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Abstract

Motivation: Predicting antimicrobial resistance using MALDI-TOF mass spectrometry based
machine learning is a fast-growing field of research. Recent advances in machine learning
methods specifically designed for MALDI-TOF mass spectra have outperformed established
classification approaches. However, classification performance was observed to have a large
standard deviation between different train–test splits. We hypothesise that this variance is
caused by the underlying phylogenetic structure between microbial samples, which is implicitly
reflected in their MALDI-TOF MS profiles, but not taken into account during the training of a
model.
Results: In this paper, we propose to infer this structure from the dataset—using agglomerative
hierarchical clustering—and consider it during the dataset splitting between train and test.
We show that incorporating such phylogenetic structure into the antimicrobial resistance
prediction scenario leads to an improved classification performance. Average precision was
increased from 42.3 to 47.1 for ciprofloxacin resistance prediction in Escherichia coli and from
44.6 to 50.8 for amoxicillin-clavulanic acid resistance prediction in Staphylococcus aureus using
a Gaussian process classifier with a MALDI-TOF MS specific kernel. We envision that these
results will support the quick and reliable identification of antimicrobial resistances, thus
increasing patient well-being and reducing healthcare costs.
Availability: All data is available for download and code available as an easy-to-use Python
package under https://github.com/BorgwardtLab/maldi PIKE

at branch maldi stratification.
Contact: caroline.weis@bsse.ethz.ch, karsten.borgwardt@bsse.ethz.ch
Supplementary information: Supplementary information at the end of document.
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1 Introduction

Matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS)
is a fast and high-throughput method for the characterisation of bacteria due to its ability to
analyse complex peptide mixtures. During the last few years, it has become a widely-used
method for microbial species identification [De Bruyne et al., 2011]. The measurements of
MALDI-TOF MS are represented in a set of mass spectra, known to be highly specific for
different microbes. Coupled with antimicrobial resistance profiles, i.e. a priori knowledge about
whether a given microbial is susceptible to a certain antimicrobial drug, MALDI-TOF MS
was shown to yield accurate and confident predictions. Specifically, a large-scale study of
MALDI-TOF based machine learning demonstrated accurate predictions and the potential for
clinical utility [Weis et al., 2022] and a novel kernel method based on diffusion processes was
recently shown to outperform existing methods [Weis et al., 2020a]. The improved performance
was marred by high standard deviations—different train–test splits exhibited highly-varying
predictive performance values. We conjecture that these differences are caused by the under-
lying phylogenetic structure of samples; the genetic information to infer the phylogeny is
commonly unavailable in datasets. The train–test splits used to optimise parameters of machine
learning algorithms should ideally follow the structure of the complete dataset, which is the
best approximation we have of the true structure within the data. While the experimental setup
of Weis et al. [2020a] ensures that the train–test split is stratified in terms of resistance informa-
tion, it does not account for phylogenetic structure which could be distributed differently in the
train and test datasets. We hypothesise that MALDI-TOF mass spectra contain this information
in an implicit fashion, making a more refined description necessary for stratification. Although
the ground truth phylogenetic tree cannot be reproduced, as the dataset consists of only a few
thousand samples per species and only MALDI-TOF MS data, i.e. no additional genetic data,
is available, we assume that phylogenetic structure can be partially inferred using similarity-
based clustering. Ideally, each cluster should represent a different phylogenetic branch, and
stratification with respect to these clusters should ensure that each branch is well-represented
in both the training and testing data. The cluster assignments of mass spectra thus serve as a
proxy for the unknown phylogenetic information. Our hypothesis that clustering the samples
into subgroups could reflect true phylogenetic information is motivated by the presence of
known phylogenetic lineages within a studied microbial species. For E. coli between six and
fourteen phylogenetic subgroups are established, depending on the level of granularity [Abram
et al., 2019, Clermont et al., 2012]. In K. pneumoniae, several subspecies have been characterized,
such as K. pneumoniae (sensu stricto), K. variicola, K. africana, and other species [Lam et al., 2018a,b,
Wick et al., 2018, Wyres et al., 2016]. In S. aureus, the presence of sublineages [Bowers et al.,
2018] have been described, as well as different taxonomical classes, such as S. aureus (sensu
stricto), S. schweitzeri, and S. argenteus [Tong et al., 2015].

