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Abstract 24 

 25 
The heterogeneity in small extracellular vesicles (small EVs) introduces an extra level 26 
of complexity in small EV-based liquid biopsy for cancer diagnosis. Heterogeneous 27 
membrane protein expression is correlated with sizes of small EVs, but accessing this 28 
correlative information is limited by the precise isolation of size-dependent 29 
subpopulations. Herein, we present a single EV enumeration (SEVEN) approach to 30 
profile protein heterogeneity in size-dependent subpopulations, and demonstrate its 31 
potential in improving the accuracy of cancer diagnosis. The interferometric plasmonic 32 
microscopy (iPM) capable of imaging single biological nanoparticles with the diameter 33 
down to 30 nm is employed to detect small EVs at the single-particle level. Small EVs 34 
population with mixed sizes are directly imaged, individually sized and digitally 35 
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counted during their binding onto different aptamer-coated iPM sensor surfaces. The 36 
protein expression levels and binding kinetics of three size-dependent subpopulations 37 
are analyzed, forming a multidimensional data matrix for cancer diagnosis. Using small 38 
EVs derived from different cancer cell lines, highly heterogeneous protein profiles are 39 
recorded in the three subpopulations. We further demonstrate that the cancer 40 
classification accuracy could be greatly improved by including the subpopulation level 41 
heterogeneous protein profiles as compared with conventional ensemble measurement. 42 

 43 

MAIN TEXT 44 
 45 

Introduction 46 

Extracellular vesicles (EV) are a group of membrane-enclosed phospholipid vesicles 47 

secreted by mammalian cells, including normal cells as well as cancer cells1. Small EV 48 

(sEV), including exosomes and a portion of microvesicles, is a unique subset with a 49 

diameter of less than 200 nm2. EVs, including sEV, are packaged with functional 50 

molecules (i.e. proteins, amino acids and nucleic acids) of their parental cells, and play 51 

an important role in cell-cell communication3, immune response4 and cancer 52 

metastasis5 6. sEV are highly heterogeneous in the membrane proteins, sizes and 53 

contents depending on the cell sources, cancer-gene mutation and other environmental 54 

factors7 8 9, making them a potential tool in cancer diagnosis10 11. For example, by 55 

profiling the expression level of membrane proteins from sEV, early diagnosis of breast 56 

cancer12 13 and classification of cancer types14 have been demonstrated. 57 

With sophisticated isolation techniques, size-dependent subsets of sEV including 58 

exomere (<50 nm), Exo-S (60 - 80 nm) and Exo-L (90 - 120 nm) were identified with 59 

unique molecular biomarker profiles15. This suggests that conventional analytical 60 

approaches by measuring average information from the full population of sEV would 61 

inevitably suffer from the large background noise from irrelevant subpopulations16. 62 

Profiling protein heterogeneity of the size-dependent sEV subpopulations would thus 63 

largely advance our knowledge in the mechanism of their biological functions, as well 64 

as the development of accurate diagnostic tools8. However, the major challenge to 65 

access the heterogeneity information is the difficulties in precisely isolation of sEV 66 

subpopulations with specific sizes. Although there are several emerging techniques for 67 
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isolation of sEV subpopulations 15 17 18 19 20 21 22, they typically suffer from poor 68 

efficiency, time consuming process, and sophisticated fabrication23. 69 

Herein, we present an alternative approach termed single EV enumeration (SEVEN) 70 

to profiling the protein heterogeneity in size-dependent subsets of small EVs for cancer 71 

diagnosis. Instead of profiling proteins on isolated size-dependent subsets in the 72 

conventional approaches, SEVEN accurately sizes single small EVs captured by 73 

different aptamers to access the heterogeneity information. Using small EVs derived 74 

from five different cancer cell lines, we measured the heterogeneous expression of five 75 

different membrane proteins on three small EVs’ subsets, and developed a machine 76 

learning algorithm for cancer classification. 77 

 78 

Results and Discussions 79 
 80 

The overview of SEVEN.  81 

The principle of SEVEN is based on our previous work to image, size and digitally 82 

count single sEV by the interferometric plasmonic microscopy (iPM)24 25 (Figure 1). 83 

