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Abstract 
 
Persistent activity is thought to mediate working memory. While such stimulus evoked persistence is well 
studied, mechanisms of internally generated or spontaneous persistence in vivo are unknown. Further, 
current theories based on attractor dynamics focus on elevated activity as a memory substrate, while little 
attention has focused on the role of inactivity attractors. Here, we present a mean field model of 
functional interaction between large cortical networks that predicts both spontaneous persistent activity 
(SPA) and inactivity (SPI); the latter has never been seen before in experiments or models. We confirm 
these predictions using simultaneously recorded neocortical local field potential (LFP) and the membrane 
potential (Vm) of identified excitatory neurons from several brain areas in vivo during slow oscillations, 
especially from layer 3 of the medial (MECIII) and lateral entorhinal cortex (LECIII), which show SPA and 
SPI. By matching model and experimental statistics, we predict the relative strength of internal and 
external excitation in the LECIII and MECIII networks. Our predictions match anatomical data. Further, the 
model predicts, and the experiments confirm, that SPA and SPI are quantized by cortical UDS and follow 
the statistics of a history dependent Bernoulli process. These convergent, theory-experiment results thus 
reveal the differential nature of cortico-entorhinal functional connectivity, resulting in a unique pattern 
of persistent activity and persistent inactivity, a novel and energetically efficient memory substrate.   
 
Introduction 

Cognition requires the interaction between several neural networks, each network containing millions of 

neurons, each neuron in turn characterized by many microscopic parameters. To study the complex 

emergent properties of systems with large degrees of freedom, the statistical physics approach is to 

develop a quantitative model, based on only the salient order parameters, and subsequently test its 

predictions in simplified experimental preparations that capture the essence. In line with this tradition, 

we develop an analytically tractable model of spontaneous activity in interacting neural networks, and 

quantitatively verify several predictions of the theory in vivo during default, internally generated activity 

in the absence of external sensory stimuli.  
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During quiescence, deep sleep, under anesthesia, and in vitro, local neural networks from many brain 
areas, including cortex, show synchronous, rhythmic activity termed delta oscillations, non-REM sleep 
oscillations, slow wave sleep (SWS) etc.1–4. The LFP shows rapid transitions between periods of elevated 
activity (the Up state) and silence (the Down state). The membrane potential (Vm) of individual neurons 
exhibits synchronous transitions between depolarized (Up) and hyperpolarized (Down) states. These Up-
Down states (UDS) are ubiquitously found across species and experimental preparations, and are 
considered the default activity of many networks5–8. Several studies have suggested that the interactions 
between cortical regions during UDS are crucial for memory consolidation9–13. Impairment of UDS causes 
learning and memory deficits, while UDS enhancement leads to improvement14,15.  

Although most cortical areas show synchronous UDS oscillations11, recent studies have shown that in vivo 
only MECIII, but not LECIII, pyramidal neurons show spontaneous persistent activity (SPA) during UDS: 
events where the neuron’s Vm persists in the depolarized Up state while the afferent neocortical areas 
transition to the Down state16. This definition notably differs from other studies that define singular Up 
states within an isolated network as themselves forms of persistent activity17. Instead, it is reminiscent of 
activity sustained after the extinguishing of a stimulus, hypothesized to form the neural representation 
for working memory during awake behavior. Existing network models show that such sustained activity 
during awake, working memory tasks can be generated through reverberant excitation and feedback 
inhibition, but it is unclear whether these models can explain spontaneously evoked persistent activity 
18,19. Depolarizing current injections do not elicit SPA within MECIII neurons during UDS, implicating 
network rather than intracellular mechanisms16. Existing network models of UDS employ an attractor 
framework with two fixed points, one active (the Up state) and one inactive (the Down state), with 
adaptation driving the oscillation20–24. Such models, however, have not been used to understand large 
interacting networks, and thus cannot account for major experimental findings, like the quantization of 
SPA during UDS25. Furthermore, existing theories focus exclusively on the active state, discarding the 
inactive state as simply a recovery phase for network adaptation. The energy function of discrete Hopfield 
networks26,27, however, is symmetric under activity inversion (+1  -1), so the physics suggests these 
inactive states are themselves energy minima in the landscape and could thus also be utilized as a memory 
substrate.   