Our contributions. We hypothesise that extending the common approach of stratification
by prediction class with stratified cluster labels in train and test will lead to a better and more
stable predictive performance. We propose to choose the optimal cluster parameters through
clustering validity indices, which are purposefully not using any resistance label information.
In this paper, we demonstrate a simple approach to obtain such a stratified assignment using
hierarchical clustering on the mass spectra. Our approach is easy to implement, and we demon-
strate that it has the ability to improve performance in seven out of nine scenarios for both
classification models. Specifically, we observe increases in average precision for ciprofloxacin

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488198doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488198
http://creativecommons.org/licenses/by-nc-nd/4.0/


resistance prediction from 42.3 to 47.1 in E. coli and from 44.6 to 50.8 for amoxicillin-clavulanic
acid resistance prediction in S. aureus.

MALDI-TOF MS. MALDI-TOF MS is an analytical technique, in which a laser decomposes
and ionises biomolecular samples into charged molecules, and then determines the mass-
to-charge ratio of the ions [Hillenkamp et al., 1991, Proteomics, 2020]. The output is a
MALDI-TOF mass spectrum depicting the measured particle intensity against its mass-to-
charge ratio. To reduce noise and accentuate peaks, one MALDI-TOF measurement consists
of repeated measurements, which are merged into a single output spectrum. Raw spectra
suffer from a varying baseline, caused by the matrix solution, and slightly varying peak
positions, thus considerably increasing the noise level. To employ such spectra in practice,
one hence applies a collection of pre-processing steps, which can be performed using either
commercial [Bruker Daltonics, 2018] or open-source software [Gibb and Strimmer, 2012].

2 Related Work

MALDI-TOF MS based machine learning is an active and rapidly expanding field of research.
While MALDI-TOF MS is already the established method to identify the species causing an
infection, several research directions aim to exploit the information contained in MALDI-TOF
mass spectra for a more fine-grained characterisation of microbes. We briefly discuss several
current research topics.

The most established application for machine learning on MALDI-TOF mass spectra is
the identification of sub-species of a probe [Chung et al., 2019, Sonthayanon et al., 2019].
Some phylogenetic lineages within a microbial species are known to cause severe infections,
necessitating rapid, high-throughput identification methods. Therefore, quick, reliable and
low-cost typing methods of sub-species are essential for an effective infectious disease control.
Applying suitable data analysis tools and machine learning to MALDI-TOF mass spectra can
provide such a method and is generally of lower cost than current identification methods
such as multi-locus sequence typing (MLST) [Chung et al., 2019, Sonthayanon et al., 2019].
Previous work employing MALDI-TOF MS based machine learning for sub-species discrim-
ination includes the typing of Mycoplasma pneumoniae [Xiao et al., 2014], discrimination of
environmental and contagious Streptococcus uberis [Esener et al., 2018], and strain typing Staphy-
lococcus haemolyticus [Chung et al., 2019]. Additionally, MALDI-TOF MS has been shown useful
for a less expensive, time-consuming and labour-intensive identification of clonal complexes,
such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediately resistant
Staphylococcus aureus (VISA), and heterogeneous VISA (hVISA) [Camoez et al., 2016, Zhang
et al., 2015].

More recently, MALDI-TOF MS based machine learning has been applied for the prediction of
antimicrobial resistance [Weis et al., 2020b]. The current standard of culture-based antimicrobial
susceptibility testing in clinical routines relies on phenotypic assay approaches, which can
take up to four days from sample collection during which broad-spectrum antibiotics are
administered [Weis et al., 2022]. Such less specific treatments can cause more serious adverse
effects and may ultimately lead to further antibiotic resistances. MALDI-TOF MS based
antimicrobial resistance prediction promises to reduce the time required to determine suitable
treatment by 48 h to 72 h and minimise the use of broad-spectrum antibiotics [Weis et al.,
2022]. Antimicrobial resistance prediction based on MALDI-TOF mass spectra has been proven
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Table 1: Summary statistics of the DRIAMS-A [Weis et al., 2021] dataset, considering data collected in 2017 and
2018.

species antibiotic scenario # samples % prevalence

E. coli
amoxicillin / clavulanic acid E-AMOXCLAV 3039 20.7
ceftriaxone E-CEF 3093 11.1
ciprofloxacin E-CIPRO 3081 22.8

K. pneumoniae
ceftriaxone K-CEF 1885 6.8
ciprofloxacin K-CIPRO 1876 14.3
piperacillin / tazobactam K-PIPTAZO 1826 9.4

S. aureus
amoxicillin / clavulanic acid S-AMOXCLAV 2317 9.7
ciprofloxacin S-CIPRO 2408 14.9
penicillin S-PEN 2244 70.5

possible in several scenarios, including carbapenem resistance in Klebsiella pneumoniae [Huang
et al., 2020], intermediate resistance to vancomycin in Staphylococcus aureus [Wang et al., 2018],
and carbapenem resistance in Bacteroides fragilis [Ho et al., 2017]. This line of research is actively
expanding, with large clinical datasets providing information on a variety of species and
antimicrobial resistance profiles made publicly available [Weis et al., 2021].

