
1 
 

Title:  1 

The Computational Neuroanatomy of Predictive Dynamics of Pain Perception 2 

 3 

Author names and affiliations 4 

Ryota Ishikawa 1 and *Jun Izawa 2 5 

1Ph.D. Program in Humanics, University of Tsukuba, Ibaraki 305-8573, Japan 6 

2Faculty of Engineering, Information, and Systems, University of Tsukuba, Ibaraki 305-8573, 7 

Japan 8 

 9 

*Corresponding author: 10 

Jun Izawa 11 

Faculty of Engineering, Information, and Systems 12 

University of Tsukuba 13 

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan 14 

Tel.: +81-29-853-3756; Email: izawa@emp.tsukuba.ac.jp  15 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488260doi: bioRxiv preprint 

mailto:izawa@emp.tsukuba.ac.jp
https://doi.org/10.1101/2022.04.13.488260


2 
 

Abstract 16 

Pain perception is an active process that regulates nociceptive inputs by descending opioidergic 17 

signals, in which the brain encodes pain-related predictive and corrective terms, after having made 18 

Bayesian-like inferences about noxious amplitudes. Offset analgesia (OA), a large reduction of 19 

tonic pain after a small nociceptive termination, is typical empirical evidence of on-line pain 20 

modulation through prediction and its correction. However, the basic computational structure 21 

underlying OA is not understood. Here, we adopted a constructive approach, formulated the 22 

inference of noxious amplitudes with a Kalman filter model, i.e., a recursive Bayesian 23 

computation, and then deduced the computational structure for OA, in which an interaction 24 

between two latent state variables was implemented. Simulation results suggested that the 25 

unidirectional interaction of the two states with two dissociable roles (an integral over time and a 26 

derivative of stimulus changes) is crucial for OA. Our results, combined with previous anatomical 27 

studies, suggest a computational basis of neural connectivity for pain. The ACC and aINS interact 28 

to compute a descending prediction to the brainstem, i.e. PAG, while ascending inputs are filtered 29 

in the thalamus and delivered to the cortices as prediction errors. Thus, we suggest dissociable, 30 

computational roles of the ACC and aINS in pain processing. 31 

Author Summary  32 

Understanding the computational theory of pain perception is crucial for clarifying why some 33 

painful syndromes become chronic. Here, we propose a computational neuroanatomical model of 34 

endogenous pain modulation and we simulate a model for offset analgesia. We first demonstrate 35 

through model comparisons that the brain encodes at least two distinct states to estimate ongoing 36 

nociception: a derivative of input changes and its integral. We suggest that its neural substrate 37 

comprises hierarchical circuits composed of cortices, the thalamus, and brainstem. Second, we 38 

show that the computational basis of disrupted pain modulation in patients is pseudo-neglect of 39 

actual sensory inputs, with bias toward the internal prediction. Our results are the first to provide 40 
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a neurocomputational mechanism of pain perception dynamics and a factor that determines its 41 

functionality. 42 

  43 
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Introduction 44 

Pain processing is an essential cognitive function for organismal survival. After an injury, 45 

persisting tonic pain is an important cue to monitor the condition of the body and to choose 46 

appropriate actions, e.g., resting, favoring the injured structure, or escaping. Modern theories 47 

have proposed that multiple regions and the network they form (Fig. 1) represent such pain 48 

processing [1–3], since there is no unitary region for pain in the brain, i.e., a “pain cortex”[4–6]. 49 

However, because of its complexity, the means by which the neural processing of these regions 50 

is integrated still remains puzzling. 51 

 52 

Fig.1 | A consensus on neuroanatomy and a pain processing network.  The representative 53 

theory of the neural mechanism of pain postulates ascending and descending pathways [3,35–54 

37]. The ascending pathway (red arrows) conveys nociceptive inputs from the spinal cord to the 55 

cortex via the thalamic nucleus. The descending pathway projects from cortical regions to the 56 

brainstem, e.g., the Periaqueductal Gray (PAG) or the Rostral Ventromedial Medulla (RVM), 57 

finally arriving at the spinal cord to modulate further afferent inputs (black arrows). It has been 58 

thought that in this process there should be two modulatory circuits, i.e., one that consists of the 59 

anterior cingulate cortex (ACC) and the prefrontal cortex (PFC), which provide emotional 60 

modulation (green dashed arrow), and another that consists of the anterior insula cortex (aINS) 61 

and the amygdala (AMY), which supply attentional modulation (cyan solid arrow). 62 