For each protein biomarker detection, SEVEN dynamically measures the size of each 84 

sEV particle specifically binding onto an aptamer-coated sensor surface (Table S1), 85 

and divides them into size-dependent subpopulations. Corresponding size-dependent 86 

binding curves are then constructed by digital counting of sEV, from which parameters 87 

including the maximum binding number and the exponential coefficient are quantified. 88 

For sEV from different cell sources measured on different aptamer-coated sensor 89 

surfaces, these parameters form a multidimensional matrix containing size-dependent 90 

heterogeneous information of protein biomarkers. 91 

 92 
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 93 

Figure 1. The schematics. Binding of sEV onto specific aptamer-coated sensors is 94 
imaged with the iPM system; image intensity and counts are analyzed to construct 95 
binding curves of each subpopulation (sEV-L, sEV-M and sEV-S); a matrix is formed 96 
with the sizes, counts and kinetics. 97 

 98 

Verification of sEV sample. 99 

Five different cell lines, including A549 (lung cancer), HepG2 (liver cancer), MCF-7 100 

(breast cancer), LNCaP (prostatic cancer) and L-02 (normal liver cells), were cultured 101 

to derive sEV. sEV were isolated from the culture medium using ultracentrifugation 102 

methods as described previously26. The sizes of isolated EVs were below 200 nm as 103 

measured by nanoparticle tracking analysis (NTA) (Figure 2a and Figure S1), and the 104 

concentration varied from 1010 /mL to 1012 /mL. The morphology of sEV was 105 

characterized by transmission electron microscopy (TEM), showing typical entire and 106 

saucer-like shapes (Figure 2b). According to the guidelines in minimal information for 107 

studies of extracellular vesicles 2018 (MISEV 2018)27, we found that three universal 108 

EV-positive plasma membrane proteins, Alix, CD63 and Tsg101 were positively 109 

expressed, and one EV-negative protein, Calnexin, was negatively expressed with 110 

western blot (Figure 2c). 111 

 112 
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 113 

Figure 2. Single sEV imaging and detection. (a) Concentration and size distribution 114 
of A549-derived sEV measured by NTA. (b) Typical TEM images of sEV. (c) Western 115 
blot results of Alix, CD63, Tsg101 and Calnexin in sEV derived from A549, HepG2, 116 
MCF-7, LNCaP, L-02 cell lines. (d) Theoretical (red) and experimental (black) iPM 117 
intensities of silica nanoparticles of 30 nm, 50 nm, 70 nm, 100 nm, and 160 nm. (e) 118 
Sensitivity of iPM (black) and ELISA (red) for the detection of sEV from MCF-7 cells 119 
with CD63 aptamer -coated sensor chips. (f) CD-63 level on sEV of five cells lines 120 
determined by iPM and ELISA. (g) Radar plot showing iPM analyses of 5 EV protein 121 
markers from the five different cell lines (n = 3). 122 

 123 

Plasmonic imaging and detection of sEV. 124 

In SEVEN, the iPM system offers a unique approach to image and characterize single 125 

sEV. After binding onto the chips, sEV showed an intact morphology as characterized 126 

by scanning electron microscope (SEM) (Figure S2). We established the calibration 127 

curve between iPM intensity and particle sizes using silica nanoparticles (Figure 2d 128 

and Figure S3), and measured the sizes of sEV by intercalation. Using sEV samples 129 

from MCF-7 as an example, the number of EVs binding onto optimized HER2-aptamer 130 
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modified sensor surfaces (Figure S4) within 15 minutes correlated well with the 131 

concentrations of total sEV in the range from 5  107 /mL to 109 /mL (Figure 2e). The 132 

specificity in measuring HER2-positive sEV was verified by comparing the binding on 133 

bull serum albumin (BSA)-coated surface and a dissociation experiment (Figure S5). 134 

Note that the conventional enzyme-linked immunosorbent assay (ELISA) failed to 135 

measure the HER2-positive sEV due to insufficient sensitivity. 136 

Besides measuring the size and concentration, SEVEN could also report the average 137 

level of specific proteins in sEV samples. For sEV samples of the five cell lines at the 138 

concentration of 2 × 1010 /mL, we compared the CD63 expression levels measured by 139 

ELISA with the percentage of CD63-positive EVs in total EVs determined by iPM, 140 

which showed a good linear correlation (R2 > 0.96, Figure 2f). Similarly, the expression 141 

levels of protein biomarkers in the sEV from five cell lines were measured as the 142 

percentage of target-specific EVs, which were largely different from each other (Figure 143 

