
Heterogeneity in the gene regulatory landscape of leiomyosarcoma.

Tatiana Belova1, Nicola Biondi2, Ping-Han Hsieh1, Pavlo Lutsik3,4, Priya Chudasama2 and Marieke L. Kuijjer1,5,6
1Computational Biology and Systems Medicine Group,

Centre for Molecular Medicine Norway,
University of Oslo, Oslo, Norway

2Precision Sarcoma Research Group,
German Cancer Research Center (DKFZ) and National Center for Tumor Diseases,

Heidelberg, Germany
3Division of Cancer Epigenomics,

German Cancer Research Center (DKFZ),
Heidelberg, Germany

4Department of Oncology,
Catholic University (KU) Leuven, Leuven, Belgium

5Department of Pathology,
Leiden University Medical Center,

Leiden, the Netherlands
6Leiden Center for Computational Oncology,

Leiden University Medical Center,
Leiden, the Netherlands

Soft-tissue sarcomas are group of rare, tremendously heterogeneous, and highly aggressive
malignancies. Characterizing inter-tumor heterogeneity is crucial for selecting suitable sarcoma
therapy, as the presence of diverse molecular subgroups of patients can be associated with disease
outcome or response to treatment. While cancer subtypes are often characterized by differences in
gene expression, the mechanisms that drive these differences are generally unknown. We therefore
set out to model the regulatory mechanisms driving sarcoma heterogeneity. We subtyped soft-tissue
sarcomas based on patient-specific, genome-wide gene regulatory networks and found pronounced
regulatory heterogeneity in leiomyosarcoma—one of the most common soft-tissue sarcomas subtypes
that arises in smooth muscle tissue. To characterize this regulatory heterogeneity, we developed a
new computational framework. This method, PORCUPINE, combines knowledge on biological
pathways with permutation-based network analysis to identify pathways that exhibit significant
regulatory heterogeneity across a patient population. We applied PORCUPINE to patient-specific
leiomyosarcoma networks modeled on data from The Cancer Genome Atlas and validated our results
in an independent dataset from the German Cancer Research Center. PORCUPINE identified
37 heterogeneously regulated pathways, including pathways that represent potential targets for
treatment of subgroups of leiomyosarcoma patients, such as FGFR and CTLA4 inhibitory signaling.
We validated the detected regulatory heterogeneity through analysis of networks and chromatin
states in leiomyosarcoma cell lines. In addition, we showed that the heterogeneity identified with
PORCUPINE is not associated with methylation profiles or clinical features, thereby suggesting an
independent mechanism of patient heterogeneity driven by the complex landscape of gene regulatory
interactions.

I. INTRODUCTION

Soft-tissue sarcomas are a group of rare and highly
aggressive malignancies. While they account for less than
1% of all malignant tumors, soft-tissue sarcomas are a
tremendously heterogeneous group of tumors and include
more than 150 different histological subtypes [1]. Partly
because of this heterogeneity, significant challenges ex-
ist in the management of soft-tissue sarcomas. Most
soft-tissue sarcomas are treated similarly in the clinic,
regardless of their site of origin, with surgery with or
without radiotherapy as the main treatment for localized
disease [2]. Several clinical trials have been conducted
in soft-tissue sarcomas. However, until recently such
trials included patients with many different histological
subtypes in the same cohort, causing difficulties to con-
clude on the efficacy of these therapies in the individual

subtypes. Differences in clinical response among soft-
tissue sarcoma subtypes led to newer studies that only
enrolled patients of certain histological subtypes, which
have shown to result in better response and disease
control [3].

Over the past years it has become evident that treat-
ments tailored to a single patient, or group of patients
belonging to a specific molecular subtype of cancer, can
result in major improvements in cancer outcomes [4]. For
example, characterizing inter-patient molecular tumor
heterogeneity was shown to be crucial for selecting the
most efficient cancer therapy, and the presence of diverse
molecular subtypes can predict patient survival in breast
cancer [5] and relapse or resistance to treatment in
melanoma [6]. Therefore, it is clear that the integration
of personalized medicine into cancer treatment strategies
requires extensive knowledge of inter-patient variability.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.04.13.488196doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488196
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

Patients can, for example, be grouped into molecular
subtypes based on “omics” data, such as gene expression,
microRNA, DNA methylation, somatic mutations, or
proteomic profiles.

The molecular landscape of soft-tissue sarcomas has
been characterized in several studies [7–10]. The Cancer
Genome Atlas (TCGA) sarcoma project, one of the
largest sarcoma sequencing projects to-date, performed
a comprehensive and integrated analysis of 206 adult
soft-tissue sarcomas, represented by six major subtypes,
and showed that sarcomas vary greatly at the genetic,
epigenetic, and transcriptomic levels [7]. More recently,
some histological subtypes of soft-tissue sarcomas were
further delineated into molecular subgroups according to
their genomic and transcriptomic profiles. For example,
Guo et al., characterized three molecular subtypes of
leiomyosarcoma (LMS)—one of the most common sub-
types of soft-tissue sarcomas—based on transcriptomic
data. One of these subtypes was over-represented by
uterine leiomyosarcoma, while the other two were over-
represented by extra-uterine sites. While these sub-
types were not associated with tumor grade, they were
somewhat related to patient survival [11]. However, the
causative regulatory mechanisms that distinguish these
subtypes are not fully understood and the impact of
molecular profiling of soft-tissue sarcomas on patient
outcomes has been limited.

Through the modeling of interactions between tran-
scription factors (TFs) or other regulators and their
potential target genes, gene regulatory networks offer an
in-depth view on the mechanisms that drive gene expres-
sion [12], and thus could help gain greater insight into
disease mechanisms. Various integrative methods have
been developed to model such networks genome-wide.
One such method is PANDA, which integrates putative
TF-DNA binding with protein-protein interactions and
target gene co-expression to infer a regulatory network
for a specific condition [13]. Recently, we developed an
algorithm that can be combined with condition-specific
network models estimated with e.g. PANDA to infer
patient-specific regulatory networks (LIONESS [14]).
These patient-specific network models have been instru-
mental in capturing sex differences in gene regulation
in healthy tissues [15] and colon cancer [16], as well
as in identifying regulatory interactions associated with
glioblastoma survival [17].