 63 

 Theoretically, Bayesian computation is fundamental in sensory perception, such as vision 64 

and touch [7–11]. Pain perception is also thought to involve Bayesian computation. For instance, 65 

various studies have suggested that placebo and nocebo effects for phasic pain, e.g., a pulse of 66 

noxious heat, can be explained by Bayesian inference of pain, in which the prediction of 67 

nociceptive inputs, i.e., priors, is integrated with the stimulus input, i.e., likelihood, leading to 68 
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pain perception, i.e., posterior [12–16]. Meanwhile, the current painful experience itself should 69 

provide effective cues to expect incoming tonic pain. For example, an increase in pain intensity 70 

often signals still more pain to come [17].  71 

  Offset analgesia (OA) is well-known empirical evidence of this effect, defined as a 72 

disproportionately large reduction of perceived pain intensity immediately after a small, i.e., 1℃ 73 

decrease in the presented temperature [18–20]. Hyperalgesia, which is induced by the opposite 74 

temperature pattern of OA is called onset hyperalgesia (OH), and is thought to have a common 75 

neural basis, although there is less empirical and neuroimaging evidence [21–23]. Since these 76 

temporal dynamics characterize neural processing tonic pain, illustrating the computational model 77 

based on Bayesian inference should be useful to ascertain which neural structures are engaged 78 

and how they contribute. 79 

Clinically, OA has been used as an index of endogenous pain modulation, and the 80 

deficit of this phenomenon, i.e., less or no analgesic effect after reduction of a noxious heat 81 

stimulus, has been reported in patients with neuropathic pain [24,25] and other chronic pain 82 

syndromes [26–30]. These dysfunctions can be caused by descending modulatory regions, e.g., 83 

the anterior cingulate cortex (ACC) and brainstem, which showed weaker BOLD signals in 84 

patients than in healthy controls [31].  This seemed to produce a slower pain perception [28], 85 

but few investigations have identified the neuropathological mechanism underlying attenuation 86 

of OA in chronic pain patients [32]. 87 

 To figure out the computational structure underlying OA and OH, we have built a 88 

computational model of tonic pain perception, based on a recursive Bayesian computational 89 

process, i.e., a Kalman filter [33]. The purpose here is to test various structures of hidden causes 90 

of pain, i.e., latent states and noxious intensity, i.e., observable value, in Kalman filter models 91 

that are necessary to replicate characteristics of OA and OH reported in human studies (Fig. 2). 92 

This approach to computational structure may also reveal corresponding neural structures with 93 

dissociable cortical functions [34].   In particular, the total number of hidden variables and how 94 
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they interact in the identified computational model, provide a basis to understand how many 95 

neural areas are involved and how they are connected in the brain. For example,  it is widely 96 

known that emotion and attention are processed in distinct descending circuits to modulate pain 97 

[3,35–37] (Fig. 1) . This can be modeled by the two latent states that interact equivalently, or 98 

else there is no interaction between them. Meanwhile, the predictive coding framework [38–40] 99 

has proposed a hierarchical structure between neural populations to encode the world, i.e., top-100 

down predictive pathways and bottom-up corrective pathways. 101 

 102 

Fig.2 | Offset analgesia and onset hyperalgesia. (A) The pain intensity rating for the temperature 103 

of the offset analgesia (OA) condition (solid red line) showed an increase in T2, but was largely 104 

reduced in T3 compared to the constant condition (dashed black line). (B)  The pain intensity 105 

rating for the temperature of the onset hyperalgesia (OH) condition (solid cyan line) decreased in 106 

T2, but largely increased in T3 compared to the constant condition (dashed black line). (C) 107 

Removing the effect of habituation, which resulted in a gradual rating decrease over time in all 108 

conditions, deviations of the pain intensity rating of OA and OH from that of the constant 109 

condition revealed more clearly the OA and OH phenomena. These temperature patterns and pain 110 

intensity ratings were reproduced in accordance with previous literature[22]. 111 

 112 

Thus, we hypothesized that the brain represents one or more latent state variables that 113 

represent an environmental source of pain and that this computational structure is crucial for OA 114 

and OH. (1) In order to explain OA and OH, are two latent states necessary or not?  (2) If so, 115 

how do they generate observable output? (3) How do they interact? (4) How does this theory 116 

explain the neural basis of chronic pain? By identifying these structures in a framework of 117 

predictive coding with the normative model using Kalman filter theory, we provide insights on 118 

the unknown anatomical structure involved in tonic pain processing as a computational 119 

constraint on neuroanatomy.  120 
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Results 121 

General framework 122 

Typical temporal profiles of OA and OH are shown in Figs. 2A-B. During T3 phase, on-line rating 123 

of perceived pain intensity was undershot in the OA condition and overshot in the OH condition, 124 

compared to the constant baseline condition (Fig. 2C). Here, we aimed to replicate such effects 125 

with our computational models. Our model, based on a Kalman filter, comprises two processes: 126 

state prediction and state estimation. In the state prediction phase, the latent state in the next time 127 

step is predicted by the previous estimate. In the state estimation phase, such a prediction is 128 

refined by prediction error, i.e., the difference between measured input and its estimate after 129 

filtering, depending on measurement precision. 130 

We test our computational models and examine which structure may explain the 131 

properties of human pain perception with the representative experiment paradigm that uses the 132 

continuous heat stimuli on the skin, including a slight decrease and increase above the pain 133 

threshold (Fig. 3A). The thermal stimulus consisted of three phases: the initial painful stimulus 134 

(T1, during 5 sec), 1-2℃ increase/decrease to the second stimulus (T2, during 5 sec), and return 135 

to the T1 stimulus (T3, during 10 sec). In T3 phase, perceived pain intensity is expected to 136 

reduce/increase disproportionately to the presented temperature. Compared to the baseline 137 

condition (T1:45-T2:45-T3:45℃, BL), we tested two temperature patterns of (1) OA1: 45-46-138 

