
Title
Echtvar: Compressed variant representation for rapid annotation and filtering of SNPs and
indels

Authors
Brent S. Pedersen1,2,*, Jeroen de Ridder1,2,*

1. Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The
Netherlands
2. Oncode Institute, 3521 AL Utrecht, The Netherlands
*. Correspondence: b.s.pedersen@umcutrecht.nl & j.deridder-4@umcutrecht.nl

Abstract
Germline and somatic variants within an individual or cohort are interpreted with information
from large cohorts. Annotation with this information becomes a computational bottleneck as
population sets grow to terabytes of data. Here, we introduce echtvar, which efficiently
encodes population variants and annotation fields into a compressed archive that can be
used for rapid variant annotation and filtering. Most variants, including position and alleles
are encoded into 32-bits–half the size of previous encoding schemes and at least 4 times
smaller than a naive encoding. The annotations, stored separately, are also encoded and
compressed. We show that echtvar is faster and uses less space than existing tools and that
it can effectively reduce the number of candidate variants. We give examples on germ-line
and somatic variants to document how echtvar can facilitate exploratory data analysis on
genetic variants. Echtvar is available at https://github.com/brentp/echtvar under an MIT
license.

Introduction
A site in the genome that differs from the reference, either as a somatic mutation or a
germline variant must be decorated with additional information in order to be interpretable.
Millions of sites in an individual will differ from the reference genome. Several pieces of
information can be added to each variant to assist in determining which of those are relevant
to disease. It is critical to know the predicted effect on a gene–for example, does it create a
new stop-codon in the sequence of an exon? Additionally, the frequency or absence of a
variant in a large population database indicates potential constraint with the species1.
Likewise, the conservation of the site across species2 indicates that a site might be important
and so those should experience selection and be removed from the population. Each of
these pieces of information must be added to each variant in a call-set using an annotation
tool.

Tools that calculate the effect of a genetic variant on protein (and non-coding) sequence
such as Variant-effect predictor (VEP)3, bcftools csq4, and snpEff5 are invaluable; but here,
we focus on the annotation that involves searching for a particular variant or site in a
database and annotating the variant with this information from the match in the database.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

mailto:b.s.pedersen@umcutrecht.nl
mailto:j.deridder@umcutrecht.nl
https://github.com/brentp/echtvar
https://paperpile.com/c/cBqlA7/uMHy
https://paperpile.com/c/cBqlA7/UH9q
https://paperpile.com/c/cBqlA7/Woxe
https://paperpile.com/c/cBqlA7/3JkV
https://paperpile.com/c/cBqlA7/MTBf
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

This way of annotating variants is a fundamental building block in most genetics data
analysis pipelines and plays a critical role in variant interpretation. For example it is very
common to annotate with population allele frequency from the Genome Aggregation
Database (gnomAD)6 or other large population sets. Another example is the addition of a
CADD7 score for each variant in a Variant Call Format (VCF) file8. While conceptually simple,
the space and time efficiency of the annotation algorithms become critical as call-sets and
annotation databases have grown substantially. The methods involved in annotating with the
essential data in these large datasets become quite relevant. As the size of the annotation
sets grow, the space and time efficiency of the algorithms become more important. The
annotations added by the tools that implement these algorithms are fundamental to variant
interpretation.

As an example of the scale of the data, the Genome Aggregation Database (GnomAD)6

v3.1.2, mentioned above, contains nearly 760 million variants, consuming more than 2
terabytes of data. Storing this database can be onerous on an average compute cluster and
hard to justify when the size of alignment and variant information for a trio that an
investigator might wish to annotate is on the order of a few gigabytes of data. Further,
attaching population information to each variant in this example trio would take additional
compute to decompress and parse the huge gnomAD files, even when using an approach
that combines index-jumping and streaming like VCFAnno9. Likewise, the CADD7 score
includes a prediction for each of 3 possible single-base changes for each position in the
human reference; this commonly-used annotation is 81 Gigabytes of compressed data and
incurs substantial compute. Even annotations for only coding variants can be quite large, for
example dbNSFP10, which aggregates many of these scores, totals around 30 Gigabytes of
compressed data. Data this size require new methods in order to be utilized with efficiency
and ease, especially given their routine use in modern day genetics pipelines.