We found that a simple, mean-field model involving two interacting networks of excitation-inhibition can 
capture the dynamics of SPA during UDS. Our theory also exploited the symmetric inactive attractor to 
predict a new phenomenon: spontaneous persistent inactivity (SPI). To test the model quantitatively, we 
used the in vivo cortico-entorhinal circuit as our model system. Anatomically, the neocortex serves as an 
afferent source of input to other cortical regions like the entorhinal cortex 28,29. To measure neocortical 
ensemble activity during UDS, we recorded the extracellular LFP from the parietal cortex. As the parietal 
cortex receives strong inputs from neocortical regions 30–33 and UDS is synchronous across all neocortical 
areas 2,11,34,35, this LFP acted as the afferent reference for neocortical UDS. Simultaneously, we did whole-
cell Vm measurements from anatomically identified pyramidal neurons in various efferent areas, including 
parietal (PAR) and entorhinal cortices (EC); as the spontaneous activity of single neurons is tightly linked 
to the cortical networks in which they are embedded, this allowed us to probe the activity of localized 
networks within each target region36. Within the EC, the medial (MEC) and lateral (LEC) subdivisions are 
anatomically and functionally distinct: the MEC contains spatially selective “grid cells”37, while the LEC is 
thought to encode objects or experienced time38–43. We focused in particular on the EC layer 3 regions, 
since MECIII neurons are a major source of input to the hippocampus, show SPA in vivo, and are crucial in 
the generation and maintenance of UDS in the MEC16,44.  
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We detected in vivo SPA in MECIII and SPI in both MECIII and LECIII, but not in PAR. Further analysis of 
these events showed clear agreement with theoretical predictions, as both SPA and SPI were quantized 
by neocortical UDS and reflected the statistics of a history-dependent Bernoulli process. Our model 
attributed the differences in SPA and SPI across cells to differences in excitatory connectivity between the 
large neocortical network and the specific efferent subnetwork. The number of experimental observations 
explained by our model are greater than the number of parameters we varied, demonstrating its 
predictive power. To our knowledge, our study is the first to predict theoretically and detect 
experimentally the novel phenomena of persistent inactivity, and show that both SPA and SPI not only co-
occur but are the result of common network interaction principles.  

The mean field model of cortical interaction predicts both spontaneous persistent activity (SPA) and 
inactivity (SPI) 

A minimal mean field network supporting UDS has three biologically well-established ingredients: 
excitation, inhibition, and the adaptation of excitation (but not inhibition)20–22,24. We constructed a mean 
field model of two cortical regions, each with its own recurrently connected inhibitory and excitatory 
populations45,46 (Fig 1). In isolation, each network exhibits transitions between Up and Down states (Sup. 
Fig 1-2) that are the stable fixed points of the dynamical system of equations, much like local minima in 
an energy landscape47,48. Their stability is inversely related to their distance from the separatrix, a line 
which defines the boundary between the basins of attraction. The slowly-varying, activity-dependent 
adaptation translates the excitatory nullcline, thus influencing the stability of each state. Growing 
adaptation governs the transition from the Up to Down state, while external drive and a falling adaptation 
governs the transition from Down to Up. Underlying gaussian noise gives the network a “temperature,” 
preventing it from stagnating in a particular state for arbitrarily long time periods. For simplicity, 
quantitative falsifiability, and based on available observations, we assumed that all internal parameters 
except the recurrent excitation strength WINT are identical across the afferent and efferent networks. 

These two networks are connected unidirectionally, with the afferent network sending an excitatory 
projection WEXT to the excitatory population in the efferent network (Fig 1A, Sup. Fig 3). The UDS 
oscillation of the afferent network rhythmically destabilizes the endogenous UDS oscillation of the 
efferent network. While larger values of WEXT lead to phase locking (Fig 1C), smaller values give rise to 
transient desynchronizations between the two networks49. Under weak drive WEXT from the afferent 
network, an increase in the efferent recurrent excitatory connectivity (WINT) drives the efferent Up state 
fixed point away from the separatrix, increasing the Up state stability. Simulations demonstrate a novel, 
network mechanism to generate SPA: instances when the efferent network remains in the Up state, 
skipping one or more afferent Down states (Fig 1D). These could explain the experimentally reported SPA. 
Further, a decrease in the strength of WEXT decreases the destabilizing effect of the afferent transitions on 
the efferent network; the efferent then remains in a Down state, skipping one or more afferent Up states. 
We call this novel phenomena spontaneous persistent inactivity (SPI: Fig 1E). The model further predicts 
that SPA and SPI are relatively independent, as increasing WINT while simultaneously decreasing WEXT gives 
rise to coupled UDS sequences exhibiting both SPA and SPI (Fig 1F). 
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Figure 1: A simple mean-field model predicts spontaneous persistent activity and inactivity in the efferent network. A) The model 
consists of two networks, each characterized by the average activity of excitatory (E) and inhibitory (I) populations, with only the E 
showing activity dependent adaptation (A). Each network is described by a potential landscape with two local minima, the Up and 
Down states. The changing adaptation level influences the stability of each minima, creating the Up-Down state (UDS) oscillation. The 
afferent network provides excitatory input (WEXT) to the efferent network. All internal parameters are identical between the two 
networks, except WINT, the recurrent excitation. B) By modulating WINT and WEXT, the model introduces transient desynchronizations 
between the two networks. There are four distinct regimes (red and blue shaded areas, C, D, E, F): C) The model can reproduce 
synchronized UDS in the two networks (afferent in gray, efferent in blue). The same scale bars for amplitude (in z-score) and time (1 
sec) are used for (D-F). D) Increasing efferent WINT increases the stability of the efferent Up state attractor, and leads to spontaneous 
persistent activity (SPA, green box), when the efferent network gets “stuck” or persists in the Up state even when the afferent makes a 
transition to the Down state. Green contours in (B) show SPA levels in the parameter space. E) Conversely, decreasing WEXT decreases 
the size of destabilizing afferent current and leads to spontaneous persistent inactivity (SPI, red box), when the efferent network 
persists in the Down state while the afferent makes a transition to Up state. Red contours in (B) show SPI levels. F) The same network 
can exhibit SPA and SPI at different times. The positions of each example in the 2D parameter plane is shown in B. 

