling, S. (2020b).

Modeling avian full annual cycle distribution and population trends with citizen science

data [ eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/eap.2056]. Ecological Appli-

cations, 30 (3), e02056. https://doi.org/https://doi.org/10.1002/eap.2056

Fink, D., Damoulas, T., Bruns, N. E., Sorte, F. A. L., Hochachka, W. M., Gomes, C. P., & Kelling, S.

(2014). Crowdsourcing meets ecology: Hemisphere-wide spatiotemporal species distribution

models [Number: 2]. AI Magazine, 35 (2), 19–30. https://doi.org/10.1609/aimag.v35i2.2533

31

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study42451582
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study42451582
https://doi.org/10.1098/rstb.2013.0195
https://doi.org/10.1038/s41559-018-0666-4
https://doi.org/10.1038/s41559-018-0666-4
https://doi.org/10.5066/P9KBR79C
https://doi.org/10.2173/ebirdst.2019
https://doi.org/10.2173/ebirdst.2019
https://doi.org/https://doi.org/10.1002/eap.2056
https://doi.org/10.1609/aimag.v35i2.2533
https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


Fink, D., Damoulas, T., & Dave, J. (2013). Adaptive spatio-temporal exploratory models: Hemisphere-

wide species distributions from massively crowdsourced eBird data. AAAI.

Fraser, K. C., Davies, K. T. A., Davy, C. M., Ford, A. T., Flockhart, D. T. T., & Martins, E. G.

(2018). Tracking the conservation promise of movement ecology. Frontiers in Ecology and

Evolution, 6. Retrieved February 15, 2022, from https://www.frontiersin.org/article/10.

3389/fevo.2018.00150

Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharp-

ness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69 (2), 243–

268.

Harrison, A. (2022). Movebank: MCP black-bellied plover alaska. Retrieved February 16, 2022,

from https : / / www . movebank . org / cms / webapp ? gwt fragment = page = studies , path =

study77248725

Hijmans, R. J. (2017). Geosphere: Spherical trigonometry. R Package. https://CRAN.R-project.

org/package=geosphere

Iwata, T., Shimizu, H., Naya, F., & Ueda, N. (2017). Estimating people flow from spatiotempo-

ral population data via collective graphical mixture models. ACM Transactions on Spatial

Algorithms and Systems (TSAS), 3 (1), 1–18.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review, 106 (4), 620.

Jensen, B. (2018). Movebank: Pandion haliaetus osprey - SouthEast michigan. Retrieved February

16, 2022, from https://www.movebank.org/cms/webapp?gwt fragment=page=studies,

path=study10204361

Johnston, A., Fink, D., Reynolds, M. D., Hochachka, W. M., Sullivan, B. L., Bruns, N. E., Hallstein,

E., Merrifield, M. S., Matsumoto, S., & Kelling, S. (2015). Abundance models improve spatial

and temporal prioritization of conservation resources [ eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/14-

1826.1]. Ecological Applications, 25 (7), 1749–1756. https://doi.org/10.1890/14-1826.1

Katzner, T. E., & Arlettaz, R. (2020). Evaluating contributions of recent tracking-based animal

movement ecology to conservation management. Frontiers in Ecology and Evolution, 7. Re-

trieved February 15, 2022, from https://www.frontiersin.org/article/10.3389/fevo.2019.

00519

32

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

https://www.frontiersin.org/article/10.3389/fevo.2018.00150
https://www.frontiersin.org/article/10.3389/fevo.2018.00150
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study77248725
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study77248725
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study10204361
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study10204361
https://doi.org/10.1890/14-1826.1
https://www.frontiersin.org/article/10.3389/fevo.2019.00519
https://www.frontiersin.org/article/10.3389/fevo.2019.00519
https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


Kays, R., Davidson, S. C., Berger, M., Bohrer, G., Fiedler, W., Flack, A., Hirt, J., Hahn, C., Gauggel,

D., Russell, B., et al. (2022). The movebank system for studying global animal movement

and demography. Methods in Ecology and Evolution, 13 (2), 419–431.

Kochert, M. N. (1998). Movebank: Swainson’s hawks. Retrieved February 16, 2022, from https :

//www.movebank.org/cms/webapp?gwt fragment=page=studies,path=study204253

Kochert, M. N., Fuller, M. R., Schueck, L. S., Bond, L., Bechard, M. J., Woodbridge, B., Holroyd,

G. L., Martell, M. S., & Banasch, U. (2011). Migration patterns, use of stopover areas,

and austral summer movements of swainson’s hawks. The Condor, 113 (1), 89–106. https:

//doi.org/10.1525/cond.2011.090243

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. MIT

press.

