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AlphaFold2 (AF) is a promising tool, but is it accurate enough to predict single mutation effects? Here, we
report that the localized structural deformation between protein pairs differing by only 1-3 mutations – as mea-
sured by the effective strain – is correlated across 3,901 experimental and AF-predicted structures. Furthermore,
analysis of ∼11,000 proteins shows that the local structural change correlates with various phenotypic changes.
These findings suggest that AF can predict the range and magnitude of single-mutation effects on average, and
we propose a method to improve precision of AF predictions and to indicate when predictions are unreliable.

Alteration of one or few amino acid residues can af-
fect structure [1–3] and function [4, 5] of a protein and,
in extreme cases, be the difference between health and dis-
ease [6, 7]. Understanding structural consequences of point
mutations is important for drug design [8, 9] and could also
accelerate optimization of enzymatic function via directed
evolution [10, 11]. In these and other applications, theoret-
ical models [12] could be of immense help, provided they
are sufficiently accurate. In this context, AlphaFold2 [13]
has recently made breakthroughs in predicting global pro-
tein structure from sequence with unprecedented precision.
Notwithstanding, it is not yet known whether AF is sen-
sitive enough to detect small, local effects of single muta-
tions. Even if AF achieves high accuracy, the effect of a
mutation may be small compared to the inherent confor-
mational dynamics of the protein – predicting static struc-
tures may not be particularly informative [14–16]. Further-
more, as accuracy improves, evaluating the quality of pre-
dictions becomes increasingly complicated by the inherent
noise in experimental measurements [16–23]. So far, no
study has evaluated whether AF can accurately measure
structural changes due to single mutations, and there are
conflicting reports as to whether AF can predict the effect
of a mutation on protein stability [24–28]. Furthermore, re-
cent evidence suggests that AF learns the energy functional
underlying folding, raising the question of whether the in-
ferred functional is sensitive enough to discern the subtle
physical changes due to a single mutation [29]. We aim to
resolve this issue by comparing AF predictions with exten-
sive data on protein structure and function.

We examine AF predictions in light of structural data
from a curated set of proteins from the Protein Data Bank
(PDB) [30], and phenotype data from high-throughput ex-
periments [31–33]. We find that AF can detect the ef-
fect of a mutation on structure by identifying local de-
formations between protein pairs differing by 1-3 muta-
tions. The deformation is probed by the effective strain
(ES) measure. We show that ES computed between a
pair of PDB structures is correlated with the ES computed
for the corresponding pair of structures predicted by AF.
Furthermore, analysis of ∼11,000 proteins whose function
was probed in three high-throughput studies shows sig-
nificant correlations between AF-predicted ES and three
categories of phenotype (fluorescence, folding, catalysis)

across three experimental data sets [31–33]. These sets of
correlations suggest that AF can predict the range and mag-
nitude of single-mutation effects. We provide new tools
(github.com/mirabdi/PDAnalysis) for computing deforma-
tion in proteins, and a methodology for increasing the pre-
cision of AlphaFold predictions of mutation effects. Alto-
gether, these results indicate that AF can be used to pre-
dict physicochemical effects of missense mutations, un-
damming vast potential in the field of protein design and
evolution.

AF can predict local structural change.— We illustrate our
approach by analyzing wild-type (WT; 6BDD_A) and single-
mutant (6BDE_A, A71G) structures of H-NOX protein from
K. algicida (Fig. 1D) [34]. To quantify local deformation,
we calculate the effective strain (ES) per residue Si (See
App. A) for, respectively, experimental and AF-predicted
pairs of structures (Fig. 1A). The ES is the mean relative
change in distance from Cα of residue i to neighboring
Cα positions within a range of 13 Å. ES provides a ro-
bust estimate of the magnitude of local strain, which ac-
counts also for non-affine deformation in addition to affine
deformation [35–39]. Like the frame-aligned-point-error
(FAPE) measure used in training AF [13], ES is invariant
to alignment. In H-NOX, we observe that the Si is highest
at, and decays away from the mutated site, showing a cor-
relation with the distance from the mutated site (Fig. 1B).
We find that Si is correlated across PDB and AF structures
(Fig. 1C,E). Taken together, these correlations suggest that
Si is a sensitive measure of local structural change, and that
AF is capable of predicting such structural change upon
mutation.