3 Materials and Methods

The bacterial species we selected to focus on for this paper are Staphylococcus aureus (S. aureus),
Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae); these three species were found
to be the leading pathogens for deaths associated with antimicrobial resistance [Murray et al.,
2022]. Subsequently, we describe all details pertaining to the dataset, including its provenance,
its peak calling, and how we use it in a classification scenario.

The data used in this project is a subset of the DRIAMS database [Weis et al., 2021]. DRIAMS
is a large-scale, publicly-available, high quality collection of bacterial and fungal MALDI-TOF
mass spectra derived from routinely-acquired clinical isolates [Weis et al., 2022]. To ensure
reasonable training times and to allow for comparability with Weis et al. [2020a], we focused
on data from the DRIAMS-A site collected in 2017 and 2018. Peak-calling was performed with
the MALDIquant package [Gibb and Strimmer, 2012] as follows: (i) peak detection using the
Median Absolute Deviation (MAD) method with a half-window size of 20 and a signal-to-noise
ratio of 2, (ii) defining peaks which, with a tolerance of 400 ppm, appear in at least 90% percent
of all spectra as reference peaks, and (iii) warping spectra and peaks along the m/z axis according
to linear warping functions determined using the reference peaks and a tolerance of 200 ppm.
Please refer to the original dataset for more information on data pre-processing. The resulting
dataset is described in Table 1 and includes an average of 218 peaks per MALDI-TOF mass
spectrum.

Labels and sampling procedure. The antimicrobial resistance labels in Weis et al. [2021]
are defined as binary classification problem, with the three susceptibility classes categorised
into a positive class, comprising resistant and intermediate samples, and a negative class,
comprising all susceptible samples. This label generation process does not always lead to a
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balanced dataset. Since imbalanced class labels may pose an issue for some machine learning
algorithms, we decided to “oversample” the minority class [Lemaı̂tre et al., 2017]. The effects of
this procedure are most pronounced for the Gaussian Process classifier and less so for logistic
regression because this algorithm supports class weights [Weis et al., 2020a].

Sample removal. While the dataset and method closely reflect the setup presented in Weis
et al. [2020a], we implemented several changes to impose more quality control steps to the
study set-up. First, we removed all DRIAMS-A samples collected at the hospital hygiene
workstation. At the DRIAMS-A collection site, MALDI-TOF mass spectra were collected at
different workstations, depending on the type of sample. For example, there are workstations
for urine, stool and blood culture samples. One workstation is operated by a hospital’s hygiene
department, which is responsible for monitoring of nosocomial infections and the screening
for multidrug-resistent pathogens. The growth medium used at this workstation generally
contains antibiotics to specifically select for resistant pathogens, which could therefore be
reflected in the corresponding MALDI-TOF mass spectrum. To avoid this confounding factor,
we chose to remove all samples which were collected at the hospital hygiene workstation.
We also improved the stratification process to account for multiple measurements reflecting
the same patient case. If multiple measurements originate from the same patient, possibly
describing the same infectious strain, it is likely that measurements of these samples show a
high degree of similarity. To avoid information leakage between the train and test set, we split
such that all samples of the same patient case are either exclusively a part of the train or the
test set.

3.1 Hierarchical clustering

We use hierarchical clustering to infer a latent phylogenetic structure from MALDI-TOF MS
data, which we will subsequently use to improve classification performance. Specifically, we
will use the inferred clusters as additional class labels to provide stratification information for
splitting the data into a train and test data set, ensuring that the percentage of samples for
each joint class–cluster combination are preserved. Stratified train–test splits are necessary to
ensure that the testing distribution resembles the training distribution, thus preventing a phe-
nomenon known as “distribution shift”, which typically has adverse effects on generalisation
performance. Hierarchical clustering requires either a distance matrix between samples or a
feature matrix representation. We opt for the latter and use the data in the same fashion as for
the classification, i.e. binned into fixed-size feature vectors. This is a simplification, as it does
not account for larger shifts in peak positions, but we find this to be sufficient for our purposes,
namely the characterisation of spectra to infer the underlying phylogenetic structure.

3.1.1 Clustering algorithm

We used hierarchical agglomerative clustering [Rokach and Maimon, 2005], which is a bottom-
up clustering approach: Initially, each sample forms a cluster and the two “closest” clusters—
according to a linkage method and a distance measure—are merged into one cluster in each
iteration. This process is repeated until only a single cluster remains, containing all samples.
Hierarchical clustering is highly flexible: first, a tree summarising the inferred structural
relationship between all samples (a dendrogram) is constructed, and no a priori knowledge about
the number of clusters k is required; thus, the structure of the dendrogram is not influenced
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by the choice of k, and k can be instead selected a posteriori using either a threshold on the
distances, or it may be inferred from an auxiliary visualisation. A depiction of a dendrogram
inferred for the dataset S-AMOXCLAV can be found in Supplementary Figure 1. Moreover,
hierarchical clustering is not restricted to specific classes of shapes, as compared to other
clustering algorithms like k-means.