Detection of SPA and SPI in MECIII and LECIII  

To monitor network interactions during spontaneous activity in vivo, mice were lightly anesthetized with 
urethane to induce robust and steady UDS that were synchronous across the entire neocortex. A hidden 
Markov model was used to classify the data into a binary UDS sequence50. Consistent with previous 
studies, the neocortical LFP and the Vm of neurons in PAR (N=24) and the efferent regions MECIII (N=50) 
and LECIII (N=16) showed clear bimodal UDS (Fig 2, Sup. Fig. 4). For subsequent analysis, the amount of 
SPA (SPI) was defined as the proportion of efferent Up (Down) states which outlasted an entire afferent 
Down (Up) state during an entire experiment. As a first test of the model, we computed the relationship 
between the neocortical LFP and the Vm from PAR pyramidal neurons, which were recorded close by (0.5 
mm apart). Here, WEXT is large, and the model predicts complete phase locking (Fig 1C), with virtually 
nonexistent SPA and SPI. This was indeed the case (Fig 2B). Additional Vm measurements from neurons in 
frontal and prefrontal cortex also showed complete phase locking, consistent with WEXT from the 
neocortex being large (Sup. Fig. 4) 11,30–35. 
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Figure 2: An in vivo study of simultaneous UDS in neocortical and entorhinal networks confirms prediction of SPA and SPI.  A) 
Experimental design: mice were anesthetized to induce UDS, and local field potential (LFP) from the parietal cortex was measured using 
a silicon probe (black). Simultaneously, membrane potential (Vm) was measured using whole-cell patch clamp from an anatomically 
identified neuron. The parietal LFP is treated as the afferent reference representing neocortical activity (gray in B-E), and the Vm traces 
are the efferent activity (blue in B-E). B) PAR neuron’s Vm is phase-locked to the neocortical LFP, matching theory (Fig. 1C). Action 
potentials have been truncated for clarity. The same scale bars for time (1 second) and amplitude (z-scores) are used throughout. The 
identified UDS sequence is shown above the traces, with histological reconstructions (right) of brain region and the patched cell (insets). 
C) Clear SPA (green box) in the Vm of an MECIII pyramidal neuron, matching (Fig. 1D). D) Clear SPI (red box) in the Vm of an LECIII pyramidal 
neuron, matching (Fig. 1E). E) Both SPA and SPI at different times exhibited by the same MECIII pyramidal neuron, similar to (Fig. 1F). 

Consistent with previous studies, MECIII neurons showed clear instances of SPA (Fig 2C), while LECIII 
neurons did not 16. In contrast, both LECIII and MECIII neurons showed clear instances of the newly 
predicted SPI (Fig 2D). Our model also predicted relative independence of SPA and SPI; consistently, some 
MECIII neurons showed both SPA and SPI, only a few seconds apart (Fig 2F), and levels of SPA and SPI 
within the population of LECIII and MECIII neurons were not significantly correlated (Sup. Fig. 5). Finally, 
SPA and SPI levels were not correlated with the duty cycle and the frequency of neocortical UDS, indicating 
that they were not artifacts of differences in brain states across experiments (Sup. Fig. 6).  