Experimental measurement variability limits evaluation.—
Before exploring AF predictions in more detail, we first ex-
amine variation within experimental structures by compar-
ing repeat measurements of the same protein. In Fig. 1F we
show the distribution of Si calculated for all residues in all
pairs (Supplemental Material (SM) Sec. 1A [40]) of pro-
tein structures with identical sequences (number of muta-
tions, M = 0); we excluded pairs where the crystallographic
group differed (SM Sec. 1B [40]). Protein structures vary
considerably between repeat measurements (average ES is
⟨Si⟩= 0.018, and the average Root Mean Square Deviation
is RMSD = 0.24Å). In comparison, differences between
repeat predictions of AF are much lower (∆Si = 0.005,
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FIG. 1. A: Local deformation per residue measured by effective strain, Si, between wild-type (WT) and mutant (A71G) H-NOX protein,
for experimental (orange) and AF-predicted (blue) structures. Dotted line indicates the mutated residue. B: Si vs distance from the
nearest mutated site, δm. C: Comparison of Si obtained from experimental and predicted structures. D: Overlaid WT (grey, 6BDD_A)
and mutant (colour, 6BDE_A), experimental (orange) and predicted (blue) structures. E: Wild type protein with residues coloured by Si;
location of A71G mutation is shown. F: Distribution of Si between matched pairs of structures with the same sequence (M = 0), for PDB,
AF, and averaged AF (⟨AF⟩) structures. G: Distribution of correlation between PDB strain fields and equivalent fields from PDB, AF and
DMPfold, shown for different numbers of mutations, M. H: Residual correlation that is due to mutations, shown for the full dataset and a
non-redundant version (NR); whiskers show bootstrapped 95 % confidence intervals. I: Correlation between PDB and ⟨AF⟩ strain fields,
Sp

i , across all pairs p and residues i that are within a distance δm from a mutated site, shown for the full dataset and a non-redundant
version (NR).

RMSD =0.11 Å). For example, the experimental RMSD
between WT and mutant H-NOX is 1.6 Å, while the AF-
predicted RMSD is 0.3 Å. We can refine AF predictions
further by making multiple repeat predictions and averag-
ing over the local neighborhoods (⟨AF⟩ in Fig. 1F, App.
B), which results in even lower differences (∆Si = 0.001).
We find that averaging decreases deformation away from
mutated residues, while preserving deformation in mutated
areas (SM Sec. 6 [40]), thus we henceforth report results
for averaged structures, except where noted. The variation
between experimental measurements might mask the defor-
mation due to mutation, and therefore limits our ability to
evaluate AF predictions.

Mutation effects are measurable in PDB structures.— To
quantify how well we can measure mutation effects from
PDB structures, we compare deformation between two
matching pairs of PDB structures with identical (M = 0)
and non-identical (M > 0) sequences (SM Sec. 5B [40])
of length L (number of residues). For each pair, we cal-
culate the strain fields, S = (S1, . . . ,SL), which record ES
values for all residues, and we calculate Pearson’s correla-
tion coefficient r as in Fig. 1C. We find that even among
protein structures with identical sequences, strain fields are
highly correlated (Fig. 1G). This occurs because the magni-
tude of positional fluctuations depends on local flexibility;
more flexible regions exhibit higher strain in repeat mea-
surements (App. B). Thus, a portion of the S correlation

in Fig. 1C is due to effects other than mutation. Despite
this, we find that correlations are much higher when com-
paring pairs of structures that differ by one or more muta-
tions (M > 0), and correlations increase with M (Fig. 1G).
Thus, the strength of PDB-PDB deformation correlations is
partly due to differences in local flexibility, and partly also
due mutations.