45℃ and (2) OA2: 45-47-45℃. The OA2 condition should be useful for testing whether the 139 

extent of the analgesic effect is proportional to the step size [23], i.e., the step size of +2℃ results 140 

in a larger analgesic effect than that of +1℃. Furthermore, to account for a bidirectional 141 

modulation, i.e., OH, in a unified model, we also decided to test the OH1 condition, (3) OH1: 45-142 

44-45℃, where the perceived pain intensity is expected to increase disproportionately in T3 phase. 143 

All of these four stimulus patterns start from 44.5℃ (1sec) and terminate with 44℃ (1sec), which 144 

is just above the pain threshold, since OA and OH have been discussed as phenomena for painful 145 

stimuli, not painless ones.  146 
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 147 

 Fig.3 | Thermal stimulus and single-state model. (A) The thermal stimulus used in the 148 

simulations. (B) Diagram of single-state model structure. The circle indicates the latent variable, 149 

and the square indicates the measurement estimate. The magenta arrow indicates the prediction 150 

of the next state. The blue arrow indicates the measurement estimate from the predicted latent 151 

variable. The state equation and measurement equation are described within the gray rectangle. 152 

(C) The left is the simulation result of pain intensity. Simulations under the conditions of four 153 

temperature patterns are shown by dotted black, solid red, green, and cyan lines. The black arrow 154 

indicates that the single-state model did not induce any effects of OA or OH. The right is the 155 

simulation result of a latent state variable under the OA2 condition. The dotted green line indicates 156 

the dynamics of the latent variable, and the solid black line indicates the temperature pattern of 157 

OA2. 158 

 159 

The single state did not explain OA or OH. 160 

We first tested whether the single-state model (Fig. 3B) could replicate OA and OH. The main 161 

goals of this simulation were to determine: (1) whether OA1/OA2 conditions produce an 162 

undershoot, i.e., analgesia, in T3 phase and (2) whether the OH1 condition produces an overshoot, 163 

i.e., hyperalgesia in T3 phase. Briefly, this model failed to produce these phenomena, since there 164 

were no undershoots/overshoots in T3 phase. (Fig. 3C, left). For example, in the OA2 condition, 165 

the latent state variable of the pain prediction 𝑥𝑥� increased in T2 phase, but in T3 phase diminished 166 

to the same value as in T1 phase, without any deviation from the presented temperature (Fig, 3C, 167 

right). This indicated that although the Kalman filter model with the single state successfully 168 

estimated the presented temperature accurately, it did not replicate either OA or OH. These results 169 

suggest that more than one state variable in the Kalman filtering model is necessary to reproduce 170 

OA and OH phenomena. Results of further model testing with two-state models are shown in the 171 
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following sections. 172 

 173 

Model comparison within model family 1: the parallel contribution of the state to measurement 174 

estimation. 175 

In model family 1, where two state variables (𝑥𝑥�1, 𝑥𝑥�2) additively generate a prediction of pain 176 

intensity, we tested three model structures. The graphical models and corresponding state-space 177 

representations of the tested models are summarized in Fig. 4A. In the “No interaction” model 178 

(Nint), 𝑥𝑥�1 and 𝑥𝑥�2 do not interact, i.e., each of them is predicted independently in the next step 179 

from its own previous estimate. In the “Unidirectional interaction” model (Uint), 𝑥𝑥�1 in the next 180 

step is updated from both previous estimates of 𝑥𝑥�1 and 𝑥𝑥�2, whereas 𝑥𝑥�2 in the next step is 181 

updated only on its own. In the “Bidirectional interaction” model (Bint), both variables in the 182 

next step are predicted from their own and the other’s previous estimates.  183 

 184 

Fig.4 | Model family 1. (A)  Diagrams of each model structure. Circles indicate latent variables, 185 

and squares indicate the measurement estimate. Magenta arrows indicate the prediction of the 186 

next state. Blue arrows indicate the measurement estimate from latent variables. The state and 187 

measurement equations are described in the gray rectangles. (B) Simulation results of pain 188 

intensity under four temperature patterns are shown by dotted black, solid red, green, and cyan 189 

lines. (C) Simulation results of latent state variables in the OA2 condition are depicted by green 190 

dashed and dotted lines. 191 

 192 

Fig. 4B showed the simulation results for respective stimulus patterns. In all models, 193 

estimated pain intensity increased from T1 to T2 in the OA1 condition, following the actual 194 

stimulus dynamics. From T2 to T3, however, only the Uint model resulted in an undershoot, 195 
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relative to constant conditions, i.e., OA, whereas the other two models showed no such effect. 196 

The analgesic effect in the Uint model was larger in OA2 than OA1, which was consistent with 197 

literature indicating that the degree of analgesia depends on the shift size [23]. Furthermore, in 198 

the OH1 condition, only the Uint model showed an overshoot in T3, i.e., OH. The Bint model 199 

resulted in enlarged peaks, but showed no undershoot/overshoot.  200 

These results may be caused by differences in temporal profiles of the evolution of two 201 

latent state variables (Fig. 4C). In particular, it should be noted of the Uint model, that the 202 

temporal profiles of 𝑥𝑥�1 and 𝑥𝑥�2 were significantly dissociable, as if they have different roles. 𝑥𝑥�1 203 

slowly tracked the abrupt change of the stimulus, whereas 𝑥𝑥�2 quickly responded to the abrupt 204 

change, but did not sustain its value when the stimulus became constant. In other words, 𝑥𝑥�1 205 

represents an integral over time and 𝑥𝑥�2 represents a derivative of a stimulus change. Our 206 

simulation suggests that the unidirectional interaction between the two variables characterizes 207 

two different roles of latent variables, which are necessary to replicate OA/OH phenomenon. 208 

