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Abstract

Background. Innovative cancer immunotherapy approaches aim at combining immune
checkpoint inhibitors with other immunomodulatory agents. Epigenetic regulators can control
immune-related genes, therefore targeting them with specific inhibitors may be a potential way
forward. Here we identified immune-related signatures induced by four classes of epigenetic drugs
in human melanoma cells to define the most promising agent and to understand its biological
activity in-vitro, in-vivo and in clinical samples.

Methods. Human melanoma cell lines were characterized for mutational and
differentiation profile and treated with inhibitors of DNA methyltransferases (guadecitabine),
histone deacetylases (givinostat), bromodomain and extraterminal domain proteins (JQ1 and OTX-
015) and enhancer of zeste homolog 2 (GSK126). Drug-specific gene signatures were identified by
Clariom S and Nanostring platforms. Modulation of 14 proteins was determined by quantitative
western blot. Ingenuity Pathway Analysis (IPA) identified Upstream Regulator (UR) molecules
explaining changes in gene expression and biological activity of drugs. Gene set enrichment and
IPA were used to test modulation of guadecitabine-specific gene and UR signatures, respectively,
in on-treatment tumor biopsies from melanoma patients enrolled in the Phase Ib NIBIT-M4

Guadecitabine + Ipilimumab Trial.

Results. Drug-specific gene and UR signatures were identified for each of the four
inhibitors. Immune-related genes were frequently upregulated by guadecitabine, to a lesser
extent by givinostat, but downregulated by JQ1 and OTX-015. GSK126 was the least active drug.
Treatment of melanoma cells with combination of two epigenetic drugs revealed a dominant
effect of guadecitabine and JQ1 on immune-related gene modulation. Drug-specific modulatory
profiles were confirmed at the protein level. The guadecitabine-specific UR signature was
characterized by activated molecules of the TLR, NF-kB, and IFN innate immunity pathways and

was induced in drug-treated melanoma, mesothelioma, hepatocarcinoma cell lines and human
2
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melanoma xenografts. Most of the guadecitabine-specific signature genes (n>160) were
upregulated in on-treatment tumor biopsies from NIBIT-M4 trial. Progressive activation of
guadecitabine UR signature molecules was observed in on-treatment tumor biopsies from
responding compared to non-responding patients.

Conclusions. Guadecitabine was the most promising immunomodulatory agent among
those investigated. This DNA methyltransferases inhibitor emerged as a strong inducer of innate
immunity pathways, supporting the rationale for its use in combinatorial immunotherapy

approaches.
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Introduction

Following the approval 10 years ago of the anti-CTLA-4 antibody ipilimumab for treatment
of metastatic melanoma [1], the management of an increasing spectrum of solid tumors has been
revolutionized by the introduction of immunotherapy based on immune checkpoint inhibitors
(ICl). Antibodies targeting CTLA-4 or the PD-1/PD-L1 axis have been approved for the treatment of
19 cancer types and two tissue-agnostic conditions [2]. A recent meta-analysis on 23,760 patients
and 37 Phase lI/Ill trials, has shown that ICI immunotherapy provides a survival advantage
compared to control treatments irrespective of age, sex and ECOG performance status [3]. In spite
of these remarkable clinical achievements, only a fraction of patients obtains durable complete
responses, even in the most responsive tumor types, and both intrinsic and acquired resistance to
ICl is frequent [4]. Therefore, there is an urgent need to design improved immunotherapy
approaches. One of the options being tested in early Phase I/l trials is the association of ICls with
immunomodulatory drugs [5,6]. In support of these combinatorial immunotherapy approaches,
the recently completed Italian Network for Tumor Biotherapy (NIBIT) Phase Ib NIBIT-M4 trial [6],
based on the association of ipilimumab with guadecitabine in advanced melanoma, has shown
significant tumor immunomodulatory effects and preliminary evidence of promising clinical
activity.

Inhibitors targeting molecules involved in epigenetic regulation have attracted
considerable interest in the field of immuno-oncology, as several of these drugs have immune-
related effects on tumor cells, as well as on immune cells, that could potentially synergize with ICI
[5, 7, 8]. A large series of preclinical studies has shown that epigenetic drugs targeting DNA
methyl transferases (DNMT), histone deacetylases (HDAC), enhancer of zeste homolog 2 (EZH2),
bromodomain and extra-terminal domain (BET) proteins, and lysine-specific demethylase 1 (LSD-