Mutation effects are correlated across PDB and AF
structures.— To evaluate the performance of AF in pre-
dicting mutation effects, we calculate correlations between
PDB and AF-predicted strain fields, SPDB and SAF, calcu-
lated for all matched pairs of proteins (SM Sec. 5B [40]).
The PDB-⟨AF⟩ correlations between pairs of structures
with identical sequences (M = 0) are lower than PDB-
PDB correlations (Fig. 1G), as are the correlations for non-
identical sequences (M > 0). Nonetheless, the correlations
are significant and they increase with M. To put this re-
sult in context, the PDB-AF correlations are considerably
higher than correlations obtained by using another algo-
rithm to predict protein structure (DMPfold2) [41]. To
compare the degree of correlation that is due to mutation
effects, we plot the mean correlation for non-identical se-
quences ⟨Corr

(
M ∈ {1,2,3}

)
⟩ subtracted from the mean

correlation that can be attributed to fluctuations, ⟨Corr
(
M =

0
)
⟩. Fig. 1H shows that the degree of correlation due to

mutations is as high for AF-PDB comparisons as it is for
PDB-PDB comparisons. Since many protein families are
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FIG. 2. A: Correlation (Pearson’s r) between blue fluorescence (mTagBFP2) and AF-predicted effective strain (ES), Si, between WT and
8,191 variants for all sequence positions i; positions of mutated residues are shown by dotted lines; chromophore site (Y65) is indicated
(red circle). B: Structure of BFP, with each residue colored according to Corr(Si,Fluor.) (A); Y65 atoms are shown as spheres. C: Strain
at residue Y65 vs. fluorescence for mTagBFP2 variants. D: Fluorescence-strain correlation per residue vs. distance from residue i to
Y65; mutated positions are indicated (blue circle). E-H: Correlations between: SA218 and red fluorescence (mKate2); SL59 and green
fluorescence (GFP); catalytic activity and S at the active site (PafA); folding ability (fraction of active enzymes) and average strain, ⟨Si⟩,
of the 50 residues that correlate best with folding ability (PafA).

over-represented in the PDB, we repeat the analyses on
non-redundant sets of proteins (SM Sec. 1C [40]), finding
that AF-PDB correlations are still comparable to PDB-PDB
correlations (NR in Fig. 1H).

AF predicts the range of mutation effects.— Fig. 1G-H
shows that within matched protein pairs, deformation is
correlated between PDB and AF, although the magnitude of
deformation can differ (Fig. 1F). This indicates that AF is at
least correctly predicting the range and the relative strength
of the effect of a mutation. On average, AF predicts that
mutations can produce changes in structure up to 16-18 Å
(SM Sec. 7 [40]), whereas the average range in the PDB
data is only14 Å due to the higher measurement variance in
the PDB. This suggests that AF correctly predicts the range
of a mutation’s effect on structure.

AF predicts the relative magnitude of mutation effects.—
It is essential to be able to predict whether a mutation will
lead to a big or small effect on structure. While the previous
analysis did not show this, we directly address this prob-
lem by examining whether predicted effects correlate with
empirical effects across proteins. To do this, we group Si
values from all matched pairs p by distance from the near-
est mutated residue, δm (in bins of 2 Å), to get sets of Sp

i
for both PDB and ⟨AF⟩ pairs of structures. This allows us
to compare ES magnitudes across proteins, by calculating
the correlation between Sp

i for PDB and ⟨AF⟩. At mutated
sites, the correlation is quite high, and decreases away from
the mutated site as expected (Fig. 1I); this is also true for
the non-redundant sample. Hence, AF is capable of dis-
tinguishing between mutations that have relatively large or
small effects on structure.

Phenotypic change correlates with AF-predicted ES.— An
orthogonal test of whether AF can predict the effect of
a mutation is to study correlations between the effective
strain (ES), Si, and phenotypic change. This approach

avoids the pitfalls associated with noisy PDB measure-
ments, and allows us to test predictions of structures that
AF was not directly trained on. However, the link be-
tween structure and function is often unknown, and likely
quite complex. Therefore, a lack of a correlation between
Si and phenotype is not strong evidence that the structure
is incorrect, as there maybe be a non-trivial mapping be-
tween structure and function. On the other hand, obser-
vation of correlations between Si and phenotype is strong
evidence that AF can be predictive in estimating the ef-
fect of mutations. We study three data sets from high-
throughput experiments, covering three distinct phenotypes
(SM Sec. 2 [40]): (i) blue and red fluorescence is mea-
sured for 8,192 sequences linking mTagBFP2 (blue) and
mKate2 (red) [32]; (ii) green fluorescence is measured for
2,312 GFP sequences [31]; (iii) folding (fraction of active
enzymes) and catalytic (kcat) effects of mutations are mea-
sured for PafA [33] (SM Sec. 2C [40]).