Here, we introduce our command-line tool, echtvar, and show how the annotations and
filtering performed by echtvar can dramatically reduce the number of candidate variants and
facilitate exploratory data analysis due to the speed and ease of use. We document
performance in terms of speed, memory, and number of variants filtered, in experiments
looking at germline and somatic variants. Echtvar can ease the interpretation of
whole-genome sequencing by quickly limiting the number of variants under consideration for
both germ-line and somatic projects. This reduces the cost of computation and downstream
analysis. Such advances can facilitate efforts to improve turn-around times for sequencing
projects where speed is critical, such as for neonatal projects11.

Results
We first give a brief summary of the echtvar algorithm (this is expanded in the methods
section), then we compare echtvar to other tools on a practical example–annotating a set of
whole-genome germline variants with information from gnomAD. This demonstrates the
speed and memory use of echtvar relative to other tools on a common, yet sizable, task.
Then, on the same germline variants we show the filtering capabilities of echtvar which
enable interactive, exploratory data-analysis. Finally, we give an example of using echtvar to
annotate somatic variants of thousands of samples from International Cancer Genome
Consortium (ICGC) with values from dbNSFP10.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://paperpile.com/c/cBqlA7/TS3e
https://paperpile.com/c/cBqlA7/hcmA
https://paperpile.com/c/cBqlA7/IGja
https://paperpile.com/c/cBqlA7/TS3e
https://paperpile.com/c/cBqlA7/YVBw
https://paperpile.com/c/cBqlA7/hcmA
https://paperpile.com/c/cBqlA7/hTJH
https://paperpile.com/c/cBqlA7/9d4f
https://paperpile.com/c/cBqlA7/hTJH
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

Brief algorithm overview

Echtvar chunks the genome, efficiently encodes variants into integers, and utilizes integer
compression methods to facilitate compact variant representations that can be used for rapid
annotation. Briefly, echtvar combines the following:

1. an encoding scheme that fits most variants, including position, reference, and
alternate alleles into 32 bit integers

2. a chromosome and region chunking for file-layout scheme that limits memory-use
and improves compression

3. the Stream-VByte encoding scheme12 which can encode and decode billions of
integers per second while reducing the space required by nearly 4 times for some
field-types

4. use of the standard ZIP file format to allow random-access to each region
5. a command-line interface that allows users to create custom echtvar archives by

extracting specific integer, float, and low-arity string fields from population databases.
6. a tool to annotate and filter query variant files with values in echtvar archives.

This combination of methods and utilities make echtvar a valuable tool for annotating and
filtering genetic variants. We expand on the process of encoding and annotation in more
detail in the methods.

Comparison with other tools

We compare echtvar speed, memory-use and archive size to bcftools annotate 4, VarNote13,
and slivar14 on gnomAD v3.1.26 annotating Genome-in-a-Bottle calls for HG00115 which
contains about 3.9 million SNP and indel whole-genome, germline calls.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://paperpile.com/c/cBqlA7/yc0N
https://paperpile.com/c/cBqlA7/3JkV
https://paperpile.com/c/cBqlA7/cPSi
https://paperpile.com/c/cBqlA7/69EZ
https://paperpile.com/c/cBqlA7/TS3e
https://paperpile.com/c/cBqlA7/iVxX
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

Figure 1. Comparison of echtvar speed, memory, and archive size with other annotation tools. A VCF with
about 3.9 million variants was annotated with allele frequency, number of homozygous alternate alleles, and
other fields from gnomAD v3.1.2. The first row shows wall-time, how long the programs took to complete (a) and
user-time, how much processing time (across multiple threads) was used (b). The amount of memory used is
shown in c. with slivar taking much more memory than other tools. d) shows the file size of the annotation files
required. Since echtvar encodes the data, it can use less file size than the original file. Original gnomAD file sizes
are much larger, the values shown for bcftools and varnote are from a VCF or BCF subset to contain only the
fields of interest for a more fair comparison.