As the distance between clusters is defined by the selected linkage method and distance
metric, both of these components play a crucial role in the clustering process [Nielsen, 2016].
We will subsequently make use of two linkage criteria, Ward’s linkage and average linkage,
always using the Euclidean distance as a ground metric since it is the most common choice
for numerical data. We only provide a brief overview here; please refer to the Supplementary
Materials for more information on linkage criteria.

Ward’s linkage. Ward’s linkage employs Ward’s minimum variance method [Ward, 1963]
and is restricted to the Euclidean distance. Nevertheless, it remains one of the most popular
linkage methods.

Average linkage. Average linkage does not only consider particular extremal distances
between points, but takes the average distance between all points of two clusters into account.
This method is also known as UPGMA (unweighted pair group method with arithmetic mean).

3.1.2 Using clusters to improve stratification

Any choice of linkage criterion will lead to a set of clusters containing certain spectra. We
hypothesise that clusters are at least implicitly capturing information about phylogeny: if
two spectra of the same species are part of the same cluster, we conjecture that they are more
related in terms of their phylogeny than they are to any other spectrum from another cluster.
Denoting the antimicrobial resistance of a spectrum with lr and its cluster label with lc, we
assign the spectrum a meta-label consisting of (lr, lc) and at the same time keep track of patient
case numbers. We consider this meta-label to provide more information about the phylogeny of
spectra than the antimicrobial resistance label alone. When splitting a dataset into its train and
test parts, we can therefore ensure that the prevalence of each meta-label is equivalent in both
parts. Our conjecture is that, assuming the cluster label is implicitly informed by the phylogeny
of a spectrum, both parts of the dataset are more similar to each other. This should lead to
(i) improved classification performance, as a classifier will encounter similar distributions in
the train and test part of the dataset, and (ii) reduced variance between different splits of a
dataset, as a classifier will have seen a sufficiently large number of representative samples
during training, thus making it possible to generalise better to unseen samples in the test
dataset.

Essentially, our method can be seen as providing classifiers with an additional set of inductive
biases. Under the assumption that both the train and the test samples arise from the same
microbial population, having access to an (estimate of) their phylogenetic information imposes
additional structural constraints on downstream models. We find that such constraints improve
empirical performance in classification tasks, with the main advantage of our method being the
simple integration into any classification workflow. Moreover, our method is easy to implement
and, depending on the range of parameters, imposes only minor computational constraints.
We merely require the choice of a clustering algorithm (involving a linkage criterion and a
distance metric) as well as the choice of the desired number of clusters k. The antimicrobial
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resistance labels are only used for the train–test split; they are not required for the clustering
step. This makes our method generally applicable; for example, it can be applied to any
prediction task and is not restricted to antimicrobial resistance labels.

3.1.3 Clustering output

The cluster algorithm results in a linkage matrix that contains information about the distances
between individual clusters. Subsequently, we opted for pre-defining the number of clusters k,
as it allows for an intuitive interpretation to the clustering in terms of number of phylogenetic
branches found. Note that this is only required in order to simplify our stratified train–test
split; it would also be possible to generate splits for multiple values of k, but this goes at the
expense of computational performance. We stress that k only constitutes an upper bound of
the number of clusters; depending on the linkage criterion, it is possible that fewer than k
cluster can be formed. For instance, in some of our experiments for E. coli, we were unable to
obtain k = 2 clusters when using single linkage. This was caused by three clusters having the
same linkage distance, thus resulting directly in a merge into one larger cluster.

3.1.4 Clustering metrics

The main challenge when applying clustering algorithms is to pick a suitable number of
clusters k. In many applications—including ours—the “correct” label (here, the phylogenetic
structure of a sample) is unknown a priori. To this end, numerous clustering validity measures
were developed, which help assess the quality of a clustering in the absence of ground truth
labels. We selected clustering validity metrics that were shown to perform well, provided the
feature space does not give rise to highly-complex topological structures [Rieck and Leitte,
2016] such as cycles or voids. Notice that the clustering validity metrics that we used for this
study are unsupervised and do not have access to the antimicrobial class labels.

