
 

CanSig: discovery of shared transcriptional states 
across cancer patients from single-cell RNA sequencing 
data 
Josephine Yates1,2,3✝, Florian Barkmann1✝, Pawel Czyz2,3,4✝, Agnieszka Kraft1,3, Marc Glettig1,5, 
Frederieke Lohmann1, Elia Saquand1, Richard von der Horst1, Nicolas Volken1, Niko 
Beerenwinkel3,4 and Valentina Boeva1,2,3,6* 
 
1: Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland 
2: ETH AI Center, ETH Zürich, Zurich Switzerland 
3: Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland. 
4: Department of Biosystems Science and Engineering, ETH Zürich, Switzerland 
5: Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 
6: Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris 
75014, France 
 
✝: these authors contributed equally 

*Corresponding author: 
Valentina Boeva 
Professor of biomedical informatics 
ETH Zurich, Department of Computer Science, Institute for Machine Learning, Universitätstrasse 6, 
8092 Zurich, Switzerland 
+41.77.525.73.05 
valentina.boeva@inf.ethz.ch 
 
Keywords: cancer; heterogeneity; single-cell RNA sequencing; transcriptional states; machine 
learning; transcriptomics;  
 
Running title: Discovery of shared transcriptional states in cancer 
 
Financial support: ETH AI Center fellowship program to P.C. Swiss National Science Foundation 
(SNSF) to F.B. and J.Y. (grant numbers 205321_207931 and CRSII5_209524). 
 
Conflict of interest: No conflicts of interest to disclose.  
 
Word count: 5221 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2022.04.14.488324doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.14.488324
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

1 

Number of tables and/or figures: 4  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2022.04.14.488324doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.14.488324
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

Abstract  

Multiple cancer types have been shown to exhibit heterogeneity in the transcriptional states of 
malignant cells across patients and within the same tumor. The intra-tumor transcriptional 

heterogeneity has been linked to resistance to therapy and cancer relapse, representing a significant 

obstacle to successful personalized cancer treatment. However, today there is no easy-to-use 

computational method to identify heterogeneous transcriptional cell states that are shared across 

patients from single-cell RNA sequencing (scRNA-seq) data. 

To discover shared transcriptional states of cancer cells, we propose a novel computational tool called 

CanSig. CanSig automatically preprocesses, integrates, and analyzes cancer scRNA-seq data from 

multiple patients to provide novel signatures of shared transcriptional states and associates these 

states with known biological pathways. CanSig jointly analyzes cells from multiple cancer patients 

while correcting for batch effects and differences in gene expressions caused by genetic 

heterogeneity.  

In our benchmarks, CanSig reliably re-discovers known transcriptional signatures on three previously 

published cancer scRNA-seq datasets, including four main cellular states of glioblastoma cells 

previously reported. We further illustrate CanSig’s investigative potential by uncovering signatures of 

novel transcriptional states in four additional cancer datasets. Some of the novel signatures are linked 

to cell migration and proliferation and to specific genomic aberrations and are enriched in more 

advanced tumors.  

In conclusion, CanSig detects transcriptional states that are common across different tumors. It 
facilitates the analysis and interpretation of scRNA-seq cancer data and efficiently identifies 

transcriptional signatures linked to known biological pathways. The CanSig method is available as a 

documented Python package at https://github.com/BoevaLab/CanSig.  

Statement of significance 

CanSig is an intuitive computational approach to detect shared transcriptional states across tumors 

and facilitate exploratory analysis of single-cell RNA sequencing data.  
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Introduction 

For about a decade, single-cell RNA sequencing (scRNA-seq) has been a valuable tool to investigate 

the extensive inter- and intra-patient heterogeneity exhibited by malignant tissues (1,2).  Although 

much research has focused on the heterogeneity of the tumor microenvironment, there has recently 

been increased interest in the intra- and inter-patient diversity of malignant cells, leading to a number 

of findings of gene signatures describing unique cell programs or states (3–10). Cell states, including 

rare ones such as cancer stem cells, are pivotal to the study of cancer as they can influence tumor 

maintenance, progression, and resistance to treatment (2,11).  

In recent years, the discovery of gene signatures of shared transcriptional states in cancer has been 

often inconsistent across studies, resulting in signatures that were non-reproducible or non-

comparable across datasets. Potential signature-discovery methods can be broadly categorized as 

early or late integration. Studies that used late integration identified signatures of differential states for 

individual patients and then grouped them into shared signatures (3,4,10). Studies that used early 

integration combined data from all patients before detecting shared signatures on the integrated set 

(12,13); this increased the statistical power to discover rare transcriptional states with low presence in 

individual tumors, highlighting the potential utility of early integration. Inspired by these works, we 

aimed to develop a fully automated intuitive toolset for early integration and discovery of shared 

transcriptional states in cancer. 

Integrating heterogeneous populations of malignant cells poses specific challenges, including 

accounting for differences in tumor genetic backgrounds (2,5) and confounding factors such as batch 

effects (14), depth of sequencing (14), and cell cycle phase (5) that can obscure the biological signal 

of interest. While several methods exist to address some of these issues when integrating scRNA-seq 

data from non-cancerous cells (14–16), a fully automated computational technique specifically 

designed to address the challenges inherent to the across-patient integration of malignant cell datasets 

is yet to be proposed. Furthermore, current early integration methods do not directly account for all 

sources of unwanted variation (12,13,17–19) and do not correct for potential artifacts introduced by 

the integration step via finding overlapping signatures discovered across different ranges of 

hyperparameters.  

We introduce here a computational approach implemented in an easy-to-use tool, CanSig, to discover 

de novo shared transcriptional states in cancerous cells. CanSig corrects for inter-patient differences 
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driven by genomic copy number aberrations and batch effects while preserving the underlying 

biological signal. Gene expression-based clustering of cells and differential gene expression analysis 

between clusters are then applied to the latent space, and stable meta-signatures are identified. We 

validated CanSig on 12 simulated and three experimental datasets and showed that it successfully 

uncovers ground-truth transcriptional signatures. In addition, we used CanSig to identify and explore 

de novo transcriptional signatures and to reveal a link between genetic and transcriptional 

heterogeneity in seven experimental cancer datasets. Specifically, CanSig discovered a novel, 

presumably aggressive signature in esophageal squamous cell carcinoma, illustrating its full potential 

for exploring transcriptional states in cancer. 