This further suggests that these differences in the functional roles of two state variables may 209 

characterize the different temporal dynamics of neural activities associated with the 210 

representations of two state variables. 211 

 212 

Model comparison within model family 2: the solitary contribution of the state-to-measurement 213 

estimate. 214 

In model family 2, where only one of the two state variables (𝑥𝑥�1) generates pain intensity, we 215 

also tested three model structures. The graphical models and corresponding state-space 216 

representations of the tested models are summarized in Fig. 5A. Two of these A matrices are 217 

shared with those in model family 1, except 𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. In the “Unidirectional interaction” model 218 

(Uint), a latent variable 𝑥𝑥�1, which predicts the next state from previous estimates of both 𝑥𝑥�1 and 219 
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𝑥𝑥�2, is used to estimate the measurement. In the “Inverted Unidirectional interaction” model 220 

(IUint), on the other hand, a latent variable 𝑥𝑥�1, which predicts the next state from only its own 221 

previous estimate, is used to estimate the measurement, and the other state 𝑥𝑥�2 is updated by the 222 

previous estimate of both 𝑥𝑥�1 and 𝑥𝑥�2 but did not directly influence the pain intensity estimate.  223 

 224 

Fig.5 | Model family 2. (A)  Diagrams of each model structure. Circles indicate latent variables, 225 

and squares indicate the measurement estimate. Magenta arrows indicate the prediction of the 226 

next state. Blue arrows indicate the measurement estimate from latent variables. State dynamics 227 

and the measurement equation are described in the gray rectangles. (B) Simulation results of 228 

pain intensity under four temperature patterns are shown by dotted black, solid red, green, and 229 

cyan lines. (C) Simulation results of latent state variables in the OA2 condition are depicted by 230 

green dashed and dotted lines. 231 

 232 

Simulation results of pain intensity in all conditions and latent variables in the OA2 233 

condition are depicted in Fig. 5B and 5C, respectively. As in the result of model family 1, only 234 

the Uint model replicated an undershoot/overshoot in T3 phase, while the other models did not. 235 

The latent state variables of the Uint model showed the time constant difference, although those 236 

of the Bint were identical. One latent variable of IUint, 𝑥𝑥�2, diverged from 0, although the pain 237 

intensity was similar to that of the Nint model of model family 1. As in the result of model 238 

family 1, the temporal profile of 𝑥𝑥�1and 𝑥𝑥�2 in the Uint model are dissociable, as if 𝑥𝑥�1 represents 239 

an integral over time and  𝑥𝑥�2 represents a derivative of stimulus change.  In principle, we did not 240 

find a crucial difference in the Uint models between model family 1 and 2, i.e., 𝐻𝐻 = [1 1] vs. 241 

[1 0].  242 

 243 
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Aberrant transition noise induces OA dysfunction. 244 

Given the previous considerations on computational backgrounds of psychiatric disorders (e.g., 245 

schizophrenia)[41–44], we hypothesized that chronic pain could be due to too strong prior 246 

information compared to the prediction error. To test this, using the Uint model in model family 247 

2, we examined the impact of the variances of transition noise in the OA2 condition by 248 

manipulating the transition noise, i.e., prior uncertainty of pain, such that 𝜎𝜎12 = 𝜎𝜎22 =249 

0.1, 0.03, 0.01, or 0.005. Simulation results of pain intensity with different variances are 250 

depicted in Fig. 6A. Smaller variances showed insensitive responses to the temperature 251 

increment in T1. They reached the same peak in T2 phase, but their latency was longer, which 252 

was consistent with features of chronic pain patients [28]. Notably, models with smaller 253 

variances showed less or no undershoot in T3 phase, i.e., small analgesic effects, depicted in a 254 

rectangular window in Fig. 6A. This was caused by a difference of Kalman gain, which is 255 

calculated as a relative value between transition noise (prior uncertainty) and measurement 256 

noise (sensory uncertainty). In fact, smaller variance of transition noise resulted in smaller 257 

Kalman gain for either 𝑥𝑥�1 or 𝑥𝑥�2 (Fig. 6B). Since Kalman gain determines the influence of 258 

prediction error on updating the estimate of latent state variables, i.e., smaller Kalman gain 259 

ignored the abrupt change in stimulus intensity in T3 phase, measurement estimate maintained 260 

high intensity and showed no undershoots. This suggests that such strict sensory filtering and 261 

exaggerated dependency on internal prediction of pain resulted in insensitivity to stimulus 262 

changes, underlying dysfunction of endogenous pain modulation, like OA, in chronic pain 263 

patients [24–31].  264 

 265 

Fig.6 | Impact of variances of transition noise. (A) Simulation results of pain intensity with 266 

four variances of transition noise are shown in solid-colored lines. (B) Simulation results of 267 