Silhouette score. The Silhouette score takes into account the mean distance between a
point and all other points belonging to the same cluster (denoted as a), and the mean distance
between a point and all points in the nearest cluster (denoted as b). The Silhouette coefficient for
a single point is then defined as s = b−a/max(a,b) and the mean of all local Silhouette coefficients
gives rise to the overall score. We have s ∈ [−1, 1], with scores close to −1 indicating a bad
clustering, and scores close to 1 indicating highly dense and well-separated clusters.

Davies–Bouldin index. The Davies–Bouldin index indicates the average similarity between
each cluster and its most similar cluster, where similarity is defined as the ratio of within-
cluster distances to between-cluster distances. Let si be the cluster diameter, i.e. the average
distance between each point of the cluster and its corresponding centroid, and let dij be the
distance between the centroids of cluster i and j. The Davies–Bouldin index is then defined
as DB = 1/k ∑k

i=1 maxi ̸=j si+sj/dij, where k is the number of clusters. The Davies–Bouldin index
is always non-negative, with lower values signifying a better clustering and 0 being the best
possible score.
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3.2 Classification

Following Weis et al. [2020a], we used a logistic regression classifier (LR) and a Gaussian
Process classifier based on the Peak Information Kernel (GP-PIKE), which was specifically
designed to handle sparse MALDI-TOF mass spectra.

Logistic regression. Logistic regression requires inputs of a fixed length. Therefore, the
classification pipeline for this model contains a binning step that ensures that all spectra are
represented by fixed-length feature vectors. Since information about the number of bins is
usually not available, we consider the number of bins to be a hyperparameter of the model
that we will tune using a grid of {300, 600, 1800, 3600} bins. Additionally, following Weis
et al. [2020a], different choices of regularisation (L1, L2, elastic net, and no regularisation)
as well as the regularisation strength parameter C ∈ {10−4, 10−3, . . . , 103, 104} are optimised
using cross-validation. We recorded the optimal hyperparameters for each experiment and
generally observed considerable variations in model selection for different species–antibiotic
combinations.

Gaussian Process with Peak Information Kernel. The GP-PIKE classifier is designed
to work with sparse MALDI-TOF MS peaks, provided in the form of sets of tuples [Weis et al.,
2020a]. PIKE is a kernel inspired by heat diffusion processes, capable of capturing (non-linear)
interactions between individual peaks. The kernel does not require binning and can make
direct use of the peaks. The integration of PIKE into a Gaussian Process classifier has two
primary advantages: first, the kernel hyperparameter can be optimised using maximum
likelihood; it is therefore not restricted to a predefined parameter grid (model averaging is
also simplified, as the smoothing parameters learnt for different runs can be harmonised by
calculating their mean). Second, GP-PIKE returns confidence estimates and offers the ability
to reject the classification of out-of-distribution samples. This capability is crucial in clinical
settings, as clinicians need to be able to rely on decisions made by a classifier [Weis et al.,
2020a].

Performance evaluation. We used five random seeds to split the data and for each of
these splits, we employed a 5-fold cross-validation procedure with stratified folds to optimise
hyperparameters based on average precision. Average precision approximates the area under
the precision–recall curve (AUPRC) and is a suitable performance metric when working with
heavily-imbalanced classes.

4 Results

Inferring hierarchical structure. We clustered the datasets for each species five times,
using different linkage criteria (ward, average, weighted, single, complete). The number of clusters
were varied from k = 1 (no clustering) to k = 20, which we consider to be a biologically
plausible range. An illustration of the hierarchical clustering on the S-AMOXCLAV dataset
using Ward’s linkage criterion is depicted in Supplementary Figure 1. For each clustering, we
report two unsupervised clustering validity metrics, the Silhouette score and the Davies–Bouldin
index, to judge how well structures in the data were separated. We once again stress that we do
not have ground-truth strain-type labels available, hence our need for unsupervised validity
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Figure 1: Behaviour of the Silhouette coefficients and Davies-Bouldin index using the average linkage criterion with
varying number of clusters (k ≥ 2 because all scores require at least two clusters). A Silhouette score close
to 1 indicates well separated clusters and values less then 0 indicate that a number of samples were assigned
to the wrong cluster; a low Davies-Bouldin index indicates good separation, the clusters are far apart and
show little dispersion. Three curves are depicted per species (one curve per species-antibiotic dataset, each
with different samples). The chosen number of clusters k∗ is indicated by a dashed line for each species.

metrics. Figure 1 depicts the behaviour of the cluster validity metrics with respect to varying
the number of clusters k for average linkage. The validity metrics for the remaining linkage
methods can be found in Supplementary Figure 3.

We report three curves per species, as each species dataset contains slightly different samples
depending on which antibiotic is considered; please refer to Table 1 for more details. In general,
we observe that the best values (in terms of the clustering validity index) are obtained for the
smallest number of clusters, i.e. k = 2.