Materials and Methods 

Transcriptional states versus transcriptional programs 

We developed a computational approach, CanSig, for the de novo discovery of transcriptional states 

and corresponding gene signatures shared across cancer patients. Below, we define the terms of a 

transcriptional state and a transcriptional program to make their use disambiguous in the context of 

this study.  

We define a cell program as a set of genes jointly up- or downregulated and linked to the activation of 

a molecular pathway. By definition, programs are not mutually exclusive: multiple pathways can be 

simultaneously activated within a single cell. By contrast, we define a cell state as a mutually exclusive 

combination of programs, meaning that a cell can only be in one state at a time. A state can thus be 

described by a set of genes jointly regulated in cells that have similar cellular behavior and function at 

the molecular level. 

Pre-processing: removing misannotated cells through the inference of copy 

number variation 

The first module in CanSig corresponds to data pre-processing (Fig. 1A). The output is a gene 

expression matrix for all high-quality cells with cell labeling as malignant and non-malignant. The 

preprocessing step involves identifying copy number variations (CNVs) in order to remove cells that 

are wrongly annotated as malignant (i.e., they do not have CNVs) and cells that are wrongly annotated 
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as non-malignant (i.e., they do have CNVs), using CNVs inferred with infercnv (https://github.com/icbi-

lab/infercnvpy) (Suppl. Methods).  

 

 
 
Figure 1. 
The CanSig modular approach consists of (A) pre-processing, (B) integration, (C) postprocessing, and (D) meta-
signature discovery. A, Patient-level raw read count matrices with associated cell type annotations are provided 
as input. CanSig’s pre-processing module infers the copy number variation (CNV) profile using infercnvpy and 
the cells are partitioned into malignant, non-malignant, and undetermined using both provided cell type 
annotations and the inferred CNV profiles. B, CanSig integration module consists of a conditional variational 
autoencoder (CVAE) that models the gene expression measurements of malignant cells conditioning on user-
provided sources of unwanted variation such as batch ID, cell cycle score, and total read count and finds a latent 
space that preserves biologically meaningful signals. The latent space can be visualized using the Uniform 
Manifold Approximation and Projection (UMAP). C, The malignant cell raw count matrix and the latent space 
coordinates computed with the integration module are provided as input. CanSig’s postprocessing module first 
performs clustering in the latent space using Leiden clustering. Then it conducts differential gene expression 
analysis for each cluster versus the rest of the cells. D, CanSig groups similar signatures across several 
integration and postprocessing runs to identify stable meta-signatures over multiple hyperparameter 
configurations. At this stage, outlier and patient-specific signatures are removed. CanSig then performs 
differential CNV analysis for each meta-signature versus the rest of the cells to uncover genetic variations linked 
to signatures. The meta-signature genes are used as input for the Gene Set Enrichment Analysis (GSEA) 
algorithm. GEX: gene expression; TME: Tumor microenvironment; CNV: copy number variation; GSEA: gene 
set enrichment analysis; EMT: epithelial-to-mesenchymal transition. 
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Integration: removing sources of unwanted variation  

The second module of the CanSig is the dataset integration module (Fig. 1B). Its goal is to integrate 

cells into a biologically meaningful latent space that groups cells by their transcriptional state while 

removing sources of unwanted variation, such as batch effect, cell cycle, percentage counts in 

mitochondrial genes, differences in the genetic background, and differences in read counts.  

In CanSig, we implemented the cell integration using a deep probabilistic generative model called scVI 

(14). Briefly, scVI models the observed gene expression in each malignant cell with a zero-inflated 

negative binomial (ZINB) distribution conditioned on the latent space encoding of the malignant cell 

and its covariates (e.g., batch annotation) (Suppl. Methods).  

Postprocessing: finding gene signatures describing potential shared states for 

each integration run 

The third module of CanSig consists of clustering of cells in the latent space using Leiden clustering 

(20) followed by differential gene expression analysis (Fig. 1C). By default, the differential gene 

expression analysis includes computing the z-score for each gene for every cluster and ranking genes 

according to their z-scores. Statistical testing can be done with a t-test (default), a Wilcoxon rank-sum 

test, or a logistic regression.  For every cluster determined by a set of hyperparameters (random seed, 

dimensions of the latent space, and the number of clusters), we obtain a ranked gene list referred to 

as the signature of the cluster. 

Discovering meta-signatures: finding shared transcriptional states recurrently 

discovered across runs with different values of hyperparameters 

The fourth and last module of CanSig consists of aggregating results from multiple runs of the 

integration and postprocessing module to produce stable, shared states (Fig. 1D). Indeed, states found 

independently of the choice of hyperparameters are more likely to represent a true biological signal 

rather than a data processing artifact stemming from a particular set of hyperparameters. 

We characterize states using meta-signatures, defined as an aggregate of gene signatures discovered 

across runs with different hyperparameter values and random seeds. The number of states in the 

dataset is automatically inferred by iteratively clustering signatures until at least two meta-signatures 
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are too correlated with one another in the discovery dataset (by default, with Pearson correlation 

coefficient between the two vectors of signature scores in cells over 0.55). At this stage, we eliminate 

meta-signatures that are specific to individual patients and meta-signatures that are composed of too 

few gene signatures or are mostly produced by a single run, as they are more likely to occur by chance 

rather than being indicative of a consistent transcriptional state (Suppl. Methods). 

Characterizing meta-signatures through GSEA and differential CNV analysis  

Once we have obtained meta-signatures associated with shared transcriptional states and assigned 

cells to each state, we characterize the shared transcriptional states according to the molecular 

pathways activated and the underlying genetic variation (CNV profiles).  

