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Abstract

Excitatory cortical neurons show clear tuning to stimulus features, but
the tuning properties of inhibitory neurons are ambiguous and have
been the subject of a long debate. While inhibitory neurons have been
considered to be largely untuned [1–4], recent studies show that some
parvalbumin expressing (PV) neurons do show feature selectivity and
participate in co-tuned subnetworks with pyramidal cells in which PV
cells show high response similarity to the excitatory (E) neurons [5, 6].
Given shared input from layer 4 that drives feature tuning in excitatory
subnetworks, we demonstrate that homeostatic regulation of postsy-
naptic firing rate governing the synaptic dynamics of the connections
from PV to E cells, in combination with heterogeneity in the excitatory
postsynaptic potentials (EPSP) that impinge on PV cells, results in the
self-organization of PV subnetworks. We reconcile different experimen-
tal findings by showing that feature tuning of PV cells is an emerging
network property that may be driven by synaptic heterogeneity, and can
be inferred using population-level measures, while pairwise individual-
level measures may fail to reveal inhibitory tuning. We show that such
co-tuning can enhance network stability at the cost of response salience.
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Introduction

It is unclear how neurons in the cortex develop feature tuning. In mouse,
excitatory neurons possess relatively strong feature tuning; however, there has
been a long debate about the tuning of inhibitory neurons. Among different
inhibitory subtypes in cortex which may play different and complementary
roles in sensory processing [7, 8], Parvalbumin expressing subtypes (PV)
play an important role in shaping the tuning responses of excitatory cells to
different features of the sensory input [9–12]. Currently, there are two groups
of seemingly conflicting studies about the tuning of PV cells to pyramidal
excitatory (E) cells, both in terms of their firing rates and their patterns of
connectivity to E cells in mouse V1.

One group of studies has reported that despite the tuning of the E cells
to certain input features, such as orientation, individual PV cells are not
tuned, or weakly tuned to those input features [1–4, 13], and therefore PV
cells do not participate in co-tuned subnetworks with E cells. Given the dense
connectivity profile of pyramidal excitatory to PV cells in layer 2/3 [2, 14],
as well as the salt and pepper organization of feature maps in mice [15], PV
cells might be expected to receive inputs from excitatory neurons tuned to
many different features, remaining broadly tuned and without feature specific
connections to excitatory cells.

A second set of studies, however, shows that despite the salt and pep-
per organization of feature maps in mice, PV cells can have a sharp tuning
response [5]. Further, they can participate in subnetworks (motifs) of strongly
coupled PV and E cells with relatively strong reciprocal connections [5, 6, 16].
Therefore, the claim is that in mice, PV tuning is related to the strength of
the connections between E and PV cells, which correlates with the response
similarity between PV and E cells [6]. In these reciprocal connections, there
is a relatively constant EPSP to IPSP ratio [6] and this relation depends
on the activity of the E and PV cells, and is mediated by layer 4 excitation
[17, 18]. All of these studies, when put together, suggest that shared input,
correlations between PV and E cells –and therefore feature specificity and the
existence of co-tuned subnetworks of excitatory and inhibitory interactions–
and the strength of their reciprocal connections are related to one another.

We reconcile these diverse experimental findings by showing in a model
that the emergence of co-tuned PV neurons is a network property, and con-
sidering only pairwise correlations between PV and E cells may not identify
their tuning. To achieve this, we consider two facts and one hypothesis about
layer 2/3 neurons in mouse V1: (1) shared input from layer 4 drives feature
tuning and stimulus selectivity in excitatory subnetworks [19, 20], (2) there
is a large amount of heterogeneity in the excitatory postsynaptic potentials
(EPSP) that impinge on PV cells [2, 14, 21], (3) we assume that the home-
ostatic regulation of postsynaptic firing rate which has been reported for
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GABAergic cells in the literature [22–25] governs the synaptic dynamics of
the connections from PV to E cells. These considerations result in the emer-
gence of co-tuned PV and pyramidal subnetworks, with a small portion of PV
cells strongly tuned to Pyramidal cells. We show that PV tuning is a network
property which may not be well identified with pairwise measures.

Our findings indicate that the higher the variance of the EPSPs of the
connections from E to PV cells, the more tuned the PV cells become. Co-
tuned PV to E subnetworks provide stability to the network dynamics and
expand the dynamic range of frequency responses of the E cells, but at the
cost of reducing competition among excitatory assemblies, leading to reduced
selectivity and reduced input amplification of the excitatory cells.

Results

Random connectivity from E to PV causes tuned PV to E
connections

To study how PV cells develop their connections to E cells, we simulated
three different networks with two excitatory assemblies (E1 and E2 in Fig. 1),
and one population of PV cells. Neurons within each excitatory assembly
had a stronger EPSP amplitude for their connections (w J , where w > 1),
and received inputs from two sources: a common background source giving
random and independent Poisson input to each neuron with a firing rate of
(1− c) η, and another shared correlated source with a firing rate of c η, which
projected the same spike pattern to all neurons in each assembly, private to
each assembly. In all networks, PV neurons were connected to each other and
to the excitatory cells indistinguishably. Connections between PV cells had a
constant IPSP amplitude, while connections from PV to E cells were plastic,
following the symmetric STDP rule proposed in [22, 24].

In order to study the effect of heterogeneity in connections from E to PV
cells, we chose different connectivity distributions, with identical mean values.
The simplest network had a fixed in-degree distribution with identical EPSP
amplitudes (Fig. 1A). The second network also had a fixed value of the EPSP
amplitude; however, the probability of connections followed a Bernoulli dis-
tribution (Fig. 1B). Therefore, some PV cells receive more connections from
E cells by chance. The third network also followed a Bernoulli distribution
for the connections from E to PV cells; however, the EPSP amplitudes were
drawn from a log-normal distribution (Fig. 1C).

For these different networks, we were interested in the evolution of the
inhibitory weights over time. The IPSP amplitudes were initialized to be iden-
tical in all three networks (Fig. 1D, E, F). 2000 seconds after introducing the
plasticity rule, we observed that the connectivity matrix denoting the absolute
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values of the IPSP amplitude from PV cells to E cells became structured for the
networks with the Bernoulli (Fig. 1H) and log-normal distribution (Fig. 1K),
but not for the network with fixed in-degree distribution. This can be seen
by sorting the indices of the PV cells in the connectivity matrix according to
their maximum total IPSP projection onto each excitatory assembly (Fig. 1G).
The networks self-organized such that PV cells with relatively large values of∑
| IPSP | for the outgoing connections to one excitatory assembly were more

weakly connected, i.e. had smaller values of outgoing
∑
| IPSP |, to the other

excitatory assembly. We then identified PV cells with stronger total connec-
tion weights to E1 (E2) as PV1 (PV2) cells. The average IPSP amplitude from
PV1 to E1 grew as a function of simulation time for networks both with the
Bernoulli (Fig. 1M) and the log-normal distribution (Fig. 1N). This growth
was almost absent for the network with fixed in-degree distribution (Fig. 1L).
These results indicate that for networks with heterogeneity in E to PV con-
nections, a tendency for individual PV cells to develop stronger connections
to some E cells was shaped during learning, and this preference was absent for
the network with fixed in-degree.

To determine the reason for the emergence of this preference, we examined
the differences in the distribution of the projections from each excitatory
assembly onto the PV subnetworks for the different scenarios that we consid-
ered. More specifically, we calculated the distribution of the total (summed)
EPSP from all E cells within E1 onto individual PV cells. For the networks
with Bernoulli and log-normal distribution, we observed more distinct and
skewed distributions of the total weights from E1 onto PV1 than from E1 onto
PV2 (Fig. 1Q, R). However, these two distributions were identical for the fixed
in-degree network (Fig. 1P). We confirmed that adding Hebbian E-to-PV and
E-to-E plasticity results in the same pattern of PV weight evolution (Fig A1).

Taken together, we conclude that heterogeneity in the existence and the
amplitude of the connections from E assemblies to PV cells can split the
PV population into groups that by chance receive more projections from a
certain excitatory assembly. The PV cells that received stronger total EPSP
projections, connect to the corresponding excitatory assembly with stronger
average IPSP values.
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Fig. 1 Effect of E to PV heterogeneity of connections on the emergence of
tuned PV to E weights in a network with a single initial PV population. A:
Fixed in-degree distribution of the weights with fixed EPSP amplitude. B: Existence of a
connection between an E and a PV cell follows a Bernoulli distribution with a fixed EPSP
amplitude. C: Connections between E and PV cells follow a Bernoulli distribution with
EPSP amplitudes drawn from a log-normal distribution. D-F: Before initiating the plasticity
rule, connectivity matrix for the connection weights from PV to E cells were originally
random with a fixed IPSP amplitude. G,H,K: PV to E connectivity matrix at the end
of the simulation, and PV index sorting for the networks with fixed in-degree, Bernoulli
and log-normal weight distributions, respectively. PV1 and PV2 subnetworks are defined
based on the block structure of the emerging connectivity matrix. L, M, N: Average IPSP
amplitude for all connections from PV1 and PV2 neurons to E1 neurons. P: E1 to PV1 and
PV2 summed EPSP distributions are the same due to the original fixed in-degree structure.
Q, R: Distribution of total EPSP projections from individual E1 neurons to PV1 and PV2

neurons, after assigning memberships to PV cells.
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Emergence of tuned PV to E weights and co-tuned PV
subnetworks

To understand the circuit mechanisms underlying the emergence of tuned PV
to E weights, we considered a simple network (Fig. 2A) with two excitatory
populations, each received %30 of their inputs from a private shared input
source. The network was also composed of two distinct populations of PV
cells, each receiving stronger input from one of the excitatory assemblies. This
was characterized by a factor q > 1 that scaled the stronger EPSP from one
of the excitatory populations to a given PV population. The connections from
the PV populations to the excitatory population that fed them with q J EPSP
amplitude were determined by wi1, and the inhibitory connection weights to
the other excitatory population were labeled as wi2. Initially, all IPSP ampli-
tudes from the PV populations to the excitatory populations were identical.

The inhibitory plasticity rule applied (Fig. 2B) was similar to the model
used in [24], consistent with reports from hippocampus [22], and also applied
in recent findings on PV to E plasticity in OFC [25]. To justify the use of this
plasticity rule in layer 2/3 in mouse V1, we refer to experimental findings
in [26]. For a burst interval of 200 ms for a post synaptic excitatory neuron,
it has been reported that the synaptic weight did not change when the pre-
synaptic spike coincided with the first spike of the burst [26]. Considering
the STDP function with a time constant of 20 ms (as observed in [22]), it
would be rational to conclude that the STDP function had a potentiating role
around small temporal differences (∆t in Fig. 2B), and a depressing function
for bigger ∆t. However, since the history of the burst for the postsynaptic
neuron affects the result of the synaptic modification [27], the overall synaptic
change on average would be around zero, as observed in [26].

