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Fig. 3: Anti-selective Inhibitory-to-Excitatory Connectivity. (a) Local I-to-E connectivity rates are higher than E-to-I (E-
to-I: 1.7±0.1%, n = 70 source neurons, I-to-E: 5.7±1.1, n = 11, p < .001, Mann-Whitney U test). (b) Schematic of I-to-E 
connections among functionally-characterized neurons. Connections are classified as co- (green) or anti-selective (purple). 
(c) Normalized synapse frequency is greater for anti- (purple) than co-selective (green) I-to-E connections (anti: 0.027±0.003 
syn/um, n=40 connections, co: 0.022±0.002 syn/um, n=71, p=0.01, Mann-Whitney U test). (d) Left: Normalized synapse 
frequency is negatively correlated with selectivity similarity index (n = 111 connections). Dotted line indicates linear fit. 
Right: Spearman’s rank correlation coefficient for data compared to random shuffles (c = -0.24, p = 0.004, permutation 
test). (e) Left: PSD area is not significantly correlated with selectivity similarity index (n = 169 synapses). Dotted line 
indicates linear fit. Right: Spearman’s rank correlation coefficient for data and random shuffles (c = 0.08, p = 0.13, 
permutation test). (f) Examples of basket cell (BC), Martinotti cell (MC), and other dendrite-targeting interneuron 
morphologies. Axons – cyan, dendrites – blue. (g) Normalized synapse frequency plotted as a function of selectivity 
similarity index for I-to-E connections from basket, Martinotti, and other interneuron subtypes. (h) Martinotti and other cell 
types have a significant negative correlation (basket: c=-0.14, n=43, p=0.19, permutation test, Martinotti: c=-0.30, n=36, 
p=0.04, other: c=-0.36, n=32, p = 0.02). Differences in correlation between cell types are not statistically significant. (i) 
Example pyramidal neuron with dendritic compartments labeled (apical – magenta, proximal – green, basal – orange, axon 
– blue). (j) Proportion of synapses made onto apical (pink, top), proximal (green, middle), and basal  (orange, bottom) 
pyramidal dendrites for BC, MC, and other interneurons. Despite having a preferred target, all interneuron subtypes synapse 
onto a mix of dendritic compartments. (k) Normalized synapse frequency plotted as a function of selectivity similarity index 
for I-to-E connections targeting apical, proximal, and basal dendrites. (l) Basal-targeting connections have a significantly 
negative correlation (apical: c=0.05, n=44, p=0.33, proximal: c=-0.18, n=47, p=0.10, basal: c=-0.47, n=32, p =0.004), and 
basal dendrite connections are significantly more anti-selective than apical (p=0.04, permutation test with Bonferroni 
correction). All statistics reported as mean ± standard error. 
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Extended Data Figure 3:  (a) PPC excitatory neurons target inhibitory partners at higher rates than inhibitory (excitatory: 
66±2%, n=59 neurons, inhibitory: 38±5%, n=11, p < 10-4, Mann Whitney U test). Dotted line – estimated overall proportion 
of inhibitory neurons (~20%)41. (b) Normalized synapse frequency plotted as a function of selectivity similarity index for I-
to-E connections in PPC, calculated using functional data from early (10-8 days before sacrifice), middle (7-4 days before), 
and late (3-0 days before) sessions (early: n=93, middle: n=107, late: n=111). (c) Spearman’s rank correlation coefficients 
corresponding to (b) are less negative for earlier sessions (early: c=-0.06, p=0.29; middle: c=-0.11, p=0.12; late: c=-0.23, 
p=.004, permutation tests) but the trend (negative slope) is not quite significant (p = 0.09, permutation test). Dotted line 
shows linear fit. (d) Geodesic (along-the-dendrite) distances to post-synaptic soma from synapses made by basket cells 
(green, n=557 synapses) and other interneurons (gray, n=404). Basket cells preferentially target somata and proximal 
dendrites. Dotted line – threshold that maximally separates basket and non-basket synapses used to define proximal dendrites 
in further analysis (64 µm). (e) Depth (pia-to-white matter) of synapses from Martinotti (magenta, n = 255) and other 
interneurons (gray, n = 783). Martinotti axons ascend towards the pia and make synapses in layer 1. All statistics reported 
as mean ± standard error. 