Echtvar is the fastest tool (Fig 1a, b) with the smallest annotation file-size footprint (Fig 1d)
while using a small amount of memory (Fig 1c) for any modern server. Echtvar completes
the task in 132.2 seconds with 68.1 Megabytes of memory; the closest competitor is
BCFtools which uses 396.7 seconds and 43.5 Megabytes of memory. Note that echtvar uses
only 7.3 Gigabytes on disk while BCFtools uses 12.6 Gigabytes. These sizes are close
because we subset the gnomAD VCF to contain only fields of interest to make the
comparison as fair as possible–the original VCF files are around 2 terabytes of data. The
echtvar command used for this comparison was:

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

echtvar anno \

-e gnomad.v3.1.2.echtvar.v2.zip \

$vcf $output_vcf

where “$vcf” and “$output_vcf” are placeholders for the input VCF to be annotated and the
output file where results are written.

Filtering whole-genome germline variants

Next, we remove variants unless the highest allele frequency of any population in gnomAD
v3.1.2 was less than 0.01. For this purpose, we used the same set of calls for HG001 along
with the same echtvar annotations from the previous comparison. This can be achieved with
the following echtvar command:

echtvar anno -e gnomad.v3.1.2.echtvar.v2.zip $vcf $output_vcf \

-i "gnomad_popmax_af < 0.01"

While exact filtering strategies will vary, this is a reasonable starting filter for rare-disease
variants, where we expect candidate variants contributing to a severe phenotype to be rare.
In doing this filtering, we reduced the echtvar run-time from 132 seconds (as in Figure 1) to
87 seconds (34%) and reduced the number of variants from around 3.95 million to 67,017
(98% reduction). The speed improvement is because fewer variants are written and writing
to file is otherwise a bottleneck in the annotation step. The filtered variant set is 50 times
smaller and so will potentially use 50 times less storage depending on the compression
(4.2MB vs 127MB == 30 times for this example), and less compute for intensive downstream
tasks such as effect annotation, for example with Variant Effect Predictor (VEP)3. Combining
the annotation with filtering compounds the benefit of each of these steps and also highlights
the utility of fast tools that leverage large population datasets such as gnomAD in prioritizing
variants.

Filtering recessive whole-genome germline variants

Next, in order to further show the capabilities of echtvar, we evaluate filtering for recessive
variants where we expect that sites (variants) contributing to disease would have few
samples from gnomAD that were homozygous for the variant. We therefore filtered to
variants where the proportion of homozygous alternate samples across all populations was
less than 0.5% of the number of total samples in that population. Echtvar supports this
through the following command:

echtvar anno -e gnomad.v3.1.2.echtvar.v2.zip $vcf $output_vcf \

-i “gnomad_popmax_nhomalt / (gnomad_popmax_an / 2) < 0.005”

Note that we get the number of samples using the number of chromosomes (the “an” suffix
is for “number of alleles” across the population) divided by 2 since we are considering only
the autosomes. The left-hand side then gives the proportion of samples and we compare
that to the right-hand size (0.005). This completes in around 90 seconds and writes 178,117
variants (95.5% of variants filtered). This example demonstrates the flexibility of the
expressions which allow a variety of mathematical operations. It also highlights the

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://paperpile.com/c/cBqlA7/Woxe
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

advantage of such a fast tool. We can rapidly evaluate expressions of 4 million variants to
decide on the exact filtering parameters. For example if the analyst were to decide that 178
thousand variants is too many, they could run again with a cutoff of 0.1% and have the
results in about a minute and a half.