The raster plot of the neuronal activities 1000 seconds after initiating the
plasticity rule (Fig. 2C) shows that the two excitatory populations compete
with each other. This competition can be well characterized by the average
population cross-covariance function between the firing rates of the excitatory
populations (Fig. 2D). We also observed strongly correlated activity between
PV1 and E1 (similarly between PV2 and E2), and our mean-field model could
capture the dynamics of this covariance very well (Fig. 2E, F). A positive
covariance between PV1 and E1 as a result of strong EPSP for the connection
from E1 to PV1 is apparent. Due to the symmetry in the connections, we
expect a similar covariance function between PV2 and E2 (Fig. 2E). Also,
since E1 and E2 are negatively correlated, the correlation between PV1 and
E2 is mainly negative around zero-lag intervals (Fig. 2F).

In order to estimate the average inhibitory synaptic changes, we computed
a “learning signal” (see Methods), for which a positive (negative) value indi-
cates synaptic potentiation (depression). Because the average firing rates of
the populations are identical for the presynaptic and postsynaptic ends of wi1
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and wi2 (Fig. 2G), the only difference between the weight evolutions resides
in the cross-covariance term. Since the learning signal is positive for wi1
(Fig. 2E, inset), this synapse is expected to grow as a function of the training
time. However, the learning signal for the connection between PV1 and E2 is
negative (Fig. 2F, inset), which results in an average depression of wi2 over
time. The trajectory of the average inhibitory weights shows this separation
(emergence of tuned weight) as a function of time (Fig. 2H). As a result of
this emergence of tuned PV to E weights, the distribution of the IPSPs from
PV1 to E1 is more skewed towards more negative amplitudes compared to the
distribution of the projecting IPSPs to E2 (Fig. 2K).

The system of coupled rate and weight equations for the network in
Fig. 2A can capture the dynamics of weight growth in the phase plane char-
acterized solely by wi1 and wi2 (Fig. 2L). The majority of initial conditions
in the region of interest shown in Fig. 2N will evolve toward a seeming line
attractor formed by the intersection of the nullclines of ẇi1 and ẇi2 shown in
blue and red at the bottom right corner of the state space. This line attractor
is formed at higher values of wi1 relative to wi2, and hence explains why
a reciprocally tuned inhibitory weight is formed in Fig. 2H. The trajectory
which characterizes the evolution of the average inhibitory weights in our
large scale simulations is shown in the phase plane (Fig. 2L) and its dynamics
is well predicted by the flow of the system.

If shared correlated input is viewed as an external feature that correlates a
group of neurons, then the development of reciprocal inhibition comes at the
cost of diminished feature specificity in excitatory assemblies. The reason is
that reciprocal inhibition decorrelates excitatory neurons and can potentially
prevent input amplification. This can be shown by applying a 2-dimensional
UMAP [28] to the neuronal activities, with cosine similarity distance measure
(Fig. 2M, N). Before evolving through plasticity, the excitatory assemblies
form well separated clusters, and due to strong correlations between E and
PV cells, PV populations also cluster together with their corresponding E
assemblies. However, after the operation of the inhibitory plasticity, as a result
of developed reciprocal inhibitory weights, the excitatory clusters are not as
well separated and become more intermixed, but the PV cells are still clustered
with their own E assemblies. This indicates that the spontaneous activities of
the E cells are less distinguishable and hence less susceptible to amplify the
external input.
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Fig. 2 Theoretical understanding of the emergence of tuned PV subnetworks.
A: Network with two excitatory and two inhibitory populations. B: Symmetric STDP curve
which provides homeostasis for the excitatory firing rates. C: Raster plot of the network 1000
seconds after the onset of the inhibitory plasticity rule. E1 and PV1 are correlated (so are
E2 and PV2). D: Covariance function between E1 and E2 average neuronal activity and the
theoretical prediction for this function indicate that there is a strong competition between the
two excitatory subnetworks. E: Covariance function between PV1 and E1 and the theoretical
match to this function indicates a positive co-activation of the two populations. Inset: the
learning signal has a net potentiation effect. F: Covariance function between PV1 and E2

and the theoretical match show a negative relationship and hence antagonism between the
activities of E2 and PV1. Inset: the learning signal has a net depression effect. G: Firing
rates of the excitatory and inhibitory populations reach the steady state value within a
few 10 seconds, and our theory predicts the transient and steady state responses of the
rates. H: Evolution of the IPSP weights from PV1 to E1 and E2 indicate a potentiation
and depression, respectively, and our theory captures this phenomenon. K: Distribution of
IPSPs from PV1 and PV2 onto cells in E1. L: Vector field of the coupled dynamics between
average wi1 and wi2 derived from a linear theory. The trajectory of these weights obtained
from large scale network simulations (green curve) follows the vector field and gets stuck at
the intersection of the ẇi1 and ẇi2 nullclines, which indicates saturation of the weights. M,
N: 2-dimensional UMAP plots for the raster plots of the network before and after plasticity.

Importance of internal correlations

In the emergence of tuned PV to E weights, two correlation terms play roles.
First, shared external input provided to the E cells in each assembly, with
a firing rate of c η; increasing the value of c increases this correlation term,
and results in more separation between wi1 and wi2 (Fig. 3A). The second
correlation term is generated internally between the excitatory and inhibitory
neurons, due to direct wiring with different values of EPSP amplitudes. Even
without any shared correlated input (with c = 0), a weak tuned PV to E
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weight structure emerged (Fig. 3A, light blue curves) resulting from internal
network dynamics. For non-zero values of c this term plays a bigger role. To
demonstrate the importance of this contribution in our theory, for c = 0.3,
we compare with results obtained by ignoring all the contributing terms
which characterized the internal correlations between PV and E cells. These
terms had no impact on the steady state population firing rates (Fig. 3B),
and simulation and theory converged to similar results. However, a dramatic
effect was seen in the dynamics of the weight evolution (Fig. 3C): both wi1
and wi2 evolved similarly and as a result converged to identical values around
the average value of the steady state weights for the simulation in Fig. 2H.
This clearly does not match with the simulation results in Fig. 2H. We thus
conclude that the internal correlations between the inhibitory and excitatory
cells have a major contribution in shaping tuned PV weights. Ignoring those
correlation terms changed the dynamics of inhibitory weight evolution incon-
sistent with the network dynamics.

Ignoring the correlation terms between PV and E cells in our theory
resulted in a vector field with overlaid nullclines which formed a line attrac-
tor (Fig. 3D). Depending on the initial conditions of the average inhibitory
weights from PV to E population, the steady state values of the weights
may land on different points of the line attractor. For example, the weight
trajectory from Fig. 3C, which shares the same initial condition with the
network, moves on a straight line and converges to the closest point on the
line attractor (blue trajectory in Fig. 3D). This result is not consistent with
the trajectory from the simulation (green trajectory).

We conclude that even under spontaneous activity in which there are no
modulations in the external firing rate, the internal dynamics of the network,
particularly the correlations between the PV and E cells, determine the steady
state values of the inhibitory weights which result in tuned PV to E weights.
Ignoring the correlation term in our mathematical analysis results in identical
inhibitory weights, without any emergence of tuning between PV and E.
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Monotonic relationship between EPSP and IPSPs and its
role in response tuning

Previously, we showed that heterogeneity in EPSP distribution for the con-
nections from E to PV cells can result in different degrees of tuned PV to
E cells in different network scenarios (Fig. 1). We now explore patterns of
the reciprocal EPSPs and IPSPs when the network is composed of multiple
subnetworks (more than 2 excitatory assemblies) and investigate how these
patterns affect tuning of PV and E responses.

We considered a network with four excitatory assemblies (E1 through E4),
and assigned four distinct PV populations (PV1 through PV4) (Fig. 4A).
We considered a network with a large amount of heterogeneity for the E to
PV connections (wide network), and another network with relatively small
heterogeneity for those connections (narrow network). The EPSP values from
Ex to PVx, x = 1, ..., 4 was the strongest (characterized by q J , with q = 2.5
for the wide network and q = 1.85 for the narrow network), and decreased
from Ex to PVx+n in a cyclic manner. We also consider the delta network,
which is the extreme case of the narrow network with no variability between
the EPSP to PV weights (all q values are identical and equal to 1.75).

After 1000 seconds of simulation time, shared input together with the
plasticity rule resulted in a raster plot with correlated PV x with Ex activity,
and correlated activities of the E cells within each assembly (Fig. 4B). Due to
the symmetry of the pattern of connections from the excitatory assemblies to
the PV populations, the average firing rates of all excitatory cells were identi-
cal. For a similar reason, the average of the firing rate for all PV populations
also reached an identical steady state value (Fig. A2B).

Strong projections from excitatory assemblies to individual PV popula-
tions resulted in a strong positive covariance between the two populations
(Fig. 4C). Due to stronger EPSP projections in the wide network, the ampli-
tude of those correlation functions were bigger (Fig. 4C top compared to
bottom). However, the weakest projection from E1 to PV4 caused a nega-
tive covariance between the two populations. The average inhibitory weights
from PV1 through PV4 to E1 reflect a pattern similar to the strength of the
projecting EPSP from E1 to the four PV populations (Fig. 4D). In other
words, the value of the IPSP from PV1 to E1 is the strongest in absolute
value since PV1 received the strongest EPSP (q = 2.5) from E1, which then
resulted in a strong covariance between the two populations, and hence
increased the learning signal in Fig. A2C. The monotonicity in the strength
of average EPSP and IPSP between populations is clearly visible in Fig. 4D.
The difference between the average IPSP amplitudes is smaller for the narrow
network (Fig. 4D, bottom) due to weaker covariances between PV and E
assemblies (Fig. 4C). For increasing values of the external correlated input
(c), the difference between the IPSP amplitudes at the steady state increases
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(Fig. 4E) because increasing correlations in the external input strengthens
the covariance between PV and E assemblies. This indicates that the PV
connections to the excitatory assembly which feeds them strongly potentiates,
and the connections to those assemblies which feed them weakly depresses.
This results in a monotonic relationship between the reciprocal EPSP and
IPSP values both in wide and narrow networks, however, the variance of the
IPSP projections is bigger for the wide network (Fig. 4F).