1), when combined with ICI, can contribute to the overall anti-tumor efficacy of immunotherapy,
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by affecting the structure of the tumor immune landscape, the generation of anti-tumor
immunity, and by modulating immunosuppressive mechanisms and immune escape processes [5,
7, 8]. On the other hand, neither single epigenetic drugs, nor any class of drugs targeting
epigenetic regulators, can elicit all of these immunomodulatory effects. Instead, there is a
prominent drug-related specificity. For example, DNMT inhibitors can prevent T cell exhaustion
[9], activate the interferon response pathway [10], rescue cGAS and STING gene expression [11]
and improve antigen processing and presentation [12]. HDAC inhibitors, alone or in association
with DNMT inhibitors, can promote T cell recruitment at tumor site [13, 14], reprogram tumor
associated macrophages and reduce frequency/suppressive function of Tregs and MDSCs [15, 16].
EZH2 inhibitors can rescue MHC class | transcription [17] and counteract melanoma
dedifferentiation [18]. BET inhibitors can downregulate PD-L1 expression [19] and maintain CD8" T
stem cell memory and T central memory differentiation states [20].

The emerging picture is a heterogeneous landscape of diverse and sometimes opposite
immune-related activities on either tumors or the tumor microenvironment, or both, by different
classes of epigenetic drugs [21, 22]. This immunomodulatory complexity contributes to explain
why early combination immunotherapy trials are not focusing on a single epigenetic drug or a drug
class. In fact, among >80 recently reviewed Phase I/Il combination immunotherapy trials, 15
different inhibitors directed at five classes of epigenetic targets are being tested in association
with 9 different ICI [5].

To foster progress in the field of epigenetic immuno-modulation here we carried out a
comparative profiling of signatures induced by four epigenetic drugs representing the classes of
DNMT, HDAC, BET and EZH2 inhibitors and tested in the melanoma context, a tumor type
currently treated by immunotherapy. We defined the breadth of drug-specific immune-related

signatures in neoplastic cells fully characterized for genetic background and differentiation profile.
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We found that guadecitabine is a strong immunomodulatory agent promoting activation of innate

immunity pathways both in-vitro and in-vivo in patients treated with this DNMT inhibitor.
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Materials and Methods

Melanoma cell lines. Melanoma cell lines (n=14) were established, maintained and
routinely tested for the absence of mycoplasma contamination by PCR, as previously described
[23]. Origin of the cell lines from primary lesions (n=1) or from metastases (n=13),
histopathological features of the corresponding primary melanoma, cell line authentication by STR
profiling (Gene-Print10 kit, Promega) and mutational profile by targeted NGS are described in
Table S1A-D. The melanoma cell lines were representative of the main molecular subtypes:
BRAF™/NRAS"™ (n=10), BRAF"'/NRAS™" (n=3), and BRAF"‘/ NRAS"" (n=1). Expression in n=10
melanoma cell lines of the genes targeted by epigenetic drugs (Fig. S1) was evaluated as described
in Supplementary Methods. Mesothelioma cell lines (MPP-89, MM98 and MES2a) were obtained
from pleural effusion of mesothelioma patients, cultured, and treated with guadecitabine as
previously described [24].

Epigenetic drugs and treatments. Melanoma cell lines were treated with the following
drugs: the DNMT inhibitors Decitabine (Selleckchem) and Guadecitabine (MedChemExpress LLC),
the HDAC inhibitor Givinostat (ITF-2357, Selleckchem), the BET inhibitors JQ-1 (Selleckchem) and
OTX015 (Selleckchem), the EZH2 inhibitor GSK-126 (Selleckchem), and the CDK4/6 inhibitor
Abemaciclib (Selleckchem). Susceptibility of ten melanoma cell lines to a range of doses between
7.8 and 3,000 nM of all the drugs was assessed by the 3-(4,5)dimethylthiazol-2,5-
diphenyltetrazolium bromide (MTT) assay at 96h as described [25]. On the basis of the dose-
response curves, drug doses for all subsequent experiments were tailored for each cell line and for
each drug to achieve, in all instances, a response >60% of control in the MTT assay (Table S2A, B).
For all subsequent assays, melanoma cells were seeded at 1.25x10%/mL in T75 flasks (Greiner Bio-
One) with RPMI-1640 medium (Life Technologies Limited) supplemented with 4% FCS (Biological
Industries) without antibiotics. Since the activity of epigenetic drugs is coupled to cell proliferation

[26], melanoma cells were treated twice with each drug (at T=24h and T=72h) and then evaluated

7
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at T=144h. For some experiments melanoma cells were treated with all possible combinations of
two out of the four epigenetic drugs.

NGS analysis. DNA was extracted from 0.5-1x10° melanoma cell lines by Purelink Genomic
DNA Mini Kit (Invitrogen). RNAse treatment was carried out by RNAse cocktail (Invitrogen).
Quantitative assessment of DNA was performed by a Nanodrop 2000 spectrophotometer and DNA
integrity was confirmed by gel electrophoresis. Next generation sequencing (NGS) assays on cell
lines DNA were done as described in Supplementary Methods.