Choosing the number of clusters. We have to select a single clustering in order to
obtain a set of labels that we can incorporate into a stratified train–test split. This requires
determining an optimal value for the parameter k, which we will refer to as k∗. This choice
should be data-driven, without taking any information about antimicrobial resistance or
predictive performance into account. We therefore base this choice solely on clustering validity
indices depicted in Figure 3, obtaining a fixed k∗ for each species, which we will subsequently
use for the stratified train–test split. Specifically, we analysed local maxima in the Silhouette
score and local minima in the Davies-Bouldin index, picking values for k∗ in their immediate
vicinity. Additionally, we considered values for k∗ for which the curves exhibit an elbow or
around which we observed a rapid change in the clustering validity index. We thus derived the
final values as k∗ = 6 for E. coli, k∗ = 3 for K. pneumoniae and k∗ = 5 for S. aureus. Subsequently,
we will use the ward and average linkage criteria, as they are the most common choice for data
analysis tasks.

For E. coli we see a drop in the silhouette coefficient value for k > 6, while the Davies–Bouldin
index in many cases seems to dip for k = 6 (recall that this index should be minimised, whereas
the silhouette score should be maximised). For K. pneumoniae we observe such a drop in the
silhouette score at k = 3 and a steep increase in the Davies–Bouldin index for k > 3 (see ward
and complete linkage in supplementary material). A similar increase in the Davies–Bouldin
index can be observed for k > 5 for S. aureus.
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LR LR LR GP–PIKE GP–PIKE GP–PIKE
scenario k = 1 k∗ (ours) k∗ (ours) k = 1 k∗ (ours) k∗ (ours)

ward average ward average

E-AMOXCLAV 24.5±1.4 25.7±3.7 25.8±2.4 24.9±2.5 27.7±2.8 26.0±2.7
E-CEF 19.4±5.4 22.9±7.0 21.1±4.2 20.9±6.4 20.6±6.0 19.9±7.5
E-CIPRO 38.8±4.7 39.9±3.5 40.5±3.7 42.3±6.9 44.3±4.6 47.1±3.8

K-CEF 16.5±2.3 16.2±9.4 17.6±4.7 28.8±12.2 20.1±15.3 27.4±14.9
K-CIPRO 26.5±3.7 26.4±6.6 27.9±4.7 29.9±5.4 29.8.2±8.4 31.1±6.6
K-PIPTAZO 14.1±2.8 14.0±2.7 15.6±5.0 16.5±4.3 18.9±7.2 17.6±5.4

S-AMOXCLAV 28.4±4.4 28.4±2.2 27.2±4.8 44.6±3.1 50.8±5.8 47.5±6.1
S-CIPRO 30.7±5.3 26.5±10.3 30.3±4.4 35.4±6.4 32.0±10.2 40.6±5.0
S-PEN 75.4±1.8 76.2±4.2 77.2±3.4 79.9±1.7 80.7±3.0 81.0±2.4

Table 2: Improved performance of train-test splits including clustering information compared to a standard random
train-test split. Results of three methods given by mean AUPRC ± standard deviation on all random splits.
We have k∗ = 6 for E. coli, k∗ = 3 for K. pneumoniae and k∗ = 5 for S. aureus.

Resistance prediction. Using the optimal choice of the number of clusters k∗, we use the
resulting clusters to stratify the train–test splits, serving as additional class labels, next to the
labels that we defined based on the antimicrobial resistances profiles and taking into account
that samples coming from the same patient should all be either in the training or testing
set. We then incorporate these train–test splits into two antimicrobial resistance classification
scenarios; one using a logistic regression classifier and one using GP-PIKE, the Gaussian
process (GP) in combination with the Peak Information Kernel (PIKE), specifically designed
for MALDI-TOF mass spectra [Weis et al., 2020a]. For each of the experiments, we report the
mean and standard deviation of the average precision score over the random seeds. Due to
computational constraints, it was only possible to evaluate the GP-PIKE model in four of the
five seeds in some experiments, and in a handful of cases, the results were calculated over
three seeds.

The prediction results for both classifiers with and without using the hierarchical stratification
are depicted in Table 2. We focus on two linkage criteria, namely ward and average. This
was motivated by the fact that ward remains a popular choice, at least when the Euclidean
distance is selected as a ground metric. In addition, we selected the average linkage criterion as
a trade-off between the single linkage criterion (with known issues such as chaining) and the
complete linkage criterion (which is computationally infeasible for large-scale datasets).