Martell, M. S., & Douglas, D. (2019). Data from: Fall migration routes, timing, and wintering sites

of north american ospreys as determined by satellite telemetry. http://doi.org/10.5441/

001/1.sv6335t3

Martell, M. S., Henny, C. J., Nye, P. E., & Solensky, M. J. (2001). Fall migration routes, timing, and

wintering sites of north american ospreys as determined by satellite telemetry. The Condor,

103 (4), 715–724. https://doi.org/10.1093/condor/103.4.715

McCabe, R., & Goodrich, L. (2022). Movebank: Broad-winged hawk habitat use, range, and movement

ecology. Retrieved February 16, 2022, from https ://www.movebank.org/cms/webapp?

gwt fragment=page=studies,path=study28691134

McCabe, R. A., Goodrich, L. J., Barber, D. R., Master, T. L., Watson, J. L., Bayne, E. M., Harrison,

A., Marra, P. P., & Bildstein, K. L. (2020). Satellite tracking reveals age and origin differ-

ences in migration ecology of two populations of broad-winged hawks (buteo platypterus)

[Publisher: The Wilson Ornithological Society]. The Wilson Journal of Ornithology, 132 (1),

1–14. https://doi.org/10.1676/1559-4491-132.1.1

McKenna, R., Sheldon, D., & Miklau, G. (2019). Graphical-model based estimation and inference

for differential privacy. International Conference on Machine Learning, 4435–4444.

McKinnon, E. A., & Love, O. P. (2018). Ten years tracking the migrations of small landbirds: Lessons

learned in the golden age of bio-logging. The Auk, 135 (4), 834–856. https://doi.org/10.

1642/AUK-17-202.1

33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study204253
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study204253
https://doi.org/10.1525/cond.2011.090243
https://doi.org/10.1525/cond.2011.090243
http://doi.org/10.5441/001/1.sv6335t3
http://doi.org/10.5441/001/1.sv6335t3
https://doi.org/10.1093/condor/103.4.715
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study28691134
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study28691134
https://doi.org/10.1676/1559-4491-132.1.1
https://doi.org/10.1642/AUK-17-202.1
https://doi.org/10.1642/AUK-17-202.1
https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


Moore, J. D., Andersen, D. E., Cooper, T. R., Duguay, J. P., Oldenburger, S. L., Stewart, C. A.,

& Krementz, D. G. (2021a). Data from: Migration phenology and patterns of american

woodcock in central north america derived using satellite telemetry. http://doi.org/10.5441/

001/1.8764q39q

Moore, J. D., Andersen, D. E., Cooper, T. R., Duguay, J. P., Oldenburger, S. L., Stewart, C. A.,

& Krementz, D. G. (2021b). Migration phenology and patterns of american woodcock in

central north america derived using satellite telemetry [Publisher: Nordic Board for Wildlife

Research]. Wildlife Biology, 2021 (1), wlb.00816. https://doi.org/10.2981/wlb.00816

Newton, I. (2008). The migration ecology of birds [Google-Books-ID: BndIbshDWTgC]. Academic

Press.

Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., & Matthiopoulos, J. (2008). State–space

models of individual animal movement. Trends in Ecology & Evolution, 23 (2), 87–94. https:

//doi.org/https://doi.org/10.1016/j.tree.2007.10.009

Ramey, A. M., Soos, C., Link, P., Walther, P., Tibbitts, L., & Douglas, D. C. (2019). Tracking data

for blue-winged teal (anas discors) [Medium: zip,csv Type: dataset]. https://doi.org/10.

5066/P9Z9BA9F

Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., Stanton,

J. C., Panjabi, A., Helft, L., Parr, M., & Marra, P. P. (2019). Decline of the north american

avifauna [Publisher: American Association for the Advancement of Science Section: Report].