RNA extraction and gene expression analysis. RNA was extracted from melanoma cell lines
by TRIzol (Thermo Fisher Scientific). Melanin removal was carried out by the CTAB-UREA method
[27]. Samples were treated with DNase (Qiagen) and purified by RNeasy MinElute Cleanup Kit
(Qiagen). The quality of total RNA was first assessed using the RNA 6000 Pico Assay RNA chips run
on an Agilent Bioanalyzer 2100 (Agilent Technologies). RNA was also extracted from tumor
nodules previously obtained from immunodeficient mice treated or nor with guadecitabine and
bearing human melanoma cell line 195 xenografts [28, 29]. Gene expression analysis was
performed as described in Supplementary Methods.

Quantitative Western blot. SDS-PAGE was performed with 30 pg of protein lysate on 4—
12% NuPAGE Bis-Tris (Thermo Fisher Scientific), in MOPS buffer as described [23]. Primary
antibodies (Table S3) were diluted in milk 5% or BSA 5% in TBST as described [23] and incubated
overnight. Development was performed with the ECL normal western blot detection system by the
chemiluminescence method. Images were acquired with the Alliance Imaging System (Uvitec).
Densitometric analysis was carried out by Quantity One software (Bio-Rad Laboratories Inc.).
Normalized treated/control ratios were computed on the basis of background-adjusted density
values and then visualized by a color code.

Data analysis. The Transcriptomics Analysis Console (TAC) software (Applied Biosystems)

was used to identify significantly modulated genes by treatment of two melanoma cell lines
8
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(VRG100 and CST30) treated with Guadecitabine, Givinostat, JQ1, OTX-015, GSK126 or
Abemaciclib, and of melanoma nodules removed from immunodeficient mice treated with
Guadecitabine. Analysis settings were as follows: gene level fold change >|1.2|, gene-level p
value: <0.05; gene-level FDR: <0.05. Nanostring data were analyzed with nSolver software 4.0
(Nanostring Technologies) as described in Supplementary Methods. VENNTURE software [30],
allowing Edwards-Venn diagram generation for multiple dataset analysis, was used to classify all
genes with significant modulation by any of the treatments. Ingenuity Pathway Analysis (IPA 8.5,
www.ingenuity.com) was used, as described in Supplementary Methods, to carry out Upstream
Regulator (UR) analysis on: a) significantly modulated genes by different treatments; b)
differentially expressed genes in pre-therapy and on-treatment lesions from responding vs non
responding patients from the NIBIT-M4 trial [6]. IPA was also used for canonical pathway analysis
as described in Supplementary Methods. RNA-seq and DNA methylation data from tumor samples
obtained at baseline (week 0), at week 4 and week 12 of treatment were retrieved from the
published NIBIT M4 Phase Ib trial [6]. Raw data as FASTQ files of melanoma patient’s biopsies
were aligned to the human reference genome (GRCh38/hg38) using STAR version 2.7.0b [31] and
the gene expression level was quantified using featureCounts version 1.6.3 [32]. Downstream
analyses were performed in the R statistical environment. EDASeq package [33] was used to
normalize the count matrix using GC-correction for the within normalization step and upper-
quantile for the between phase. EdgeR package [34] was used to identify differentially expressed
genes at week4 and weekl12 compared to weekO and at weekl2 compared to week4. The
guadecitabine-specific gene signature (upregulated genes), identified in this manuscript, was used
to construct a heatmap of the Log2 fold changes for the three different comparisons.
ClusterProfiler package [35] was used to perform and visualize GSEA pre-ranked analyses using the

guadecitabine-specific gene signature in each comparison.
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Results

Epigenetic drugs modulate expression of 20 gene families. A panel of melanoma cell lines
was fully characterized for tissue of origin (Table S1A), expression of epigenetic drug targets (Fig.
S1), mutational profile (Table S1D), differentiation-related signatures (Fig. S2) as defined by Tsoi et
al [36], as well as for susceptibility to four epigenetic drugs (Fig. S3 and Table S2A, B). Two of
these cell lines (VRG100 and CST30) were selected as examples of divergent transcriptomic
profiles found in melanoma (Fig. S4). Gene modulation in these two lines by DNMT
(decitabine/guadecitabine), HDAC (givinostat), BET (JQ1l) and EZH2 (GSK126) inhibitors was
investigated by whole genome gene expression analysis. The CDK4/6 inhibitor abemaciclib, a drug
with immunomodulatory activity unrelated to epigenetic regulation [37], was also included in
these experiments. The five drugs modulated 6% to >30% of the genes in the two cell lines (Fig. S5)
and, based on Edwards-Venn diagrams [30], showed both drug-specific as well as shared
modulatory activities (Fig. S6). Guadecitabine, givinostat, JQ1, GSK-126 and abemaciclib exerted
pleiotropic modulatory activities on 20 gene families grouped into 7 biological functions (Fig. 1),
including epigenetic regulation, proliferation, immune regulation, enzymatic activity, structural
function, adhesion and cellular differentiation. The drugs elicited variable modulatory activity on
epigenetic regulator genes (DNMT, HDAC, BET and PRC2 components), and on genes encoding
histones and nuclear pore complex interacting proteins (NPIPA genes). Guadecitabine, givinostat
and JQ1 were the most active drugs, followed by GSK-126, in modulation of genes encoding HLA-
I/Il and antigen processing machinery (APM) components, heat shock proteins, IFN (IFI and IRF),
TNF/TNFR and TGF(B pathways. These immune-related genes were frequently upregulated by
guadecitabine and givinostat, but downregulated by JQ1 (Fig. 1).