Tuned PV to E subnetworks reduce feature tuning of the E
cells

We compared the separability (and hence selectivity to input features due to
correlated input) of the neuronal activity patterns for the wide, narrow and
delta network in the low dimensional UMAP space, both for the spontaneous
(Fig. 4G) and evoked (E1 received sensory input, Fig. 4H) states. For all
networks in both spontaneous and evoked conditions, excitatory neurons
within each assembly had the most similar (and hence correlated) patterns of
activity, while excitatory neurons in different assemblies had distinct activity
patterns and formed distinct clusters. Due to the strong EPSP projections and
high covariances between the E and PV populations in the wide network, PV
neuronal responses also formed distinct clusters around their corresponding E
assemblies from which they received strong excitatory inputs. This indicates
the emergence of feature tuning for the PV cells in the wide network due to
internal correlations, although the PV cells had not received any external
correlated input. For the narrow network, due to smaller variance of projec-
tions from E to PV cells, PV neuronal activities were much less tuned to the
excitatory assemblies, and did not form distinct clusters. The extreme case
of the narrow network, the delta network, resulted in a maximally separate
pattern of E activities for the different assemblies, however, the PV neuronal
dynamics were not tuned to the excitatory responses, and also no distinct
clusters of PV activities were formed (Fig. 4G, H). The reason is that in this
case, the covariance functions between the PV population activities and the
excitatory assembly firing rates are all identical (Fig. A2G).

In the spontaneous activity condition we have modeled so far, distances
between the E clusters for the wide network were not as large as those for the
narrow and delta networks (Fig. 4G). This is related to the weak competition
between the excitatory assemblies (Fig. A2D) as a result of strong recipro-
cal inhibition provided by PV populations which decorrelates the excitatory
activities and tends to homogenize the activities of the E cells.

We next presented an external specific input to E1 cells and a smaller
nonspecific and common input to all excitatory clusters. As a result of this
input, for all networks, the E1 cluster was pushed away from the rest of the
E clusters (Fig. 4H,K,L). However, the distance between E1 and the rest
of the clusters was minimum for the wide network compared to the narrow
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and delta networks. Therefore, feature selectivity for the wide network is
relatively weak. Formation of more separate clusters for the narrow and delta
networks is related to stronger competition between the assemblies (Fig. A2E,
F compared to D). Less variable projections from E to PV create weaker
reciprocal inhibitory connections back onto the E assemblies, and hence cause
less decorrelation between the E cells, which results in larger distance between
the E clusters in the UMAP plots.

These inferences that we have drawn based on distances in the low-
dimensional UMAP space are supported by the firing rate dynamics of the
network. The raster plots before and after the onset of stimulus at t=125 s are
more distinct for the delta case compared to other networks (Fig. 4K). Also,
the average firing rates of the excitatory cells show a big input amplification
for the delta network compared to the baseline activity. This amplification is
minimal for the wide network. Since in the wide network case PV cells are
more strongly tuned to the E cells, PV1 activity is also amplified as a result of
E1 increased firing rate (Fig. 4L, bottom row), and represents feature selectiv-
ity due to its tuned response to E1 activity. This amplification is reduced for
the narrow network, and finally for the delta network there is no separation
between PV firing rates. This results from the lack of tuning between PV and
E cells in this case.

To summarize the results of this section, first we highlight how diver-
sity and heterogeneity in the excitatory connections onto PV cells result in
stronger reciprocal inhibitory projections from the PV populations. Second,
we show that the larger the variance of the excitatory connections onto
the PV population (more heterogeneity) is, given an identical mean for the
EPSP projection weights, the more tuned the PV activities to the excitatory
assemblies become. This manifests itself in amplified PV responses to exter-
nal sensory input. However, this comes at the cost of reducing competition
between the excitatory assemblies, and therefore, less separability (and fea-
ture selectivity) between the excitatory neuronal activities. Finally, increasing
input correlations can magnify these effects.
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Fig. 4 Firing rate homeostasis provided by inhibitory plasticity results in a
monotonic relationship between reciprocal EPSP and IPSP amplitudes and
reduces feature selectivity of the network. A: Network with 4 similar excitatory assem-
blies and a profile of connectivity to PV subnetworks with varying EPSP amplitudes modified
by (q = 1.0, 1.5, 2.0, 2.5) for the wide network and by (q = 1.65, 1.70, 1.80, 1.85) for the
narrow network. All reciprocal IPSP amplitudes are identical at the beginning of the simu-
lation. B: Raster plot for the wide network (top) and narrow network (bottom) after 1000
seconds of training indicates high correlations between excitatory and their highly tuned
PV assembly. C: Covariance function between average PVi and average E1 neuronal firing
rates for the wide network (top) and narrow network (bottom).D: Evolution of IPSP ampli-
tudes from PV1 through PV4 onto E1 assembly. Smaller values of q in the corresponding
EPSP amplitude from E1 results in weaker reciprocal projection from the PV subnetwork
back onto E1. E: Steady state amplitude of the IPSP corresponding to different reciprocal
q value for the EPSP of the projecting connection as a function of increasing the value of
input correlation c. The distance between the IPSP amplitudes increases with increasing c.
F: Monotonic relationship between IPSP and EPSP amplitudes as a function of increasing
q for the wide (black) and narrow (gray) network. G: From top to bottom: 2-dimensional
UMAP plots for the neuronal activities for the wide, narrow and delta networks show more
separable activities for the E cells, but less tuned PV to E neuronal activities. H: From
left to right: 2-dimensional UMAP plots for the wide, narrow and delta network when E1

receives specific sensory input. K: Raster plots of the networks before and after the onset of
sensory input to E1 at t=120s. L: Average neuronal firing rates for the excitatory (top) and
PV (bottom) populations in 100 seconds interval for which sensory input evokes E1 activity
from t = 120 s to t = 170 s.
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Emergence of PV subnetworks and monotonic reciprocally
tuned IPSP amplitudes generalizes to more realistic networks

To determine whether our results hold for more general and realistic cases,
we considered some variations. First, we asked about the importance of tun-
ing strength of the E networks. This was implemented by generating three
excitatory assemblies with a different tuning strength, implemented by each
receiving a different degree of private correlated input (Fig. 5A, c = 0.05 for
E1, c = 0.2 for E2, and c = 0.4 for E3). Second, we introduced randomness in
the E-to-PV connections. The EPSP projection weights followed a log-normal
distribution (Fig. 5C), and initially there was just one population of PV cells.
Finally, we were interested to see if heterogeneity in the excitatory target
firing rate can affect the results. To check this, the target postsynaptic firing
rates for the E cells were drawn from a log-normal distribution. As a result
of these heterogeneities, the distribution of the PV cell firing rates was also
log-normal (Fig. 5B).

To study the emergence of tuned inhibitory connections, initially, all IPSP
projections from the single PV population onto the excitatory assemblies were
chosen to be identical. 2000 seconds after introducing the plasticity rule, how-
ever, the inhibitory weights followed a log-normal distribution too (Fig. 5C).
We froze the inhibitory weights and projected a sequential sensory input,
targeting the E1 assembly first at t = 112.5 s post training, with a duration
of 2.5 seconds for each excitatory assembly (Fig. 5L, top). We considered the
network responses during the spontaneous and evoked state from t = 110 s to
t = 120 s, for the rest of the analysis. Each PV cell projected to E cells in 3
different assemblies, characterized by their independent and private source
of correlated external input. Therefore, for each PV cell, one can derive a
3 dimensional vector with each element representing the response similarity
between the PV cell and the population responses from the 3 distinct excita-
tory assemblies (Fig. 5D). While the responses clearly do not form distinct
clusters, we can nonetheless assign PV neurons a group identity according to
the maximum absolute value of the components of each vector; i.e a PV cell
with a maximum response similarity to the population response of E1 was
labeled as PV1. This way, we separate the cloud of vectors into three distinct
PV populations (Fig. 5D). We call this measure of labeling population simi-
larity measure. We used 3 other measures, namely the individual similarity
measure, where the average response similarity between pairs of PV and E
cells were used to label PV cells; the outgoing PV measure where the sum of
the outgoing connections from each PV cell to the neurons in the 3 excitatory
assemblies were measured and the maximum projection weight among the
3 vector components defined the label for individual PV cells (Fig. A4 and
A5); and the incoming E measure which calculates the total EPSP projection
weights onto each PV cell and the label of the PV cell is defined based on
the maximum incoming weight from each E assembly. The intersection of
PV labels for all these 4 measures are shown in Fig. A4C, D, indicating that
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individual and population similarity measures result in the highest overlap
between PV labels, but in general, all measures have a significant overlap
between the labels.

To determine whether using the population similarity measure to assign
labels to PV cells revealed any specific pattern of connectivity between the
E and PV cells, we plotted the distributions of the total IPSP weights from
individual PV cells to E1 through E3 (Fig. 5E). We found that PV1 projected
strongly onto E1 compared to E2 and E3. This result indicates that clustering
PV cells based on their response similarities to the population signals from
the incoming E assemblies can result in PV labels that reflect a structured
connectivity matrix (Fig. 5F).
.

The underlying cause for the clustering of PV cells was random stronger
excitatory drive from distinct excitatory assemblies to a portion of the PV
cells, as shown in the distribution of the total excitatory weights from E1

through E3 to individual PV populations (Fig. 5G). In other words, E1 had
the strongest projection weights onto the group which we characterized as
PV1 (Fig. 5G, left). Similarly, E2 and E3 had the biggest total EPSP weight
to PV2 and PV3, respectively (Fig. 5G, middle and right). This is consistent
with the understanding provided by our mean field theory in Fig. 2.

How do neuronal activities in the spontaneous state relate to the evoked
state? We observed that the raster plots of neuronal activities in the spon-
taneous state showed weak correlations in activity between PV and E cells
(Fig. 5H). To evaluate feature tuning in this more realistic network exam-
ple, we first plotted the neuronal activities within the last 7.5 seconds of
spontaneous activity in a two-dimensional UMAP distance space (Fig. 5K).
Excitatory neurons within each assembly formed distinct clusters with slightly
intermixed borders. The PV cells clustered in the middle of the E clusters,
demonstrating low similarity with the E cells. We also plotted the distribu-
tion of the neurons in the 2D UMAP plane (Fig. 5K). The degree of overlap
between the distributions of PV and E neurons on the 2D UMAP plane
reflects the degree of co-activity between the cells.