To identify molecular pathways potentially activated in the states, CanSig provides the option to 

automatically perform gene set enrichment analysis (GSEA) using a pathway database chosen by the 

user. For each meta-signature, the associated ranked list of genes is used as input for the prerank 

algorithm of GSEA (21) applied to a molecular pathway database in the GMT format, e.g., any MSigDB 

database (http://www.gsea-msigdb.org/gsea/msigdb/; default, Hallmarks of Cancer).  

To help the user discover CNVs linked to the uncovered shared transcriptional states, CanSig 

performs differential CNV analysis (Suppl. Methods). This module is based on the CNV profiles 

calculated on scRNA-seq data by infercnv or provided by the user and is fully automated. 

Experimental datasets 

We used seven experimental scRNA-seq datasets for our analysis. Experimental datasets included (i) 

a high-grade glioma (HGG) dataset published by Yuan et al. (6), (ii) a glioblastoma dataset (GBM) 

published by Neftel et al. (7), (iii) a cutaneous squamous cell carcinoma (SCC) dataset published by 

Ji et al. (9), (iv) a colorectal cancer dataset (CRC) published by Pelka et al. (3), (v) a colorectal cancer 

dataset (CRC/iCMS) published by Joanito et al. (8), (vi) an esophageal squamous cell carcinoma 

(ESCC) dataset published by Zhang et al. (4), and (vii) a breast cancer (BRCA) dataset published by 

Wu et al. (10).  

The known signatures for shared transcriptional states were extracted from the papers of origin when 

available, or from Neftel et al. (7) in the case of HGG. A large part of the analysis was conducted using 

the Scanpy package (22).  
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Simulated datasets 

To investigate whether CanSig is capable of uncovering true biological signals present within the data 

while correcting for technical biases, we applied CanSig to twelve simulated datasets created with an 

adapted version of Splatter (23). Specifically, we simulated scRNA-seq datasets for malignant cells 

being in one of three shared transcriptional states; technical batch effects, patient-specific batch 

effects linked to copy number variation in malignant cells, inter-patient heterogeneity and library size 

effects were modeled with different intensities in the twelve datasets (Suppl. Methods). The python 

code used for the simulation is available at https://github.com/BoevaLab/SplatterSim.   

Benchmarking integration methods on simulated datasets 

To choose the best integration method for cancer single cells, we benchmarked six integration 

methods on our simulated datasets. Indeed, although integration method benchmarks already exist  

(24,25), none focused on malignant cells. We thus used the workflow described in scIB (24) to 

compare scVI (14), Scanorama (26), BBKNN (27), Harmony (15), Dhaka (28), and ComBat (16) in 

terms of their ability to integrate the data while preserving the biological signal of the shared 

transcriptional states. 

The batch mixing across different methods was evaluated using k-nearest-neighbor batch estimation 

(kBET) (29). The preservation of biological variance in the latent space was quantified using three 

metrics: average silhouette width (ASW), adjusted rand index (ARI), and normalized mutual 

information (NMI) (scikit-learn implementations). ARI and NMI measurements were based on repetitive 

clustering of the latent space into two to five clusters and averaging the scores (Suppl. Methods).  

We ran the CanSig tool with 4, 6, and 8 dimensions for the latent space in the integration module, and 

6, 8, 10, and 12 clusters for clustering in the postprocessing module, using 2 random seeds per 

dimension and clustering, and the meta-signature discovery with a maximum correlation threshold of 

0.3. 

Applying CanSig to experimental datasets 

To assess the performance of CanSig on real-world scRNA-seq data and to verify that  CanSig can 

successfully rediscover previously reported states, we ran the tool on datasets from two cancer types 
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with previously described gene signatures associated with shared transcriptional states (GBM, SCC) 

and on one dataset of the same cancer type (HGG) for which we used the previously known states. 

Additionally, we re-analyzed four datasets for which no shared states had yet been described (CRC, 

CRC/iCSM, ESCC, BRCA). Indeed, gene signatures previously reported for ESCC, CRC, and BRCA 

were not mutually exclusive and we argue they represent transcriptional programs rather than 

transcriptional states (see “Transcriptional states versus transcriptional programs”). For CRC/iCSM, 

the signatures reported in the original paper were patient-specific and thus not shared. We ran the 

CanSig tool with the same parameters as for the simulated data, except for the signature correlation 

threshold set to 0.55 (Suppl. Methods). 

To assess if the uncovered meta-signatures representing shared transcriptional states corresponded 

to gene signatures of previously reported transcriptional states or how stable the uncovered states 

were under variation of the underlying data, we scored cells with the scanpy scoring function. For 

CanSig gene signature scoring we used the 50 top-ranked genes for each meta-signature. For the 

reported signatures, we used all genes from the lists provided by the authors. We then computed the 

Pearson correlation between the scores. We considered there was a correspondence between two 

states if the Pearson correlation between the signatures exceeded 0.65. To evaluate the stability of 

uncovered transcriptional states, we compared the meta-signatures reported by CanSig on datasets 

from similar cancer types; we used two colorectal cancer datasets CRC and CRC/iCMS, and two brain 

cancer datasets HGG/GBM. We compared the performance of CanSig to that of scalop, a late 

integration method used to discover shared cell states in GBM (7). Additionally, we separated the 

ESCC dataset into two parts by randomly splitting patient IDs and applied CanSig to the created patient 

subsets to quantify how similar the uncovered signatures in the two splits and the full dataset were.  

To investigate the novel signatures uncovered in SCC, we additionally scored the meta-signatures on 

the spatial transcriptomics (ST) data provided in the original paper (patients 2, 4, 6, and 10) using the 

scanpy scoring function.  

To investigate whether the states uncovered by CanSig were biologically meaningful, we correlated 

the meta-signatures with clinical characteristics, known subtypes, survival, and CNVs (for ESCC) in 

external validation cohorts from The Cancer Genome Atlas (TCGA) (Suppl. Methods).  