Guadecitabine is the most active drug in upregulation of immune-related genes, while
JQ1 is a strong suppressor of immune-related gene expression. Immunomodulation emerged as a

dominant feature of the epigenetic drugs in the two cell lines VRG100 and CST30. Therefore, we
10
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focused on the quantitative determination of 731 immune-related genes, present in the
Nanostring Cancer Immune panel and re-classified by us into 21 functional classes (Fig. S7). In
these experiments we used the whole panel of melanoma cell lines. Quantitative analysis (Fig. S8)
and hierarchical clustering of Nanostring data, according to the 21 functional classes (Fig. S9),
indicated that guadecitabine and givinostat had a predominantly positive effect on immune-
related gene expression, while JQ1 induced frequent gene downmodulation. To reduce the
complexity emerging from the gene-level analysis (shown in Table S4) of the modulatory effects of
all drugs on the 21 functional classes, we used ad-hoc developed metrics. This approach (Fig. 2)
allowed to visualize the proportion of genes being significantly modulated in each gene class and
the direction of the most frequent effects by each drug (in terms of up- or down-regulated genes).
Guadecitabine and givinostat mostly induced upregulation of immune-related genes in the
majority of the cell lines, while the BET inhibitor JQ1 produced the opposite effects (Fig. 2).
GSK126 and abemaciclib were the least active drugs and also showed cell line-specific effects.
Immune-related gene modulation by the three most active drugs was observed across the
melanoma cell line panel without any clear association with the mutational or differentiation
profile of the cell lines (Fig. 2). Two of the cell lines (BNV13 and GRD43) were treated with
decitabine, the active metabolite of guadecitabine, yielding similar results to the cell lines treated
with guadecitabine (Fig. 2). Guadecitabine was the most active drug in upregulation of genes
belonging to the following functional classes: cancer testis, adhesion molecules, positive/negative
co-stimulation, myeloid-related, cytokines and receptors, T/NK related, immune cell
lineage/differentiation, regulation of inflammation, TNF/TNFR pathway, Type I-lI-lll IFN pathways
and intracellular signaling (Fig. 2 and Table S4 for gene level analysis). The BET inhibitor JQ1 was
the most active drug in inducing downregulation of selected genes related to immune cells
lineage/differentiation markers, TNF/TNFR pathway, Type I-lI-lll IFNs pathways, intracellular

signaling and transcriptional regulation, TLR pathway, HLA Class I/ll and antigen presentation
11
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pathways (Fig. 2 and Table S4 for gene-level analysis). Nanostring analysis of a subset of six cell
lines treated with a different BET inhibitor (OTX-015), tested in clinical trials [38], confirmed the
predominant down-modulation of immune-related genes by this class of epigenetic drugs (Fig.
S10).

By exploiting Nanostring data from all cell lines we derived all the epigenetic drug-specific
gene signatures listing the most frequently modulated genes (Fig. S11). The guadecitabine-specific
and the JQ1-specific gene signatures contained each ~170 genes, mostly being upregulated by the
former drug while being downregulated by the latter. The givinostat-specific gene signature
contained 128 genes (several shared with the guadecitabine signature) while the GSK126 signature
contained 40 genes (Fig S11).

Combinatorial treatments with epigenetic drugs indicate a dominant effect of
guadecitabine and JQ1 on immune-related gene modulation. Melanoma cells from the panel
were treated with all six binary combinations of the four epigenetic drugs (guadecitabine +
givinostat, guadecitabine + JQ1, guadecitabine + GSK126, givinostat + JQ1, givinostat + GSK126,
JQ1 + GSK126). Gene modulation induced by the combinations was then measured by Nanostring
Cancer Immune panel and compared to the effects of single drugs (Table S5). In most instances,
combinatorial treatments did not enhance gene modulation compared to single treatments.
Moreover, the effect of a “dominant” drug was evident. In fact, association of guadecitabine with
givinostat or with GSK-126 replicated the pattern of immune-related gene upregulation exerted by
guadecitabine alone (Table S5). Similarly, any association of JQ1 with the other drugs replicated
the dominant suppressive effect on immune-related gene expression exerted by JQ1 alone (Table
S5). These results argue against the possibility of achieving more effective modulation of immune-

related genes by combining two epigenetic drugs belonging to different classes.