Kalman gain of 𝑥𝑥�1 (top) and of 𝑥𝑥�2 (bottom) with four variances of transition noise are shown in 268 

solid-colored lines.   269 
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Discussion 270 

To illustrate the neural mechanism underpinning the active, dynamic process of tonic pain 271 

perception, i.e., offset analgesia (OA) and onset hyperalgesia (OH), we investigated the nature 272 

of an essential structure of the computational mechanism behind this process. Given that pain 273 

perception relies on Bayesian inference [12–16], our working hypothesis is that tonic pain 274 

perception can be modeled using a Kalman filter model. First, we showed that the single-state 275 

model failed to replicate OA and OH, whereas the supportive models of two states indicated a 276 

core feature of model structure necessary to produce OA and OH. There was no difference 277 

between the structures of measurement matrix H, i.e., 𝑥𝑥�1 had to contribute to estimating 278 

measurement 𝑦𝑦�, although the contribution of 𝑥𝑥�2 was not always necessary. The state transition 279 

matrix A determined a unidirectional interaction of latent variables, i.e., 𝑥𝑥�1 in the next step is 280 

predicted from 𝑥𝑥�2 as well as by 𝑥𝑥�1. In this structure, 𝑥𝑥�1 and 𝑥𝑥�2 showed distinct temporal 281 

dynamics, as if 𝑥𝑥�1 represents an integral over time and 𝑥𝑥�2 represents a derivative of stimulus 282 

change. Finally, we suggested that a strong prior belief in pain may cause OA dysfunction in 283 

chronic pain patients. These identified computational structures provide insight into the 284 

neuroanatomical structure of pain processing. 285 

Which brain regions regulate pain has been a long-standing question in brain science, 286 

and pain researchers have focused on the PAG as a key terminal of descending modulatory 287 

circuits from the cortex [19,45–49], including offset analgesia [50]. However, cortico-brainstem 288 

connectivity has remained intractable because neuroimaging the brainstem requires high-289 

resolution fMRI [45]. At the same time, cortical connectivity relevant to pain processing has 290 

been too complicated to understand. In fact, both the ACC [45,51,52] and the aINS [19,53] have 291 

descending projections to the PAG, which have been considered crucial to pain modulation, but 292 

their functional dissociation still remains unclear (Fig. 1). Here, we approached these questions 293 

by formulating the role of the PAG as the prediction of pain intensity (𝑦𝑦�). This is because the 294 
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BOLD signals of the PAG represented the expectation of pain intensity rather than the actual 295 

intensity [54]. If so, the spinal cord should represent the prediction error 𝑦𝑦 − 𝑦𝑦�, based on the 296 

descending prediction 𝑦𝑦� and the ascending input 𝑦𝑦 (Fig. 7). This is reasonable since, at the level 297 

of  spinal cord, decreased neural activity was reported during some kinds of analgesic effect, 298 

compared to no modulatory conditions [55,56]. Furthermore, the neural function of the cortical 299 

regions, i.e., the aINS and the ACC, should be formulated as estimates of latent state variables 300 

𝑥𝑥�1 and 𝑥𝑥�2, respectively. Predictive coding seems valid for the pain system [16,17,57,58], and 301 

neuroimaging studies indicate that BOLD signals in the aINS and the ACC are explained well 302 

by the mixture of prediction and its error, rather than sensory intensity itself [54].  Because our 303 

Kalman filter model explicitly formulated prediction and corrective terms using latent state 304 

variables, the state interactions described in the transition matrix A imply the basic anatomical 305 

structure in the brain, at least in cortical regions, in which neural activity is consistent with the 306 

predictive coding framework. 307 

 308 

Fig.7 | Specified neural structures supported by model simulations of OA/OH. The 309 

complicated network, including the brainstem and multiple cortical regions, i.e., ascending and 310 

descending pathways of the pain system, is organized in a framework of predictive coding with 311 

the Kalman filter model. Signals representing prediction error (red arrows) originate in 312 

superficial pyramidal cells (red triangles) and terminate in deep pyramidal cells (black 313 

triangles), traveling from lower regions to higher regions. Conversely, signals representing 314 

predictions (black arrows) originate in deep pyramidal cells and terminate in superficial 315 

pyramidal cells, traveling from higher to lower regions. The blue triangle indicates matrix cells, 316 

that encode information about the precision of the prediction error and control relative 317 

influences on prediction updates. 318 

 319 
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By modeling cortico-brainstem connectivity as the structure of the measurement matrix 320 

H, we can tackle a question on the neural mechanism of pain processing: What is the structure 321 

of the descending circuit to the PAG from the cortex? We found that the structure of H might 322 

take two possible forms. One is that both latent variables, 𝑥𝑥�1 and 𝑥𝑥�2, estimate the measurement 323 

in parallel, i.e., 𝐻𝐻 = [1 1], as in model family 1. The other is that only one latent variable 𝑥𝑥�1 324 

has to contribute to the estimate of measurement, i.e., 𝐻𝐻 = [1 0], as in model family 2. We did 325 

not find a clear difference between the two structures. Previous studies supported the parallel 326 

projection on distinct dual modulation systems with the emotional and attentional circuits [3,59] 327 