All code to reproduce the analyses and figures presented in the manuscript can be found at 

https://github.com/BoevaLab/CanSig-Supplementary-Information.  
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Results 

Benchmarking integration strategies on simulated data 

Many approaches have been developed to integrate scRNA-seq data from non-cancerous tissues to 
determine groups of non-malignant cells with similar functions while removing batch effects and other 

experimental artifacts. To benchmark the efficacy of available data integration models in the cancer 

cell setting, we created several simulated scRNA-seq datasets mimicking data coming from a cancer 

patient cohort (Methods). We generated simulated single-cell RNA-sequencing datasets in which cells 

were assigned to one of three transcriptional states (Fig. 2A). To mimic real-world scenarios, we 

included various sources of technical and biological variability in the simulation such as batch effects, 

patient-specific effects linked to copy number variations in malignant cells, inter-patient heterogeneity, 

and library size effects (Suppl. Methods).  

Using the twelve generated datasets, we evaluated the performance of six existing models for the 

correction of sample-specific effects and determined the optimal method to include in the CanSig 

integration module (Fig. 2B, Suppl. Table 1). Performance was measured along two axes: 

conservation of the biological signal of shared transcriptional state in the integrated data and batch 

integration. The conservation of the biological signal was assessed with the average of NMI, ARI, and 

ASW, measuring the consistently between cluster labels and cell state annotations; the success of 

batch integration was measured with the kBET index, consistent with the benchmarking protocol 

established in scIB (24) (Methods). In this experiment, we found that the scVI model (14) performed 

exceptionally well in maintaining biological signals when integrating different datasets (ranking first 

among all methods tested) and in the mixing of cells from different batches (ranking third) (Fig. 2B). 

Overall, scVI was able to balance the need for integrating patient data with preserving biological 

variance. Given the importance of preserving underlying biology for accurate marker gene 

identification and the fact that possible patient-specific signatures get filtered out at the meta-signature 

step, we have chosen scVI as the dataset integration method in CanSig. 
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Figure 2. 
CanSig stably rediscovers simulated and previously reported states in in-silico and experimental datasets. A, 
UMAP representation of one of the simulated datasets (“Standard_1”) in gene expression space, colored 
according to the three simulated transcriptional states (left) and the sample of origin (right). B, Benchmark of 
integration methods on simulated malignant data. The six integration methods, ComBat (16), scVI (14), Dhaka 
(28), Harmony (15), Scanorama (26), and BBKNN (27), were run on the twelve simulated datasets. The 
performance in terms of biological conservation (mean of ARI, NMI and ASW) and batch integration (kBET) is 
reported: median performance across sets and hyperparameters with the interquartile range [25-75]. C, Results 
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of CanSig meta-signatures discovery on the simulated datasets. We score the uncovered meta-signatures and 
the true simulated states on the dataset and compute the Pearson correlation between cells. We consider a 
state to be rediscovered if Pearson correlation is above 0.65 (red square). States missed by CanSig are shown 
in blue. We report the number of uncovered meta-signatures that do not correlate with any of the simulated 
states (i.e., false positives). D, E, Heatmap of Pearson correlation between previously reported signatures in 
GBM, HGG (using signatures reported in GBM), and SCC and meta-signatures uncovered by CanSig (D) and 
scalop (E). The meta-signatures and previously reported signatures are scored on the dataset of origin (with 
HGG additionally scored on GBM). Only correlation above 0.65 is annotated. The correspondence between 
meta-signatures and previously reported signatures is highlighted in red. The ground-truth GBM cell states were 
discovered with scalop, hence the perfect correlation is reported. F, Comparison of CanSig meta-signatures 
across two colorectal cancer datasets (CRC and CRC/iCMS) and two glioma datasets (HGG and GBM) and G, 
across random splits and the full dataset of ESCC. CanSig meta-signatures are scored on CRC/iCMS, GBM or 
ESCC respectively and the Pearson correlation is computed between the cell scores. Agglomerative clustering 
with average linkage was performed to group meta-signatures. Only correlation above 0.65 is annotated. ARI: 
Adjusted Rand Index; NMI: Normalized Mutual Information; ASW: Average Silhouette Width, kBET: k-nearest 
neighbor batch effect test; CRC: colorectal cancer from Pelka et al. (3); CRC/iCMS: colorectal cancer from 
Joanito et al. (8); HGG: high-grade glioma from Yuan et al. (6); GBM: glioblastoma from Neftel et al. (7); ESCC: 
esophageal squamous cell carcinoma from Zhang et al. (4); SCC: cutaneous squamous cell carcinoma from Ji 
et al. (9). 

CanSig rediscovers known signatures in simulated and experimental datasets  

We evaluated the ability of CanSig to rediscover ground-truth transcriptional states without predicting 

false states by comparing the gene signatures obtained from CanSig on twelve simulated datasets 

with the simulated ground truth. CanSig successfully rediscovered all three simulated states in nine 

out of the twelve datasets missing ground-truth states in about 14% of cases across datasets of 

different complexity (Fig. 2C). In eight out of twelve datasets, CanSig did not uncover any meta-

signatures that did not correspond to a ground truth state. Performance of CanSig was found to be 

better on datasets containing at least 20 patients, i.e. on all datasets excluding “SmallDSet_1” and 

“SmallDSet_2”, with 10 patients only. There, CanSig rediscovered ground-truth states in 97% of cases 

(29/30) and reported only 4 unrelated signatures out of 33. 

After demonstrating the ability of CanSig to rediscover simulated ground-truth states in in-silico data, 

we evaluated the ability of our approach to rediscover previously reported states using experimental 

datasets. Three experimental datasets with previously reported states were analyzed: high-grade 

glioma (HGG) (6), glioblastoma (GBM) (7), and cutaneous squamous cell carcinoma (SCC) (9). We 

found that CanSig successfully rediscovered all previously reported states in all datasets (Fig. 2D). 