12
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Immune-related genes modulated by guadecitabine belong to the “low expression/high
methylation” class. Guadecitabine is expected to induce upregulation of genes subjected to
negative regulation by promoter methylation [39]. Therefore genes in the guadecitabine signature
should be characterized by high levels of methylation and low expression. To test this hypothesis,
we retrieved data on gene expression and DNA methylation of a large set of melanoma cell lines
from the CellMinerCDB database [40]. We defined a gene expression/methylation classification in
4 subsets (a,b,c and d in Fig. S12A-C) by setting appropriate methylation and expression
thresholds. Then this classification was extended to all the genes in the guadecitabine-specific
signature (Fig. S13). We found that most of them were indeed characterized by high methylation
and low expression in most cell lines, namely they belong to group b). We then retrieved gene-
specific methylation and gene expression data previously obtained on tumor samples obtained at
week 0 (baseline, w0), at week 4 (w4) and week 12 (w12) in the context of the guadecitabine +
ipilimumab NIBIT-M4 clinical trial [6]. We focused on the subset of the cancer testis (CT) genes ,
that can be modulated by guadecitabine and that have tumor-restricted expression [41]. By
adopting a scoring system described in Fig. S14 A, B, we found frequent increased expression of CT
genes associated with reduction of their methylation level in tumor samples obtained at w4 and
w12 of treatment, compared to w0 biopsies (Fig. S14C).

Epigenetic drugs modulate expression of immune-related proteins in melanoma. The
immuno-related activity of the epigenetic drugs was assessed by quantitative Western blot
analysis (pipeline of data analysis and visualization described in Fig. S15 and Fig. S16) by looking at
expression and modulation of 14 immune-related and differentiation-related proteins in 11
melanoma cell lines (Fig. 3). Guadecitabine, followed by givinostat and GSK-126, were the most
active drugs in increasing expression of HLA class | and ll-related proteins (HLA Class | heavy chain,
B2M and HLA-DR), but guadecitabine was more active compared to givinostat and to GSK-126 on

molecules belonging to the antigen processing and presentation pathway (TAP1, TAP2,
13
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LMP2/PSMBY, Fig. 3). In contrast, the two BET inhibitors induced, in most instances, a reduction of
expression of these classes of proteins. Guadecitabine and the BET inhibitors confirmed their
opposite effects on expression of IFN-pathway related proteins (OAS3 and IFITM1), on PD-L1 /
CD274 and on CEACAML1. Interestingly, all the 5 epigenetic drugs had a predominant inhibitory
effect on expression of melanoma differentiation-related proteins MITF and SOX-10 and of the
transcription factor MYC (Fig. 3).

Upstream Regulator (UR) analysis identifies activation of innate immunity and of
inflammation-related pathways as the main immune-related activity of guadecitabine. To gain
insight into the biological activity of the different epigenetic agents we used UR analysis, by IPA.
UR analysis (pipeline of data analysis described in Fig. S17) is a computational tool that identifies
the upstream transcriptional regulators that control downstream genes and explain the observed
gene expression changes in the dataset. UR analysis also predicts the functional status (activated
or inhibited) of each UR molecule. Each of the predicted UR can be associated with the main
cellular processes and pathways it belongs, thus allowing to improve understanding of the overall

biological activity of each drug (Fig. S17).

UR analysis, based on p values and activation Z scores (Table S6) and applied to gene
expression dataset of cell lines VRG100 and CST30, confirmed the wide range of biological
activities of all drugs. Several of the significant URs were molecules involved in immune-regulation
(highlighted in green in Table S6). These UR molecules were often predicted to be activated by
guadecitabine, and to a lesser extent by givinostat, but frequently inhibited by JQ1 or by GSK126.
To provide a direct comparison of all drugs at the UR level, significantly modulated URs by at least
two different inhibitors were grouped and visualized according to 18 functional groups (Fig. S18
and Fig. S19 dealing with cell lines VRG100 and CST30, respectively). This analysis revealed not

only the breadth and drug-related specificity of epigenetic drug activity, but even the differences