2g). We note that the protein levels reported by SEVEN are not the expression level on 144 

single sEV, by related to the total proteins from the all sEV. 145 

 146 

Limitations in cancer diagnosis by total sEV analysis.  147 

We then explored the capability of SEVEN in profiling proteins in total sEV population 148 

for cancer diagnosis, which is the common practice. 72 small EV samples were 149 

collected from the cancer cell lines of A549, HepG2, MCF-7 and LNCaP, and 18 150 

samples were collected from L-02 healthy liver cell lines as the control. The expression 151 

of the five biomarkers was first confirmed by Western blot (Figure 2c and Figure S6). 152 

Expression levels of CD63, EpCAM, HER2, PSMA and PTK7 in the small EV samples 153 

from the five cell lines were measured as the percentage of target-positive EVs in total 154 

EVs as described above (Figure 3a). The heterogeneity among different batches of 155 

small EV samples was obvious, which is inevitable due to the intrinsic variations in cell 156 

conditions and other environmental factors. The exponential coefficients related to the 157 

association rates were quantified, which were also heterogeneous among difference cell 158 

lines (Figure 3b). 159 
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sEV from the four cancer cell lines showed a significantly higher protein levels than 160 

the healthy control from L-02 (p < 0.01, Figure 3c), indicating the potential to perform 161 

cancer diagnosis with these biomarkers. But when performing the cancer classification 162 

with the expression level and exponential coefficient of only one of the biomarkers, 163 

none was able to classify all five cancers with p < 0.05 (Figure 3d) in a pairwise 164 

comparison. Even the well-recognized specific markers, such as HER2 and PSMA, 165 

were not able to distinguish breast cancer and prostate cancer. When the expression 166 

levels and exponential coefficients of all five biomarkers were analyzed with the Linear 167 

Discriminant Analysis (LDA) algorithm used in previous study13, the overall average 168 

classification accuracy was only 34% (Figure 3e and Figure S10 c). The areas under 169 

the curve (AUC) were 0.74, 0.48, 0.64, 0.56 and 0.85 respectively, using receiver 170 

operating characteristic (ROC) analysis (Figure 3f).  171 

 172 

 173 

Figure 3. Profiling total sEV surface protein markers. (a) Heat map of sEV surface 174 
protein in 5 cell lines (18 samples for each cancer cell line). (b) The association rates 175 
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of total sEV from five cell lines. (c) Elevated protein levels of all 5 protein markers in 176 
sEV derived from cancer cell lines (n = 78; means ± s.e.m.) than normal cell line 177 
(n = 18; means ± s.e.m.). (d) The statistical differences in distinguishing cancer types 178 
(n = 18 samples for each cell type) by a single biomarker by independent samples t-test. 179 
(e) Cancer classification using five protein biomarkers of total sEV by LDA. (f) The 180 
ROC curves for cancer classification in (e). 181 

 182 

These results suggest that using protein biomarkers in the mix population of sEV could 183 

lead to poor accuracy in the cancer diagnosis. One of the reasons could be due to the 184 

heterogeneity at the single EV level. For example, when examining the CD63 level in 185 

sEV from LNCaP cells using immunoelectron microscopy, different number of 186 

immuno-gold nanoparticles were observed on sEV (Figure S7). We then investigated 187 

the possibility to improve cancer diagnosis accuracy by exploring the protein 188 

heterogeneity at the subpopulation level. 189 

Profiling protein heterogeneity in size-dependent subpopulations. 190 

The sEVs were empirically divided into three size-dependent subpopulations, including 191 

the sEV-S (30-70 nm), sEV-M (70-120 nm) and sEV-L (120-160 nm). With the single 192 

EVs imaging and sizing capability of iPM, the binding curves of three subpopulations 193 

were digitally plotted (Figure 4a and Figure S8). The exponential coefficients were 194 

obviously heterogeneous (Figure 4b). For example, the exponential coefficients were 195 

0.0070, 0.0091, and 0.0089 s-1 for sEV-S, sEV-M and sEV-L binding with PSMA-196 

aptamer, and 0.0013, 0.0015, and 0.0028 s-1 with CD63-aptamer respectively, and 197 