Fitting experiment to model reveals differential connectivity within MECIII and LECIII 

The properties of SPA and SPI not only varied across brain regions, but even between different neurons 
from the same region. We hypothesized that all of these differences could arise from just two network 
parameters: the strength of recurrent excitation in the efferent network (WINT) and the strength of 
external excitatory input to the efferent network (WEXT). To test this idea, we used a two-step approach. 
First, we simulated all possible networks in this 2D parameter space by varying only WEXT and WINT, while 
leaving all other variables unchanged. Modulating just two free parameters yielded networks with a wide 
range of both SPA and SPI. Thus, we could estimate the two crucial network variables, WINT and WEXT, by 
simply computing the amount of SPA and SPI observed experimentally (Fig 3A). Crucially, we did not match 
any other properties of SPA and SPI between the model and data. The robustness of this procedure was 
confirmed by using an alternate fitting procedure, which yielded very similar fits between the simulations 
and in vivo data for each neuron (Sup. Fig 7). Overall, a decrease in WEXT corresponded with higher levels 
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of SPI, and an increase in WINT corresponded with higher SPA, as predicted by dynamical systems analysis 
(Fig 3A, B). While SPA and SPI prevalence across neurons was uncorrelated, the fitted values of WINT and 
WEXT were significantly negatively correlated, especially for LECIII, indicating differential properties of the 
networks (Sup. Fig 5).  

The two parameter model, thus constrained by experiments, made major predictions about the nature of 
large-scale connections between and within these brain regions. Briefly, our model implies that 
neocortical input into MECIII is weaker than into LECIII, and still weaker than into other neocortical 
regions, like parietal, frontal, and prefrontal cortices. Further, it predicts that recurrent excitation within 
MECIII is stronger than within LECIII. These statements are corroborated by established experiments in 
vivo and in vitro (see Discussion). Additionally, several further predictions of the model could be tested 
using the match between experiment and simulation. 

Inferred network connectivity predicts differential latency to UDS transitions in MECIII and LECIII 

Since neurons behave like leaky capacitors, the strength of afferent excitatory input should be inversely 
correlated with the response latency of the efferent neurons51,52. Therefore, the model predicts that the 
neurons with larger values of estimated WEXT should respond sooner to neocortical Down-Up transitions, 
i.e. smaller latency between neocortical LFP and the neuron’s Vm (Fig 3C). Indeed, LECIII cells with greater 
predicted excitatory input WEXT showed significantly shorter Down-Up transition latency (Fig 3D-E). A 
similar result was found within the population of MECIII neurons. Further, consistent with model 
prediction that WEXT from the neocortex to LECIII is stronger than to MECIII, the population of LECIII 
neurons showed shorter Down-Up latency than the MECIII population (Fig 3D-E). While WEXT enhances 
the coupling between the two networks, larger values of WINT make the efferent network more 
independent of the input. The effect of these competing inputs is state dependent, differentially 
modulating the efferent Down-Up vs. Up-Down transitions. During an afferent Down-Up transition, the 
efferent network is in the Down state, where recurrent excitation WINT does not contribute. Thus, the 
latency of the efferent Down-Up transition should be relatively insensitive to WINT but depend strongly on 
WEXT. This was strongly supported across both LECIII and MECIII populations (Sup. Fig. 8). 

The situation is reversed for the Up-Down transition, when the efferent network is in the Up state, where 
recurrent excitation WINT contributes strongly and helps sustain the Up state despite the loss of afferent 
input, which is in the Down state. Networks with higher WINT have more stable Up states, thereby 
increasing their “inertia.” Thus, the model predicts that ECIII neurons with greater predicted WINT should 
follow the neocortical Up-Down transitions with longer latency. This was confirmed for both MECIIII and 
LECIII (Fig 3F-G). In contrast to Down-Up transitions, the latency of the efferent Up-Down transition should 
be relatively insensitive to WEXT compared to WINT. This prediction too was supported across individual 
neurons within MECIII, within LECIII, and across the MECIII vs LECIII ensemble (Sup. Fig. 8).   