Filtering whole-genome somatic variants

To demonstrate applicability in a somatic variant setting, we annotated and filtered each of
1,902 VCF files of somatic variants from the International Cancer Genome Consortium
(ICGC) with annotations from dbNSFP. We used the command:

echtvar anno -e dbNSFP.echtvar.zip $vcf /dev/null \

-i 'dbsnfp_SIFT_converted_rankscore > 0.2 \

|| dbsnfp_DANN_rankscore > 0.2 \

|| dbsnfp_GERPpp_RS_rankscore > 0.2 '

to annotate with dbNSFP and filter to variants that had at least one of the rank scores
greater than 0.2. We chose these fields and expressions to highlight the flexibility and
possibilities of echtvar rather than to address a specific question. Figure 2 shows the time
required to run this command for each file, along with the number of variants left after
filtering. All commands finish in a few seconds and leave only a handful of variants in most
cases. This demonstrates how one could rapidly evaluate different cutoffs to get to a
reasonable number of variants of interest. While nearly all samples had fewer than 50
variants that passed the filters, a few samples had more than 100 variants (not shown in Fig
2b which is truncated at 100). These could be samples that require further quality control. As
echtvar readily achieves these calculations in a matter of seconds it would, for instance, be
possible to include them as broad quality control measures that require little extra compute.

Figure 2. Histograms of run-time (A) and variants remaining after filtering (B) for 1,902 VCFs containing
somatic variants for a variety of cancer types from the ICGC. We annotated each VCF with data from
dbNSFP version 4.3a and then filtered to variants with a high score in any of 3 of the annotated fields.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

Discussion and Future Work
Variant annotations from large population sets are essential for virtually all variant
interpretation and downstream analyses. We have introduced echtvar which uses
genome-chunking and an encoding scheme that fits most SNP and indel variants into 32-bit
integers to facilitate rapid and flexible annotation. We have shown that echtvar is at least 3
times as fast as competing tools while using less space for the encoded data and very little
memory. We also showed examples of using echtvar to simultaneously annotate and filter
germline variants; first to those with low allele frequency in a population and then to those
with a small percentage of homozygous samples. These are example analyses that are
common in rare-disease research. We also showed how echtvar can be used to filter
somatic variants. In all of these, the speed and simplicity of echtvar make it a valuable tool
for variant annotation and filtering and for exploratory data analysis.

While we did explore different encoding schemas, future work could evaluate using 64-bit
integers instead of 32-bit–this would allow more variants to fit in the concise scheme at the
cost of a larger average size. This increase in size could be mitigated by compression, but
the delta-encoding, where each value is stored as the difference to the previous value, is
less effective when fewer bits are used for compression. For example, if 20 bits are used for
position, then 2 adjacent variants would differ by at least 44 bits, limiting the benefit of both
delta encoding and VByte compression. Other work could explore the trade-off in using bins
with a fixed number of variables, rather than a fixed size. This would mean that an index for
the starting position of each bin would need to be maintained but that each bin would have a
similar size in memory; this could improve changes to echtvar that focus on parallelization
which is another area for future research.

We expect that the simplicity, speed, and utility of echtvar will make it a staple in variant
annotation pipelines.

Echtvar is available under the liberal MIT license from https://github.com/brentp/echtvar.
There is a static binary that will work immediately on modern linux systems.

Methods

Echtvar Encoding

Echtvar accepts a VCF (or BCF)8 and a JSON configuration file that indicates which fields
should be extracted from the INFO field of each variant and how they are stored in the
echtvar ZIP archive. This archive partitions each chromosome into 1,048,576 (220) base
intervals (bins) which are stored in separate directories (Figure 3). The amount of data in
memory for encoding and annotation is determined by the number of variants and fields
within each bin. Each bin contains one 32-bit entry for each variant from the VCF. Small
variants, those with a combined reference and alternate allele length of fewer than 5 bases,
are encoded into 32 bits and stored directly in the primary table (Figure 3). Because each
chromosome and 1,048,576 (220) base interval is stored in a separate directory within the
ZIP archive, only 20 bits are needed to indicate the position of the variant within that interval
(Figure 3, upper right). The remaining 12 bits in a 32 bit integer can store the reference and
alternate alleles of variants with a total length (REF + ALT) of fewer than 5 bases (Figure 3,

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://github.com/brentp/echtvar
https://paperpile.com/c/cBqlA7/IGja
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

upper-right). This is possible, because with 4 total nucleotides, we only need 2 bits to store
each nucleotide, but we also need to store, within those 12 bits, the length of the reference
and alternate alleles. Around 92% of variants in gnomAD6 v3.1.2 fit into 32 bits. This
encoding is similar to VariantKey16 but VariantKey encodes the full position along with the
chromosome into a 64-bit integer.