(Fig. 1). In these previous studies, the aINS and the ACC were thought to be involved in the 328 

attentional and emotional circuits, respectively. Nevertheless, this theory conflicts with the fact 329 

that the ACC also has a crucial role in attentional analgesia [45,60]. How should we interpret 330 

the function of these regions and their connectivity in OA and OH?  Because of the time course 331 

difference of BOLD signals (we will explain in the following section), 𝑥𝑥�1 is encoded in the 332 

aINS, whereas 𝑥𝑥�2 is encoded in the ACC. If so, our results strongly suggested that the 333 

descending projection of the aINS to the PAG is a core structure of the general pain modulatory 334 

system, while a direct projection of the ACC to the PAG also exists. This is consistent with the 335 

aforementioned literature. Moreover, it emphasizes the importance of cortical processing, which 336 

determines the amount of pain that is to be modulated [57]. 337 

 We showed that in both model families, a specific structure of the matrix A, i.e., 338 

unidirectional interaction from 𝑥𝑥�2  to 𝑥𝑥�1 , replicated OA and OH phenomena. This structure 339 

provided these two variables with different roles, as if 𝑥𝑥�1 served as an integral over time, whereas 340 

𝑥𝑥�2 served as a derivative of the stimulus change. This conclusion, derived from the examination 341 

of computational structure, provides a constraint on possible functional connectivity between 342 

cortical regions engaged in tonic pain processing. One such region is the ACC, which in fact, 343 

activated even before stimulus onset, i.e., during expectation or anticipation [47,51,52,61,62]. 344 
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Furthermore, the ACC was more activated when less controllability was perceived over 345 

nociception [63,64], where a large prediction error should occur. This neural implementation is 346 

called predictive coding, and another cortical region that shows similar neural activation for pain 347 

processing is the aINS[53,54,65,66]. Their connectivity has been considered a cortical center of 348 

fine-tuned pain regulation [18,67–70], although their functional roles have seemed 349 

indistinguishable. Our results provide an explanation for this paradox: the aINS represents the 350 

integral term of noxious stimuli (𝑥𝑥�1), whereas the ACC represents a derivative term (𝑥𝑥�2). This 351 

dissociation is consistent with the time course difference of BOLD signals observed during tonic 352 

pain processing, in which the onset of activation of the ACC was early compared to that of the 353 

aINS, while the response duration of the ACC is shorter than that of the aINS [64,71]. Such 354 

differences could originate from the unidirectional connectivity, which could implement 355 

messages passing from the higher state in the ACC to the lower state in the aINS about the cause 356 

of nociception. 357 

 The current models calculated the Kalman gain based on the measurement and 358 

transition noise, which together, control the impact of the prediction error (𝑦𝑦 − 𝑦𝑦�) to update the 359 

state prediction. In addition, we showed that smaller variances of transition noise resulted in 360 

smaller Kalman gain, reducing sensitivity and disrupting OA effects. Thus, this theory explains 361 

that disrupted OA in chronic pain patients [24–31] is caused by abnormal filtering due to 362 

excessive dependence on top-down pain predictions rather than bottom-up signals. Such a gain 363 

control, depending on the precision of the signal, is necessary for the brain to attend precise 364 

information more than a noisy one. For example, a noisy retinal input, e.g., a visual stimulus 365 

distracted by something, is ignored in the visual system, whereas a precise one, e.g., an attended 366 

visual stimulus, is assimilated in the higher visual cortex [72]. This process is implemented in 367 

one of the nuclei in the thalamus pulvinar [72,73]. Then, which region performs such a gain 368 

control function in the pain system? The thalamus is a hub of multiple functional networks and 369 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488260doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488260


17 
 

receives afferent information from the spinal cord and then arrays it up to cortical regions [74–370 

76]. Specifically, the mediodorsal nucleus (MD) of the thalamus is relevant to nociceptive 371 

inputs [77] and projects to the frontal cortex, such as the ACC and the aINS [78,79]. The 372 

thalamus is also important in descending pain modulation [22,78], but understanding its 373 

computational function remains difficult. Our modeling approach could solve this problem, not 374 

only in the vision system, but in a variety of sensory modalities including pain, the thalamus 375 

may regulate the influence of sensory input to determine to what extent a predicted latent state 376 

encoded in the brain has to be corrected. In fact, the thalamus has two types of relay neurons, 377 

core cells and matrix cells [80]; thus, it is natural to think that the MD of the thalamus controls 378 

the influence of ascending nociceptive signals while relaying them up to the cortex.  379 

 In this paper, we considered the structure of the computational model that can produce 380 

OA and OH. Highlighting the physiological anatomy, we proposed the neural implementation of 381 

the model, especially connectivity between pain-related regions. As previous studies have 382 

indicated [4–6], the pain system in the brain is so widely distributed that it is hard to understand 383 

the functions of each region. Here, we adopted a constructive approach and considered the roles 384 

of such regions in the framework of a Kalman filter model (Fig. 7). The structure of cortico-385 

brainstem connectivity was formulated as a measurement (H) matrix, and that of cortical 386 

connectivity was formulated as the system (A) matrix, in which we assumed that the PAG 387 

represents the prediction of pain intensity 𝑦𝑦�, which consisted of the latent state variables 𝑥𝑥�1 and 388 