Circuit Modeling  
Together, selective E-to-I (Fig. 2) and I-to-E 

connectivity (Fig. 3) comprise an opponent inhibition 
motif (Fig. 4a, top). We used network modeling to 
investigate how opponent inhibition may support 
decision-making computations. We first studied a 
linear rate model10,34,47,48 comprising two excitatory 
and two inhibitory units. Left or right selective 
excitatory neurons (EL, ER) receive elevated external 
input during left or right trials and interact with left 
and right inhibitory neurons (IL, IR) (Fig. 4a, 
Methods). In networks with opponent inhibition, 
input onto EL decreases ER activity through feed-
forward inhibition, which further amplifies EL activity 
via feedback disinhibition49–51 (Fig 4b, Ext. Data Fig. 
4b). In left trials, both suppression of ER and 
amplification of EL increased the distance between 
neural activity on left and right trials (Ext. Data Fig 
4a, Methods), and this distance was thus larger for 
networks with stronger opponent inhibition (Ext. 
Data Fig 4b,c). As a consequence, networks with 
stronger opponent inhibition supported more accurate 
decoding of trial type in the presence of readout noise 
(Fig 4c,d, Ext. Data Fig 4d,e, Methods). This signal 

amplification through opponent inhibition occurs 
over a broad range of values of E-to-E selectivity, and 
even without recurrent excitatory connections (Supp. 
Fig. 4). When time-varying input noise was included, 
opponent inhibition amplified the signal more than it 
amplified the noise, therefore enhancing trial-type 
encoding (Supp. Fig. 5). 

While the linear rate model explains how 
opponent inhibition affects network coding, it does 
not include heterogeneity of connection weights nor 
capture the sequential dynamics observed in PPC4,35. 
To determine if its predictions hold for models 
incorporating these more realistic features, we built a 
recurrent neural network (RNN) model with the same 
number of excitatory and inhibitory neurons as the 
experimentally reconstructed circuit (Fig. 4e), and 
trained the connection weights of several individual 
RNNs to reproduce the measured calcium activity52–

54. After training, the RNNs generated dynamics 
which accurately reproduced PPC activity52 (Fig. 4f). 
Although we did not place any constraints on the 
selectivity of the RNN connections, we found that the 
trained RNNs consistently exhibited co-selective E-
to-I and anti-selective I-to-E motifs, similar to those 
found experimentally (Fig. 4g,h). To investigate if 
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these motifs supported signal amplification, as 
predicted by the linear rate model, we systematically 
manipulated the RNN connectivity55 by perturbing 
the E-to-I or I-to-E selectivity around the trained 
values, and re-generated the dynamics using the new 
connections (Methods). Stronger opponent inhibition 

(stronger E-to-I co-selectivity or I-to-E anti-
selectivity) amplified the separation between left and 
right population responses (Fig. 4i), further 
suggesting that opponent inhibition may enhance the 
coding of trial-type signals in PPC.   