Evoked responses were obtained from network simulations in which the
external input to individual E populations were increased by %3 (Fig. 5L).
This resulted in increased covariance (and hence response similarity) between
co-tuned E and PV cells, and as a consequence, the overlap between the dis-
tributions of their reduced responses in the 2D UMAP plane increased. Also,
PV subnetwork activities formed a denser cluster around the E assemblies to
which they were co-tuned but the distribution of the PV cell responses on the
2D plane was still broader than those of the E cells, which indicates broad
tuning of PV cells in general. This finding is consistent with most of the
experimental reports [1–3]. We conclude that the activity in the spontaneous
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state could also reflect feature tuning of PV cells in the evoked state.

The results of this section indicate that for more realistic networks with
heterogeneities in the target excitatory firing rates, EPSP amplitudes and lev-
els of shared correlated input, tuned responses in PV cells emerge according
to the distribution of the EPSP projecting weight, and correlations play a role
in shaping the tuned PV weights. We showed that sensory input to individual
excitatory assemblies can drive the activity of the corresponding PV cluster,
and this indicates co-tuning of PV cells at a population level. However, the
broader distribution of individual PV cell responses indicates broad tuning of
individual PV cells.
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Fig. 5 Emergence of tuned PV subnetworks in a network with heterogeneity
in the input correlation as well as EPSP amplitudes and target homeostatic
firing rate. A: Network with 3 excitatory assemblies, each receiving a different level of
correlated input, and initially a single PV population. B: Log-normal distribution of E and
PV firing rates after training for 2000 seconds. C: EPSP amplitudes for the connection
weights from E to PV follow a log-normal distribution and are not plastic. |IPSP| amplitudes
after 2000 seconds of training also follow a log-normal distribution.D: Response similarity
between individual PV cells and each assembly population responses E1, E2, and E3 form a
3-dimensional cluster of vectors. After training, PV cells divide into 3 distinct groups with a
slightly higher response similarity to one of the excitatory assemblies: blue: high similarity
with E1; red: high similarity with E2; green: high similarity with E3. E: Distribution of
the total IPSP weights from individual neurons in each PV populations to E1 indicate that
PV1 has the highest preference of connection to E1, although these group of PV cells were
labeled as PV1 based on their high response similarity to E1. Similarly, PV2 (PV3) neurons
have the strongest sum projections onto E2 (E3). F: Connectivity matrix between labeled
PV cells based on the population response similarity measure and the excitatory neurons.
G: Total EPSP projections from individual cells in E1 onto the assigned PV populations
indicate that E1 had a stronger total projection weight onto PV1 neurons. A similar relation
holds for other excitatory assembly projections: e.g summed EPSP weights from E3 onto
PV3 were more skewed towards bigger values. H: Raster plot of neuronal activities for the
last 300 ms of training. K,M: 2-dimensional UMAP projection of the neuronal activities for
10 seconds of simulation time according to their distance in the high dimensional space for
the spontaneous (K) and evoked (M) state. L: sensory input driving E1 (from t = 112.5 s to
t=115s post learning), E2 (from t=115s to t=117.5s post learning) and E3 (from t=117.5s
tot = 120 s post learning) assemblies evoke responses in PV1, PV2 and PV3 subnetworks,
respectively.
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Co-tuning of PV cells is a network property which is not
reflected in pairwise correlations

Similar to the experimental reports in layer 2/3 of mouse visual cortex [6, 17],
we observed a monotonic relation between the EPSP and IPSP amplitudes in
all reciprocal motifs in the network under study (4000 samples of data were
plotted in Fig. 6B left). This generalizes our earlier results in Fig. 4 to a more
realistic scenario since for reciprocally connected E and PV pairs, an increased
EPSP increases the correlation (and hence response similarity) between the
pairs. As a result of the symmetric plasticity curve, the IPSP amplitude
increases with correlation (or equivalently, response similarity Fig. 6A). How-
ever, if the EPSP values become too strong, while the correlation between
E and PV pairs increases, the IPSP values start to decrease (this becomes
apparent when all samples are plotted, but since such cases comprise only a
small percentage of all PSP values, we did not observe them in the 4000 sam-
ples of the PV-E pairs in Fig. 6B). This occurs because the increased firing
rate of the PV cell balanced the firing rates of the E cells by reducing the pro-
jecting IPSP value (See Fig. A3). This suggests that very strong EPSP values
can potentially create lateral inhibition within each excitatory assembly.

It is tempting to think that E-PV pairs with strong reciprocal weights
and high correlation coefficients (response similarity) belong to similarly
tuned assemblies, while those with weak correlation coefficients and weak
mutual synapses belong to dissimilarly tuned subnetworks. To check this,
we plotted 2000 samples of pairs which belonged to co-tuned subnetworks
(Fig. 6B, middle) and 2000 samples which were not co-tuned but belonged to
dissimilarly tuned subnetworks (Figure 6B, right). Interestingly, we observed
that there was almost no distinction between the strength of the synaptic
patterns (Fig. 6C) or their pairwise response similarities (correlation coef-
ficients). In fact, the distributions of IPSPs for the PV cell projections to
co-tuned or dissimilarly tuned E neurons quickly evolve toward very high
variances (Fig. 6D, the variance of IPSP amplitude for the connections with
similarly tuned E cells is slightly bigger). This high variance accounts for
the observations in Fig. 6B which show almost no distinction between the
ranges of EPSP and IPSP values for co-tuned and dissimilarly tuned pairs.
However, the mean of the distributions reflect the tuning of the subnetworks.
The average connectivity matrix from PV to E assemblies has a diagonal
structure which reflects stronger tuned weights from the PV populations to
their corresponding co-tuned E assemblies (Fig. 6E). The strongest correlated
external input drove the establishment of the strongest connectivity, here
from PV3 to E3 (c = 0.4), relative to that of E2 and E1.

We were also interested to check if under these plasticity rules, the con-
nections from a PV cell differentiate between two E cells with high or low
response similarity (or equivalently correlation coefficient between the E
cells). Due to shared correlated input, the response similarity between E cells
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in recordings under natural input conditions should give a hint as to whether
the two E cells belong to the same assembly or not. We assumed that we did
not know the source of the correlated input and only relied on the pairwise
response similarity between pairs of E cells which had one projecting PV
cell in common, and searched for all triplets like the cartoon in Fig. 6F. We
plotted the similarity between the E cell responses on the horizontal axis and
the difference between the projecting EPSPs from the E cells onto the PV
cell (∆WE) on the vertical axis. Then, the difference between the reciprocal
projecting IPSP from the PV cell onto the E cells were plotted in color codes
(∆WI). As expected, due to the monotonic relationship between EPSP and
IPSPs in the network, for increasing values of ∆WE , we observe an increased
value of ∆WI , which shows the important role of heterogeneity in shaping PV
weights. However, we observed that for a fixed value of ∆WE , as the response
similarity (correlation) between the two E cells increased, the difference
between the projecting IPSP amplitudes ∆WI did not change. This highlights
the fact that pairwise correlations between two E cells and between PV and
E cells do not reflect tuning of the cells, despite the monotonic relationship
between ∆WE and ∆WI .

In fact, pairwise measures such as response similarity between a pair
of connected PV and E cell cannot give a significant indication about the
membership of individual PV cells in co-tuned or dissimilarly tuned subnet-
works. The distribution of the response similarities between pairs belonging
to any of those groups is almost identical (Fig. 6G, left) and they are not
significantly different from one another. However, if population measures
(such as “population similarity measure”) are used to determine the tuning
of PV cells, then the distribution of the co-tuned versus dissimilarly tuned
PV cells to E assemblies are significantly different (Fig. 6G, right). Utilizing
other network-level measures, such as “outgoing PV measure” (Fig. A5) or
“incoming E measure”, also results in more significant separation between the
distributions of co-tuned and dissimilarly tuned PV cells.

Further, if the total sum of projecting EPSPs from E assemblies to sin-
gle PV cells (and total IPSP projections from single PV cells onto the E
assemblies) are taken into account, then co-tuned and dissimilarly tuned PV
cells can be better identified (Fig. 6H). Higher values of the summed EPSPs
would, on average, result in higher summed IPSP values and higher popu-
lation response similarities (Fig. 6H, co-tuned pairs). If PV cell connections
are classified into two binary groups of co-tuned and dissimilarly tuned con-
nections, the dissimilar connections will be associated with small total EPSP
projections from the corresponding E cells which results in smaller summed
IPSP values, and co-tuned connections will cluster in the region with high
values of summed EPSPs with higher summed IPSP values (2000 samples
from each case plotted in Fig. 6K). This population-level measure can create
more separable and identifiable distributions in terms of weight tuning for
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co-tuned and dissimilarly tuned cells. This is more easily seen when the “out-
going PV measure” is used to classify the PV cells (Fig. A5 H, K).

These results demonstrate that for a more realistic network with hetero-
geneities, our theoretical results for simpler networks still hold, namely, there
is a monotonic relation between the reciprocal EPSP and IPSP amplitudes for
pairs of connected E and PV cells. However, high values of pairwise response
similarity do not necessarily imply that the two cells belong to co-tuned sub-
networks of PV and E cells. Instead of a single EPSP projection value from
the presynaptic E cell (individual measure), if the total sum of the projecting
EPSPs from different E assemblies (population measure) are considered, then
PV cells which receive a large value of this quantity would be co-tuned to
the corresponding projecting E assembly and the similarity between the PV
cell and the E population signal would take higher values. This population
measure provides a more reliable quantity to determine the tuning properties
of individual PV cells, as the distribution of the similarities are more distinct.
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Fig. 6 PV tuning is a network property. A: For reciprocally connected E and PV cells
in the evoked state, response similarity between the pairs increases with increasing values of
EPSP, and IPSP increases monotonically with pairwise similarity. B: Left: EPSP and IPSP
values for 4000 sample of reciprocally connected pairs. Middle and right: Reciprocal EPSP
and IPSP values for pairs belonging to similarly tuned populations and dissimilarly tuned
populations. Colors represent pairwise response similarity between the E and PV cells. C:
Scatter plots of co-tuned and dissimilarly tuned PSP pairs overlayed on one another and the
contour lines indicate regions which contain at least %95 of the data from both categories. D:
Evolution of IPSP distributions from PV3 cells to E1 (dissimilarly tuned) and E3 (similarly
tuned) cells as a function of time. E: Average connectivity matrix for the weights from PV
subnetworks onto excitatory assemblies. F: Difference between the IPSPs for the triplets of
E-PV-E as a function of response similarity between the excitatory cells and the difference
between the projecting excitatory weights onto the shared PV cell. As ∆WE increases, ∆WI

also increases. G: Distribution of pairwise response similarities between E and PV cells for
co-tuned and dissimilarly tuned pairs are almost identical (left), while distributions of the
response similarities between individual PV cells and the population signals from individual
E assemblies are more significantly different for co-tuned and dissimilarly tuned pairs. H:
Total IPSP projection from individual PV cells onto similarly (right) and dissimilarly (left)
tuned E cells as a function of the sum of the EPSP received by the E assemblies. The colorbar
defines similarity of the PV cells with the average excitatory populations K: Distribution
of summed IPSP as a function of summed EPSP for co-tuned (yellow) and dissimilarly
tuned (gray) PV cells to the E assemblies. Stars indicate the mean of the distributions, and
boundaries define regions in the space which contain %95 of the data from each group.
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Co-tuned E and I subnetworks exhibit more stability and a
wider dynamical range of network responses