We find significant correlations between phenotype and
AF-predicted ES (compared to WT) for all phenotypes
(Fig. 2). It is possible to predict blue, red and green flu-
orescence (Pearson’s r = −0.93, r = −0.76, r = −0.67)
by measuring the ES at residues Y65, A218 and L59, re-
spectively (Fig. 2C,E,F). There are many other residues at
which deformation measured by ES is predictive of fluo-
rescence (Fig. 2A-B), and these residues are found to be
closer to residue Y65 (Fig. 2D, Y65 covalently binds to a
chromophore); this is despite no mutations to Y65, which
suggests that AF can predict allosteric effects. We also find
weaker, yet significant correlations between ES and the em-
pirical effects of mutations on folding and catalytic activity
(Fig. 2G-H). For catalytic activity, we measure mean defor-
mation at the active site; for the folding effect, we measure
mean ES between the 50 residues that correlate best with
the folding effect (SM Sec. 9 [40]).
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In contrast, we do not find consistent correlations with
RMSD, a standard estimate of AF accuracy [13], indicat-
ing that local deformation, as measured by the ES, is more
appropriate for measuring mutational effects (SM Sec. 10).
In some cases, performance is heavily dependent on which
pre-trained model (SM Fig. 4 [40]) is used: surprisingly,
we found that using the highest ranked (by pLDDT; see SM
Sec. 3 & 11 [40]) models resulted in worse performance for
phenotypic change (SM Fig. 4 [40]), and performance for
structural change was close to average (SM Sec. 12 [40]).
Taken together, these results provide evidence that AF can
be used to predict the structural effect of a single mutation.
ES correlates with phenotypic change for wild-type
proteins.— It is quite unexpected that ES, Si, should be a
good predictor of phenotypic change, even if AF can accu-
rately predict structure. We suspect that the correlation is
strong because the structures are always compared to the
wild-type (WT) proteins, where the structure is adapted for
function through evolution – any deviation from this op-
timal structure is likely to diminish protein function. We
find that high correlations are only found within M ≤ 8
mutations from the WT, and phenotype-ES correlations are
much weaker between non-WT pairs (SM Sec. 9 [40]).
Thus we conclude that Si is a good predictor of phenotypic
change from native protein sequences. For studying pheno-
typic change away from optima in phenotype landscapes,
another mapping from structure to function is needed.
Discussion.— We have shown that AF is capable of pre-
dicting structures with sufficient accuracy and that it can
pick up changes as small as those resulting from a sin-
gle missense mutation. Direct validation of predicted mu-
tational effects on structure is limited by the accuracy of
empirical structures (Fig. 1F), and further hindered by the
lack of sequence pairs that are suitable for comparison (SM
Sec. 1 [40]). Likewise, predicting phenotypic change from
structure alone ought to be challenging, to say the least.
Despite these steep hurdles, we have shown, using effec-
tive strain (ES) as a measure of deformation, that differ-
ences between AF-predicted structures do correlate with
both structural (Fig. 1) and phenotypic changes (Fig. 2) in
empirical data. Examining individual pairs of PDB struc-
tures, mutation effects are masked by fluctuations, but this
inherent noise is filtered by analyzing the statistics of many
pairs, demonstrating that AF is accurate. The difficul-
ties in assembling sufficient data for validation highlight
that the age of experimental protein structure identifica-
tion is far from over [42], despite the success of AF and
RoseTTAFold [13, 43]. Our methodology for evaluating
mutation effects using deformation can be used in future
empirical evaluation of mutation effects.
Advice for using AF to study mutations.— We find higher
correlations between AF and PDB when mutations are in
less flexible regions of proteins, and when mutations have
large effects (App. C). One can quickly estimate flexi-
bility using pLDDT (AF’s confidence in a residue’s pre-
dicted position, or a proxy measure of rigidity; SM Sec.
11 [40]), but it is more useful to measure the variance of
AF predictions by predicting multiple structures (App. B,
SM Sec. 6 [40]). Depending on the flexibility, and mu-
tation effect size, one can achieve much more reliable es-
timates of mutation effects by averaging across many re-