 
Fig. 4: Opponent inhibition connectivity motif supports trial-type signal separation. (a) Top: Illustration of the linear 
rate model, comprising two excitatory and two inhibitory units. Left (or right) trial-type input is fed to the EL (or ER) 
population. Bottom: Schematic of network variants in which I-to-E selectivity differs. Purple and green arrows indicate 
stronger anti- and co-selectivity, respectively. (b) Change in EL and ER activity in response to a left trial-type input for a 
network with opponent inhibition (co-selective E-to-I and anti-selective I-to-E). EL is amplified and ER is suppressed relative 
to the input (dotted lines). (c) Relative decoding accuracy, defined as the ratio of output to input decoding accuracy, as a 
function of E-to-I and I-to-E selectivity. The decoding accuracy is computed by linearly decoding the trial-type from the 
excitatory population in presence of readout noise. The black square denotes parameters used for panel (b). The region with 
anti-selective I-to-E selectivity (purple arrow and box) corresponds to networks with opponent inhibition. The grey area 
corresponds to unstable network dynamics. (d) Relative decoding accuracy as a function of E-to-I (top) and I-to-E (bottom) 
selectivity, corresponding to two cuts of the phase plot (dashed lines in panel (c)). Purple and green arrows correspond to 
anti- and co-selectivity. (e) Illustration of a recurrent neural network (RNN) fit to the PPC population activity. The number 
of excitatory and inhibitory neurons in the RNN is matched to the experimental data. The networks are trained to reproduce 
trial-averaged PPC activity of matched neurons for left and right trials. (f) Examples of the PPC activity (colored lines) and 
RNN fits (black lines) for one excitatory (top) and one inhibitory (bottom) neuron. (g) Correlations between connectivity 
strength and selectivity similarity for E-to-I (top) and I-to-E (bottom) connections for a single RNN. E-to-I connections have 
a positive correlation (co-selective) while I-to-E have a negative correlation (anti-selective). (h) Spearman’s rank correlation 
coefficient between connection strengths and selectivity similarity for many trained RNNs (n=192). E-to-I connections are 
co-selective whereas I-to-E connections are anti-selective. (i) Normalized distance between left- and right RNN activity 
(averaged across time) as a function of selectivity perturbations. E-to-I (top) and I-to-E (bottom) connection weights were 
perturbed in a way that increases anti- (purple arrow) or co-selectivity (green arrows) without changing the average 
connection weight. The distance between trajectories is normalized by its value in the unperturbed network (dashed lines). 
Single networks and median values are shown by gray and colored dots, respectively (n=192). 
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Extended Data Figure 4: (a) Distance between mean responses to left and right trial types (colored dots) in the state-space 
of the excitatory neuron activity. This distance is enhanced by opponent inhibition between trial-type selective subnetworks. 
On left trial-types, both suppression of ER and amplification of EL (grey arrows) contribute to increased separation along the 
signal axis (and symmetrically for right trials). (b) Values of the steady state activity of EL (top) and ER (bottom) units as a 
function of the I-to-E (x-axis) and E-to-I (line colors) connection selectivity. (c) Normalized distance between mean activities 
corresponding to left and right trial-types (see panel (a)), as a function of I-to-E and E-to-I connection selectivity. (d) 
Decoding accuracy computed by linearly decoding the trial-type from the excitatory population in presence of readout noise, 
as a function of the E-to-I and I-to-E connection selectivity. The region with anti-selective I-to-E selectivity (purple arrow 
and box) corresponds to networks with opponent inhibition, the black square denotes the parameter values used in 
simulations of Fig 4b. The grey area corresponds to unstable network dynamics. (e) Decoding accuracy as a function of E-
to-I (top) and I-to-E (bottom) selectivity, corresponding to two cuts of the phase plot (dashed lines in panel (d)). In all panels, 
purple and green arrows indicate the directions where connection motifs increase respectively their anti- and co-selectivity 
(see Fig. 4a). 

Discussion  

Functional Connectomic Dataset in PPC 

We sought to understand relationships 
between trial-type selective neuron activity and 
synaptic connectivity in PPC. Although selective 
activity in PPC has been reported in many previous 
studies4–11, accompanying connectivity data has not 
been previously available. Here, we used automated 
serial-section transmission EM17 to image a volume 
in PPC with synapse resolution. Because neuronal 
arborizations extend over large distances in 
mammalian cortex, it is critical to image a large 
enough volume to sample them. The EM volume 
collected here in PPC contains a much larger volume 
than previous cortical EM datasets23,25,26,30,56 (but see 
29,57), enabling reconstruction of substantial portions 
of axonal and dendritic arborizations, including 
synaptic connections made on distal branches. The 
resulting connectivity data, combined with behavioral 
and functional imaging data from the same animal, 
allowed us to reveal circuit motifs that support 
decision-making. Still, these connectivity motifs stem 
from a modest sample size of functionally-

characterized neurons and synapses between them, 
which was constrained by the volume of the dataset. 
Future functional connectomic datasets involving 
much larger networks will likely reveal additional 
circuit motifs.  

Functionally Selective Connectivity Motifs 

We found that the frequency and size of 
synaptic connections in PPC depended significantly 
on the selectivity of pre- and post-synaptic neurons. 
For E-to-I connections, co-selective synapses were 
larger and more frequent, whereas for I-to-E 
connections, anti-selective synapses were more 
frequent. We did not detect a difference in synapse 
size between co- and anti-selective I-to-E 
connections. However, synapse-size analysis for both 
E-to-I and I-to-E connections should be interpreted 
cautiously, as the correlation between synapse size 
and functional strength in cortex has only been 
directly measured for E-to-E synapses39.  