One advantage of a network with multiple excitatory and inhibitory popu-
lations with tuned connections is that in these networks excitatory neurons
become more decorrelated from each other [25] and as a result they can
maintain stability [6] for a wider range of parameter changes in the circuit.
To investigate the response dynamics and stability of the networks under
different distributions of E to PV cells, we chose the two networks with fixed
in-degree and log-normal E to PV distributions in Fig. 1. We froze all plastic
weights at t=2000 s, and compared the raster plots, covariance functions,
power spectral densities, and the eigenvalue spectrum of the networks for
w = 2.5, i.e, the scalar defining the strength of the excitatory connections
within each assembly.

Activity in the network with fixed in-degree distribution (Fig. 7A)
expresses stronger competition between the excitatory assemblies (Fig. 7B)
with a relatively longer time of active state for each assembly (Fig. 7A). How-
ever, the network with a log-normal distribution shows more rapid switches
between the high and low active states for each assembly dynamics (Fig. 7A)
with relatively shorter active state for each assembly, and also weaker com-
petition between the excitatory assemblies (Fig. 7B). The normalized power
spectrum for the average neuronal dynamics in E1 (similarly for E2) indicates
stronger high frequency responses for the network with log-normal distribu-
tion. The relative high frequency power for E dynamics in the network with
fixed in-degree is almost one order of magnitude less (Fig. 7C).

The eigenvalue spectrum of the network with fixed in-degree distribution
and that of the network with log-normal distribution (Fig. 7D, taken from the
Jacobian of the high dimensional system) shows a denser inner bulk within
a bigger cloud of eigenvalues.Since all eigenvalues are negative, both systems
are stable. Further, as the absolute value of the leading eigenvalue for the net-
work with fixed in-degree is smaller than that of the network with log-normal
distribution, the switching dynamics between the excitatory assemblies is
slower (with longer active time for each assembly) for the network with fixed
in-degree distribution. Note that in both cases there are two additional com-
plex conjugate eigenvalues with absolute values of their real parts bigger than
2.5, but they are not shown in Fig. 7D,H.

To test the stability of these networks under parameter changes, we
increased the value of w, and strengthened the connections within each exci-
tatory assembly (w = 7.0 here). However, we did not scale the connections
from PV to E cells. As a consequence, the raster plots (Fig. 7E for the fixed
in-degree network and for the log-normal network) showed stronger degrees of
synchrony between the activities of the excitatory cells within each assembly
(more synchrony for the network with fixed in-degree). Also, there was a much
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stronger level of competition between the activities of the two assemblies for
the network with fixed in-degree distribution (Fig. 7F).

Increasing the weights within assemblies had a drastic effect on the
switching dynamics of the E assemblies and made the dynamics much slower
compared to the case with w = 2.5 (Fig. 7E, G). Here, again, the active
state for E1 in the network with fixed in-degree was much longer than that of
network with log-normal distribution. This can be clearly seen in the narrow
power spectrum of the average firing rate of E1 for the network with fixed
in-degree as compared to the wider power range for the dynamics of E cells
for the network with log-normal distribution (Fig. 7G). This example shows
the role of reciprocal PV connections in increasing the frequency range of the
excitatory neuronal dynamics.

For both networks, the eigenvalue spectra associated with each network
for w = 7.0 had a leading eigenvalue well separated from the bulk of the
eigenvalues. For the network with fixed in-degree, this eigenvalue has already
crossed the boundary line (edge of stability) at zero (Fig. 7H), and repre-
sents an unstable system. This instability manifests itself in the extremely
long active state of the excitatory populations as well as the high level of
synchrony between the excitatory cells (due to firing rate homeostasis with
fast inhibitory time scale, the mean of the activities cannot go beyond the
target value, and instability manifests itself in the higher level of synchrony).
However, all eigenvalues of the network with log-normal distribution, includ-
ing the leading eigenvalue, lie on the left side of the stability boundary, and
therefore, the network remains stable, even for strong connections within each
excitatory assembly (Fig. 7H).

These results indicate that if due to learning, the connection strengths
within excitatory assemblies increase, then the network with a high level of
heterogeneity in connections from E to PV, which receives reciprocal connec-
tions with proportional strengths back from PV to E cells, will be better able
to maintain the stability of the network with less pathological E activity (less
degree of synchrony). Also, we showed that reciprocal connections from PV
cells to E cells that respect the projections from E to PV cells proportionally,
result in an expanded frequency range with relatively stronger components
for the excitatory responses.
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Fig. 7 Effect of increasing E to E weights within assemblies on network stability
and frequency response range. A: Raster plots of the network activity for w = 2.5, for
the networks with fixed in-degree (with one population of PV cells which did not split) and
log-normal E to PV weight distributions (with self-organized two populations of PV cells
with reciprocal connections), respectively, with frozen weights obtained after 2000 seconds
of training in Fig. 1. B: Cross-covariance function between the average population activities
of the excitatory assemblies. C: Power spectral density of the E1 firing rate for the fixed in-
degree and log-normal network, respectively. D: Eigenvalue spectra of the linearized neuronal
dynamics for networks in A and B, respectively. All eigenvalues have negative real parts. E:
Raster plots for stronger within assembly connections (w = 7.0) for networks in A and B,
respectively. F: Cross-covariance function between E1 and E2 average neuronal activities.
G: Power specral density for the firing rate of E1, in the network with fixed in-degree and
log-normal distribution, respectively. H: Eigenvalue spectrum of the network dynamics for
(w = 7.0) for networks in K and L, respectively. The network with only one PV population
has one positive eigenvalue (and is unstable); however, the network with co-tuned E and PV
subnetworks has remained stable.
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Discussion

In this study, we showed how PV cells can develop co-tuning with E cells by
considering the “network effects” of heterogeneity in the EPSP connections
from E to PV cells and correlated shared input from other layers. More
specifically, we used a known homeostatic inhibitory plasticity rule to show
the self-organization of initially untuned PV cells into subnetworks with rela-
tively high correlations with the excitatory assemblies. This suggests that the
pooling hypothesis [1], when supplemented with correlation patterns of exci-
tatory assemblies and the heterogeneity of the EPSP amplitude, can capture
the co-tuning of PV with E cells, reported in [5, 6], as well as the monotonic
relationship between EPSP and IPSP in reciprocally connected E and PV
cells [6, 17].

We reconciled conflicting studies on the tuning responses of PV cells by
highlighting the difference between individual and population-level measures
for tuning. More specifically, for a network simulation with heterogeneous
parameters, highly correlated pairs with strong reciprocal EPSP and IPSP
were found in both co-tuned and dissimilarly tuned E and PV assemblies.
Therefore, pairwise response similarity between E and PV cells may not
provide a good measure to determine the tuning of the PV cells. Pairwise
measures result in distributions of response similarities (or equivalently, cor-
relation coefficients) for cotuned and dissimilarly tuned pairs that are not
significantly different from each other. In contrast, population measures such
as population response similarity result in well-separated distributions for
co-tuned and dissimilarly tuned PV cells.

A fact that plays a crucial role in our study is the diversity and het-
erogeneity of EPSP amplitudes from E to PV cells. Intracellular in vitro
recordings reveal that in layer 2/3, the EPSP amplitudes from E to PV cells
are much stronger and more diverse than the connections between E cells
[2, 14, 21]. Moreover, highly feature-tuned PV cells have smaller dendritic
fields, but broadly tuned PV cells have longer dendrites with larger dendritic
fields [29]. This suggests that the overall excitatory input to PV cells shapes
their tuning. Consistent with this, we showed that this high variance of the
connection strength from E to PV cells can by chance correlate some groups
of PV cells to some excitatory assemblies. This would create high response
similarity between E and PV cells [4, 6] and results in co-tuning of PV cells to
a group of E cells. This is consistent with the pooling idea but, most impor-
tantly, includes the effect of EPSP variance and heterogeneity into account.

Another component that we employed in our modeling was a source of
shared correlated input. We assumed that this external source defines the tun-
ing of excitatory neurons within an assembly to different input features. It is
known that shared input from cortical layer 4 and also within layer 2/3 forms
fine-scale subnetworks of excitatory neurons in layer 2/3 [19] with stronger
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connections between them [30]; however, the connection strength between
uncorrelated E cells become weaker. These strong E to E connections play a
role in shaping stimulus-specific feature selectivity [20]. In mouse V1, it was
shown that the pattern of correlation between excitatory neurons is strongly
influenced by the external stimuli, emphasizing the importance of feedforward
connections in shaping responses among E cells. However, correlation patterns
among PV cells are much less affected by the external input but rather are
shaped by the local projections from E cells within layer 2/3, reflecting the
importance of recurrent connections in driving response patterns of PV cells
[2]. We employ this evidence in our computational study and show that exci-
tatory assemblies formed via shared correlated input can drive the responses
of PV cells through recurrent connections and form co-tuned subnetworks.

The last component that we considered in our modeling was a homeostatic
plasticity rule that governed the connections between PV and E cells. It is
known that in layer 2/3 of the visual cortex, when excitatory neurons have
a bursting activity, long-term depression (LTD) is induced if the presynaptic
fast-spiking interneuron fires within 100 ms after the excitatory burst [26].
Also, in the mouse auditory cortex, a symmetric STDP curve with potentia-
tion of the inhibitory synapse for spike timing of E and I cells within a short
time frame of 10 ms governs the synaptic changes [23]. In hippocampal slices,
however, a longer interval between the spike emission of E and I cells results
in the suppression of the synapse [22]. A similar STDP curve was also recently
reported to describe the inhibitory synapses from PV cells onto E cells in the
orbitofrontal cortex of mice [25]. This kind of STDP has been shown to result
in postsynaptic firing rate homeostasis [24]. Based on this evidence for the
activity dependent dynamics of synapses from GABAergic PV interneuron to
E cells, we employed a similar symmetric STDP curve for those connections in
our study. Given the slow time scale of inhibitory plasticity [31], we assumed
that the excitatory assemblies were already formed through shared correlated
input from layer 4 (Fig. A1).