In this work, we demonstrate that analysis of hetero-
geneity among patient-specific gene regulatory networks
can facilitate stratification of soft-tissue sarcoma patients
into novel regulatory subtypes and identification of the
regulatory programs that drive such heterogeneity. We
identified a high level of regulatory heterogeneity in
leiomyosarcoma. To characterize this heterogeneity, we
present a new computational approach, PORCUPINE
(Principal Components Analysis to Obtain Regulatory
Contributions Using Pathway-based Interpretation of
Network Estimates), to detect statistically significant,
key regulatory pathways that drive regulatory hetero-

geneity among patients.
We applied PORCUPINE to 80 genome-wide

leiomyosarcoma regulatory networks, which we
modeled on data from TCGA (referred to below as
TCGA-LMS). We validated the pathways detected by
PORCUPINE in an independent dataset consisting of 37
leiomyosarcoma available from the study by Chudasama
et al. (referred to below as DKFZ-LMS) [18]. We found
high concordance in regulatory heterogeneity in both
cohorts, identifying 37 shared heterogeneously regulated
pathways. These included pathways that play a known
role in leiomyosarcoma biology and pathways that
have not been described before in the disease. Newly
identified pathways include FGFR signaling and CTLA4
inhibitory signaling and represent potential targets for
treatment of subgroups of leiomyosarcoma patients.
We validated the detected regulatory heterogeneity
through analysis of networks and chromatin states in
leiomyosarcoma cell lines. Moreover, we show that
the heterogeneity identified with PORCUPINE is not
associated with methylation profiles or clinical features,
thereby suggesting an independent mechanism of patient
heterogeneity driven by the complex landscape of gene
regulatory interactions.

MATERIALS AND METHODS

Gene expression data preprocessing

We downloaded expression data for all TCGA cases
using the “recount” package in R [19]. The transcriptome
data for 37 leiomyosarcoma cases obtained from the Ger-
man Cancer Research Center (DKFZ) was preprocessed
by the Omics IT and Data Management Core Facility
(DKFZ ODCF) using the One Touch Pipeline [20]. We
performed batch correction on the raw expression counts
of the set of 206 TCGA soft-tissue sarcomas and the
37 DKFZ-LMS samples together, using the “Combat-
seq” package in Bioconductor [21]. We then combined
Combat-seq-adjusted counts with the raw expression
counts of the remaining TCGA samples and performed
smooth quantile normalization using “qsmooth” package
in Bioconductor to preserve global differences in gene
expression between the different cancer types [22], speci-
fying each cancer type as a separate group level. Samples
of 206 TCGA soft-tissue sarcomas and 37 DKFZ-LMS
samples were specified as the same “soft-tissue sarcoma”
group level.

Construction of individual patient gene regulatory
networks

We used the MATLAB version of the PANDA net-
work reconstruction algorithm (available in the net-
Zoo repository https://github.com/netZoo/netZooM)
to estimate an “aggregate” gene regulatory network,
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based on a total of 11,321 samples, 17,899 genes, and 623
TFs. These samples included 206 TCGA and 37 DKFZ
soft-tissue sarcomas—the remaining samples represented
other cancer types available in TCGA. We used the
entire TCGA dataset to build the aggregate network, as
we previously found that LIONESS’ estimates of single-
sample edges are more robust when including a large,
heterogeneous background of samples [14].

PANDA builds an aggregate network by incorporat-
ing three types of data—a “prior” regulatory network,
which is based on a TF motif scan to identify putative
regulatory interactions between TFs and their target
genes, protein-protein (PPI) interactions between TFs,
and target gene expression data. The aggregate network
modeled by PANDA consists of weighted edges between
each TF-target gene pair. These edge weights reflect the
strength of the inferred regulatory relationship.

The prior gene regulatory network was generated using
a set of TF motifs obtained from the Catalogue of
Inferred Sequence Binding Preferences (CIS-BP) [23], as
described by Sonawane et al., 2017 [24]. These motifs
were scanned to promoters as described previously [25].
The prior network was intersected with the expression
data to include genes and TFs with available expression
data and at least one significant promoter hit. This
resulted in initial map representing potential regulatory
interactions between 623 TFs and 17,899 target genes.
An initial protein-protein network was estimated between
all TFs from motif prior map using interaction scores
from StringDb v10 [26], which were scaled to be within
a range of [0,1], where self-interactions were set equal
to one, as described previously [24]. To reconstruct
patient-specific gene regulatory networks, we applied the
LIONESS equation in MATLAB (available in the netZoo
repository https://github.com/netZoo/netZooM).

UMAP visualization

To visualize the clustering distribution of the 206
TCGA soft-tissue sarcoma patient-specific gene regu-
latory networks, we applied dimensionality reduction
with Uniform Manifold Approximation and Projection
(UMAP), using the “uwot” package in R 3.6.1, setting
the number of nearest neighbours to 20. We performed
UMAP on the matrix of gene targeting scores obtained
from the 206 individual sarcoma networks. Gene tar-
geting scores are defined as the sum of all edge weights
pointing to a gene and represent the amount of regulation
a gene receives from the entire set of TFs available
in a network [27]. These scores have previously been
used to identify gene regulatory differences in various
studies [16, 17, 27]. We visualized the results in two-
dimensional UMAP space. To identify clusters in the
data, we used the HDBSCAN clustering algorithm on the
UMAP coordinates from the first two embeddings [28],
with the parameter “minPts” set to five.

Identifying regulatory heterogeneity using
PORCUPINE

To capture inter-patient heterogeneity (referred to
below as “heterogeneity”) at the gene regulatory level,
we developed a computational framework, which we call
PORCUPINE. PORCUPINE is a Principal Components
Analysis (PCA)-based approach that can be used to
identify key pathways that drive heterogeneity among
individuals in a dataset. It determines whether a
specific set of variables—for example a set of genes in
a specific pathway—have coordinated variability in their
regulation.