Science, 366 (6461), 120–124. https://doi.org/10.1126/science.aaw1313

Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J., & van Bommel, F. P. J. (2006). Long-

term population declines in afro-palearctic migrant birds. Biological Conservation, 131 (1),

93–105. https://doi.org/10.1016/j.biocon.2006.02.008

Schuster, R., Wilson, S., Rodewald, A. D., Arcese, P., Fink, D., Auer, T., & Bennett, J. R. (2019). Op-

timizing the conservation of migratory species over their full annual cycle [Bandiera abtest:

a Cc license type: cc by Cg type: Nature Research Journals Number: 1 Primary atype: Re-

search Publisher: Nature Publishing Group Subject term: Animal migration;Conservation

biology;Decision making;Sustainability Subject term id: animal-migration;conservation;decision-

making;sustainability]. Nature Communications, 10 (1), 1754. https ://doi .org/10.1038/

s41467-019-09723-8

34

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

http://doi.org/10.5441/001/1.8764q39q
http://doi.org/10.5441/001/1.8764q39q
https://doi.org/10.2981/wlb.00816
https://doi.org/https://doi.org/10.1016/j.tree.2007.10.009
https://doi.org/https://doi.org/10.1016/j.tree.2007.10.009
https://doi.org/10.5066/P9Z9BA9F
https://doi.org/10.5066/P9Z9BA9F
https://doi.org/10.1126/science.aaw1313
https://doi.org/10.1016/j.biocon.2006.02.008
https://doi.org/10.1038/s41467-019-09723-8
https://doi.org/10.1038/s41467-019-09723-8
https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal,

27 (3), 379–423.

Sheldon, D., & Dietterich, T. (2011). Collective graphical models. Advances in neural information

processing systems (NIPS), 1161–1169.

Sheldon, D., Elmohamed, M. A. S., & Kozen, D. (2008). Collective inference on Markov models

for modeling bird migration. Advances in neural information processing systems (NIPS),

1321–1328.

Sheldon, D., Sun, T., Kumar, A., & Dietterich, T. G. (2013). Approximate inference in collec-

tive graphical models. Proceedings of the 30th international conference on machine learning

(ICML), 1004–1012.

Singh, R., Haasler, I., Zhang, Q., Karlsson, J., & Chen, Y. (2020). Inference with aggregate data:

An optimal transport approach. arXiv preprint arXiv:2003.13933.

Somveille, M., Bay, R. A., Smith, T. B., Marra, P. P., & Ruegg, K. C. (2021). A general theory of

avian migratory connectivity [ eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.13817].

Ecology Letters. https://doi.org/10.1111/ele.13817

Stanley, C. Q., Dudash, M. R., Ryder, T. B., Shriver, W. G., Serno, K., Adalsteinsson, S., & Marra,

P. P. (2021). Seasonal variation in habitat selection for a neotropical migratory songbird us-

ing high-resolution GPS tracking [ eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.3421].

Ecosphere, 12 (3), e03421. https://doi.org/https://doi.org/10.1002/ecs2.3421

Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., Damoulas,

T., Dhondt, A. A., Dietterich, T., Farnsworth, A., Fink, D., Fitzpatrick, J. W., Fredericks,

T., Gerbracht, J., Gomes, C., Hochachka, W. M., Iliff, M. J., Lagoze, C., La Sorte, F. A.,

. . . Kelling, S. (2014). The eBird enterprise: An integrated approach to development and

application of citizen science. Biological Conservation, 169, 31–40. https://doi.org/10.1016/

j.biocon.2013.11.003

Sun, T., Sheldon, D., & Kumar, A. (2015). Message passing for collective graphical models. Proceed-

ings of the 32nd international conference on machine learning (ICML), 853–861.

Supp, S. R., Bohrer, G., Fieberg, J., & La Sorte, F. A. (2021). Estimating the movements of terrestrial

animal populations using broad-scale occurrence data. Movement Ecology, 9 (1), 1–19.

Tibbitts, T., Ruthrauff, D. R., Gill, R. E., & Douglas, D. C. (2018). Tracking data for whimbrels

(numenius phaeopus) [Medium: csv,zip Type: dataset]. https://doi.org/10.5066/P978PX2X

35

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

https://doi.org/10.1111/ele.13817
https://doi.org/https://doi.org/10.1002/ecs2.3421
https://doi.org/10.1016/j.biocon.2013.11.003
https://doi.org/10.1016/j.biocon.2013.11.003
https://doi.org/10.5066/P978PX2X
https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


Van Doren, B. M., & Horton, K. G. (2018). A continental system for forecasting bird migration.