Figure 3. Echtvar encoding and annotation schema. Echtvar encodes small variants into 32-bit integers with
the bits partitioned as in the top-right. Encoding simply partitions values to those bits which results in a 32-bit
integer. The genomic bin determines the 1,048,576 bin and corresponding directory within the echtvar archive for
a given query variant. During annotation, if the bin is different from the previous query variant, the data for that
bin, including the primary (var32) table, the larger variants in the supplemental (big_vars) table, and the fields,
are all read into memory. If the bin is the same, the values are already in memory. The encoded variant is then
used in a binary search against the primary (var32) table to find the index of the variant. That index is then used
to extract the corresponding fields. If the variant is not found in the table, user-specified default values are
returned. Variants with a combined reference and alternate allele length greater than 4 bases will not fit into
32-bits and must be encoded and then searched in the large-variants, supplemental (big_vars) table. The binary
search in that table again yields an index which is used to extract the associated fields. Those fields are then
added to the query variant which is written to the output.

For each long variant, a place-holder variant with empty reference and alternate
allele is encoded and inserted into the primary variant file for that bin. In addition, variants
that are 4 bases or larger (longer insertions or deletions) are stored in a different file within
each bin in a still efficient format that uses a variable-length encoding to handle any size
variant.

Each field that is requested by the user, for example “AF” for allele-frequency, is
extracted and encoded into a file (for each bin) with the user-specified alias, such as
“gnomAD_AF”. Within each of those value files, there is one value for each variant from the
VCF that falls within that region. The configuration file can also specify a default value when
that file is missing, and other modifications to default parameters. Upon encoding, the
user-specified configuration file is stored in the ZIP archive.

Within each bin, the encoded variants (and place-holder variants) are sorted to allow
for fast searching. The variants are delta-encoded – so that only the difference between
each 32 bit encoded variant and the one that precedes is stored. This requires the extra step

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://paperpile.com/c/cBqlA7/TS3e
https://paperpile.com/c/cBqlA7/x5kc
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

of performing the cumulative (prefix) sum upon annotation, but improves compression. The
delta-encoded variants are then further encoded with Stream VByte-encoding12 which
encodes integers to use between 1 and 4 bytes depending on the size of the value; a
separate block of “control bytes” indicates the number of bytes consumed by each integer.
Since it is common to have many small numbers, especially in variant annotation where
most variants are rare, this can effectively compress the data. In addition, the schema,
where the control bytes are stored separately, allows modern processors to rapidly decode
the data and allows skipping numbers without decoding them. Longer variants that do not fit
within the 32 bits are encoded with bincode17 which internally uses compression and varint
encoding. Varint encoding is similar to Stream VByte-encoding, except that the control bytes
are stored with each encoded number.

As each variant is encoded and inserted, the corresponding user-requested INFO
fields are inserted into vectors such that there is a one-to-many correspondence between a
variant and the fields. Each field vector will have exactly the same number of entries as the
encoded variant vector. During iteration of the VCF, once a new 220 base bin is reached, the
previous bin, including primary encoded variants, long variants, and all fields are written to
separate files within the same ZIP directory for that bin. Fields also undergo Stream
VByte-encoding; floating point values are first converted to integers by multiplying by a
user-specified value. Upon annotation, the extracted integers are then divided by that same
multiplier to regain nearly the same value. Higher multipliers give better precision but less
compression. Integer values do not need to undergo this transformation but are limited to 32
bits.

Echtvar encodes string fields from a VCF into integers in the archive by using an
extra lookup vector of the unique observed strings. For each unique string observed in any
bin, echtvar inserts that string into the vector and stores the index of that vector for that
variant. For low cardinality fields, for example, with only 10 unique values, this means that
only integer values between 0 and 9 are saved in the field arrays. Once encoding of the
entire file is complete, the string arrays are written to a single file per field. During later
annotation, the string arrays are then used to convert from the integer stored per variant to
the actual string value.