PORCUPINE uses as input individual patient net-
works, for example networks modeled using PANDA
and LIONESS, as well as a .gmt file (in MSigDb file
format [29]) that includes biological pathways and the
genes belonging to them. For each pathway, it extracts all
edges connected to the genes belonging to that pathway
and scales each edge across individuals. It then performs
a PCA analysis on these edge weights, as well as on a
null background that is based on random pathways. For
the randomization (permutation), PORCUPINE creates
a set of 1000 gene sets equal in size to the pathway
of interest, where genes are randomly selected from all
genes present in the .gmt file. The edges connected to
these genes are then extracted. The amount of variance
explained by the first principal component (PC1) in the
pathway of interest is then compared to the amount of
variance explained by PC1 in the random (permuted)
data.

To identify significant pathways, PORCUPINE applies
a one-tailed t-test and calculates the effect size (ES). The
latter is calculated as the difference between the variance
explained by PC1 of the pathway of interest and the mean
of the variance explained by PC1 corresponding to the
random sets of pathways, divided by standard deviation
of the variance explained by PC1 in the random sets using
the cohensD function in the “lsr” package in R. P-values
are adjusted for multiple testing with the Benjamini-
Hochberg method [30] and significant pathways are re-
turned based on user-defined thresholds of adjusted p-
value and effect size. We developed PORCUPINE as R
package and it is available as open-source code on GitHub
(https://github.com/kuijjerlab/PORCUPINE).

We applied PORCUPINE to TCGA and DKFZ
leiomyosarcoma data using Reactome pathways v7.1
from MSigDb, excluding pathways that consisted of more
than 200 genes. Pathways with adjusted p-value less than
0.01 and effect size >=2 were reported as significant.
As the number of genes in each pathway is different,
we investigated whether the obtained results were biased
towards pathways of smaller size. To test this, we split
pathways in four groups based on their size, namely
pathways containing less than 50, 50-100, 100-150, 150-
200 genes. We then calculated the proportions of these
groups among Reactome pathways and among the set of
deregulated pathways identified in the TCGA-LMS and
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DKFZ-LMS datasets.

Clustering of pathways and identification of
redundant aspects of gene regulatory heterogeneity

To investigate potential redundant patterns of het-
erogeneity captured by pathways identified with POR-
CUPINE, we computed the Pearson correlation coef-
ficient for every pair of individuals for each pathway,
based on the individual’s TF-target edge weights in
that pathway. We then combined pathway-level inter-
individual correlations into a matrix for all pathways
and performed clustering, visualizing the results using
the “ComplexHeatmap” package in R. Additionally, to
identify pathways with overlapping genes, we computed
the Jaccard similarity between pairs of pathways.

Identification of top ranked target genes and
transcription factors

To identify those genes and TFs that contribute most
to the pathway’s significance, we extracted the edge load-
ings of the first principal component (referred to below as
the “edge contribution score”). Because the sum of the
squares of all edge contribution scores for an individual
principal component must be one, we calculated the
expected edge contribution score, assuming that all edges
contributed equally to that principal component. Edges
with a contribution score > 1.5× the expected score
were regarded as important contributors to that principal
component. To identify TFs with many co-regulated
genes, we then grouped TFs corresponding to these top
edges according to the number of their targets.

Association of the significant pathways with clinical
phenotypes

To investigate whether the heterogeneity captured by
each pathway was associated with clinical features, we
performed an association analysis of the coordinates of
patients on the first principal component in each path-
way (referred to below as the “pathway-based patient
heterogeneity score”) with the clinical data available for
these patients. Clinical features for TCGA leiomyosar-
coma patients were obtained using the “TCGAbiolinks”
package from Bioconductor [31]. Clinical information
for 37 DKFZ patients was obtained from the study by
Chudasama et al. [18]. Since the clinical attributes
represent a mix of categorical and numerical features, we
applied Kruskal-Wallis and Pearson correlation tests for
categorical and numerical features, respectively. We cor-
rected p-values for multiple testing using the Benjamini-
Hochberg approach and applied a threshold of 0.05 to
identify significant associations.

In order to determine whether any of the identified
pathways were associated with patient survival, we used
the first principal component from each pathway in a Cox
regression model to predict patient survival.

Association of the significant pathways with
pathway-based mutation profiles

We downloaded and preprocessed leiomyosarcoma mu-
tation data as previously described in Kuijjer et al. [32].
We used the SAMBAR algorithm [32] to obtain patient-
specific pathway mutation scores for TCGA-LMS pa-
tients. Among 1,455 pathways, 954 pathways had muta-
tion scores larger than zero in the TCGA-LMS dataset.
To assess the association between pathways identified
with PORCUPINE and these pathways mutation scores,
we used a Kruskal Wallis test, comparing the pathway-
based patient heterogeneity scores on the first principal
component between two groups, i.e. mutated vs not
mutated, for each mutated pathway. We used FDR<0.05
as threshold for reporting significant differences between
the groups.

Association of the identified pathways with overall
methylation profiles

DNA methylation data measured on the Illumina
Infinium Human Methylation 450 BeadChip platform
were downloaded for all sarcoma patients available in
TCGA using the Bioconductor “TCGA biolinks” package
in R. We downloaded raw methylation IDAT files and
performed preprocessing and normalization with subset-
quantile within array normalization (SWAN) using Bio-
conductor package “minfi.” [33]. We calculated overall
methylation profiles for each individual by using the
mean value across all probes. We then correlated these
values to the pathway-based patient heterogeneity scores
in each pathway. Associations with FDR <0.05 were
considered significant.

Validation of the pathways in healthy tissues

We obtained patient-specific regulatory networks for
healthy smooth-muscle–derived tissues, represented by
esophageal muscularis and uterus from the Genotype-
Tissue Expression (GTEx) project, through the GRAND
database of gene regulatory network models [34]. In
total, 283 and 90 patient-specific networks were available
for esophageal muscularis and uterus, respectively. We
applied PORCUPINE to evaluate gene regulatory het-
erogeneity among the individuals in the merged set of
373 networks.
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Construction of gene regulatory networks for
leiomyosarcoma cell lines

RNA-seq counts were obtained for four leiomyosar-
coma cell lines, including SK-UT-1, SK-UT1-B, MES-SA
and SK-LMS-1 from the study by Chudasama et al. [18].
To integrate these data with the patient samples, we
performed batch correction on the raw expression counts
of the set of 206 TCGA soft-tissue sarcomas and the 37
DKFZ-LMS samples and the 4 cell lines together, using
the “Combatseq” package in Bioconductor. Following
that, we combined the Combatseq-adjusted counts with
the raw expression counts of the remaining TCGA
samples and used “qsmooth” normalization to obtain
normalized counts. Individual networks for cell lines were
then modeled using PANDA and LIONESS as described
above.