LNCaP and L-02 derived sEV showed much faster binding rates than A549-derived 198 

sEV. 199 

 200 
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 201 

Figure 4. Binding kinetics and distinct marker of size-dependent sEV’s 202 
subpopulations. (a), An example of binding curves of LNCaP-derived sEV 203 
subpopulations on PSMA-modified chips. (b), The heat map of apparent association 204 
rate k of five kind of cell lines in five kind of aptamers-modified sensor chips. (c), 205 
Heatmap illustration of the relative abundance of sEV (A549) markers in sEV-S, sEV-206 
M and sEV-L. Scale shown is protein levels subtracted by mean and divided by row 207 
standard deviation (that is, Δ (protein levels − mean)/s.d.). 208 
 209 

We further calculate the z score of protein levels from the three subpopulations to 210 

highlight the difference15. In sEV from all cell lines other than A549, all protein markers 211 

were found to enrich in sEV-L (Figure S9). While for A549, EpCAM and CD63 were 212 

mainly expressed in the sEV-S subpopulations, but HER2, PSMA and PTK7 in sEV-L 213 

(Figure 4c). This confirms that membrane protein expression levels in sEV are not 214 

directly proportional to membrane areas, but instead, they were packaged purposely. 215 

The reason why specifically only EpCAM and CD63 from A549 cells were highly 216 

expressed in sEV-S is still unknown. Note that the sEV-s population weighed only a 217 

small portion of the total sEV (Figure 2a). Thus, when analyzing EpCAM and CD63 218 

from the total sEV, the majority as sEV-M and sEV-L would give a large background 219 

noise, which explains the poor accuracy in Figure 3d. 220 

 221 

Improving cancer classification accuracy with subset information.  222 

The multidimensional information matrixes of sEV, including the protein levels and 223 

exponential coefficients of total sEV and those of three subpopulations were input into 224 
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a LDA model to discriminate the five cell lines (Figure 5a). Using the same raw data 225 

and similar LDA algorithms in Figure 3e, the overall classification accuracy 226 

significantly improved to 70% (Figure 5b, 5c), with the AUC of 0.97, 0.85, 0.85, 0.97 227 

and 0.82 for the five cell lines, respectively (Figure 5d). Precision Recall Curves (PRC) 228 

also showed a better performance of classification with subset information comparing 229 

to that without subset information to differentiate cancer cell lines (Figure S10a, b). 230 

Classification patterns of the HepG2 liver cancer cell line and the L-02 healthy liver 231 

cell line largely overlapped, but discrimination between cancer cell lines from different 232 

origins was reliable. When we combine the data of HepG2 and L-02 into a same group, 233 

the average accuracy was improved to over 81% (Figure S10d). 234 

 235 

 236 
Figure 5. Multiclass cancer classification with subset information. (a) The 237 
workflow of SEVEN-based cancer classification with subset information. (b) The 238 
classification results by including subset information into Fig.3e. (c) Probability matrix 239 
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summarizing the cancer classification results in (b). (d) ROC curves of (c). (e) Results 240 
in determining the origin of A549 derived sEV spiked in human serum samples. 241 
 242 

We further performed simple validation experiments by spiking sEV derived from 243 

A549 cell lines into EV-depleted serum samples, and determined their origin with 244 

SEVEN. The ratio of success reached 81% (Figure 5e) with the information at the size-245 

dependent subpopulations, while without this information none was correctly classified. 246 

This indicates the potential of SEVEN in analyzing sEV in complicated samples for 247 

future clinical applications. 248 

Re-defining the size-dependent subsets of sEV. 249 

Simply dividing the sEV into as small, medium and large subsets is intuitive but brutal, 250 

both in previous work by isolating the subsets and in this work by empirically setting 251 

thresholds. There has been little evidence showing why the membrane proteins and 252 

contents should be packed in such a simple size-dependent manner. A deeper study is 253 

hindered by the capability to isolate the sEV subsets within narrower size ranges. 254 