The combination of co-selective E-to-I and 
anti-selective I-to-E comprises a competitive 
opponent inhibition motif, in which the activity of 
left-selective excitatory neurons suppresses the 
activity of right-selective ones, and vice versa. This 
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motif has been shown to mediate action selection in 
zebrafish and Drosophila58–60,  and a related motif has 
been proposed in ferret visual cortex61, but motifs of 
this type have not previously been found in cortical 
connectomes. 
Previous work in mouse PPC proposed that selective 
connectivity motifs underlie choice-selective 
inhibitory activity, but could not rule out models with 
non-selective inhibition10. Here, the combination of 
neuronal activity measurements and EM-based 
connectomics in the same neurons has allowed 
identification of the underlying connectivity motifs.  

Further analysis of I-to-E connectivity 
revealed that connections targeting basal dendrites 
were more selective than those targeting apical 
dendrites. This difference suggests that apical and 
basal dendrites can perform distinct computational 
roles62, and is consistent with the general idea that 
basal dendrites primarily receive local feedforward 
input while apical dendrites receive feedback 
signals63,64. However, we found that basket cells, 
Martinotti cells, and other dendrite-targeting 
interneurons were broadly similar in their overall 
selectivity, likely because they target a mix of 
dendrite types and the sample size of functionally-
characterized interneurons was limited.  

Selective inhibitory connectivity in PPC 
contrasts with V1, where previous connectomic 
analysis has suggested that E-to-I connectivity is non-
selective in mice23 (but see 65–67). This suggests that 
specific inhibitory connectivity may be a distinct 
feature of PPC relative to V1, or alternatively is a 
consequence of plasticity induced by task training. 
These differences may underlie specialized functional 
roles of different cortical areas. Indeed, the selective 
inhibitory motifs we found in PPC promote 
separation of neural trajectories associated with 
competing behavioral choices, while primary sensory 
areas may privilege reliable encoding of diverse 
external stimuli. We also observed that E-to-E 
connectivity was sparser in PPC than in V1, which 
limited the sample size of E-to-E connections within 
the dataset and prevented us from confidently 
evaluating E-to-E selectivity in PPC. Sparse E-to-E 

connectivity in PPC is surprising given that V1 
exhibits dense, like-to-like connectivity26, association 
areas exhibit stronger functional coupling between 
neurons42,43, and models of cortical decision-making 
often feature recurrent E-to-E connectivity14. It is 
possible that selective E-to-E connectivity may still 
occur over longer length-scales than the local circuit 
measured here. On the other hand, our circuit 
modelling suggests that decision-making 
computations can be achieved via opponent inhibition 
even with sparse or non-selective E-to-E connectivity 
(Supp. Fig. 4). Likewise, our dataset did not include 
enough functionally characterized inhibitory neurons 
to assess selectivity of I-to-I connectivity, but the 
effects of opponent inhibition are also robust over a 
wide range of values of I-to-I selectivity (Supp. Fig. 
4). 

Decision-Making in Cortical Circuits 

In models of decision-making, the formation 
of categorical choices is often facilitated by non-
selective lateral inhibition14. Recently, it has been 
proposed that selective inhibition could play one of 
two possible roles: promoting competition with anti-
selective I-to-E connectivity, or stabilizing dynamics 
through co-selective I-to-E connectivity15. These 
distinct contributions are also present in the linear rate 
model presented here (Supp. Fig. 4). Our anatomical 
data suggests that PPC lies in the competition regime 
and V1 lies in an intermediate regime characterized 
by non-selective I-to-E connectivity.  

Although some decision-making models 
focus on the production of categorical choices via 
winner-take-all dynamics in nonlinear attractor 
models15,47,48, previous work suggests that during 
navigational tasks PPC produces more complex 
dynamics in which multiple activity patterns arise for 
each trial type68. These neural trajectories in PPC 
likely represent a wide range of task and behavioral 
variables, including the mouse’s choice, its 
navigational movements and position, and sensory 
cues from the environment4,12,35,69–72. For this reason, 
the model developed here focuses on a graded 
encoding of the choice signal, where the PPC circuit 
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helps separate these multifaceted neural trajectories 
to enhance the encoding of the signals relevant for 
decision-making.   

In summary, we discovered an anatomical 
opponent inhibition motif consisting of functionally 
selective connectivity between excitatory and 

inhibitory neurons in PPC. Using two complementary 
modeling approaches, we showed that this opponent 
inhibitory motif improves the encoding of trial-type 
information. Together, these results identify an 
anatomical connectivity motif in PPC that supports 
decision-making
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