Notably, the meta-signatures uncovered on the HGG dataset also recapitulated the previously 

reported states of GBM when scored on the GBM dataset, indicating the stability of these signatures 

across datasets. Specifically, meta-signature 5 identified in the HGG dataset appeared to reflect a 
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transitioning state between NPC-like and OPC-like states, as evidenced by its correlation with these 

states. Furthermore, CanSig discovered two additional shared transcriptional states in the SCC 

dataset, discussed in more detail in the following sections.  

Finally, we compared the performance of CanSig implementing early-stage integration to a late-stage 

integration method, scalop, used for cell state discovery in GBM (7) (Fig. 2E). We applied scalop to 

the two experimental datasets it had not previously been applied to, HGG and SCC, and assessed the 

correspondence of the uncovered states. In SCC, scalop rediscovered signatures of all previously 

reported transcriptional states. However, in HGG, scalop only rediscovered 3 of the 4 previously 

reported states, both when scored on HGG and on GBM, whereas the CanSig method was able to 

rediscover all four states.  

CanSig discovers similar gene meta-signatures across similar datasets 

To demonstrate the robustness of CanSig in uncovering meta-signatures across variations in the input 

data, we performed a comparison of CanSig results on pairs of independent datasets of colorectal 

cancer (3,8) and glioma (6,7), as well as on a random split on patients of a dataset of esophageal 

squamous cell carcinoma (ESCC) (4). 

Our analysis of CanSig’s meta-signatures uncovered from the colorectal cancer data, CRC (3) and 

CRC/iCMS (colorectal cancer dataset with intrinsic-consensus molecular subtypes) (8), revealed that 

CanSig was able to stably discover similar transcriptional states across the two datasets. Specifically, 

CanSig identified five states in the CRC dataset and eight states in the CRC/iCMS dataset; all five 

states discovered in the CRC dataset were also identified in the CRC/iCMS dataset with three 

CRC/iCMS states being specific to the second dataset (Fig. 2F). Similarly, in our analysis of the CanSig 

results of the glioma datasets, HGG (6)  and GBM (7), CanSig identified four similar states and one 

state specific to each dataset. The alternative, late integration approach scalop did not perform 

significantly better than CanSig in this experiment (Suppl. Fig. 1). 

Additionally, the application of CanSig to the ESCC dataset showed that our approach was able to 

stably discover similar signatures across different splits of a dataset on the patient level. In particular, 

CanSig uncovered eight states for the first subset of patients, five for the second subset, and seven 

for the full dataset. Of the seven states identified in the full dataset, four were also identified in both 

splits, while the remaining three states were specific to one split, possibly owing to differences in 
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patient composition (Fig. 2G). These results supported the robustness of CanSig in uncovering similar 

sets of transcriptional states across variations in the input data. 

CanSig discovers novel signatures of shared transcriptional states in 

experimental datasets linked with genetic variation and spatial organization in 

tumor tissues  

We applied CanSig, using default parameter settings, to seven experimental datasets including breast 

cancer scRNA-seq data (BRCA) (10) and six datasets previously mentioned in the benchmarking 

setting (HGG, GBM, SCC, CRC, CRC/iCMS, ESCC).  

CanSig identified between 5 and 8 shared transcriptional states per cancer type (Fig. 3A). To gain 

insight into the underlying molecular pathways and genetic variations associated with the states, we 

performed gene set enrichment analysis (GSEA) with the MSigDB gene database of cancer hallmarks 

(http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H) and differential 

analysis for copy number variation (CNV) using corresponding modules implemented in CanSig.   

GSEA revealed several molecular pathways recurrently activated in specific shared transcriptional 
states across multiple cancer types (Fig. 3B). Cell proliferation (E2F targets) and TNFA signaling were 

reported to be activated for at least one state in each cancer type. Other recurrent pathways, 

associated with uncovered cell states in six out of seven cancer types, included epithelial-to-

mesenchymal transition (EMT), oxidative phosphorylation, and MYC targets v2 (also linked to cell 

proliferation).  

To understand the possible biological meaning of two, relatively rare transcriptional states CanSig 
uncovered in SCC as de novo states (i.e., they did not match the three previously reported states in 

this cancer type) we analyzed the GSEA results for the two corresponding gene signatures (meta-

signatures 1 and 3, linked to 2% and 11% of cells annotated as malignant). Meta-signature 1 was 

associated with immune-reactive pathways (IL2 STAT5 signaling, allograft rejection) as well as TNFA 

signaling, suggesting that it may represent an immune-active state. Meta-signature 3 was associated 

with oxidative phosphorylation and MYC targets, which might suggest it characterizes a proliferative 

state. To further investigate these findings, we compared the spatial organization of the novel meta-

signature 3 to that of meta-signature 4, which was strongly associated with the differentiated signature 

previously reported (9) and was closest to meta-signature 3 in terms of cell-to-cell distances in the 

latent space (Fig. 3A). Through scoring these meta-signatures in spatial transcriptomics slides of four 
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SCC patients (patients 2, 4, 6 and 10), we found that despite gene expression similarity (Pearson 

correlation: 0.31), they exhibited distinct spatial patterns: meta-signature 3 was more prevalent at the 

edges of tumors, consistent with its association with high proliferation (30) (Fig. 3C, Suppl. Fig. 2).  

Differential CNV analysis identified numerous chromosomal regions with gains or losses significantly 
associated with uncovered states in all cancer types except for the high-grade glioma (Fig. 3D, Suppl. 

Fig. 3). A CNV of a region was considered to be associated with a state if there was a significant 

increase in the number of cells that had gained or lost the region compared to the rest of the states 

(least 25% difference and significant p-value). In our analysis, genomic gains were more frequently 

associated with specific transcriptional states than genomic losses. Our results corroborate previously 

reported observations that copy numbers of certain genes coding for transcription factors and signaling 

proteins may predispose to specific transcriptional states (7,10).  