14


https://doi.org/10.1101/2022.04.13.488140

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.13.488140; this version posted April 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

among these drugs (i.e. the UR with opposite activation status). A large set of these URs (group 12
in Fig. S18 and group 14 in Fig. S19) were immunity/inflammation-related molecules belonging to
at least seven functional groups/pathways (cytokines, IFNs, JAK-STAT, IRFs, TLR, NF-kB, TNF)
frequently activated by guadecitabine, and to a lesser extent by givinostat, while almost invariably
predicted to be inhibited by JQ1. Scatter plots of significantly modulated URs by guadecitabine vs
JQ1, in cell line VRG100, confirmed the opposite biological activity of these two drugs (Fig. S20A).
In fact, a large set of URs activated by guadecitabine were inhibited by JQ1. In contrast, scatter
plots comparing URs modulated by guadecitabine and givinostat revealed a set of URs activated by

both drugs, as well as URs activated only by guadecitabine (Fig. S20B).

The UR analysis was then extended to the whole panel of cell lines using Nanostring data as
input and by focusing on the activity of guadecitabine. By such analysis we identified 51 activated
URs (z score >2) and 9 inhibited URs (Z score <-2) by guadecitabine in the majority of cell lines (i.e.
> 6/10 cell lines, Fig. 4A). Additional 36 URs were predicted to be activated in a subset of the cell
lines (i.e. 5/10 cell lines, Fig. 4B). To visualize the overall biological activity of guadecitabine the
URs were labeled with color-coded arrows pointing to the pathways/biological processes these
molecules belong. On this basis, the main immune-related activity of guadecitabine could be
summarized as an activator of innate immunity (NF-kB, TLR and Type I-lll IFN) and inflammation-

related pathways (Fig. 4A, B).

We then tested whether the guadecitabine-specific UR signature could be induced by this
drug in different cellular contexts, beyond the melanoma histotype, as well as in tumor nodules
from a previously described [28,29] in-vivo model. By gene expression analysis in mesothelioma
cell lines treated with guadecitabine and by retrieving published gene expression data of
hepatocarcinoma cell lines treated with this drug [42], we found that guadecitabine-specific UR

signature molecules were predicted to be activated (color-coded dots in Fig. 5A, B). Several of the
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guadecitabine-specific URs activated by this drug in-vitro in cell lines were also activated in-vivo in
tumor nodules from immunodeficient mice bearing a human melanoma cell line xenograft [28,29]
and treated with guadecitabine (Fig. S21A). In addition, canonical pathway analysis by IPA,
indicated that several genes in the IFN-y and IFN-o/ pathways were significantly upregulated by
guadecitabine in the tumor xenografts (Fig. S21B). Taken together, these results indicate that
guadecitabine is a strong inducer of innate immunity pathways and that its biological function can
be consistently detected not only in-vitro, irrespective of tumor mutational background and

histotype, but even in-vivo.

The guadecitabine-specific gene and UR signatures are induced in-vivo in on-treatment
tumor biopsies from NIBIT-M4 patients. Modulation of genes belonging to the guadecitabine-
specific signature was investigated by retrieving RNA-seq data of pre-therapy (w0), and on-
treatment (w4 and w12) melanoma biopsies from patients enrolled in the NIBIT-M4 trial [6].
Different groups of guadecitabine-specific signature genes (highlighted by vertical color bars in Fig.
6A) showed increased expression in wl2 or w4 on-treatment samples compared to baseline or in
w12 compared to w4 biopsies. Overall, almost 92% of the guadecitabine-specific signature genes
were upregulated in biopsies obtained at w12 or w4, compared to w0 (Fig. 6A). By gene set
enrichment analysis [43] the guadecitabine-specific gene signature showed a significant increase
at wl2 compared to w4 and w0, but not at w4 compared to w0 (Fig. 6B-D). We then asked
whether treatment in monotherapy with the anti-CTLA-4 mAb could also lead to upregulation of
most of the guadecitabine signature genes in on-treatment lesions. In two published datasets [44,
45] involving n=45 [44] and n=54 melanoma patients [45], among 376 and 286 genes upregulated
by Ipilimumab in on treatment lesions compared to baseline, we found only 35/166 (21.1%) and

28/166 genes (16.9%) of the guadecitabine signature, respectively (data not shown).
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We then identified genes showing differential expression, at each time point, in biopsies
from responding vs non-responding patients of the NIBIT-M4 trial and then we subjected these
differentially expressed genes to UR analysis by IPA. The results revealed progressive activation of
several guadecitabine-specific UR signature molecules in on-treatment (w4 and w12) tumor
biopsies from responding compared to non-responding patients (Fig. 7A, B), as well as a strong

correlation of these activated UR at w4 vs w12 tumor samples (Fig. 7C).