Correlations between E and PV cells played an essential role in shaping
the tuned connections from PV to E cells and creating a monotonic EPSP
and IPSP for the reciprocal connections. Ignoring the correlation between
E and PV populations does not capture the tuned weights observed in the
simulations. In a recent study [32], this correlation term was ignored, and the
authors did not capture this phenomenon by only considering heterogeneity in
excitatory weights. In [32], plastic excitatory weights for the connections from
E to PV cells had to be considered, and even a correlated growth dynamics for
the reciprocal EPSP and IPSP amplitudes had to be imposed (embedding the
observed monotonicity in [6] between EPSP and IPSP in the weight update
instead of this relationship emerging from the dynamics). Since the authors
used a stimulus specific form of homeostasis to embed assemblies, inhibitory
assemblies were formed. However, here, we did not assume any correlations in
the weight updates but showed that the correlations between the activities of

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2022. 

this version posted April 13,; https://doi.org/10.1101/2022.04.12.488114doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488114


28

the E and PV cells would be sufficient to get reciprocal and monotonic EPSP
and IPSP weights, consistent with experimental findings [33]. It is important
to note that in our simulations, for very strong EPSP amplitudes, which may
result from a very wide distribution of EPSP onto PV cells, the reciprocal
IPSP amplitude decreased. Such cases comprised a very small percentage of
our data, which did not reflect in our samples in Fig. 6. This suggests that
within similarly tuned subnetworks, E-PV-E motifs within the same or differ-
ent E assembly may exist, and this can cause lateral inhibition with emerging
competition properties. However, in our simulations, the relationship between
EPSP and IPSP was monotonic for the majority of the synapses. Considering
the spatial dependence of EPSP amplitudes [6, 34, 35], this emerging property
provides a detailed balance between excitatory and inhibitory neurons [24],
therefore, neurons are maintained in the balanced state over time [36–39], and
over space [17]. This can be important in stabilizing spatiotemporal patterns
in the cortex.

There is a direct relationship between competition between E assemblies
in a network and its feature tuning and input amplification. In our study,
sensory input to one of the excitatory assemblies caused a significant input
amplification for the delta network (no variance in the E to PV connection
strengths) but no differentiation in PV responses. However, PV responses
changed in the wide network in response to sensory input to one of the exci-
tatory cells. Feature selectivity, input amplification, and competition are all
compromised in wide networks due to the tight tracking of excitatory activi-
ties by the PV subnetworks. In light of the balanced amplification idea [40],
the difference between the excitatory and inhibitory firing rate fluctuations
in co-tuned subnetworks of the wide network are smaller than those in the
delta network. Therefore amplification of the external input (and equivalently,
fluctuations in the spontaneous state) for the wide network will be weaker.
However, for the delta network, the inhibitory firing rate is almost constant,
providing global balance and keeping a relatively fixed sum of all the excita-
tory firing rates in all assemblies combined, with relatively little fluctuation
in the inhibitory subnetwork [41]. This can result into an attractor network
which is mediated by uniform inhibition [41, 42].

In our study, we did not consider somatostatin (SOM) inhibitory subtypes.
It was shown that in OFC, SOM cells expressed Hebbian plasticity in their
connections to to E cells [25]. If SOM cells are tuned to a specific excitatory
population [43], lateral inhibition between E assemblies emerges [25]. This
study showed that random projections from SOM to PV cells can by chance
target a group of PV cells more strongly than other groups. This causes corre-
lations between those PV and E cells that are strongly impinged upon by the
SOM group. As a result of the high correlation between those PV and E cells,
mediated through the SOM group, strong connections from those PV cells to
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the E assembly will emerge. It would be interesting to study the role of ran-
dom projections and heterogeneity from both E to PV and SOM to PV cells
and investigate if any competition between SOM and E cells in determining
the pattern of PV connectivity emerges. Additionally, SOM cells participate
in a disinhibitory circuit through the connections from VIP to E cells and
may paint a more complicated picture when considered in this analysis [44].

We showed that reduced selectivity and input amplification in reciprocally
connected E and PV subnetworks comes as costs for providing circuit stability
[6], as shown in the eigenvalue spectrum, and increased dynamical range of the
excitatory cells. In control theory, negative feedback can expand the system’s
dynamic range and provide robustness to noise. Previous theoretical results
also show that the inhibitory structure that emerged in our study provides a
broader frequency range for network operation [45]. Since the reciprocal PV to
E connectivity structure expands the frequency response of the spontaneous
activity, it can also play a role in shaping gamma oscillations. In fact, it was
observed that inhibiting PV cells caused a suppression of the gamma oscilla-
tions in vivo [46, 47], and their activation caused gamma oscillations [46]. Both
gamma oscillations [46] and strong reciprocal excitatory to inhibitory connec-
tions [48] have been shown to enhance signal propagation and reduce noise in
the network. The theory developed in our study predicts that the reciprocal
connections are responsible for this noise attenuation.
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Methods

Network models

Network simulations were conducted in NEST [49], using Leaky Integrate-
and-Fire (LIF) neuronal dynamics with current based synapses with delta
functions. In all network simulations, PV neurons composed %20 of the net-
work size and the rest of the network was composed of excitatory cells. In our
study, we considered different networks with different sizes and parameters.
More detailed information is available in Appendix A.

For all simulations, the dynamics of each neuron follows

τ v̇ = −v + µ+ σ
√
τξ(t), (1)

in which µ and σ are the mean and standard deviations of the total (external
plus recurrent) input to the cell. In all network studies in the main paper, only
the synapses from PV to E cells were plastic and followed a symmetric STDP
function [24] as follows:

pvstdp(t) = exp(
−|t|
τstdp

). (2)

The variable t represents the time interval between the pre and postsynaptic
spikes, and as opposed to Hebbian learning, the causal relation between them
does not affect the synaptic weight update. Spike emission by the presynaptic
PV cell causes a depression of the synapse. These conditions were shown to be
required for the plasticity rule to ensure postsynaptic firing rate homeostasis
[24].

The weight dynamics from PV to E cells employing the homeostatic
plasticity rule in [24] are composed of two parts, as follows:

ẇ(t) =

+∞∫
−∞

pvstdp(t̂).Cov
(
re(t), ri(t+ t̂)

)
dt̂+

+∞∫
−∞

pvstdp(t̂).(r
∗
e−rtargete )r∗i dt̂

(3)
The first term on the right hand side of the equation above reflects the

contribution of the cross-covariance function between the pre and postsynap-
tic cell activities, represented by Cov

(
re(t), ri(t+ t̂)

)
. We call this term the

“learning signal” which we utilized to justify growth and decay of some
inhibitory weights, specially after firing rate convergence. The second term
represents the effect of mean firing rates (r∗e for the excitatory postsynaptic
neuron and r∗i for the inhibitory presynaptic PV cell). Transient firing rates
converged to stationary solutions within the first few ten seconds of the simu-
lations, in most of our network studies. However, given a constant stationary
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background input, most of PV to E weight changes happened after this
settlement to the stationary mean solution. A mean-field analysis to explain
the emergence of PV weight tuning on the network level can be found in the
Supporting Information in Appendix A.

We considered E to E Hebbian plasticity, as well as E to PV Hebbian plas-
ticity only in Fig. A1 to show that our results do not change when excitatory
weights also obey a standard plasticity rule, such as Hebbian STDP.

Data analysis

To calculate the response similarity between PV and E cells, we considered
individual instantaneous neuronal firing rates as vectors in a high dimensional
space and calculated the cosine between them. In other words, we used the
following formula:

response similarity =
(r1 − r̄1) . (r2 − r̄2)

‖r1 − r̄1‖ . ‖r2 − r̄2‖
(4)

where r1 and r2 are the firing rates of the presynaptic and postsynaptic cells,
and ‖.‖ is the Euclidean norm of the responses for each cell.

To reduce the high dimensional activities of the cells, we used Uniform
Manifold Approximation and Projection (UMAP) for dimension reduction
[28], and we used the cosine measure to identify the distance between data
points for the reduced dimensional representation. This method uses algebraic
topology to preserves more of the global structure of the data, compared to
any other dimension reduction methods.

Average neuronal covariance functions in Fig. 2 were obtained from
average instantaneous neuronal firing rates in E1, E2 and PV1, in temporal
resolution of 1 ms. Fluctuations in the neuronal activities of the network for
an interval of 10 seconds before and after synaptic updates were projected
onto a 2D UMAP space (average neuronal responses were subtracted from
the instantaneous firing rates).

To investigate the role of heterogeneity in connection strengths from E to
PV (and hence from PV to E cells as a result of plasticity) in shaping the
tuning responses of the E cells in Fig. 4, we presented a specific sensory input
(with shared correlated and common uncorrelated components) to the cells
in E1. This sensory input was also composed of shared and common compo-
nents which affected all the excitatory cells in the network. This stimulus was
applied to the network with frozen weights (obtained after 1000 seconds of
simulations with STDP) at t = 120 s, and continued for 50 seconds. Average
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neuronal firing rates for the E and PV populations were plotted for a 100 sec-
ond interval which included this sensory input (t = 100 s to t = 200 s, Fig. 4L).
UMAP plots were obtained from mean-subtracted neuronal responses from
t = 115 s to t = 125 s (Fig. 4H).

For the network simulations in Fig. 5 and Fig. 6, small sensory inputs
(%2 of the total background input to the E cells) were presented to E1, E2,
and E3 populations at t = 112.5 s, t = 115 s and t = 117.5 s, respectively,
with frozen weights obtained 2000 second after the onset of the inhibitory
STDP rule. Labeling of the PV cells was based on the PV responses to these
external sensory inputs, and their response similarity with the excitatory
population responses (population response similarity measure). Instantaneous
firing rates of all neurons were calculated in temporal resolutions of 15 ms,
for a total duration of 7.5 seconds (from t = 112.5 s to t = 120 s). In order to
show the response similarity of the PV and E cells, we subtracted the mean of
the neuronal responses. These neuronal fluctuations were used for the UMAP
plots in Fig. 5.
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Appendix A Supporting Information

Theoretical results for the emergence of PV weight tuning

We study the interactions between the dynamics of leaky integrate-and-fire
(LIF) neurons and the evolution of plastic weights between neurons in different
populations. We show how the inhibitory weights self organize to form stronger
connections to those excitatory populations which project onto them with a
stronger excitatory weight.