Discovered shared transcriptional states can be further investigated using external datasets to 

determine the biological and clinical relevance of the states. To demonstrate the potential for further 

investigation, we juxtaposed the gene signatures of transcriptional states identified by CanSig from 

scRNA-seq data with information from datasets of The Cancer Genome Atlas (TCGA). For each 

corresponding cancer type in TCGA, we scored the CanSig meta-signatures in all patients of the 

TCGA cohort and linked the patient scores with survival, known molecular subtypes, and clinical 

characteristics. We found five meta-signatures that were significantly associated with survival (Fig. 3E, 

Suppl. Table 2). The CanSig meta-signatures for shared transcriptional states were also found to be 

associated with known molecular subtypes. In HGG, GBM, and BRCA, all signatures were associated 

with a known mRNA subtype (Fig. 3E, Suppl. Table 3). In the remaining cancer types, at least half of 

the uncovered meta-signatures were associated with known subtypes. Finally, several meta-

signatures were associated with clinical characteristics such as gender, clinical stage, and age (Fig. 

3E, Suppl. Table 4). Overall, the majority of meta-signatures uncovered by CanSig were significantly 

associated with some of the reported patients' characteristics and/or survival in an external cohort, 

illustrating the biological relevance of the uncovered states.  
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Figure 3.  
CanSig discovers novel states in experimental datasets linked with molecular pathways, genetic variation and 
clinical characteristics. A, UMAP and principal component analysis (PCA, inset) representations of selected 
latent spaces (d=6) for the seven experimental datasets on which CanSig was applied. Cells are colored 
according to the uncovered meta-signatures they are assigned to. Cells that are assigned to signatures that 
were cast as outliers or that cannot be confidently assigned to a meta-signature are annotated as 
undecided/outliers (blue). B, Heatmap representing the results from GSEA on the hallmarks of cancer for all 
seven experimental datasets. For each meta-signature for each cancer, the three most positively significantly 
enriched hallmarks (FWER p<0.05) are selected. Only significant associations with NES>1.5 are shown. C, 
Hematoxylin and eosin (H&E) staining of tissue sections and scoring of spatial transcriptomics (ST) spots. Spots 
are scored using the 50 top-ranked genes of the meta-signatures 3 and 4. D, Ideogram representation of copy 
number gains significantly associated with shared transcriptional states in all seven experimental datasets. Each 
row corresponds to a chromosome; the x-axis corresponds to the chromosomal position. Chromosomal regions 
inferred by infercnvpy are represented in grey. Regions associated with a meta-signature with FDR p<0.05 and 
with at least 25% more cells with a gain in the meta-signature are highlighted in the corresponding color. E, 
Associations between CanSig meta-signatures and the clinical characteristics in the corresponding cancer type 
in TCGA. The meta-signatures are scored on TCGA patients of each cohort by using the average RSEM value 
over the 50 top-ranked meta-signature genes. Cox’s Proportional Hazard model is applied for survival prediction 
on each meta-signature score in a univariate analysis and then in a multivariate analysis correcting for age, 
stage, and tumor purity. Significant associations after FDR correction (FDR p<0.1) are represented. Available 
subtype information is retrieved and scores between every subtype are compared using the Kruksal-Wallis test. 
Associations might be positive or negative, i.e., the signature might be significantly enriched or depleted in 
subtypes. The heatmap is colored according to -log(q-value). For clinical characteristics, categorical information 
is analyzed using the Kruskal-Wallis test; associations with age are analyzed using Pearson correlation. We 
grayed out boxes for which no information was available. 
Meta-sig: meta-signature; GSEA: Gene Set Enrichment Analysis; FWER: family-wise error rate; NES: 
Normalized Enrichment Score; FDR: false discovery rate; TCGA: The Cancer Genome Atlas; RSEM: RNA-Seq 
by Expectation Maximization; CRC: colorectal cancer dataset from Pelka et al. (3); CRC/iCMS: colorectal cancer 
dataset from Joanito et al. (8); HGG: high-grade glioma cancer  from Yuan et al. (6); GBM: glioblastoma cancer 
from Neftel et al. (7); ESCC: esophageal squamous cell carcinoma from Zhang et al. (4); SCC: cutaneous 
squamous cell carcinoma from Ji et al. (9); BRCA: breast cancer from Wu et al. (10). 

 
 

CanSig discovers a signature of a novel transcriptional state linked to a higher 
clinical stage and EMT and WNT-pathway activation in esophageal squamous 
cell carcinoma (ESCC) 

To demonstrate the potential of CanSig to uncover cancer cell transcriptional states that can lead to 

new biological insights, we performed a detailed investigation of one of the meta-signatures uncovered 

in the esophageal squamous cell carcinoma (ESCC) dataset. Specifically, we focused on meta-

signature 5, which was significantly associated (NES ≥1.5, q-value < 0.05) with angiogenesis, 

epithelial-to-mesenchymal transition (EMT), and WNT beta-catenin signaling, as determined by GSEA 
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(Fig. 4A-B). We paid specific attention to this novel gene signature as WNT signaling has been shown 

to be a major promoter of cancer progression, stemness, and metastasis (31).  

Further analysis of the top signature genes (20 most differentially expressed) revealed a high degree 
of specificity towards meta-signature 5, including signature-specific genes that had previously been 

linked to metastasis, stemness properties, and WNT beta-catenin signaling (32–38) (Fig. 4C).  

Notably, LGR6 was found to be a marker of stem cells in skin squamous cell carcinoma in mice (37), 

further strengthening the possibility of stem-like properties of cells within this transcriptional state. 

Meta-signature 5 also showed a strong association with genomic gains shared among patients, 
including significant gains on chromosomes 3, 6, 7, 8, 12, and 20 shared on average among 13 

patients (Fig. 4D, Suppl. Table 5). To evaluate the relationship between the genomic gains and gene 

expression, we looked at the intersection of the 757 genes from the significantly differentially gained 

locations and the 100 top-ranked genes of meta-signature 5. We found 31 genes that were both gained 

and overexpressed in the state linked to meta-signature 5 (Fig. 4E), including the FZD1 gene encoding 

a receptor of the beta-catenin signaling pathway. Malignant cells assigned to meta-signature 5 were 

found to be heterogeneously present across patients (Fig. 4F), with the fraction of such cells ranging 

from 0 to 63%, and only 6 patients out of 57 having more than 25% of their cells in this transcriptional 

state. 