However, in SEVEN, the iPM system offers a sizing accuracy of 10 nm, which provides 255 

the opportunity to potentially address this problem. We thus re-calculated the SEVEN 256 

data between 30 to 160 nm as thirteen subgroups at the interval of 10 nm. Instead of 257 

empirically combining some of the subgroups, we developed an artificial intelligent 258 

algorithm to automatically search for the optimal size partition to achieve the best 259 

classification accuracy (Figure S11). The results show that when the sEV were grouped 260 

by sizes within 30-40 nm, 40-100 nm, 100-110 nm, 110-130 nm, 130-140 nm and 140-261 

160 nm, the classification accuracy with raw data in Figure 5 dramatically increased to 262 

87% (Figure 6). Besides, the healthy liver cell line L-02 was fully separated from 263 

cancerous cell lines.  264 

 265 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.13.488159doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488159
http://creativecommons.org/licenses/by/4.0/


 266 

Figure 6 Multiclass cancer classification by re-grouping the subsets. (a) The 267 

classification results of five cell lines with raw data in Figure 5. (b) Probability matrix 268 

summarizing the cancer classification results in (a). 269 

Discussion  270 

We have presented the single EV enumerating (SEVEN) approach to explore the in-271 

depth information of size-dependent heterogeneity of sEV. Benefits from the single 272 

particle imaging and detection capability, SEVEN circumvents the challenges in precise 273 

isolation of subpopulations. Studies on five cell lines and five protein biomarkers have 274 

provided new evidence in the correlation between the protein levels and the size 275 

distribution of sEV. Experiments with sEV from cancer cell lines and those spiked in 276 

serum samples show that SEVEN could effectively improve the diagnostic accuracy 277 

over ensemble measurements. This work thus has highlighted the importance to explore 278 

the underlying relationship between different dimensions of heterogeneity of sEV for 279 

developing better diagnostic performance. On the meantime, there are still several 280 

limitations in the present work. First, the correlation between size and membrane 281 

proteins was obtained in a protein-by-protein manner, which is not ideal for this 282 

application. This could be improved by combining the total internal reflection 283 

fluorescence mode28, 29 and the iPM mode to simultaneously detect multiple membrane 284 

proteins and sizes at the single sEV level. Second, this work presented the first proof-285 

of-concept study with cell lines and spiked samples. Further validation with clinical 286 

samples will be required to evaluate its potential in cancer diagnosis, which is currently 287 

undergoing. 288 

 289 
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Materials and Methods 290 

iPM system. The iPM system was built on an inverted total internal reflection 291 

fluorescence microscope (TIRFM) (Olympus IX83) using a 60 × oil immersion 292 

objective (N.A. = 1.49). The surface plasmons were stimulated via Kreschmenn 293 

configuration by a laser beam at 637 nm (OBIS 637 nm LX FP 100 mW) at a highly 294 

inclined incident angle close to SPR dip angle. The real-time images of sEV were 295 

recorded by a sCMOS camera (Prime TM; Photometrics). A motorized XY stage (Ludl 296 

Electronic Products, Ltd.) was incorporated on the microscope to translate the sensor 297 

chip. 298 

iPM sensor chips and surface modifications. The sensor chips were 12-542-B 299 

(Thermo Fisher) glass coverslips coated with 3 nm of chromium and 47 nm of Au. The 300 

chips were cleaned first with deionized water and ethanol for three times, and dried by 301 

nitrogen gas. After a quick hydrogen flame treatment, the sensor chip was immediately 302 

immersed in modification buffer for 12 h. The modification buffer contained 1μM 303 

aptamer (Sangon Biotech, China) 5uM Tris (2-carboxyethyl) phosphine (TCEP, Sigma) 304 

and 1μM 6-Mercapto-1-Hexanol (MCH, Sigma). The chip was rinsed for three times 305 

with 1× PBS buffer to remove unbound aptamers, and 50 μL of bull serum albumin 306 

(BSA, Sigma) solution (1% w/v) was added to further block the residual active sites for 307 

5 min. For positive-charge modification, the chip was treated with hydrogen flame and 308 

immediately submerged in 10 mM HS-PEG-NH2 (10,000 Da; Nanocs) water/ethanol 309 

(1:1) solution overnight. 310 

Image processing. The iPM images were processed offline with MATLAB R2018a 311 

(MathWorks). Raw images were preprocessed by moving average with n = 10 frames. 312 