Generation and processing of ATAC-seq data

A complete list of all reagents, buffer solutions, and
DNA barcode primer sequences is described in Sup-
plementary File 1. ATAC-Seq libraries for SK-UT-1,
SK-UT-1B, MES-SA, and SK-LMS-1 were prepared in
triplicate according to the Omni-ATAC protocol [35] with
minor modifications. Briefly, 50,000 cells per replicate
were collected by centrifugation at 500 x g for 5 min
at 4°C. Cell pellets were resuspended in 50 µL ice-cold
lysis buffer A and incubated on ice for 3 min, after
which 500 µL ice-cold lysis buffer B were added. Cell
nuclei were pelleted by centrifugation at 500 x g for
10 min at 4°C. The supernatant was removed carefully
and nuclei pellets were resuspended in 47.5 µL ice-cold
transposition buffer and 2.5 µL Tagment DNA TDE1
enzyme (Illumina). The transposition mix was incubated
at 37°C for 30 mins at 1000 rpm. After adding 20 µL 5 M
guanidinium thiocyanate, tagmented DNA was purified
using Agencourt AMPure XP magnetic beads (Beckman
Coulter).

Sequencing libraries were generated via qPCR by
mixing purified tagmented DNA with 25 µL 2X NEB-
Next High-Fidelity PCR Master Mix (NEB), 2.5 µL
Tn5mCP1n forward primer, 2.5 µL Tn5mCBar reverse
primer, and 0.5 µL 100X SYBER Green I (Invitrogen).
The following PCR program was implemented: 1 cycle
of 72°C for 5 min, 1 cycle of 98°C 30 sec, and 10
cycles of 98°C for 10 sec, 63°C for 30 sec, 72°C for 30
sec. Following two-sided size selection with 0.5× and
1.4× of Agencourt AMPure XP magnetic beads, library
concentration and fragment distribution were checked via
the 2200 TapeStation System with the High Sensitivity
D1000 ScreenTape/Reagents (Agilent Technologies).

Libraries were sequenced at the DKFZ Genomics and
Proteomics Core Facility using the Illumina NextSeq
550 Paired-End 75 bp. Sequencing reads were processed
using the CWL-based ATAC-Seq workflow available at
https://github.com/CompEpigen/ATACseq workflows

[36, 37]. Peak calling on individual samples was
performed with MACS2 with parameters – nomodel –
keep dup all –broad –gsize 2736124973 –qvalue 0.05. We
followed the DiffBind protocol to obtain a consensus
read count matrix from MACS2 peak sets [38]. The
ATAC-seq peaks were filtered using the ENCODE
blacklist [39] and only the peaks present at least in any
two samples were included in the analysis. Peaks were
annotated to nearest gene using the “annotatePeak”
function in “ChIPseeker” package in R. To identify
differentially accessible regions between different cell
lines we used the raw read count matrix in DESeq2 [40].
For this, only genomic regions that were annotated as
promoter regions based on the annotatePeak calls were
considered. If several promoters were mapped to the
same gene, a mean of raw reads over those promoter
regions was calculated. To obtain normalized ATAC
counts for the comparison of peak accessibility at the
promoters of the genes in heterogeneous pathways with
random regions, we used library size normalization in
DiffBind. If several promoters were mapped to the same
gene, a mean of normalized reads over those promoter
regions was calculated.

RESULTS

Pan-sarcoma clustering of patient-specific regulatory
networks

We set out to investigate the regulatory processes
that drive heterogeneity in soft-tissue sarcomas. We
started by modeling genome-wide, patient-specific gene
regulatory networks for 206 TCGA soft-tissue sarcoma
patients using two computational algorithms, PANDA
and LIONESS (Figure 1). These patient-specific net-
works include information on likelihoods of regulatory
interactions (represented as edge weights) between 623
TFs and 17,899 target genes. To explore and visualize pa-
tient heterogeneity based on their regulatory landscapes,
we first calculated gene targeting scores in these networks
(see Methods), and then used Uniform Manifold Approx-
imation and Projection (UMAP) for visualization. To
determine whether regulatory profiles cluster differently
than expression data, we also performed UMAP on the
expression data (Figure 2).

In both the regulatory networks and expression data,
the majority of leiomyosarcoma samples, represented
by uterine (ULMS) and soft-tissue leiomyosarcoma
(STLMS), clustered separately from other sarcoma sub-
types, with a more distinct separation observed in the
gene expression profiles (Figure 2). Co-localization of
uterine and soft-tissue leiomyosarcomas was different
between the two UMAP embeddings—while ULMS sam-
ples separated from STLMS in the expression data,
clustering of leiomyosarcoma based on gene regulatory
networks did not separate these subtypes. This indicates
that, despite the apparent differences in gene expression
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Figure 1. Schematic overview of the study. We modeled individual patient gene regulatory networks for leiomyosarcoma patients
from two datasets (TCGA and DKFZ) with PANDA and LIONESS, integrating information on protein-protein interactions
(PPI) between transcription factors (TF), prior information on TF-DNA motif binding, and gene expression data. We then
developed and applied a new computational comparative network analysis tool (PORCUPINE) to identify significant pathways
that capture heterogeneity in gene regulation across these datasets.
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Figure 2. UMAP visualization of the distribution of 206
soft-tissue sarcomas, representing seven different histological
subtypes (indicated with different colors) based on (A) gene
targeting scores (B) expression. DDLPS: dedifferentiated
liposarcoma, MFS: myxofibrosarcoma, MPNST: malignant
peripheral nerve sheath tumor, SS: synovial sarcoma, STLMS:
soft tissue leiomyosarcoma, ULMS: uterine leiomyosarcoma,
UPS: undifferentiated pleiomorphic sarcoma.

between the two tissue-sites where leiomyosarcoma can
develop, tumors that arise at these different sites do not
have clearly distinct regulatory profiles. This analysis
demonstrates that patient-specific regulatory networks
capture heterogeneity among leiomyosarcoma tumors
that is not directly obvious from analysis of expression
data alone.