To further understand the clinical implications of this signature, we sought to correlate it with clinical 

characteristics in an external dataset from TCGA (ESCA). We found that the meta-signature 5 scores 

were significantly associated with later cancer stages (Fig. 3D, Fig. 4G), consistent with the increased 

aggressiveness and metastatic potential of cells with this signature according to the GSEA.  

Finally, to validate the link between meta-signature 5 expression and genetic variation discovered by 
CanSig from the scRNA-seq data of ESCC, we evaluated whether the link between the significant 

genomic gains and signature expression was also present in the external dataset. Three main 

chromosomal regions were found to have significantly (q<0.05) higher meta-signature 5 scores in 

TCGA patients with a gain/amplification (Fig. 4H): chr3:122,680,839-187,745,725, chr7:74,199,652-

107,931,730, and chr20:32,358,330-46,689,444.  

To sum up, we identified a novel transcriptional state in ESCC characterized by over-expression of 

the EMT/WNT-pathway and linked to chromosomal gains in chromosomes 3, 7, and 20. The validity 

of the signature was confirmed in a TCGA dataset where this state was also associated with advanced 
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tumor stages (III/IV), suggesting the uncovered gene signature could be used as a tool for stratifying 

patients and potentially applying more aggressive treatments at earlier stages of the disease.  

 

 
Figure 4. 
In ESCC, CanSig discovers a transcriptional state associated with EMT and WNT-pathway activation and linked 
to gains in chromosomes 3, 7, and 20. A, UMAP and PCA representation of the latent space of the ESCC dataset 
(d=6), colored according to the probability of cell assignment to a transcriptional state linked to meta-signature 
5. B, Hallmarks of cancer significantly enriched after FWER correction using GSEA for meta-signature 5. The 
NES associated with each pathway is indicated. C, Dotplot representation of the 20 top-ranked genes of meta-
signature 5. The color corresponds to the mean expression and the size of the dot corresponds to the fraction 
of cells expressing the gene in the group of cells assigned to meta-signature 5 (i.e., with at least one mapped 
read). D, Heatmap representation of the average value of the copy number profile of cells sorted by meta-
signature they were assigned to. E, Representation of the intersection of genes with significant copy number 
gain associated with meta-signature 5 and signature genes (i.e., 100 top-ranked genes in the meta-signature). 
F, Proportion of malignant cells of the ESCC patients assigned to meta-signature 5. G, Distribution of meta-
signature 5 scores in the external cohort (TCGA-ESCA) associated with the clinical stage and H, with gains on 
regions of chromosomes 3, 7, and 20. For (G) and (H), the signature is computed as the average FPKM-UQ 
value of the signature genes for a patient. Significance is computed with the Wilcoxon rank-sum test (*: 
0.01<p<0.05, **: 0.001<p<0.01, ns: non-significant). 
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Discussion 
 

We have proposed CanSig, a modular method for the de novo discovery and analysis of shared 
transcriptional states in cancer. To the best of our knowledge, CanSig is the first automated cancer-

specific approach that jointly analyzes scRNA-seq data from a patient cohort for the de novo discovery 

and annotation of shared transcriptional states in cancer. CanSig includes a pre-processing module 

that takes raw read counts from scRNA-seq on a patient cohort as input and infers the copy number 

variation (CNV) profiles of the cells further used to filter out potentially misannotated non-malignant 

cells. The integration module of CanSig then projects the data from malignant cells of all patients into 

a common latent space while controlling for sources of unwanted variation. The latent representation 

is used in the postprocessing step to identify potential transcriptional states through sequential 

clustering and differential gene expression analysis. The meta-signature discovery module of CanSig 

outputs consistently found states, and these states are then characterized with activated molecular 

pathways using GSEA and potential driver CNVs using differential CNV analysis. These 

characteristics set CanSig apart from previous early-integration approaches (12,13,17–19,28). 

To ensure we used the best integration strategy in the cancer setting, we evaluated multiple integration 

techniques using simulated cancer datasets and selected the most effective approach. This turned out 

to be an autoencoder-based integration (14). Additionally, we compared the performance of CanSig 

on experimental datasets to that of scalop (7), the only late integration method implemented within a 

reproducible computational framework, and found that CanSig performed comparably or superiorly 

depending on the dataset; in addition, CanSig has the advantage of automatically inferring the number 

of states from the correlation allowed between the states, while scalop requires the number of 

expected states to be provided in advance.  

We would like to emphasize that several methods have been recently developed to discover de novo 
gene signatures from scRNA-seq data characterizing transcriptional programs, as opposed to states, 

in different types of tissues. These methods include a Bayesian factorization approach, scHPF (39), 

autoencoder-based approaches pmVAE (40) and scETM (41), the latter also implementing a topic 

model embedding, and a factor analysis-based method, f-scLVM (42). However, scHPF and pmVAE 

are not well-suited for a cancer-specific task involving data from multiple patients because they do not 

account for batch effects. Additionally, scETM and f-scLVM recommend to use such a priori knowledge 

as molecular pathway annotations; also, their linear models may limit the ability to correct for batch 

effects. Finally, the reference-query setting of ExpiMap (43), a method recently proposed to infer gene 
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program activity, may not be suitable for identifying novel cancer signatures as cancer sets do not 

inherently include a perturbation or a priori known discriminative features between patients. 

While CanSig has demonstrated promise in uncovering gene signatures of shared transcriptional 
states, there are certain limitations to keep in mind when using the method. First, while CanSig corrects 

for patient-specific effects and provides meta-signatures that are stably found across different sets of 

hyperparameters, one cannot completely rule out the presence of meta-signatures stemming from 

imperfect dataset integration or specific for only a small number of patients. To gain the first indication 

whether the discovered states are biologically meaningful, GSEA results are provided (21); however, 

it is highly recommended to further validate the states, e.g., by using an external validation set to link 

the uncovered states to clinical characteristics, as was done in our analysis. Second, we chose to 

implement the early integration setting to gain statistical power to discover rare cell subtypes, but the 

shared latent space might only capture such rare cell states when there is a large number of patients 

presenting cells in these states or the rare cell state has a strong identity. Very rare or subtle cell states 

might not be captured. Third, currently, no single-cell-specific differential gene expression methods 

are implemented within CanSig, but the implemented methods have been reported to perform well on 

single-cell data (44).  