For both classification models, seven out of the nine prediction tasks exhibit performance
improvements using our novel proposed hierarchical stratification. In logistic regression,
improvements are highest for ceftriaxone resistance prediction in E. coli, with an average
precision increase from 38.8 to 40.5. GP-PIKE started at a higher baseline performance, with
increases in predictive performance from 44.6 to 50.8 for amoxicillin-clavulanic acid resistance
prediction in S. aureus.

For the sake of understanding the relationship between k, clustering validity values, and
predictive performance, we depict the predictive performance for all k ∈ {1, 2, . . . , 20} in the
supplementary material; see Supplementary Figure 4 for logistic regression and Supplementary
Figure 5 for GP-PIKE. We emphasise the need to fix k prior to considering the average precision

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488198doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488198
http://creativecommons.org/licenses/by-nc-nd/4.0/


results, as was done for the choice of k∗ in this publication, in order to not let information
leakage influence the choice of the clustering parameters. We observe a high sensitivity to the
stratification for predicting antimicrobial resistance to all three antibiotics for K. pneumoniae, and
also for amoxicillin-clavulanic acid resistance in S. aureus. Our results therefore do not support
the hypothesis that hierarchical stratification leads to a lower standard deviation. We observe,
however, that hierarchical stratification can improve predictive performance. It becomes
evident that the choice of k strongly influences whether the stratification will increase the
predictive performance. In many scenarios, a poor choice of k led to a decreased performance,
as compared to the baseline of no clustering, k = 1.

5 Discussion

We presented a novel stratification for MALDI-TOF MS based phenotype classification tasks,
based on hierarchical structures inferred from the MALDI-TOF mass spectra. Our novel
proposed stratification was driven by the hypothesis that clusters would be able to implicitly
capture phylogenetic structure. This required the use of clustering validity scores in order to
choose the number of clusters k. Our experiments indicated that the clustering validity scores
Silhouette score and Davies-Bouldin index did not give a clear picture as to which value of k
would be an optimal choice to obtain well-separated clusters. We nevertheless demonstrated
the general utility of learning such stratifications to improve predictive performance in the
context of antimicrobial resistance prediction.

We observed that the stratification can influence predictive performance quite drastically (de-
spite the fact that for every choice of k, the same number of samples are being used for training,
albeit with a different arrangement in the train and test part, respectively). Good performance—
and improved performance compared to considering no hierarchical stratification—likely stems
from the fact that both train and test dataset follow the “true” structure of the data closely.
Therefore, each split (induced by each seed) is capable of training on a dataset that closely
follows the true distribution.

Despite the observed performance improvements, we also found hierarchical stratification to
be incapable of reducing the standard deviation in the prediction results. This could be due to
the hierarchical clustering not capturing the structure that caused this high standard deviation.
It could also be caused by stratifications that do not account for the complexity of classifying
certain parts of the data, leading to an under- or overestimation of predictive performance. An
alternative hypothesis would be that the high variance in predictive performance stems from
the small samples sizes, as the species with the smallest sample size, K. pneumoniae, exhibited
a larger standard deviation than the other two species. Overall, we consider these results to
be encouraging; they highlight the potential of including phylogenetic information, but also
indicate that this endeavour is fraught with difficulties that need to be overcome in order to
yield a stable method, namely (i) no ground truth to validate the clustering, and (ii) obtaining
a good choice for k∗, the optimal number of clusters, that is beneficial for all prediction tasks.

Our proposed stratification method is but a first step in this direction—while it is conceptually
simple and easy to implement, increasing the stability of the results will require additional
research. We thus foresee multiple future strands of research. First, collecting a dataset that
includes strain-type information on the bacterial species would allow to quickly validate if
the clustering is in fact capturing the phylogenetic relatedness of samples or not. Detailed
information on additional latent information, such as the growth medium used for culturing,
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reflected in the MALDI-TOF mass spectra might provide further insights into confounding
factors influencing the clustering results. Second, we conjecture that the results are highly
influenced by the choice of metric for the clustering. We restricted our experiments to
the Euclidean distance for conceptual simplicity, but the development of domain-specific
metrics bears the promise of being able to capture multi-scale differences between spectra
while being impervious to noise. We are particularly interested in methods based on optimal
transport [Villani, 2009], which have shown promising performance recently in classification
tasks. Finally, it would also be interesting to develop a fully-automated way of choosing k∗ in
practice; this choice could potentially be driven by more advanced clustering validity indices.
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Supplementary Material

Linkage criteria

Weighted linkage. The weighted linkage criterion considers the weighted mean of average
distances between cluster members. Specifically, the distance between cluster u, which was
formed by merging clusters s and t, and any other cluster v is defined as

d(u, v) =
dist(s, v) + dist(t, v)

2
. (1)

The initial distances between singleton clusters are given by the selected distance metric, i.e. for
singleton clusters a and b, we have d(a, b) = dist(a, b). This process is computationally simpler
than average linkage but because of the weighted approach, distances do not contribute equally
during calculation. The weighted linkage criterion is also known as WPGMA (weighted pair
group method with arithmetic mean).