Taken together these results strongly support the notion that the guadecitabine-specific
gene signature defined in-vitro in melanoma cell lines can be modulated even in-vivo at tumor site
in patients treated with this DNMT inhibitor. Moreover, the progressive activation of the UR
signature in responding vs non responding patients suggests that the clinical activity of
guadecitabine in melanoma patients depends on effective activation of innate immunity

pathways.
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Discussion

Characterization of the biological activity of the four investigated agents targeting distinct
epigenetic regulators by gene expression, quantitative western blot and UR analyses in melanoma
cell lines, indicated that the DNMT inhibitor guadecitabine and the BET inhibitor JQ1 were the
most active drugs, but exerted opposite immuno-regulatory functions. Comparison of the drug-
specific immune-related gene signatures indicated that guadecitabine upregulated several genes
in each of the 21 functional classes present on the Nanostring Cancer Immune panel, while JQ1
predominantly downregulated genes in such classes. Moreover, almost all immune-related URs
predicted to be activated by guadecitabine were instead inhibited by JQ1 in the majority of the
melanoma cell lines tested. Among UR predicted to be inhibited by JQ1 we found not only
molecules belonging to the IFN-gamma pathway, known to be targeted by this BET inhibitor [46],
but also molecules belonging to the TLR and NF-kb pathways regulated by the BET proteins [21].
The experiments looking at gene modulation in melanoma cell lines, by treatment with
combinations of two different epigenetic inhibitors, confirmed that the guadecitabine and JQ1
were the dominant drugs that determined opposite responses to treatment, irrespective of the
other drug used in the combination. Collectively, the results suggest that guadecitabine elicits
marked pro-inflammatory effects, while JQ1 is mainly an anti-inflammatory drug.

The breadth of non-immuno-related effects of the four epigenetic inhibitors emerged
through comparative transcriptomic analysis. The four drugs had a variable impact on expression
of genes encoding DNMT, HDAC, histones, BET, and PRC2 components. This suggests that drug
activity of these agents is not uniquely dependent on inhibition of their specific targets, but even
on modulation of additional genes which contribute to different aspects of epigenetic regulation.
The drugs affected also expression of genes encoding proteolytic enzymes (cathepsins), and their
inhibitors (serpins), thus implicating epigenetic drugs in the regulation of different cancer-related

processes, controlled by cathepsins, such as proliferation, angiogenesis, metastasis and invasion.
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Taken together, these results significantly extend previous knowledge on non-immuno-related
anti-tumor activities of epigenetic inhibitors, such as reactivation of tumor suppressor genes by
demethylating agents [47], promotion of cell death and suppression of angiogenesis by HDAC
inhibitors [48], inhibition of proto-oncogenes MYC and BCL2 by BET inhibitors [49] and
downregulation of DNA repair genes by EZH2 inhibitors [50].

In depth analysis of guadecitabine biological activity indicated that this DNMT inhibitor
upregulated genes belonging to 21 immune-related classes. The >160-gene drug-specific signature
of guadecitabine and the related UR signature profiled the remarkable immunomodulatory activity
of this drug. The emerging immune-related biological activity of guadecitabine, identified through
UR analysis, was consistently observed across a panel of melanoma cells lines with widely
divergent mutational and differentiation profiles, as well as across different tumor histotypes. A
pre-clinical tumor model confirmed the activation of the guadecitabine-specific UR signature even
in-vivo. Finally, we found that most of the guadecitabine-specific signature genes were
upregulated at w4 or wl2 in clinical samples from NIBIT-4 patients, but not in on treatment tumor
samples from patients treated with Ipilimumab only [44-45]. Moreover, progressive activation of
the guadecitabine-specific UR signature could distinguish on treatment tumor biopsies of
responding compared to non-responding patients. These results suggest that the clinical efficacy
of guadecitabine in melanoma patients is strictly associated with the effective promotion, in-vivo,
of the innate immunity pathways that define the biological activity of this DNMT inhibitor.

In conclusions, the findings of this study support a mechanistic rationale for development
of combinatorial immune intervention where boosting of NF-kB, TLR, Type I-lll IFN and
inflammation-related pathways by the DNMT inhibitor guadecitabine may cooperate with rescue
of adaptive immunity by immune checkpoint blockade to improve efficacy of cancer

immunotherapy.
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Abbreviations.

APM: antigen processing machinery; BET: bromodomain and extra-terminal domain; CT: cancer
testis; DNMT: DNA methyltransferases; EZH2: enhancer of zeste homolog 2; HDAC: histone
deacetylases; ICl: immune checkpoint inhibitor; IPA: Ingenuity Pathway Analysis; LSD-1: Lysine-
specific demethylase 1; MTT: 3-(4,5)dimethylthiazol-2,5-diphenyltetrazolium bromide; NIBIT:
Italian Network for Tumor Biotherapy; NGS: next generation sequencing; TAC: Transcriptomic

Analysis Console; UR: Upstream Regulator.
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Figure legends.