Science, 361 (6407), 1115–1118. https://doi.org/10.1126/science.aat7526

Vilnis, L., Belanger, D., Sheldon, D., & McCallum, A. (2015). Bethe projections for non-local in-

ference. Proceedings of the 29th conference on uncertainty in artificial intelligence (UAI),

892–901.

Vincent, J. G., Schuster, R., Wilson, S., Fink, D., & Bennett, J. R. (2022). Clustering community

science data to infer songbird migratory connectivity in the western hemisphere. Ecosphere,

13 (4), e4011.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational

inference. Foundations and Trends in Machine Learning, 1 (1-2), 1–305.

Webster, M. S., & Marra, P. P. (2005). The importance of understanding migratory connectivity

and seasonal interactions. In R. Greenberg & P. P. Marra (Eds.), Birds of two worlds: The

ecology and evolution of migration. Johns Hopkins University Press.

www.nist.gov. (2018). 2018 differential privacy synthetic data challenge. https://www.nist.gov/

communications-technology-laboratory/pscr/funding-opportunities/open-innovation-prize-

challenges-1

www.nist.gov. (2020). 2020 differential privacy temporal map challenge. https://www.nist .gov/

ctl/pscr/open-innovation-prize-challenges/current-and-upcoming-prize-challenges/2020-

differential

Yasunori, A., Nishimura, T., Tanaka, Y., Kurashima, T., & Toda, H. (2020). Exact and efficient

inference for collective flow diffusion model via minimum convex cost flow algorithm. Pro-

ceedings of the AAAI Conference on Artificial Intelligence, 34 (04), 3163–3170.

36

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

https://doi.org/10.1126/science.aat7526
https://www.nist.gov/communications-technology-laboratory/pscr/funding-opportunities/open-innovation-prize-challenges-1
https://www.nist.gov/communications-technology-laboratory/pscr/funding-opportunities/open-innovation-prize-challenges-1
https://www.nist.gov/communications-technology-laboratory/pscr/funding-opportunities/open-innovation-prize-challenges-1
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/current-and-upcoming-prize-challenges/2020-differential
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/current-and-upcoming-prize-challenges/2020-differential
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/current-and-upcoming-prize-challenges/2020-differential
https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


A Connection to Prior Work

BirdFlow builds on prior methods for learning a probability distribution from evidence about its

marginal distributions. Notably, we previously developed collective graphical models (CGMs) (Shel-

don & Dietterich, 2011), which are a general formalism for learning the parameters of a probabilistic

graphical model from noisy aggregate observations. CGMs were inspired by bird migration mod-

eling (Sheldon et al., 2008), and later used to model human population flows (Akagi et al., 2018;

Iwata et al., 2017). Inference and estimation in CGMs is computationally challenging (Sheldon

et al., 2013), but many approximations have been proposed (Sheldon et al., 2013; Singh et al., 2020;

Sun et al., 2015; Vilnis et al., 2015; Yasunori et al., 2020).

A similar problem setting arises in privacy-preserving data analysis, where noisy aggregate pop-

ulation statistics are released by a central agency such as a census bureau to provide information

about population demographics while ensuring privacy of individuals (Dwork et al., 2006). From

these noisy, aggregate statistics, an analyst wishes to estimate a full distribution over demographic

variables. Private-PGM (McKenna et al., 2019) is a recent algorithmic framework we developed

for this setting, which has been successful as a key component of winning entries in privacy competi-

tions (www.nist.gov, 2018, 2020) and of mechanisms for releasing private synthetic data (Cai et al.,

2021).

BirdFlow builds on the conceptual underpinnings of Private-PGM, rather than CGMs, to

estimate bird movement models. One key difference compared to CGMs is that BirdFlow and

Private-PGM ignore sampling variability due to the population being drawn from an underlying

distribution. This is appropriate for large populations, where sampling error is smaller in magnitude

than measurement noise, and leads to simpler estimation algorithms. A second key difference is that

in BirdFlow the model output is a probabilistic model (a Markov chain), while in CGMs the model

output is a reconstruction of population flows. While this difference is minor mathematically (one

object can be converted to the other), it is a significant practical and conceptual advance to treat

the model output as a probabilistic model from which we can construct synthetic routes and create

forecasts and many other products. Finally, although CGMs were motivated by bird migration

modeling, the current study is the first in-depth examination of the capabilities of any of these

methods to accurately model bird migration at this scope, including many species, validation using

real tracks, and tuning of of key parameters such as entropy regularization and distance exponent
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to obtain biologically realistic model outputs.