Single linkage. The single linkage criterion is arguably the most efficient implementation
for agglomerative hierarchical clustering. It defines distances between clusters u and v as

d(u, v) = min
ui∈u,vj∈v

dist(ui, vj) (2)

for all members ui, vj in cluster u and v, respectively. As single linkage method only considers
the minimum distance, they suffer from a phenomenon known as chaining, whereby cluster
shapes tend to form “chains” in the feature space, leading to heavily-imbalanced cluster sizes.
It its therefore possible for two clusters to be considered very close even though the majority
of their points are very distant, only because of a small subset of outliers that are close to each
other but assigned to different clusters.

Complete linkage. The aforementioned disadvantage of single linkage can be avoided by
the complete linkage method. It examines the maximum distance between points of two clusters,
i.e.

d(u, v) = max
ui∈u,vj∈v

dist(ui, vj), (3)

where ui, vj refer to points in cluster u and cluster v, respectively. Similar to single linkage,
this criterion is also sensitive to outliers.

Inferring hierarchical structure

Supplementary Figure 3 depicts the behaviour of the cluster validity metrics with respect to
varying the number of clusters k We report three curves per species, as each species dataset
contains slightly different samples depending on which antibiotic is considered; please refer to
Table 1 in the main document for more details. In general, we observe that the best values (in
terms of the clustering validity index) are obtained for the smallest number of clusters, i.e.
k = 2. We moreover observe that different linkage criteria give rise to markedly different
behaviours in the clustering validity scores. For example, the Silhouette score values for single
and average linkage are monotonically decreasing, but appear to reach a plateau for k > 10
clusters using the ward linkage criterion. We also observe that some linkage criteria are highly
sensitive to the small differences in the dataset composition for different antibiotics. This effect
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Supplementary Fig. 1: Dendrogram of the complete hierarchical clustering tree of all data points in S. aureus and
penicillin using Ward’s linkage. Each tip at the lower end of the tree corresponds to one
sample in the dataset. The clusters derived from the chosen k∗ = 5 are indicated by colors.
Note that the clustering is independent from the number of clusters; the cluster labels are
only derived after the dendrogram is defined through a cut-off at the desired “height” of the
tree.

a b
(a) Silhouette score

si sj

dij

(b) Davies–Bouldin index

Supplementary Fig. 2: A depiction of the clustering validity scores’ functionality: (2a) The average distance of
one point to all points belonging to the same cluster is denoted as a, while the average
distance to the nearest foreign cluster is denoted as b. (2b) The average distance of each
point in a cluster to the cluster’s centroid point are denoted as si and sj for clusters i and j
respectively. These average within-cluster distances are compared with the distance between
cluster centroids dij.

is most pronounced in the Davies–Bouldin index when applying average linkage, or in both
scores for the weighted linkage.
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Supplementary Fig. 3: Behaviour of the Silhouette coefficients and Davies-Bouldin index with varying number of
clusters. Five different linkage criteria were considered for clustering. Please note that a
minimum number of two clusters is needed to compute these clustering scores, and therefore
no scores can be reported for k = 1. Please also note the missing validity scores for E. coli
using single linkage for k = 2. As described, it is in some cases impossible to exactly form
the desired number of clusters.
A Silhouette score close to 1 indicates well separated clusters and values less then 0 indicate
that a number of samples were assigned to the wrong cluster; a low Davies-Bouldin index
indicates good separation, the clusters are far apart and show little dispersion. Three curves
are depicted per species, one curve per species-antibiotic dataset, as each dataset contains
different samples. The chosen number of cluster k∗ is indicated by a dashed line for each
species.
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Supplementary Fig. 4: The curves depict the logistic regression prediction performance of all nine antimicrobial
resistance scenarios, illustrating the influence of different linkage criteria and the number
of clusters k used for hierarchical clustering. All results are given by mean average
precision (AUPRC) ± standard deviation on the test fold for all computed random splits. A
vertical dashed line indicates k∗ chosen for each species.
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Supplementary Fig. 5: The curves depict the GP-PIKE prediction performance of all nine antimicrobial resistance
scenarios, illustrating the influence of different linkage criteria and the number of clusters k
used for hierarchical clustering. All results are given by mean average precision (AUPRC)
± standard deviation on the test fold for all computed random splits. A vertical dashed line
indicates k∗ chosen for each species.
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