peat structures. We advise against using templates in pre-
dictions (used by default in AF models 1 and 2), since
this appears to offer at best negligible increases in accu-
racy, and we found one example where including tem-
plates made the predictions much worse (SM Sec. 12 [40]).
We recommend using effective strain as a measure of lo-
cal deformation, rather than using RMSD or pLDDT. We
provide code for calculating deformation, producing aver-
age structures, and calculating repeat-prediction variance at
github.com/mirabdi/PDAnalysis.
AF predicts structure, not folding.— We need to empha-
sise that AF is only trained to predict structures of stable
proteins, and we make no claims about whether the pro-
teins will indeed fold into the predicted structure. Given
the marginal stability of most proteins, mutations may eas-
ily destabilize a protein so that its melting temperature falls
below room temperature. The process of protein folding
is carefully tuned in vivo for folding on the ribosome, and
through interactions with chaperones, and mutations that
do not change structure may retard folding through other
mechanisms [44]. To see whether pLDDT is predictive
of whether a protein will fold or not, we studied a set of
147 WW-domain-like sequences, of which 40 were found
to fold in vitro. Although more sophisticated methods
may perform better, mean pLDDT by itself proved insuf-
ficient to sort folding from non-folding proteins (SM Sec.
11B [40]). Now that one question – what structure will a
protein likely fold into? – has been seemingly solved, at
least partially, it is crucial to next answer the question of
whether a protein will spontaneously fold.
Local deformation should be used to measure mutation
effects.— Placing the current results in a broader context,
we note that the evidence in support of AF’s capacity to
predict the effect of a mutation has so far been mixed.
Some studies suggest that AF and RoseTTTaFold can be
indirectly used to predict phenotype, but not by comparing
structures [26–28]. Two studies have reported negative re-
sults [24, 25], which we attribute primarily to their use of
pLDDT and RMSD – measures much less precise of mu-
tational effects compared to strain (SM Sec. 10-11 [40]).
In one study, the authors found only weak correlations
between pLDDT and fluorescence using the same GFP
dataset used here. Although we do not expect pLDDT to
strongly correlate with fluorescence, we do find higher cor-
relations than those reported in [24] by examining allosteric
effects (SM Sec. 11A [40]). In another analysis [25], the
authors appear to assume that structure-disrupting muta-
tions should result in a large change in predicted structure
or pLDDT [25]. We first note that this paper only studied
three proteins, limiting our ability to draw general conclu-
sions. We also see that the deformation due to mutations in
one of these proteins is higher than 96 % of mutation effects
in our PDB sample (SM Sec. 13 [40]); it is possible that
such large deformation is predictive of destabilization, and
testing this is a promising future direction. Ultimately, we
think the present study has demonstrated that deformation
(measured by ES) is a more robust measure of structural
change upon mutation.
Limitations.— Our structural analysis is limited to show-
ing statistical correlations, and more precise experimental
measurements are needed to validate the prediction accu-
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racy of single proteins. Likewise, we are limited to evalu-
ating structural change in the actual training data, but a less
biased evaluation may become possible as more mutation
effects are empirically determined. Further work is needed
to more extensively examine the effects of MSA coverage
and depth on mutation prediction accuracy. As for the phe-
notypic effect, we analyzed two protein folds and three phe-
notypes, a this analysis ought to be replicated on a greater
variety of proteins and phenotypes.

In summary, we showed here that AF predictions of
local structural change, probed by strain [35–38], can
be used to study missense mutations in proteins. These
analyses suggest that AF can, indeed, be a powerful tool,
if used in the right context and backed up by appropriate
analyses. Using AF, we can bridge the gap between
sequence and function in high-throughput deep-mutational
scan experiments, guide directed evolution studies [10],
and design drugs in silico [11]. For example, on a smaller
scale, AF can be used to screen potential mutants, and
in costly experiments where the number of mutations is
limited, one can select mutations with strong or weak
effects in desired regions of the protein. Overall, it appears
that AF provides a step change in our ability to study and
guide protein evolution.