The remaining sarcoma subtypes were more spread
out across the UMAP axes, with no clear co-localization
of the gene regulatory networks derived from the same
sarcoma histological subtype in distinct clusters, except
for synovial sarcomas (SS). With the use of HDBSCAN
in 2D UMAP space, we clustered the gene regulatory
profiles of all 206 sarcoma samples and identified ten
clusters (Supplementary Figure S1). Two of these clus-

ters were mainly represented by leiomyosarcoma samples
from mixed tissue-of-origin, confirming the heterogeneity
we observed in the UMAP visualization.

In-depth analysis of gene regulatory heterogeneity
in leiomyosarcoma with PORCUPINE

The distinct regulatory clusters we identified in
leiomyosarcoma motivated us to perform an in-depth
analysis of the regulatory heterogeneity of leiomyosar-
coma. To facilitate this, we developed a new computa-
tional tool, PORCUPINE, that can be applied to patient-
specific gene regulatory networks to identify biological
pathways that capture regulatory heterogeneity in a
patient population (Figure 3). PORCUPINE exam-
ines regulatory co-variability of edge weights across a
cohort of patient-specific networks in a pre-defined set
of pathways, e.g. pathways from published resources
such as Reactome [41]. The method performs PCA on
all estimated regulatory interactions connected to genes
from a specific pathway. It then compares the variance
captured by the first principal component in the pathway
to the amount of variance that would be expected by
chance. This process is repeated for each pathway.
Significant pathways can then be selected based on user-
defined thresholds of adjusted p-value and effect size.

We applied PORCUPINE to the 80 patient-specific
leiomyosarcoma gene regulatory networks from TCGA,
using 1,455 Reactome pathways from MSigDb (see Meth-
ods). This identified 72 significant pathways (adjusted p-
value less than 0.01 and effect size >=2). We validated
these results in an independent set of patient-specific
networks modeled on 37 leiomyosarcoma samples from
DKFZ. In the validation dataset, we identified 91 path-
ways, of which 37 were also identified in the networks
modeled on TCGA. This overlap of 37 pathways is higher
than expected by chance, with p-value <9.522e-29 based
on a hypergeometric test. The pathway’s effect sizes
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Figure 3. Overview of PORCUPINE (PCA to Obtain Regulatory Contributions Using Pathway-based Interpretation of Network
Estimates). PORCUPINE applies the following steps: 1) TF-gene edge weight information is extracted from each individual
gene regulatory network for all genes belonging to a certain pathway; 2) Principal Component Analysis is performed on the
pathway-associated TF-gene weight matrix. The variance explained by the first principal component is extracted; 3) The
amount of variance explained by PC1 is compared to the expected amount of variance explained, which is obtained by applying
PCA on edge weights connected to 1,000 randomly generated gene sets of the same size as the selected pathway. Effect size is
calculated. These steps are repeated for each pathway. P-values obtained from step 3 are then corrected for multiple testing
with the Benjamini-Hochberg method.

also correlated with a Pearson correlation coefficient of
0.53. This indicates that PORCUPINE’s results are
robust and highly reproducible across networks modeled
on independent datasets. The 37 pathways that were
detected in both datasets are visualized in Figure 4, with
corresponding effect sizes.

Notably, the significant pathways varied in size, indi-
cating that PORCUPINE analysis is not biased towards
pathways of smaller or larger size (see also Supplemen-
tary Table S1).

Regulatory heterogeneity in pathways with known
and new roles in leiomyosarcoma

The two most significant pathways that were identified
in both datasets are “Inhibition of replication initiation of
damaged DNA by RB1/E2F1” and “E2F mediated reg-
ulation of DNA replication,” containing 13 and 22 genes,
respectively. A closer examination of the genes in these
pathways shows that all 13 genes in the first pathway are
also part of the second pathway. PORCUPINE provides
evidence of a coordinated change in the regulation of
multiple genes in these pathways that is not directly
captured by expression data (Supplementary Figure S2).
These pathways are leiomyosarcoma-relevant, given that
leiomyosarcomas are characterized by a high frequency
of alterations in tumor suppressor gene RB1, which

negatively regulates transcription factor E2F1 [18].
The 37 pathways can be further grouped into subcat-

egories according to their cellular function (see Figure
4). Pathways with genes involved in cell cycle and
signal transduction were the most frequent subcategories.
Two pathways were associated with TP53 regulation,
including “TP53 regulates transcription of genes involved
in G2 cell cycle arrest” and “TP53 regulates transcription
of cell cycle genes.” Among signal transduction pathways,
we found an overrepresentation of pathways involved in
Fibroblast growth factor receptors (FGFR) signaling,
including “Negative regulation of FGFR2 signaling,”
“FGFRL1 modulation of FGFR1 signaling,” and “ERKs
are inactivated.”

FGFRs are tyrosine kinase receptors that are involved
in several biological functions including regulation of
cell growth, proliferation, survival, differentiation, and
angiogenesis. Aberrant FGFR signaling has been shown
to be associated with several human cancers and thus
FGFRs are attractive druggable targets [42]. To our
knowledge, among members of the FGFR family, only the
inhibition of FGFR1 has been investigated in a patient
with metastatic leiomyosarcoma, which showed clinical
improvement [43]. There is an ongoing clinical trial
testing the selective pan-FGFR inhibitor Rogaratinib to
treat patients with advanced sarcoma with alterations in
FGFR 1-4 [44].

Two pathways associated with immune system func-
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Figure 4. Pathways identified with PORCUPINE in both leiomyosarcoma datasets, based on FDR <0.05 and effect size >2.
Pathways are colored according to their cellular function, with the size of the bubble reflecting the number of genes in the
pathway.

tion were identified—“CTLA-4 inhibitory signaling” and
“Defensins.” CTLA-4 is an immune checkpoint, and
monocolonal antibodies such as ipilimumab and tremeli-
mumab have been developed to target CTLA-4. These
CTLA-4 inhibitors have already been used in clinical
studies for treatment of several cancer types [45]. The
efficacy of immunotherapy with CTLA-4 inhibitors in
soft-tissue sarcoma has only been evaluated in one study
to-date, in which six patients with synovial sarcoma

were treated with ipilimumab [46]. To our knowledge,
no clinical results testing the effect of anti-CTLA-4 in
leiomyosarcoma are available or exist to-date.