The differential images between two adjacent average images were reconstructed with 313 

home-developed codes. Briefly, by calculating the radius and center of the ring in k 314 

space, the wave vector of single sEV was determined. Deconvolution was done in k 315 

space using the point-spread function obtained experimentally, by aligning 30 316 

individual images of 100-nm silica nanoparticles to the maximum intensity point, and 317 
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averaging after alignment. Then average intensity of the 3 × 3 pixels around the 318 

brightest pixel of particle images was calculated as the particle intensity. 319 

Size calibration. Silica nanoparticles (MikroNano Partikel GmbH) with the size of 30 320 

nm, 50 nm, 70 nm, 100 nm and 160 nm were used to build the size-calibration curve. 321 

Raw silica nanoparticles were diluted with 1× PBS at 1:1000 vol/vol, and ultrasonicated 322 

for 30 min to redisperse the single particles followed by centrifuging at 2000 rpm to 323 

remove aggregates. 20 uL of nanoparticle solution was injected onto the positive-charge 324 

modified sensor chips, and images were recorded for 2 min at 100 fps. Each experiment 325 

was repeated in triplicates. The statistical histograms of silica nanoparticles were fitted 326 

with a Gaussian function to determine the peak intensity values (mean ± SD, n > 150) 327 

(Supplementary Fig. 4). The calibration curve was plotted as the intensity versus the 328 

diameter of silica nanoparticles (Fig. 2f). 329 

Cell culture. The human lung cancer cell line (A549, ATCC), hepatoma cell line 330 

(HepG2, ATCC), breast cancer cell line (MCF-7, ATCC), and normal liver cell line (L-331 

02, ATCC) were cultured using high-glucose Dulbecco’s modified Eagle’s medium 332 

(DMEM) (Hyclone) with 10% extracellular-vesicle-free fetal bovine serum (EV-free 333 

FBS) (SeraPro) and 1% penicillin - streptomycin (Gibco). Prostate cancer cell line 334 

(LNCaP, ATCC) was cultured in Roswell Park Memorial Institute 1640 (PRMI-1640) 335 

(Hyclone) with 10% EV-free FBS (SeraPro) and 1% penicillin-streptomycin (Gibco). 336 

Cells were cultured at 37 ℃ with 5% CO2 in a humidified incubator (Thermo Fisher 337 

Scientific). The cells were incubated in the T75 flask (Corning) with 30% confluent and 338 

the culture medium was collected after 48 h culture when the cells were 70%-80% 339 

confluent.  340 

Isolation of small extracellular vesicles. sEV were isolated based on differential 341 

centrifugation. Cell culture media (300 mL) was first centrifuged at 500g for 5 min, 342 

followed by centrifugation at 2,000g for 45 min to remove cells. The treated medium 343 

was centrifuged at 10,000g for 60 min. Then the supernatant was filtrated by 0.22 μm 344 

membrane filtration (Millipore). Finally, the filtrate was ultracentrifuged at 100,000g 345 
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for 120 min. The sEV were washed by 50 mL 1× phosphate buffer saline (PBS, 346 

Hyclone), followed by ultracentrifugation at 100,000g for 120 min. The purified sEV 347 

were resuspended in 50 uL 1× PBS. 348 

Spiking test in human serum. Human serum sample was collected from three healthy 349 

volunteers with agreements at the Shanghai Sixth People's Hospital. Total volumes of 350 

1 mL of clinical serum samples were first centrifuged at 2000g, and filtered through 351 

0.22 μm pore filter (Millipore), then ultrafiltrated by 100 kDa ultrafiltration membrane 352 

(Millipore) at 10,000g at 4 °C for 20 min. The EV-depleted serum was stored at -80 °C 353 

before use. 10 uL A549 derived sEV was added to 90 uL EV-depleted serum to mimic 354 

the real cancer-related serum with the final EV’s concentration of 1010 / mL. 355 

NTA analysis. The size distribution of sEV samples were characterized by NTA 356 

(Particle tracking analyzer; Particle Metrix, PMX). All samples were diluted using PBS 357 

to ~ 107 particles mL-1 before measurements. The data of size distribution were 358 

analyzed with NTA software. The measurements were conducted at 25 °C. 359 

TEM. 10 μL sEV sample (~ 1012 particles mL-1) were directly absorbed on 360 

Formvar/carbon-coated copper grids for two minutes. After blotting residual samples 361 

with filter paper, 10 μL 1% phosphotungstic acid was dropped to stain sEV for 45 362 

seconds followed by blotting the phosphotungstic acid with filter paper. After drying at 363 

room temperature, the grids containing sEV were observed on Tecnai G2 spirit Biotwin 364 