We thank Jacques Rougemont, Jean-Pierre Eckmann,
Martin Steinegger and Milot Mirdita for discussions. We
thank Jacque Rougemont for providing code to calculate
shear. This work was supported by the Institute for Basic
Science (IBS-R020-D1).

Appendix A: Calculating local deformation.— As a mea-
sure of local deformation, we compute the effective strain
(ES), Si. ES is simply the mean relative change of the inter-
particle distances around a given residue and is partially
correlated with shear strain (SM Sec. 4-5 [40]). To cal-
culate Si per residue i, we first define a neighborhood Ni
that includes the ni = |Ni| residues j ∈ Ni whose Cα posi-
tions r j are within 13 Å of ri, the Cα position of residue i
(in both reference and target structures). We obtain a 3×ni
neighborhood tensor Di whose ni rows are the distance vec-
tors, ri j = r j − ri. We calculate, respectively, Di and D′

i
for the two structures we are comparing (e.g., WT and mu-
tant), and rotate D′

i to maximize overlap between the ten-
sors. The ES is the average over the ni neighbors of the
relative change in the distance vectors,

Si =

〈 |∆ri j|
|ri j|

〉
=

1
ni

∑
j∈Ni

|ri j − r′i j|
|ri j|

. (1)

We have evaluated several other local metrics, similar in na-
ture to ES, finding that the conclusions are not very sensi-
tive to the specific choice of metric or neighborhood cutoff
(SM Sec. 4-5 [40]). We only include AF-predicted residues
in strain calculations if pLDDT > 70, and treat them as dis-
ordered otherwise.
Appendix B: Averaging local neighborhoods increases
accuracy.— Since AF predictions are stochastic, repeat pre-
dictions vary. We find that deformation between repeat
predictions of the same protein leads to non-negligible ES
(Fig. 1G). The ES is higher in flexible regions, which is
indicated by higher B-factor, solvent accessibility (RSA),
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FIG. 3. Fluctuations are greater in flexible regions. Deforma-
tion (ES) between experimental hen lysozyme structures (194L_A
and 6RTA_A), Si is correlated (Pearson’s r) with B-factor, relative
solvent accessibility (RSA), and pLDDT (left). Distributions (ker-
nel density estimates) of correlations for all proteins (right).

and lower pLDDT (Fig. 3). It is possible to obtain more
reliable estimates of mutation effects by averaging across
local neighborhoods, Di, in repeat predictions (SM Sec.
6 [40]). Our average structures (⟨AF⟩) are typically av-
eraged over all 5 AF models, with one set of predictions
from DeepMind’s AF implementation, and five sets of pre-
dictions from ColabFold’s AF implementation [45]. Av-
eraging typically increases deformation-phenotype corre-
lations (SM Sec. 6B [40]). One exception is the mTag-
BFP2/mKate2 dataset, where DeepMind’s implementation
of AF produces a better correlation than the average; we
find that this is due to the ColabFold implementation per-
forming poorly on this specific protein (SM Sec. 6B [40]).
We see little increase in PDB-AF structure correlations (SM
Sec. 6A [40]), and we attribute this to limitations of higher
repeat-measurement variability in PDB structures.
Appendix C: When do AF predictions correlate with PDB
data? — Here we assess why AF sometimes predicts muta-
tion effects similar to those measured in experimental struc-
tures (Fig. 1G). Across all proteins, AF-PDB correlations
are higher for mutant pairs of proteins in two situations
(Fig. 4, SM Sec. 8 [40]): when flexibility is low (low B-
factor, low RSA, high pLDDT, high ES when comparing
repeat predictions ⟨Si⟩); and when mutations have large ef-
fects that are easier to measure (high PDB-PDB correlation,
high deformation at mutated site Sm, BLOSUM score). One
might expect a negative correlation with the frequency of
mutation in MSA, as more frequent mutations might have
smaller effects; instead, it appears that wider MSA cover-
age leads to more evolutionary information that improves
predictions, but this needs to be tested further. There was no
significant effect due to secondary structure type or MSA
size (SM Fig. 21 [40]).
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