To evaluate whether the identified pathways capture
similar patterns of regulatory heterogeneity, we per-
formed clustering of pathways based on inter-individual
correlations of edge weights (see Methods). The path-
ways grouped into three main clusters, where pathways
in each cluster stratified leiomyosarcoma tumors into
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similar subtypes. The clustering of pathways we observed
was partly explained by gene overlap (Supplementary
Figure S3). Pathways in cluster 1 had highest gene
overlap, followed by cluster 2, with almost no gene
overlap between pathways in cluster 3 (mean Jaccard
indices of 0.18, 0.04, and 0.006, respectively, Supple-
mentary Figure S3). Shared patterns of heterogeneity
between pathways without apparent gene sharing can
also indicate a higher order of co-regulation of these
pathways. An example is the pathway “Negative reg-
ulation of FGFR2 signaling,” which belongs to cluster
1, however, based on its Jaccard indices, this pathway
does not cluster with remaining pathways from the same
cluster.

Major genes and transcription factors contributing
to leiomyosarcoma heterogeneity

We next identified those regulatory interactions in
each of the 37 pathways that contributed most to the
regulatory heterogeneity we observed in leiomyosarcoma
(see Methods). Across all pathways, genes including
PPP2R1A, PPP2CB, TFDP2, CCNB1, and RB1 were
frequently found among the top targets (Supplementary
file 2). These genes are related to cell proliferation
and growth. Noteworthy, PPP2R1A was among the top
contributors in 13 out of 37 pathways and may therefore
be a key player in driving leiomyosarcoma heterogeneity
(see Figure 5 for its contribution to three selected path-
ways). It encodes for a subunit of protein phosphatase
2 (PP2), which plays a role in the negative control of
cell growth and division. PP2A inactivation is a crucial
step in malignant development [47]. It was previously
shown that PPP2R1A mutation is frequent in uterine
cancers [48]. However, we did not identify an association
between the histological subtype of leiomyosarcoma and
gene regulatory heterogeneity in pathways that had
PPP2R1A among their major contributors. We also
did not identify any significant association of patient
heterogeneity scores with PPP2R1A mutation profiles,
indicating that regulatory heterogeneity of PPP2R1A is
not driven by somatic mutations in the gene itself.

In addition to reporting the top target genes, we iden-
tified top TFs contributing to regulatory heterogeneity in
each pathway. TFs that coordinately regulated multiple
targets are shown in Figure 5C for the three main path-
ways discussed above and in Supplementary Figure S6
for all pathways. Some TFs had a limited number of
targets that they regulate in a coordinated manner, such
as in the pathway “Inhibition of replication initiation
of damaged DNA by RB1/E2F1,” where various TFs
target a relatively low number of genes. Other TFs,
such as E2F8 in “CTLA4 inhibitory signaling,” were
enriched for heterogeneously targeting a large number
of genes (Figure 5C, see also Supplemental Figure
S4, which indicates most genes of this pathway are
coordinately targeted by E2F8). E2F8 and ZNF282 were

the most frequent TFs that connected to a large number
of targets across many of the identified pathways (see also
Supplementary Figure S6).

The E2F family of TFs contains eight members that
play central roles in many biological processes, includ-
ing cell proliferation, differentiation, DNA repair, cell
cycle, and apoptosis. Several studies have shown that
dysregulation of E2F8 is associated with oncogenesis and
tumor progression in many cancers. For example, it was
shown that expression of E2F8 is associated with tumor
progression in breast cancer [49], human hepatocellular
carcinoma [50], and lung cancer [51]. However, not much
is known about the role and clinical significance of E2F8
in leiomyosaroma, nor in other sarcomas.

The role of ZNF282 (Zinc finger protein 282) in human
cancers, including sarcomas, is unknown. In a study by
Yeo et al., it was shown that ZNF282 overexpression was
associated with poor survival in esophageal squamous
cell carcinoma, and depletion of ZNF282 inhibited cell
cycle progression, migration, and invasion of cancer cells
[52]. Additionally, the authors provided evidence that
ZNF282 functions as an E2F1 co-activator, highlighting a
potential connection between this TF and E2F signaling.

Regulatory heterogeneity in leiomyosarcoma is not
associated with clinical features, somatic mutations,

or DNA methylation

We next explored if the heterogeneity we observed in
leiomyosarcoma gene regulatory networks is associated
with known features that may influence patient hetero-
geneity, such as clinical features and genomic data.

To investigate whether the identified pathways were as-
sociated with clinicopathological features, we performed
an association analysis of the pathway-based patient
heterogeneity scores with clinical features available from
the TCGA and DKFZ resources (Supplementary Figure
S5). There were no significant associations between
the clinical features and the pathway-based patient het-
erogeneity scores on the first principal component (at
FDR <5%). To determine whether any of the identified
pathways were related to patient survival, we used the
pathway-based patient heterogeneity scores on the first
principal component in Cox regression models to predict
patient outcome. We did not identify any significant
associations with survival.

To evaluate if any of the identified pathways could
classify patients with similar mutational profiles, we
associated the first principal component in these path-
ways with pathway mutation scores. To do so, we
downloaded and processed mutation data obtained from
leiomyosarcoma tumors from TCGA (available for 72/80
patients) as described in Kuijjer et al. [32]. We performed
a Kruskal Wallis test to compare the pathway-based
patient heterogeneity scores on the first principal com-
ponent in each of the 37 pathways between two groups,
i.e. mutated compared to not mutated, for each mutated
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Figure 5. A. Heatmaps showing the contribution scores of genes and all TFs to the first principal component in three selected,
significant pathways. B. Heatmaps showing the edge weights of selected genes to all TFs in these pathways. Edge weights are
scaled across individuals. Row annotation shows the edge contribution scores to PC1 in each pathway. Column annotation
indicates the patient heterogeneity scores in each pathway. C. Boxplots showing the number of targets for TFs with top edge
contribution scores to PC1 in each pathway. TFs with a number of targets greater than the 95th percentile in each pathway
are labelled.
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pathway. No significant differences were identified (FDR
<0.05), indicating that the separation of leiomyosarcoma
patients identified with PORCUPINE is independent of
tumor mutation profiles. Thus, gene regulation may
potentially be a new, mutation-independent mechanism
driving patient heterogeneity.