The membrane potential dynamics for an LIF neuron which is isolated
from the network is a low pass filter of first order with the dynamics

τ v̇ = −v + µ+ σ
√
τξ(t) (A1)

where µ and σ are the mean and standard deviation of the input signal and ξ(t)
is assumed to be a zero-mean normal Gaussian white noise. When this neuron
is embedded in a network, the mean and standard deviation of the total input
(external plus recurrent input) have to be calculated self-consistently [50].

What correlates excitatory cells is a source of shared input which projects
identical spike trains to all excitatory neurons with equal weight. While
inhibitory neurons receive independent background Poisson input with a
standard deviation of σi

√
τξ(t) affecting their membrane potential, excitatory

neurons receive inputs from two sources: a shared Poisson source which is
common between E cells within an assembly and has a standard deviation
equal to

√
cτ σi ξc1(t), and a background independent source with a standard

deviation of
√

(1− c)τ σi ξ(t). The total variance of the entire external input
impinging on E cells is equal to that of received by the PV cells.

In order to get neuronal correlation functions, it is required to linearize
the dynamics of individual neurons around their operating stationary firing
rates. A transfer function that relates the stationary input to the firing rate
of the neuron is obtained from the stationary solution of the Fokker-Planck
equation which solves a first passage time problem. The stationary firing rate
r is obtained from r = f(µ, σ) where the transfer function f(.) follows [50]

f−1(µ, σ) = τref+τ
√
π

θ−µ
σ∫

vr−µ
σ

eu
2

(1+erf(u)) du = τref+τ
√
π

yθ∫
yr

G(u) du (A2)

To linearize the transfer function around the operating point r∗, we take the
derivative of both sides with respect to µ. This results in

∂f

∂µ
= f2(µ, σ)

τ
√
π

σ
[G(yθ)−G(yr)] = k(µ, σ), (A3)
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where k(µ, σ) represents the slope of the f −I curve at the linearization point,
and yr = vr−µ

σ and yθ = θ−µ
σ .

We choose E1 and E2 to represent the average fluctuations of the firing
rates of individual neurons in the excitatory assemblies, and I1 and I2 to
stand for the dynamic firing rates of the PV neurons. In our model, a stronger
connection weight from E1 to I1 compared to I2 differentiates I1 from I2.
There exists a similar stronger connection weight from E2 onto I2 neurons.

The operating point for excitatory and inhibitory neurons are r∗e and
r∗i , respectively (the stationary solution comes from the solution of coupled
Fokker-Planck equations). Each excitatory population is composed of Ne
neurons, and each inhibitory population has Ni neurons. The probability of
connection between excitatory neurons is p = 0.1, and every other probability
of connection is 4p = 0.4 (hence the factors 4 in equation A4). The connec-
tion weights from an excitatory population j to an excitatory population i
are wij . Two excitatory neurons residing in different excitatory assemblies,
if connected, have a PSP amplitude of J mV . However, neurons within each
excitatory assembly are more strongly connected (PSP amplitude of w J ,
where w > 1). Projection weights from excitatory onto co-tuned inhibitory
neurons are equal to q J , with q > 1, however, projection weights from excita-
tory to dissimilarly tuned inhibitory neurons are equal to J . The variable wik
represents the average connection weight from a PV neuron onto an excita-
tory neuron in assembly k. The fixed (non-plastic) inhibitory weights between
inhibitory neurons are −gJ , where g = 10. All inhibitory weights from I1 and
I2 to all excitatory neurons are initially equal to −gJ , however, inhibitory
plasticity will change these weights, and we are interested in dynamics of
those changes.

The average dynamic mean-field equations for individual neurons around
their steady state values are

τ Ė1 = −E1 + τ p ke(µ, σ) (Ne w11 E1 +Ne w12 E2 − 4Ni wi1 I1 − 4Ni wi2 I2)

+ ke(µ, σ)(
√
cτ σi ξc1(t) +

√
(1− c)τ σi ξ(t))

τ Ė2 = −E2 + τ p ke(µ, σ) (Ne w12 E1 +Ne w11 E2 − 4Ni wi2 I1 − 4Ni wi1 I2)

+ ke(µ, σ)(
√
cτ σi ξc2(t) +

√
(1− c)τ σi ξ(t))

τ İ1 = −I1 + τ p ki(µ, σ) (4q Ne J E1 + 4Ne J E2 − 4Ni gJ I1 − 4Ni gJ I2)

+ ki(µ, σ)(
√
τ σi ξ(t))

τ İ2 = −I2 + τ p ki(µ, σ) (q Ne J E1 + 4q Ne J E2 − 4Ni gJ I1 − 4Ni gJ I2)

+ ki(µ, σ)(
√
τ σi ξ(t))

(A4)
which in matrix form can be represented as
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Ė1

Ė2

İ1
İ2

 = −1

τ


E1

E2

I1
I2

+ p


ke Ne w11 ke Ne w12 −4 ke Ni wi1 −4 ke Ni wi2
ke Ne w12 ke Ne w11 −4 ke Ni wi2 −4 ke Ni wi1
4q ki Ne J 4 ki Ne J −4 ki Ni gJ −4 ki Ni gJ
4 ki Ne J 4q ki Ne J −4 ki Ni gJ −4 ki Ni gJ



E1

E2

I1
I2



+


ke
√
c/τ σi 0 0 0 ke

√
(1− c)/τ σi

0 ke
√
c/τ σi 0 0 ke

√
(1− c)/τ σi

0 0 0 0 ki
√

1/τ σi
0 0 0 0 ki

√
1/τ σi



ξc1
ξc2
0
0
ξ


(A5)

Note that σi which appears as the standard deviation of the external inputs
is different than σ which appears in the slope of the f-I curve. The latter
has two components which include the external standard deviation and also
the internally generated standard deviation [50]. The fluctuation of the rate
dynamics around the fixed point can be written in the following general form:

Ẋ = −AX +B Ξ

X =


E1

E2

I1
I2

 ;

A = p


ke Ne w11 − 1

τ p ke Ne w12 −4 ke Ni wi1 −4 ke Ni wi2
ke Ne w12 ke Ne w11 − 1

τ p −4 ke Ni wi2 −4 ke Ni wi1
4q ki Ne J 4 ki Ne J −4 ki Ni gJ − 1

τ p −4 ki Ni gJ

4 ki Ne J 4q ki Ne J −4 ki Ni gJ −4 ki Ni gJ − 1
τ p

 ;

B =


ke
√
c/τ σi 0 0 0 ke

√
(1− c)/τ σi

0 ke
√
c/τ σi 0 0 ke

√
(1− c)/τ σi

0 0 0 0 ki
√

1/τ σi
0 0 0 0 ki

√
1/τ σi


(A6)

In this formalisation, the inhibitory weights from I1 and I2 to E1 and E2 are
also dynamic and operate on a much slower time scale than the dynamics of
the firing rates on the left side of (A5). To obtain the governing equations
for individual weight dynamics, we assume that these weights which also
play a role in shaping the dynamics of neuronal activities in equation A6 are
piece-wise constant (separation of time scales).

To obtain the slow dynamics of the inhibitory weights onto the excitatory
neurons (wi1 and wi2), as suggested in [24], the cross correlation function
between the pre (inhibitory) and post (excitatory) synaptic firing rates, as
well as the firing rates of the excitatory and inhibitory neurons at each
moment in time are required:
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ẇi1 =

+∞∫
−∞

pvstdp(t̂) {C
(
I1(t), E1(t+ t̂)

)
+ (r∗e − rtargete ) r∗i )} dt̂

ẇi2 =

+∞∫
−∞

pvstdp(t̂) {C
(
I1(t), E2(t+ t̂)

)
+ (r∗e − rtargete ) r∗i )} dt̂

(A7)

Where the symmetric stdp function which defines pvstdp(t) is exp(−|t|/τstdp).
The functions C

(
I1(t), E1(t+ t̂)

)
and C

(
I1(t), E2(t+ t̂)

)
are the cross

covariance functions between I1 and E1, and I1 and E2, respectively. The
variables r∗e and r∗i are the solutions for the average firing rates of the cells,
which also depend on the weights wi1 and wi2, and are functions of time, but
the homeostasis provided by the inhibitory plasticity ensures that the average
firing rates of the excitatory cells in E1 and E2 converge the target value
rtargete . Due to this dependence on time, and also dependence of the rates and
weights on one another, the whole set of equations (A7) and (A5) have to be
solved self-consistently.

According to (A7), in order to understand the dynamics of weigh evolution
for wi1 and wi2, we need to first evaluate the covariance functions between the
excitatory and inhibitory average neuronal dynamics, and then multiply them
by the exponential stdp function provided by pvstdp. It is known from [51]
that for coupled Ornstein-Uhlenbeck (OU) processes, the expected covariance
matrix can be obtained as follows

C(t̂) =< X(t), X(t+ t̂) >=

{
exp(At̂)Q if t̂ > 0

Q exp(−AT t̂) if t̂ < 0
(A8)

where Q is the solution to the following Lyapunov equation, which incorporates
the correlation structure of the input in matrix B (defined in equation (A6)).