𝑥𝑥�2 represented in the aINS and the ACC, respectively. In this scenario, 𝑥𝑥�1 served as an integral 389 

over time while 𝑥𝑥�2 served as a derivative of stimulus change. The uncertainties of these state 390 

variables shaped Kalman gain and altered the extent of OA. Previous computational modeling of 391 

pain perception has strongly suggested a basic physiological anatomy. For example, a dual-state 392 

adaptation model explained well the dynamics of habituation and sensitization, indicating distinct 393 

neural systems of peripheral nerves and central nerves [81]. Thus, although our results do not 394 
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necessarily determine the whole structure of pain-related neural connectivity, they do provide 395 

insight into the computational understanding of neuroanatomy relevant to tonic pain processing.  396 

Methods 397 

The brain  formulates  an internal, generative model of causes of pain. 398 

We suppose that the brain represents an internal model of how various factors in the environment 399 

generate sensory signals processed by peripheral nerves. In this framework, the nociceptive 400 

stimulus intensity 𝑦𝑦(𝑘𝑘) is also supposed to be generated from the integration of hidden causes of 401 

pain, described by the state vector 𝐱𝐱(𝑘𝑘):  402 

𝑦𝑦(𝑘𝑘) = 𝐻𝐻𝐱𝐱(𝑘𝑘) +𝜔𝜔𝑦𝑦(𝑘𝑘),  𝜔𝜔𝑦𝑦(𝑘𝑘)~𝑁𝑁(0,𝜎𝜎𝑦𝑦2), 403 

 where 𝐻𝐻 is called a measurement matrix that characterizes how latent variables generate the 404 

stimulus intensity and 𝜔𝜔𝑦𝑦 is biological noise that has zero mean and 𝜎𝜎𝑦𝑦2 variance. The brain also 405 

supposes that according to the nature of painful events, causes of pain are continuous over time 406 

with a dynamical property, i.e., the cause at time 𝑘𝑘 + 1 is correlated with the cause at time 𝑘𝑘. This 407 

is mathematically defined by the state transition model:  408 

 𝐱𝐱(𝑘𝑘+1) = 𝐴𝐴𝐱𝐱(𝑘𝑘) + 𝛆𝛆(𝑘𝑘),  𝛆𝛆~𝑁𝑁(0,𝛺𝛺𝜀𝜀),  409 

 where A is a transition matrix and  𝛺𝛺𝜀𝜀 is a covariance matrix of 𝐱𝐱 representing a transition 410 

noise. Influenced by noise 𝛆𝛆(𝑘𝑘), the cause of pain described by the state vector 𝐱𝐱(𝑘𝑘) determines 411 

the next-step cause of pain 𝐱𝐱(𝑘𝑘+1). 412 

 413 

Kalman filter theory 414 

Having such an internal model of tonic pain perception, the task for the brain is to estimate the 415 

values of the latent variables from the observed nociceptive stimulus intensity. We define 416 

𝐱𝐱�(𝑘𝑘|𝑘𝑘−1) as a state prediction at time 𝑘𝑘 given its estimate at time 𝑘𝑘 − 1, 𝐱𝐱�(𝑘𝑘−1|𝑘𝑘−1). In a general 417 

framework of our modeling, we suppose that the state variable 𝐱𝐱 is embedded in the 418 

environment and the prediction and estimation of this state variable 𝐱𝐱� are represented in the 419 
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brain. According to Kalman filter theory [33], the state prediction and the covariance matrix 420 

prediction are as follows, respectively: 421 

                         𝐱𝐱�(𝑘𝑘|𝑘𝑘−1) = 𝐴𝐴𝐱𝐱�(𝑘𝑘−1|𝑘𝑘−1),         (1) 422 

𝑃𝑃(𝑘𝑘|𝑘𝑘−1) = 𝐴𝐴𝑃𝑃(𝑘𝑘−1|𝑘𝑘−1)𝐴𝐴T + 𝛺𝛺𝜀𝜀. 423 

Then, the prediction of measurement is as follows: 424 

𝑦𝑦�(𝑘𝑘) = 𝐻𝐻𝐱𝐱�(𝑘𝑘|𝑘𝑘−1). 425 

Then, the prediction error of the stimulus intensity is defined as 𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘). Thus, the optimal 426 

estimate of the state at time 𝑘𝑘, 𝐱𝐱�(𝑘𝑘|𝑘𝑘), is computed from the predicted latent state, 𝐱𝐱�(𝑘𝑘|𝑘𝑘−1) by 427 

the weighted prediction error as follows: 428 

𝐱𝐱�(𝑘𝑘|𝑘𝑘) = 𝐱𝐱�(𝑘𝑘|𝑘𝑘−1) + 𝐾𝐾(𝑘𝑘)(𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)),         (2) 429 

where 𝐾𝐾(𝑘𝑘) is a Kalman gain, which is a matrix reflecting the precision of state prediction and 430 

measurement noise as follows: 431 

𝐾𝐾(𝑘𝑘) = 𝑃𝑃(𝑘𝑘|𝑘𝑘−1)𝐻𝐻𝑇𝑇(Ω𝜔𝜔 + 𝐻𝐻𝑃𝑃(𝑘𝑘|𝑘𝑘−1)𝐻𝐻𝑇𝑇)−1. 432 

The Kalman gain also updates the covariance matrix: 433 

𝑃𝑃(𝑘𝑘|𝑘𝑘) = (𝐼𝐼 − 𝐾𝐾(𝑘𝑘)𝐻𝐻)𝑃𝑃(𝑘𝑘|𝑘𝑘−1) . 434 

In summary, the state is predicted by Eqn.1 and is then integrated with the measurement by 435 