Figure 1. Landscape of gene modulation by epigenetic drugs in melanoma cell lines. Each
pie chart shows the % of genes significantly modulated in each of 20 families or functional groups
(red=upregulated genes, green=downregulated genes) by each drug in the two cell lines (VRG100
and CST30), on the basis of FC and p value. The 20 gene families are further classified into 7
groups identified on the right hand side of the figure: 1, epigenetic regulation; 2, proliferation; 3,
immune regulation; 4, enzymes; 5, structural components; 6, adhesion; 7, differentiation.

Figure 2. Immune-related gene modulation by epigenetic drugs in melanoma.
Modulation of 731 genes was assessed by the Nanostring Cancer Immune panel upon treatment
with 4 epigenetic drugs and with Abemaciclib of ten melanoma cell lines with the indicated
mutational and differentiation profiles (as defined in Tables S1 and Fig. S2, respectively). Genes in
the Nanostring panel were grouped into 21 functional classes (as described in Fig. S7). The overall
modulatory activity of all drugs on each gene class was visualized by ad-hoc developed, color-
coded metrics described at the bottom of the Figure. The first metric adopts a red/green color
code to visualize instances of predominant up- or down-regulation of genes by each drug and in
each cell line. This metric contains a normalization factor (=[(%UP+%DN)/100)]) that takes into
account the different number of genes modulated in each cell line. The second metrics adopts
shades of blue to visualize instances where an equal fraction of up- and down-modulated genes in
each class was observed. Up- or down-modulation of each gene by any drug was defined on the
basis of a Treated/Control ratio >|1.5]|. *: these two cell lines were treated with decitabine, the

active metabolite of guadecitabine.

Figure 3. Quantitative western blot analysis for modulation of immune-related proteins
in melanoma cell lines by epigenetic drugs. Eleven melanoma cell lines were treated with

guadecitabine (GUA), givinostat (GIV), JQ1, OTX-015 (OTX), GSK-126 (GSK) and abemaciclib
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(ABEMA) and assessed for expression/modulation of 14 proteins. Modulation of each protein by
drug treatment, based on data analysis and visualization approach described in Fig. S15 and S16, is
visualized by a color code shown at the bottom of the figure. Grey boxes: the antigen was not
expressed and not induced by treatments.

Figure 4. Guadecitabine is an activator of innate immunity and inflammation pathways.
A. Upstream Regulators predicted to be activated (Z score >2, p value <0.05, left graph) or
inhibited (Z score <-2, p value <0.05, right graph), in at least 6/10 cell lines. B. Upstream Regulators
predicted to be activated (Z score >2, p value <0.05) in 5/10 cell lines. Data in A and B based on IPA
analysis of Nanostring gene modulation data. Color-coded arrows define the biological
function/pathway of each UR. Each black dot in the two graphs represents the Z score value of the
indicated URs, computed for a single cell line.

Figure 5. Comparison of Upstream Regulators activated by guadecitabine in melanoma vs
mesothelioma and in melanoma vs hepatocarcinoma cell lines. A, B. Scatter plot of URs
activated by guadecitabine in melanoma vs mesothelioma (A) and in melanoma vs
hepatocarcinoma cell lines (B, according to gene expression data retrieved from ref. 42).
Guadecitabine UR signature molecules shown in this figure are highlighted with the same color
code used in Fig. 4 to mark the biological function/pathway. *: identity of URs shown in the square
in panel A.

Figure 6. Expression and modulation of guadecitabine-specific signature genes in baseline
and on-treatment clinical samples from NIBIT-M4 patients. A. Heatmap of log2 fold changes of
guadecitabine signature genes among the following comparisons: w4 vs. w0, w12 vs. w4 and w12
vs w0. B-D. Enrichment plots containing profiles of the running enrichment scores (ES) and
positions of guadecitabine gene set members on the rank ordered list in GSEA for w4 vs. w0 (B),

w12 vs. w4 (C) and w12 vs. w0 (D) comparisons.
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779

780 Figure 7. Activation of guadecitabine-specific UR signature molecules in on-treatment
781  tumor biopsies from responding compared to non-responding patients in the NIBIT-M4 trial. A,
782  B. Z score values of guadecitabine-activated URs as identified in Fig. 4A (A) or in Fig. 4B (B) based
783  on differential gene expression analysis in tumor samples (obtained at w0, w4 and w12) from
784  responding (n=3) vs non-responding patients (n=5). Only significant URs (Z score >2) are shown by
785  the indicated color code. C. Scatter plot of Z score values of activated URs in responding vs non-

786  responding patients at w4 vs. wk12.
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