TEM (FEI) at 80 kV. For immunogold labeling of sEV sample derived from LNCaP, 365 

CD63 aptamer-conjugated gold nanoparticles were incubated with sEV samples for 30 366 

min at 4 °C, and the samples were dropped in grids for TEM detection. 10 uL CD63 367 

aptamer (1uM) was mixed with 100 uL gold nanoparticles (4 ~ 10 nm, 2 mg/mL) at 368 

4 °C for 12 h to prepare CD63 aptamer-conjugated gold nanoparticles, followed by 369 

blocking active sites with BSA solution (1% w/v). 370 

Immunoblot analysis of sEV samples. Isolated sEV samples and cells were treated 371 

with radio immunoprecipitation assay (RIPA) lysis buffer including protease inhibitors 372 
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(Beyotime) with an ice bath for 30 min, followed by quantifying with a BCA assay. 373 

Protein lysates were separated by sodium dodecyl sulfate-polyacrylamide gel 374 

electrophoresis (SDS-PAGE), followed by transferring to polyvinylidene fluoride 375 

(PVDF) membrane. The transferred PVDF membranes were blocked using 5% non-fat 376 

dry milk in TBST buffer (TBS powder, Servicebio, 0.05% Tween-20) at room 377 

temperature for 1 h. Then blocked membranes were immunoblotted with a panel of 378 

primary antibodies including anti-Alix (Santa Cruz, sc-7964), anti-Tsg101 (Santa Cruz, 379 

sc-7964), anti-Calnexin (Abcam, ab133615), anti-CD63 (NOVUS, NBP2-4225B), anti-380 

PTK7 (BBI, D199285-0100), anti-PSMA (Abcam, ab79542), anti-HER-2 (Abcam, 381 

ab134190), anti-EpCAM (BBI, D263391) overnight at 4 °C. Followed by incubating 382 

with corresponding HRP-conjugated secondary antibody for 1 h at 37 °C, the 383 

membranes were washed three times for 10 min at room temperature with TBST buffer. 384 

Finally, the western blot images were recorded on a gel image system (Tanon). 385 

Data analysis.  The expression levels of target markers were defined by normalizing 386 

the target-associated number recorded to those of total number of sEV. The total 387 

number of sEV was measured by counting the number of sEV binding to the positive-388 

charged sensor surfaces. The protein levels of total sEV and three small-EVs subtypes 389 

were normalized by subtracting the 2.5th percentile value and dividing by (97.5th 390 

percentile value–2.5th percentile value). These normalized data were directly used for 391 

LDA-based classification. Z-score were calculated by protein levels subtracted by mean 392 

and divided by row standard deviation. The significance of the difference between the 393 

sEV from cancer cell lines and normal cell line using individual protein marker was 394 

calculated using a two-tailed, heteroscedastic t-test (Fig. 3c). The significance of the 395 

difference between the sEV from five cell lines using individual protein marker was 396 

calculated using a two-tailed, heteroscedastic  397 

The artificial intelligence algorithm. 398 

The artificial intelligence algorithm developed here is based on Python 3.7. Because 399 

the sizing accuracy of iPM system is 10 nm, the data of SEVEN between 30 to 160 nm 400 

were re-calculated into thirteen subgroups at the interval of 10 nm. Theoretically, there 401 
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are totally 212 possibilities of subsets we can choose. Hill climbing algorithm was a 402 

random local search optimization algorithm for nonlinear objective functions, which 403 

was used to search for the locally optimal solution. Basically, hill climbing algorithm 404 

includes the following steps. 1) a group of subsets was randomly set as the initial point 405 

and its classification accuracy calculated by LDA was set as current best solution. 2) 406 

the next new point was defined by the greedy strategy of hill climbing algorithm. And 407 

the new classification accuracy was obtained. 3) the new classification accuracy was 408 

compared with the previous one. If the new classification accuracy was equal to or 409 

bigger than the previous one, the former point was abandoned and the latter was set as 410 

the current point, and vice versa. Then repeat step 2 and step 3 to quickly find the 411 

optimal solution. 412 
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