To investigate if the patient heterogeneity profiles were
associated with inter-individual differences in the tumor’s
methylation profiles, we performed correlation analysis
of the pathway-based patient heterogeneity scores on
PC1 with overall DNA methylation profiles of indi-
vidual tumors. There were no significant associations
(FDR <0.05), indicating that regulatory heterogeneity
in leiomyosarcoma is independent of methylation status.

Regulatory heterogeneity of the identified pathways
is not observed in healthy tissues

To explore if the 37 pathways we identified were
cancer-specific, we assessed gene regulatory heterogeneity
in healthy smooth muscle–derived tissues, represented
by esophageal muscularis and uterus. In total, 283
esophageal muscularis and 90 uterus sample-specific
gene regulatory networks, modeled with PANDA and
LIONESS, were available from the GTEx project through
the GRAND database [34]. We used PORCUPINE
to characterize regulatory heterogeneity in this dataset.
Among the 37 pathways identified to drive leiomyosar-
coma heterogeneity, only one pathway, i.e “Gap junc-
tion degradation” was significant in these healthy tis-
sues, indicating that 36/37 pathways we identified are
leiomyosarcoma-specific and that gene regulatory hetero-
geneity in these pathways likely develops during sarcoma-
genesis.

Regulatory heterogeneity associates with chromatin
state

Finally, we investigated whether network heterogeneity
corresponds to chromatin accessibility. To do so, we
profiled RNA-seq and ATAC-seq for four leiomyosarcoma
cell lines. To translate our findings on the inter-patient
heterogeneity in leiomysarcoma to the cell lines, we
constructed cell line specific gene regulatory networks
based on the RNA-seq data, and placed these networks
on the regulatory map of leiomyosarcoma patients. Cell
lines clustered among the DKFZ-LMS patient specific
networks (Supplementary figure S8), and we could
confirm 29/37 pathways when we included these cell lines
in our analyses.

We next clustered ATAC-seq profiles of the four
cell lines (three replicates for each cell line, see Sup-
plementary Figure S7). The cell lines had distinct
chromatin profiles with SK-LMS-1 and MES-SA cluster-
ing separately from SK-UT-1 and SK-UT1-B—two cell
lines that are derived from the same donor. We then

assessed whether promoters of genes from the significant
pathways detected by PORCUPINE are located within
open chromatin regions. To do so, we compared peak
accessibility at the promoters of these genes to that at
promoters of randomly selected genes. We observed
a significant enrichment in open chromatin regions for
the heterogeneously regulated genes (Figure 6A). In
addition, we compared expression of these genes to
randomly selected gene sets, and found they are also
highly expressed (Figure 6B). This suggests that genes
that are located in open chromatin regions are more
likely to be regulated by different sets of TFs, which
could have implications for network-based biomarker
detection or the development of subtype-specific targets
for treatment.
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Figure 6. Comparison of chromatin accessibility of promoter
regions of the genes and expression of the genes in pathways
identified by PORCUPINE across four cell lines to random
genes.

Finally, we evaluated whether genes from the top
heterogeneously regulated pathway “E2F mediated regu-
lation of DNA replication” were also over-represented in
differentially accessible regions between leiomyosarcoma
cell lines. To do so, we called differentially accessible
regions in pairwise comparisons between the four cell
lines (six comparisons in total). The promoter of
PPP2R1A, the gene we found to be most enriched for
heterogeneous regulation in the two patient cohorts,
was differentially accessible in all pairwise comparisons
between cell lines, except between SK-UT-1 and SK-
UT1-B (see Supplementary Table S2). However, as these
two cell lines are derived from the same donor, they are
expected to have comparable regulatory profiles. This
indicates that the differential heterogeneity observed in
the patient-specific regulatory networks are not only
associated with open chromatin states in general, but
also with more subtle differences in chromatin landscapes
between individual tumors.

Discussion

In this work, we hypothesized that classification of soft-
tissue sarcoma patients on the basis of gene regulatory
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networks has the potential to provide additional, novel
information to stratify patients into clinically meaningful
subgroups, to point to potential new targets for treat-
ment, and to identify new biomarkers to guide selecting
patients most likely to benefit from a specific treatment.

To this end, we developed PORCUPINE, a novel
computational approach to map heterogeneity of gene
regulation across a patient population. We applied the
method to model heterogeneity of gene regulation in
leiomyosarcoma, which we found to present a high level
of heterogeneity in a pan-sarcoma network analysis. Ap-
plying PORCUPINE to two independent leiomyosarcoma
cohorts identified 37 pathways that robustly capture gene
regulatory heterogeneity in the disease. Among the
detected pathways, we identified pathways that could
represent potential targets for treatment of subgroups
of leiomyosarcoma patients, including RB1/E2F1 signal-
ing, pathways involved in FGFR signaling, and CTLA4
inhibitory signaling. While these pathways have been
described as potential targets for treament of sarcomas,
not all patients may respond to such approaches, as,
for example, was recently shown for treatment with a
CTLA4 inhibitor in synovial sarcoma [46]. Stratifying
patients based on the regulatory profiles of these path-
ways could potentially help identify subgroups of patients
that are likely to respond to treatments that act on these
pathways.

PORCUPINE highlighted genes and TFs that are
enriched in driving heterogeneity among leiomyosarcoma
patients, including RB1 and PPP2R1A as target genes,
as well as the TFs E2F8 and ZNF282, which could
potentially be inhibited [53]. Through gene regulatory
network modeling and ATAC-seq profiling in leiomyosar-
coma cell lines, we found that promoters of the most
heterogeneously regulated genes in leiomyosarcoma are
enriched for open chromatin states. This suggests that
genes in open chromatin states may be more prone to
receive differential binding by TFs, which could have
implications for the detection of regulatory biomarkers
or subtype-specific targets for treatment.

We performed our study on four leiomyosarcoma cell
lines that are also represented in extensive cell profiling
and functional genomics initiatives such as DepMap from
Broad Institute. While we could capture heterogeneous
regulation in most of the identified pathways, the small
number of cell lines may likely not fully represent the
landscape of heterogeneous gene regulation we observed
in the patient cohorts, which is a limitation of our study.
However, we could still identify significant differential
chromatin states for the top heterogeneously regulated
gene in the patient population, PPP2R1A, indicating
that our network models may potentially also capture
subtle differences in chromatin states in a patient popu-
lation.