The CanSig method could be further developed in various ways including incorporating other 

integration models. Another potential development could be to use CNV information as a proxy for 

patient identity, to better distinguish between technical artifacts and biological differences. 

In conclusion, CanSig is a powerful tool that has many applications for the exploratory analysis of 
cancer cells. It can uncover transcriptional states of cancer cells with clinically relevant gene signatures 

and reveal potential links between CNVs and discovered cell states. As the field of cancer research 

continues to generate scRNA-seq data for human tumors, our approach provides an efficient way for 

researchers with limited computer science expertise to perform the analysis of their data while 

accounting for cancer-specific effects. The gene signatures of shared transcriptional states discovered 

by our approach can then be further investigated from a biological perspective by analyzing potential 

driver events and downstream consequences and conducting additional experimental work.  
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Data availability statement  

The high-grade glioma data (HGG) was obtained from the Gene Expression Omnibus (GEO) 

repository GSE103224 at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103224. 

The glioblastoma data (GBM) was obtained on request on Broad Institute Single-Cell Portal: 

https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-

pediatric-glioblastoma  

The cutaneous squamous cell carcinoma (SCC) single-cell and spatial transcriptomics data was 

obtained from the GEO repository GSE144240 at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144240  

The colorectal cancer data (CRC) was obtained from the GEO repository GSE178341 at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178341  

The colorectal cancer data (CRC/iCMS) was obtained on request through Synapse under the 

accession code syn26844071 at https://www.synapse.org/#!Synapse:syn26844071/wiki/615389  

The breast cancer data (BRCA) was obtained from the GEO repository GSE176078 at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078  

The esophageal squamous cell carcinoma data (ESCC) was obtained from the GEO repository 

GSE160269 at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE160269  

For TCGA analysis, clinical and survival information was retrieved from Liu et al. (45).  

Subtype information was retrieved from https://www.synapse.org/#!Synapse:syn8402849 (a list of the 

papers describing the subtypes can be found at 

https://bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/subtypes.html).  

We retrieved the RSEM (RNA-Seq by Expectation Maximization) gene expression pan-cancer file from 

the GDC (https://portal.gdc.cancer.gov/).  

ESCA gene expression data (Fragments Per Kilobase of exon per Million mapped fragments 

normalized with Upper Quartiles, FPKM-UQ), CNV information, ESTIMATE (46) values of purity for 

each tumor sample, and clinical information were retrieved from the GDC 

(https://portal.gdc.cancer.gov/).  
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Code availability 

CanSig is freely available as a documented Python package at https://github.com/BoevaLab/CanSig.  
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Supplementary Figures and Tables 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Suppl. Figure 1.  
Comparison of scalop meta-signatures across two colorectal cancer datasets (CRC and CRC/iCMS) 
and two glioma datasets (HGG and GBM). scalop meta-signatures are scored on CRC/iCMS or GBM 
respectively and the Pearson correlation is computed between the cell scores. Agglomerative 
clustering with average linkage was performed to group meta-signatures. We only annotate 
correlations above 0.65. CRC: colorectal cancer from Pelka et al. (3); CRC/iCMS: colorectal cancer 
from Joanito et al. (8); HGG: high-grade glioma from Yuan et al. (6); GBM: glioblastoma from Neftel et 
al. (7).  
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2022.04.14.488324doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.14.488324
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2022.04.14.488324doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.14.488324
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

Suppl. Figure 2.  
Hematoxylin and eosin (H&E) staining of tissue sections and scoring of spatial transcriptomics (ST) 
spots in SCC patients 2, 4, 6 and 10. Spots are scored using the 50 top-ranked genes of the meta-
signatures 3 and 4. 
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Suppl. Figure 3.  
Ideogram representation of significant copy number losses associated with meta-signatures in all 
seven experimental datasets. Each row corresponds to a chromosome; the x-axis corresponds to 
chromosomal position. Chromosomal regions inferred by infercnvpy are represented in black. Regions 
associated with a meta-signature with FDR p<0.05 and with at least 25% more cells with a loss in the 
meta-signature are highlighted in the corresponding color. 
CRC: colorectal cancer, CRC/iCMS: colorectal cancer iCMS, HGG: high-grade glioma, GBM: 
glioblastoma, ESCC: esophageal squamous cell carcinoma, SCC: cutaneous squamous cell 
carcinoma; BRCA: breast cancer; Meta-sig.: meta-signature. 
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Supplementary Tables are provided in a separate .xlsx files. 
 
Suppl. Table 1. Benchmark results for the 6 integration methods on the 12 simulated datasets. 
Mean, IQR and median are reported for all metrics. 
 
Suppl. Table 2. Associations between CanSig meta-signatures and survival in TCGA. Univariate 
analysis corresponds to a Cox model with the score as predictor. Multivariate analysis corresponds 
to a Cox model with the score, the age, the stage and the tumor purity as predictors. 
 
Suppl. Table 3. Associations between CanSig meta-signatures and known molecular subtypes in 
TCGA. The -log(q-value) significance of the FDR corrected p-value of the Kruskal-Wallis test across 
groups is reported. 
 
Suppl. Table 4. Associations between CanSig meta-signatures and age, stage and gender in 
TCGA. For age, the Pearson correlation coefficient is reported, as well as the FDR corrected p-
value. For age and gender, the Kruskal Wallis FDR-corrected p-value is reported. The mean 
signature score in each group is reported. 
 
Suppl. Table 5. Gains significantly associated with meta-signature 5 in ESCC. 
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