Eqn.2 to obtain the corrected state estimate. In this way, the tonic pain perception is modeled in 436 

the predictive coding framework, which assumes the prediction term of hidden causes of pain 437 

and the corrective term given by prediction error. 438 

 439 

Single-state vs. Two-state model 440 

 In the single-state model, we defined the latent state as a scalar, 𝐱𝐱(𝒌𝒌) = 𝑥𝑥(𝑘𝑘). Then, the variance 441 

of transition noise is Ω𝜀𝜀 = 𝜎𝜎𝜀𝜀2 and the variance of measurement noise is  Ω𝜔𝜔 = 𝜎𝜎𝜔𝜔2 . We used the 442 

following parameters as 𝑥𝑥(1) = 0, 𝜎𝜎𝜔𝜔2 = 1 after confirming that the simulation results in terms 443 

of OA/OH phenomena that were not sensitive to these parameter values. Here, we set the 444 
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transition matrix 𝐴𝐴 = 1 and the measurement matrix 𝐻𝐻 = 1 to examine in a simple way whether 445 

the single-state model could replicate OA and OH.  446 

  In the two-state models, we defined the latent state as a 2D vector, 𝐱𝐱(𝒌𝒌) =447 

[𝑥𝑥1
(𝑘𝑘) 𝑥𝑥2

(𝑘𝑘)]𝑻𝑻. Then, the 2×2 covariance matrix of transition noise  𝛺𝛺𝜀𝜀 = � 𝜎𝜎1
2 𝜎𝜎1𝜎𝜎2

𝜎𝜎1𝜎𝜎2 𝜎𝜎22
� while 448 

the variance of measurement noise was  Ω𝜔𝜔 = 𝜎𝜎𝜔𝜔2  = 1 in the same way as the single-state 449 

model. Also, the initial values of the state variables were zero, 𝑥𝑥1
(1) = 𝑥𝑥2

(1) = 0.  We defined the 450 

measurement matrix H as 𝐻𝐻 = [𝑏𝑏1 𝑏𝑏2] and the 2×2 transition matrix A was defined as 𝐴𝐴 =451 

�
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22�. To manipulate the H matrix, there should be two possibilities. The first possibility 452 

is that two latent variables contribute to measurement estimation equivalently, whereas the other 453 

possibility is that only one variable estimates measurement. Thus, we specified here two model 454 

families, depending on the structure of the H matrix,  [1 1] or [1 0]. Then, we designed 455 

conceivable components of the A matrix in each model family. In the model family 1 (𝐻𝐻 =456 

[1 1]), we tested the A matrix of three different structures as below: 457 

𝐴𝐴𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 = �1 0
0 1�,  𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �1 1

0 1�,  𝐴𝐴𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 = �1 1
1 1�. 458 

In the model family 2 (𝐻𝐻 = [1 0]), we also tested the same three structures: 459 

𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �1 0
1 1�,  𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �1 1

0 1�,  𝐴𝐴𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 = �1 1
1 1�. 460 

We ensured that, in all these A matrices, the two components 𝑎𝑎11 and  𝑎𝑎22 were always set to 1, 461 

not zero. This is because these cells determine how each variable predicts its next value from the 462 

previous estimate, while 𝑎𝑎12  and 𝑎𝑎21  determine a way of predictive interaction between the 463 

variables. Such structural simplicity is helpful to examine only interactions between the variables. 464 

We used the variance parameter of transition noise as 𝜎𝜎𝜀𝜀2 = 0.1 in the single-state model 465 

and as 𝜎𝜎12 = 𝜎𝜎22 = 0.1, not correlated, 𝜎𝜎1𝜎𝜎2 = 0 in the two-state models. For further investigation 466 

of this parameter in the two-state models, we manipulated 𝜎𝜎12 = 𝜎𝜎22 = 0.1, 0.03, 0.01, or 0.005.  467 
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 468 

Pain intensity 469 

The relationship between the perceived intensity of the thermal stimulus and the presented 470 

temperature can be approximated by a linear function for a certain stimulus range [24,82]. Thus, 471 

let us define 𝑦𝑦(𝑘𝑘) as the simple linear function of temperature 𝑇𝑇(𝑘𝑘) above the pain threshold as 472 

follows: 473 

𝑦𝑦(𝑘𝑘) = 𝑇𝑇(𝑘𝑘) − 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 474 

This approximation is based on previous modeling [83,84], and here 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 was set to 44℃ 475 

based on the literature[83,84]. We adopted the pain rating scale of the previous study on OA 476 

[18–20], which defined non-painful perception as rating 0 and perceived pain intensity as more 477 

than 0 (the imaginable pain intensity as 10). Thus, 𝑦𝑦(𝑘𝑘) represents the perceived pain intensity in 478 

this rating scale. That is why we plotted the simulation results of “Pain intensity” as more than 479 

zero by setting it to zero if less than zero.   480 
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