Echtvar Annotation

To annotate a query VCF with an echtvar archive, the user specifies those two files along
with an output path to write the annotated VCF (or BCF) file. All fields from the archive are
added to the output file. For each variant in the query VCF, if the position is in a different bin
than the previous variant, then the files for the new bin, including variants, long variants, and
fields, are read into memory. As such, echtvar is fastest on files that are sorted by genomic
position. This sorting is a requirement for the other tools we compare to. If the variant has a
total length fewer than 5 bases, echtvar encodes the variant into a 32-bit integer and does a
binary search against the primary variant table to find the index. Note that variants from the
archive remain as integers and do not need to be decoded back into variants. The index
from the binary search is then used to extract the values for each field and add them to the
query variant (see Figure 3). Query variants with 5 or more total bases are encoded into the
longer format and a binary search against the supplemental table (of long variants) is
performed. That yields an object that contains an index which is then used to extract the
value for each field in the archive. At this point, the extracted fields are then tested against a
user-specified filter if one was given. If the filter passes (evaluates to true), then the fields

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://paperpile.com/c/cBqlA7/yc0N
https://paperpile.com/c/cBqlA7/KeN5
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

are added to the query variant which is then written to the output file. The filter is evaluated
using fasteval18.

Libraries used in echtvar

These methods are achieved with the help of a number of libraries. We use HTSLib19 via
rust-htslib20 to read, update and write the VCF files. We use fasteval18 to parse and evaluate
the filter expressions, stream-vbyte-rust21 to perform the stream-vbyte compression,
bincode17 to compress large variants, and zip-rs22 to create the echtvar zip archive.

Whole-Genome Variants Annotated with gnomAD: comparison with other tools

We downloaded gnomAD v3.1.2. In order to make the comparison as fair as possible, we
subset the files to contain only the 10 INFO fields of interest, and concatenate them into a
single 20GB file. We used this to annotate variants from Genome in a Bottle (GIAB) for
HG001 from:
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv4.2.1/GRCh38/HG
001_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
We used bcftools4 norm to decompose and normalize the variants to a consistent
representation.

All tools were added to a single docker image for reproducibility and versioning.
For slivar, echtvar, and varnote we performed the necessary encoding steps documented in
the script linked below. Since these encodings are one-time costs, we did not compare the
run times. We then evaluated the tools using the commands in:
https://github.com/brentp/echtvar/blob/main/paper/echtvar-paper.sh
We saved the times using /usr/bin/time -v and we also saved the total size of all files needed
for the annotation.

Filtering whole-genome variants

We used the gnomAD v3.1.2 archive described above and the HG001 query VCF to
evaluate the effect of filtering. We simply added the parameter:
-i ‘gnomad_popmax_af < 0.01’

to include only variants that met that expression. The gnomad_popmax_af filter is from the
AF_popmax field in the original gnomAD VCFs that indicates the maximum allele frequency
across each of the sub-populations in gnomAD. A variant contributing to a severe phenotype
should be rare in all populations; using the maximum across populations allows us to apply
that filter.

Filtering somatic variants with dbNSFP

We annotated 1,902 VCF files of somatic variants with dbNSFP version 4.3a. First, we
converted dbNSFP to VCF format using this script from the echtvar repo:
https://github.com/brentp/echtvar/blob/main/scripts/dbnsfp.py
We then converted the resulting VCF to and echtvar archive with the following command:

echtvar encode dbNSFP.echtvar.zip dbNSFP.json $dbnsfp.vcf.gz

where dbNSFP.json contains:

[{

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://paperpile.com/c/cBqlA7/kGZ5
https://paperpile.com/c/cBqlA7/Zw0S
https://paperpile.com/c/cBqlA7/bTKM
https://paperpile.com/c/cBqlA7/kGZ5
https://paperpile.com/c/cBqlA7/f78O
https://paperpile.com/c/cBqlA7/KeN5
https://paperpile.com/c/cBqlA7/tkvn
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv4.2.1/GRCh38/HG001_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv4.2.1/GRCh38/HG001_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
https://paperpile.com/c/cBqlA7/3JkV
https://github.com/brentp/echtvar/blob/main/paper/echtvar-paper.sh
https://github.com/brentp/echtvar/blob/main/scripts/dbnsfp.py
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

"field": "SIFT_converted_rankscore",
"alias": "dbsnfp_SIFT_converted_rankscore",
"multiplier": 1000000

}, {
"field": "DANN_rankscore",
"alias": "dbsnfp_DANN_rankscore",
"multiplier": 1000000

}, {
"field": "GERP++_RS_rankscore",
"alias": "dbsnfp_GERPpp_RS_rankscore",
"multiplier": 1000000

}]

Finally we annotated each ICGC VCF with the archive using:

echtvar anno -e dbNSFP.echtvar.zip $vcf /dev/null \

-i 'dbsnfp_SIFT_converted_rankscore > 0.2 \

|| dbsnfp_DANN_rankscore > 0.2 \

|| dbsnfp_GERPpp_RS_rankscore > 0.2 '

while saving the run-time. Full commands for this are in this script:
https://github.com/brentp/echtvar/blob/main/paper/icgc.sh

Funding
This work was supported by a Vidi Fellowship (639.072.715) and by the TTW Perspectief
program LettuceKnow with project number P17-19 which are (partly) financed by the Dutch
Research Council (NWO).

Acknowledgements
We benefited from feedback from Sascha Brunner, Myrthe Jager, Arne van Hoeck, Fran
Martinez and Fritz Sedlazeck.

References

1. Havrilla, J. M., Pedersen, B. S., Layer, R. M. & Quinlan, A. R. A map of constrained

coding regions in the human genome. doi:10.1101/220814.

2. Davydov, E. V. et al. Identifying a High Fraction of the Human Genome to be under

Selective Constraint Using GERP. PLoS Computational Biology vol. 6 e1001025 (2010).

3. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

4. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, (2021).

5. Cingolani, P. et al. A program for annotating and predicting the effects of single

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

https://github.com/brentp/echtvar/blob/main/paper/icgc.sh
http://paperpile.com/b/cBqlA7/uMHy
http://paperpile.com/b/cBqlA7/uMHy
http://dx.doi.org/10.1101/220814
http://paperpile.com/b/cBqlA7/uMHy
http://paperpile.com/b/cBqlA7/UH9q
http://paperpile.com/b/cBqlA7/UH9q
http://paperpile.com/b/cBqlA7/Woxe
http://paperpile.com/b/cBqlA7/3JkV
http://paperpile.com/b/cBqlA7/MTBf
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

nucleotide polymorphisms, SnpEff. Fly vol. 6 80–92 (2012).

6. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in

141,456 humans. Nature 581, 434–443 (2020).

7. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting

the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47,

D886–D894 (2019).

8. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158

(2011).

9. Pedersen, B. S., Layer, R. M. & Quinlan, A. R. Vcfanno: fast, flexible annotation of

genetic variants. Genome Biol. 17, 118 (2016).

10. Liu, X., Li, C., Mou, C., Dong, Y. & Tu, Y. dbNSFP v4: a comprehensive database of

transcript-specific functional predictions and annotations for human nonsynonymous

and splice-site SNVs. Genome Med. 12, 103 (2020).

11. Farnaes, L. et al. Rapid whole-genome sequencing decreases infant morbidity and cost

of hospitalization. NPJ Genom Med 3, 10 (2018).

12. Lemire, D., Kurz, N. & Rupp, C. Stream VByte : Faster byte-oriented integer

compression. Inf. Process. Lett. 130, 1–6 (2018).

13. Huang, D. et al. Ultrafast and scalable variant annotation and prioritization with big

functional genomics data. Genome Res. 30, 1789–1801 (2020).

14. Pedersen, B. S. et al. Effective variant filtering and expected candidate variant yield in

studies of rare human disease. NPJ Genom Med 6, 60 (2021).