B Entropy Regularization

Formally, the entropy regularization term J(µ) is equal to the negative Shannon entropy of the

distribution. The Shannon entropy is a measure of the uncertainty of a distribution, so in order

to correct for the model’s overconfidence, we seek to increase the entropy. Since the optimization

procedure minimizes the loss function, in order to increase entropy we seek to minimize negative

entropy. Hence the loss component being negative entropy. In general, computing entropy requires

summing over every possible outcome of a distribution which would be infeasible to do for a dis-

tribution of all possible tracks. However, there is a well established result (Wainwright & Jordan,

2008) which states that the entropy of a Markov chain can be written as a function of the entropy

of it’s marginals. Using this result, the negative entropy of a Markov chain can be written as

J(µ) =
T∑
t=1

H(µt)−
T−1∑
t=1

H(µt,t+1), (13)

where H(µt) and H(µt,t+1) are Shannon entropies of corresponding marginal distributions, specifi-

cally:

H(µt) = −
∑
xt∈X

µt(xt) logµt(xt),

H(µt,µt+1) = −
∑
xt∈X

∑
xt+1∈X

µt,t+1(xt, xt+1) logµt,t+1(xt, xt+1).

The entropies of these marginals require summing over exponentially fewer possibilities so we can

efficiently compute them.

There is a bit of subtlety with our use of this substitution. In the model structure section, we

say that the loss function only uses weekly marginals and pairwise marginals and this justifies the

use of a Markov chain. But here, we say that the entropy component of the loss function depends

only on marginals because we have selected the Markov chain structure. In our view, the location

loss and the movement loss constitute the core loss function because they correspond to data and

biological knowledge; for these loss components it is always true that they only depend on marginals

regardless of the model structure we choose to optimize over. These central components justify the
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model structure, and once this structure is selected, the entropy regularization is a post hoc addition

to correct for overconfidence.

C Markov Chain Calculation

Algorithm 1 details the process for transforming the parameters θ into the marginals µ. The pa-

rameters θ are vectors and matrices of real numbers with no constraints, while the marginals and

conditional distributions of the model are constrained to be valid probability distributions. Optimiz-

ing over a constrained space in inherently more complicated than optimizing over an unconstrained

space, so this kind of substitution is relatively commonplace. Importantly, the operations present

in this algorithm (exponentiation, multiplication, and addition) are all differentiable. In order to

perform optimization via gradient descent, we must be able to compute the gradient of the loss

function in terms of the parameters θ. Computing those gradients requires the differentiability of

not only the loss function, but also the mapping from parameters to marginals. We omit any man-

ual derivations of gradients because modern automatic differentiation software (like JAX) computes

these gradients automatically.

Algorithm 1: Differentiable mapping from parameters θ to marginals µ

Data: θ, T
Result: µ
µ1 ← σ(θ(1))
for t = 1 to T − 1 do

T← σ(θ(t,t+1))
µt,t+1(i, j)← µt(i)T(i, j) for all i, j ∈ X
µt+1(j)←

∑
i∈X µt,t+1(i, j) for all j ∈ X

end
return µ = (µ1, . . . ,µT ,µ1,2, . . . ,µT−1,T )
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D Additional Case Study Figures

Figure 8: Model-simulated trajectories for GPS-tracked American Woodcocks Scolopax minor. Ob-
served movements of GPS-tracked woodcocks (single thick path) and simulated trajectories (thin
paths) for 2500 simulated birds originating at the same starting location as observed birds.
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Figure 9: Conditional forecast distributions for GPS-tracked American Woodcocks Scolopax minor.
Each heatmap shows the predicted movement distribution of a GPS-tracked individual originating
within the circle at the base of the arrow. Darker colors indicate a higher predicted likelihood
of movement to that area. The point of the arrow shows the observed ending location. Shown
are examples of 3-week (a-c, same individual), 6-week (d-f, different individuals), and 12-week (g-i,
different individuals) conditional forecasts.

41

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.04.12.488057doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488057
http://creativecommons.org/licenses/by-nd/4.0/


E Species Maps

Figure 10: Geographic distributions of species modeled using eBird Status & Trends. To produce
these plots, we standardized relative abundance outputs each week by dividing by the sum of total
relative abundance, and then averaged these values over the entire year. Finally, we colored cells
with the top 90% of values to show the species’ geographic distributions.
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