AQ+QAT = B BT

The challenge is to write the weight dynamics (A7) in a self-consistent way,
such that it only depends on the weights of the network and the correlation
structure in the input written as a function of coupling weigths. Since the
right hand side of the equations in (A7) are integrals of exponential functions
multiplied by a covariance function, we can evaluate the integral in the Laplace
domain. For that, first we need to find the Laplace transforms of the covariance
functions in equation (A8). Since the impulse response of the general system
ẏ = A y is exp(A t) in time domain, and (sI−A)−1 in the Laplace domain (s
is the complex variable defined in the Laplace transform, and I is the identity
matrix), the matrix exponentials in equation (A8) can easily be replaced by
(sI−A)−1 and (sI +AT )−1, respectively.
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C(s) = =

{
(sI−A)−1 Q if t̂ > 0

Q (sI +AT )−1 if t̂ < 0
(A9)

and the element on row i and column j of matrix C(s) will be represented
by Ci,j(s). The covariance function between the inhibitory populations and
the excitatory populations for all positive and negative lags can therefore be
achieved as following:

C (I1, E1) (s) = [(sI−A)−1 Q]3,1 + [Q (sI +AT )−1]3,1

C (I1, E2) (s) = [(sI−A)−1 Q]3,2 + [Q (sI +AT )−1]3,2
(A10)

This can help to evaluate the integrals in equation (A7) because the integral
of any function from t = 0 to t = ∞ can be calculated by evaluating that
function at s = 0 in the (one-sided) Laplace domain. It is also known that
the product of a linear system and an exponential function causes a shift
in the Laplace domain. In other words, for the stdp function in the form of
exp(−t/τstdp), the integrals in equation (A7) in the Laplace domain should be
evaluated at s = 1/τstdp. Recruiting these mathematical tricks, equations (A8)
and (A7) can be rewritten as

ẇi1 = [((s+
1

τstdp
)I−A)−1 Q]3,1

∣∣∣∣
s=0

+ [Q ((s+
1

τ i−
)I +AT )−1]3,1

∣∣∣∣
s=0

+ 2 τp+ (re(t)− rtargete ) ri(t)

ẇi2 = [((s+
1

τstdp
)I−A)−1 Q]3,2

∣∣∣∣
s=0

+ [Q ((s+
1

τ i−
)I +AT )−1]3,2

∣∣∣∣
s=0

+ 2 τp+ (re(t)− rtargete ) ri(t)
(A11)

where re(t) and ri(t) are evaluated in a recursive way and the whole sys-
tem of equations above is solved in discrete domain. Starting from identical
initial conditions for wi1(0) and wi2(0), and the corresponding solutions for
re(0) and ri(0), the weight dynamics of wi1(t) and wi2(t) can be obtained
iteratively. Since the matrices A and AT include the dynamical variables wi1
and wi2, we will end up with a set of coupled ODEs that describe the evolu-
tion of these variables. This can result in a state space plot for the dynamics
of these weights.

Table of parameters used in network simulations

Table of parameters for different network studies in the paper is as follows.
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Supplemental Figures

Network with log-normal E to PV distribution and
excitatory Hebbian plasticity
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Fig. A1 Emergence of tuned PV to E populations in a fully plastic network
with fixed PV to PV weights. A: Network initially composed of two E assemblies with
distinct shared input sources, and one PV population. B: Excitatory weight within and
between E assemblies initially depress, which merely reflects the transient dynamics in the
weight evolution. Weights within E assemblies are stronger than those between assemblies.
C: Sum of IPSP projections of all PV cells to E1 and E2 assemblies (outgoing PV measure)
define 2D vectors that are all very close to each another (left). After learning, some PV
cells develop bigger total IPSP sums to one of the E assemblies (right). PV cells with bigger
IPSP sum to E1 are labeled as PV1, and the rest of the PV cells are labeled as PV2 cells.
D: Connectivity matrix for the connections from PV to E cells. E: Average weight evolution
for the connections from PV1 to E1 (more negative weights indicate stronger connections)
and to E2. F: Excitatory weights from E to PV cells follow a Hebbian STDP, and after
turning on the plasticity mechanism, initially depress. However, E1 to PV1 weights become
stronger as a function of time then E1 to PV2 weights. This, consequently, plays a role in
assigning PV clusters. G: Distribution of PV to E1 and E2 assemblies indicate that PV1 cells
projected more strongly to E1 cells, by virtue of their labeling. H: left: Strong projections
from E1 to PV1 and relative weaker projections from E1 to PV2 (also by symmetry, right:
strong projections from E2 to PV2 and relative weaker projections from E2 to PV1) are the
main drive of PV tuning.
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Covariance structure for wide, narrow and delta networks
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Fig. A2 Tuned PV to E assemblies decreases competition between assemblies.
A: Wide network and its corresponding results from B to D. B: Firing rates of the excitatory
and inhibitory assemblies converge to their stationary rate very quickly. After a few ten
seconds of simulation, the firing rates of all neurons reach a steady state value. Dashed
line indicates the onset of stationary mean firing rate for the network. C: Product of the
covariance functions in Fig. 4C with the symmetric STDP function results in a bigger net
potentiation for q = 2.5. With decreasing values of q the integral becomes more negative
which indicates depression of the inhibitory weight. q = 1.0 results in the most negative value
(more depression). D: Covariance function between the excitatory assemblies are negative
with a relatively smaller amplitude around the zero-lag value. E: For the narrow network, the
negative amplitude for the cross-covariance function between the excitatory assemblies takes
intermediate values. F: The largest negative amplitude for the cross-covariance functions
belong to the network with delta distributed projections from E to PV cells. G: For the
delta network, cross-covariance functions between PV1 and all other excitatory assembly
firing rates are mainly positive and identical between assemblies.
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Effect of wide vs narrow E to PV weights in shaping the
relationship between EPSP and IPSP
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Fig. A3 Effect of high and low variance in E to PV connection strength on
the reciprocal PV to E connection weights. A: Network schematic for connections
with high variance for the log-normal distribution. B: Scatter plot of EPSP and IPSP with
pairwise response similarity as color codes for the network in A. Co-tuned and dissimilarly
tuned pairs have been plotted separately. Very high values of EPSP result in decresed IPSP
amplitudes for large values of EPSP. C: Network schematic for connections with low variance
for the log-normal distribution. D: EPSP and IPSP relationship and response similarity
between pairs of reciprocally connected PV and E cells for low variance connections follows
a linear trend.
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Labeling PV cells based on their maximum summed IPSP
projections onto E assemblies (outgoing PV measure)
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Fig. A4 Labeling PV cells based on their maximum outgoing summed IPSP
projections (outgoing PV measure) in the evoked state. A: Sum of the IPSP ampli-
tudes of the projection weights from a single PV cell to all neurons in E1, E2, and E3 form
one small 3-dimensional cluster of vectors, before plasticity operates. Colors are inherited
from B after assignment of feature preferences. B: After plasticity is turned off, PV cells
divide into 3 distinct groups with more preference to connect strongly to one of the exci-
tatory assemblies: blue: preference to strongly connect to E1; red: preference to strongly
connect to E2; green: preference to strongly connect to E3. C: Venn diagram for the labeling
of PV cells that are assigned to PV1 based on 3 measures: outgoing PV, population simi-
larity, and individual similarity. The overlap between the last two measures is almost %100.
D: Venn diagram for the labeling of PV cells that are assigned to PV1 based on 3 measures:
outgoing PV, population similarity, and incoming E. There is a large overlap between any
two measures. E: Connectivity matrix from PV to E cells after labeling PV cells based on
the outgoing PV measure. F: Distribution of the total IPSP weights from neurons in indi-
vidual PV populations to E1 indicate that PV1 has the highest preference of connection to
E1, hence these group of PV cells were labeled as PV1 (left). Similarly, PV2 (PV3) neurons
have the strongest projections onto E2 (E3). G: Raster plot of neuronal activities for the
last 300 ms of ongoing plasticity. H: Total EPSP projections from individual cells in E1 onto
the assigned PV populations indicate that E1 had a stronger total projection weight onto
PV1 neurons (left). A similar relation holds for other excitatory assembly projections: e.g
summed EPSP weights from E3 onto PV3 were more skewed towards bigger values (right).
K,M: 2-dimensional UMAP projection of the neuronal activities for 7.5 seconds of simula-
tion time according to their distance in the high dimensional space for the spontaneous (K)
and evoked (M) state. Planar density of co-tuned excitatory and PV cells are plotted sepa-
rately for each feature defined by shared correlated input. L: Evoked responses of the E and
PV subnetworks as a result of sensory stimulation of individual E assemblies.
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pairwise versus population measures can result in different
conclusions for the tuning of PV cells
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Fig. A5 Pairwise and population measures for defining PV subnetworks. A:
For reciprocally connected E and PV cells in the spontaneous state, response similarity
increases with increasing values of EPSP. Strength of IPSP increases monotonically with
pairwise correlation coefficient. B: left: EPSP and IPSP values for 2000 sample of reciprocally
connected pairs. middle, right: Reciprocal EPSP and IPSP values for pairs belonging to
similarly tuned populations and dissimilarly tuned populations. C: Distribution of cotuned
and dissimilarly tuned pairs. Contour lines define area which contains %95 of the data for
each group. Mean EPSP and mean IPSP for each group is indicated by a star (orange:
cotuned group, gray: dissimilarly tuned group). D: Evolution of IPSP distributions from PV3

cells to E1 (oppositely tuned) and E3 (similarly tuned) cells as a function of time. E: Average
connectivity matrix for the weights from PV subnetworks onto excitatory assemblies. F:
Difference between the IPSPs for the triplets of E-PV-E as a function of cosine similarity
between the excitatory cells and the difference between the projecting excitatory weights
onto the shared PV cell. As ∆WE increases, ∆WI also increases. G: Density distribution of
cosine similarity between pairs of E and PV cells belonging to similarly or dissimilarly tuned
E assemblies are not distinguishable, however, if response similarity between individual PV
cells and population responses of different E assemblies are considered, the distributions
of the response similarities for the co-tuned and dissimilarly tuned PV cells become more
separable. H: Summed IPSP of individual PV cell projection onto similarly (right) and
dissimilarly (left) tuned E cells as a function of the sum of the EPSP received by the E
assemblies. The colorbar defines cosine similarity of the PV cells with the average excitatory
populations K: 2D scatter plots for cotuned an dissimilar pairs and contour lines defining
regions in the space with %95 of the data for each case. Stars represent the mean values
of the total EPSP and IPSP for each case. Summed IPSP as a function of summed EPSP
on average takes bigger values when the sum of the EPSPs are large (neurons are similarly
tuned).
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Covariance between population firing rates for the network
with two assemblies
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Fig. A6 Covariance between subnetwork activities in Fig. 7. A,C: Auto-covariance
function for the network with fixed in-degree and log-normal distribution for w = 2.5. B: For
the network with fixed in-degree and w = 2.5, both covariance functions between one of the
PV population activities, and the firing rate of E1 and E2 are almost identical. B: For the
network with log-normal E to PV distributions, PV1 and E1 are positively correlated, while
PV1 and E2 are negatively correlated. C: For the fixed in-degree network at w = 7.0, the
covariance functions between PV1 and E1 and E2 are strongly positive and identical. D: At
w = 7.0, for the network with log-normal distribution, the covariance function between PV1

and E1 is strictly positive, while the covariance between PV1 and E2 is strictly negative. F,H:
Auto-covariance function for the network with fixed in-degree and log-normal distribution
for w = 7.0.
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