15. Wagner, J. et al. Benchmarking challenging small variants with linked and long reads.

doi:10.1101/2020.07.24.212712.

16. Asuni, N. & Wilder, S. VariantKey: A Reversible Numerical Representation of Human

Genetic Variants. doi:10.1101/473744.

17. Website. https://crates.io/crates/bincode.

18. likebike. GitHub - likebike/fasteval: Fast and safe evaluation of algebraic expressions.

GitHub https://github.com/likebike/fasteval.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

http://paperpile.com/b/cBqlA7/MTBf
http://paperpile.com/b/cBqlA7/TS3e
http://paperpile.com/b/cBqlA7/TS3e
http://paperpile.com/b/cBqlA7/hcmA
http://paperpile.com/b/cBqlA7/hcmA
http://paperpile.com/b/cBqlA7/hcmA
http://paperpile.com/b/cBqlA7/IGja
http://paperpile.com/b/cBqlA7/IGja
http://paperpile.com/b/cBqlA7/YVBw
http://paperpile.com/b/cBqlA7/YVBw
http://paperpile.com/b/cBqlA7/hTJH
http://paperpile.com/b/cBqlA7/hTJH
http://paperpile.com/b/cBqlA7/hTJH
http://paperpile.com/b/cBqlA7/9d4f
http://paperpile.com/b/cBqlA7/9d4f
http://paperpile.com/b/cBqlA7/yc0N
http://paperpile.com/b/cBqlA7/yc0N
http://paperpile.com/b/cBqlA7/cPSi
http://paperpile.com/b/cBqlA7/cPSi
http://paperpile.com/b/cBqlA7/69EZ
http://paperpile.com/b/cBqlA7/69EZ
http://paperpile.com/b/cBqlA7/iVxX
http://paperpile.com/b/cBqlA7/iVxX
http://dx.doi.org/10.1101/2020.07.24.212712
http://paperpile.com/b/cBqlA7/iVxX
http://paperpile.com/b/cBqlA7/x5kc
http://paperpile.com/b/cBqlA7/x5kc
http://dx.doi.org/10.1101/473744
http://paperpile.com/b/cBqlA7/x5kc
http://paperpile.com/b/cBqlA7/KeN5
https://crates.io/crates/bincode
http://paperpile.com/b/cBqlA7/KeN5
http://paperpile.com/b/cBqlA7/kGZ5
http://paperpile.com/b/cBqlA7/kGZ5
https://github.com/likebike/fasteval
http://paperpile.com/b/cBqlA7/kGZ5
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

19. Bonfield, J. K. et al. HTSlib: C library for reading/writing high-throughput sequencing

data. Gigascience 10, (2021).

20. rust-bio. GitHub - rust-bio/rust-htslib: This library provides HTSlib bindings and a high

level Rust API for reading and writing BAM files. GitHub

https://github.com/rust-bio/rust-htslib.

21. Bitbucket. https://bitbucket.org/marshallpierce/stream-vbyte-rust/src/master/.

22. zip-rs. GitHub - zip-rs/zip: Zip implementation in Rust. GitHub

https://github.com/zip-rs/zip.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.15.488439doi: bioRxiv preprint

http://paperpile.com/b/cBqlA7/Zw0S
http://paperpile.com/b/cBqlA7/Zw0S
http://paperpile.com/b/cBqlA7/bTKM
http://paperpile.com/b/cBqlA7/bTKM
https://github.com/rust-bio/rust-htslib
http://paperpile.com/b/cBqlA7/bTKM
http://paperpile.com/b/cBqlA7/f78O
https://bitbucket.org/marshallpierce/stream-vbyte-rust/src/master/
http://paperpile.com/b/cBqlA7/f78O
http://paperpile.com/b/cBqlA7/tkvn
https://github.com/zip-rs/zip
http://paperpile.com/b/cBqlA7/tkvn
https://doi.org/10.1101/2022.04.15.488439
http://creativecommons.org/licenses/by-nd/4.0/