We developed PORCUPINE as user-friendly R pack-
age that can be applied to single-sample networks. While
similar approaches have previously been successfully
applied to study heterogeneity in cancer using gene

expression profiles [54], our approach differs from these
methods as we specifically designed it to analyze large-
scale, genome-wide gene regulatory networks. Of note,
while we used PORCUPINE on networks modeled with
PANDA and LIONESS, the tool is not limited to these
specific methodologies, and could potentially also be
used to analyze (bipartite) networks modeled with other
single-sample approaches. Of course, when applying
PORCUPINE, one should consider cohort sample size as
well as the use of an independent validation dataset, as
we showed here by including an independent leiomyosar-
coma dataset, which are both important to include to
detect relevant and robust pathways. Additionally, it
is important to note that, while the use of a large
set of randomized pathways is beneficial, it comes with
disadvantage of an increase in computational load.

Genome-wide gene regulatory networks represent high-
dimensional data. Usually, network summary statistics,
such as gene targeting scores, closeness centrality, or
betweenness centrality, are calculated prior to any further
analysis to reduce the dimensions of large-scale networks.
Then, to identify heterogeneity across a cohort, unsuper-
vised clustering approaches are widely used [55]. The
advantage of PORCUPINE is that it can be directly
applied to high-dimensional networks, as it uses as input
the network’s edge weights instead of a summary statis-
tic. Moreover, as it does this per individual biological
pathway, the output is not just a collection of significant
differential edges that need to be further analyzed, but
rather a list of differentially regulated pathways that are
easy to interpret. Additionally, the method can capture
significant aspects of heterogeneity among individuals
in situations when no clear population structure with
well defined clusters can be revealed. PORCUPINE
estimates pathway-based patient heterogeneity scores
that can facilitate the identification of either continuous
gradients or discrete gene regulatory subtypes and that
can be further used in association analyses with clinical
covariates, or in survival analyses, as we have shown in
this work.

In summary, with PORCUPINE, we uncovered
patterns of inter-patient heterogeneity at the level of
transcriptional regulation in tumors and cell models,
and identified genes and pathways that may represent
therapeutic entry points in leiomyosarcoma. Our
approach thereby provides one of the first steps towards
implementing network-informed personalized medicine
in soft-tissue sarcomas.
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SUPPLEMENTARY FIGURES AND TABLES

ptw genes Reactome% TCGA% DKFZ%
<50 75.8 81.9 78

> 50& 6 100 16 12.5 12
>100 & <150 5.9 4.2 5.8

> 150 2.3 1.4 4.4

Supplemental Table S1. Proportions of pathways of different sizes among Reactome pathways and pathways identified with
PORCUPINE in the TCGA-LMS and DKFZ-LMS datasets.

Comparison Among DARs Not among DARs

SK-UT-1B vs SK-LMS-1
PPP2R1B, PPP2R1A, E2F1, PRIM2, MCM8, TFDP2
POLA2

PPP2CA, PRIM1, CCNB1, ORC4, POLA1, ORC1,
PPP2CB, CDK1, ORC5, RB1, TFDP1, ORC2

SK-UT-1B vs MES-SA
PPP2R1A, ORC5, ORC1, CCNB1, ORC2, ORC4,
RB1, PPP2R1B

POLA1, TFDP1, PRIM2, PPP2CA, PRIM1, TFDP2,
POLA2, MCM8, PPP2CB, E2F1, CDK1

SK-UT-1 vs SK-UT-1B CDK1, PRIM1, ORC4
CCNB1, PPP2CA, ORC2, TFDP2, PPP2R1A, ORC1
TFDP1, PPP2R1B, POLA1, E2F1, RB1, ORC5,
PPP2CB, PRIM2, POLA2, MCM8

SK-UT-1 vs SK-LMS-1
PPP2R1A, PPP2R1B, E2F1, PRIM2, MCM8, PRIM1
PPP2CA, CCNB1, CDK1, POLA2, TFDP2, POLA1

TFDP1, ORC4, PPP2CB, ORC5, ORC2, RB1, ORC1

SK-UT-1 vs MES-SA
CCNB1, PPP2R1A, ORC4, ORC1, ORC2, ORC5,
PRIM1, CDK1, PPP2R1B, TFDP1, POLA1, RB1,
PRIM2

POLA2, PPP2CA, PPP2CB, MCM8, E2F1, TFDP2

MES-SA vs SK-LMS-1
PPP2R1B, PRIM2, E2F1, ORC5, MCM8, ORC1
ORC4, ORC2, POLA2, PPP2CA, PPP2R1A, RB1,
TFDP2, CCNB1

TFDP1, POLA1, CDK1, PRIM1, PPP2CB

Supplemental Table S2. Genes from the “E2F mediated regulation of DNA replication” pathway mapped to differential
accessible regions (DARs) in each of the pairwise cell line comparisons.
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Supplementary Figure S2. Pearson correlations between A. targeting scores and B. expression levels of genes belonging to the
pathway “Inhibition of replication initiation of damaged DNA by RB1/E2F1.”
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Supplementary Figure S4. Pearson correlations among edge weights of target genes of the transcription factor “E2F8” in the
pathway “CTLA4 inhibitory signalling.”
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Supplementary Figure S5. Association of the clinical features of patients and pathway-based patient heterogeneity scores on
PC1 in each of the 37 pathways. Associations are shown for both cohorts (TCGA and DKFZ). The y-axis indicated the negative
log base 10 of the FDR-adjusted p-value. The dotted line indicates a p-value of 0.05.
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Supplementary Figure S6. Boxplots showing the number of targets for TFs with most highly weighted values to PC1 in each
pathway. 32 out of 37 pathways had edge weights with contribution scores above the threshold. TFs with a number of targets
greater than the 95th percentile are labelled.
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Supplementary Figure S7. Hierarchical clustering of cell lines based on their ATAC-seq profiles. Numbers indicate technical
replicates. Correlation (color key) indicates the Pearson correlation coefficient.
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Supplementary Figure S8. UMAP visualization of the distribution of leiomyosarcomas from three different datasets (indicated
with different colors).
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