These latencies were more correlated with the predicted WINT and WEXT values than with simply the levels 
of SPA or SPI (Sup. Fig. 8), further supporting the model. Additionally, neurons with greater net excitatory 
input (WEXT + WINT) should have higher firing rate; this was confirmed by experiments, showing greater 
mean firing rates for MECIII than LECIII, even at the level of individual cells (Sup. Fig. 9). Further, LECIII 
neurons’ Vm was significantly less depolarized than MECIII neurons (Sup. Fig. 9). The predicted model 
parameters WEXT and WINT were more strongly correlated with the UDS latencies than with the mean firing 
rates, further supporting the model and ruling out nonspecific effects. 
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Figure 3: Model predicts larger transition delays in MECIII than LECIII based on differences in the strength of recurrent (WINT) and 

external (WEXT) inputs: A) The time-averaged prevalence of SPA% (green) and SPI% (red) observed in a single cell were reproduced in the 

model by varying just two variables, WEXT (x-axis) from the neocortex and WINT (y-axis) within the efferent subnetwork. The contour lines 

and shaded areas reveal that WINT has a greater impact on SPA (nearly horizontal green lines), whereas WEXT has a greater impact on SPI 

(nearly vertical red lines). Each cell is represented by a point (blue circle MECIII, yellow diamond LECIII, violet square parietal (PAR)). 

Locations of the examples cells used in Fig. 2 are highlighted by the black circles. Bottom: The fitting reveals that WEXT is the largest for 

PAR (violet, 0.21±0.01), smaller for LECIII (yellow, 0.15±0.02), and smallest for MECIII (blue, 0.14±0.03). WEXT to MECIII was significantly 

smaller than to LECIII (p<0.05), and both were significantly smaller than to PAR (p<10-5). Box limits and black bar represents middle 50% 

of data and median, and dotted lines extend to the range, except outliers. Right: The fitting predicts that WINT is the largest for MECIII 

(1.06±0.01), smaller for LECIII (1.03±0.015), and even smaller for PAR (1.01±0.02). MECIII WINT was significantly larger than LECIII WINT 

(p<10-2), and both were larger than in PAR (p<10-2). B) Prevalence of SPA and SPI showed significant variation as a function of brain region, 

with MECIII showing the highest SPA (18.5±7.5%) as well as SPI (10.2±5.3%). LECIII showed diminished SPA (3.3±2.4%) and SPI (5.9±3.1%), 

while PAR (SPA: 2.6±1.8%, SPI: 1.9±0.7%) showed even smaller levels. MECIII SPA and SPI levels were both significantly different from 

both LECIII levels (SPA: p<10-5, SPI: p<0.05) and PAR levels (SPA: p<10-9, SPI: p<10-9), while for LECIII only the SPI level was significantly 

larger from PAR (p<10-5). Error bars represent ±1 s.t.d, and number of experiments within each brain region is indicated under each bar. 

C) Strength of WEXT predicts the latency of efferent responses, with greater WEXT resulting in shorter response latency. The model predicts 

that WEXT is the smallest for MECIII, and consistently the experimentally observed latency between the neocortical LFP and efferent 

MECIII cells are the largest, evidenced by cross-correlation latency (gray, 152±145ms), Up-Down latency (green, 401±23ms) and Down-

Up latency (red, 223±34ms). The delays for LECIII cells was shorter than those for MECIII cells (Xcorr latency 89±22 ms, Up-Down 22±12 

ms, and Down-Up 76±13 ms).  PAR cells were unique in that they preceded PAR LFP (Xcorr latency -54±21 ms, Up-Down -43±34 ms, and 

Down-Up -58±13 ms). D-G) The model predicts not only the pattern of latency across brain regions, but difference in latency of individual 

cells, based on the decoded value of WEXT and WINT. D) An increase in the external excitation WEXT increases the coupling of the efferent 

network to the input, decreasing the latency between the afferent and efferent networks. Two example experiments are shown; the cell 

with larger WINT shows smaller Down-Up transition delay (red boxes). E) The average Down-Up transition latency (normalized by UDS 

duration) in the experiment was significantly anti-correlated with the predicted value of WINT for MECIII (blue, r=-0.56, p<10-5) and LECIII 

(yellow, r=-0.60, p<10-2). F) Larger internal excitation WINT increases the stability of the Up attractor in the efferent network, resulting in 

longer persistence in the Up state. Examples from two experiments show the cell with larger predicted value of WINT having greater Up-

Down transition lag (green boxes). G) The average Up-Down transition latency (normalized by the mean duration of UDS) in the 

experiment was significantly positively correlated with the predicted value of WINT for MECIII (blue, r=0.47, p<10-3) and LECIII (yellow, 

r=0.63, p<10-2).  
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SPA and SPI are quantized by neocortical UDS  

The model predicts that SPA and SPI are all-or-none events that are initiated and terminated by state 
transitions in the afferent network. As a result, even though efferent Up(Down) state and SPA(SPI) 
durations form a continuous, unimodal distribution, these durations should be quantized in integral units 
of the afferent UDS cycles (Fig 4A, Sup. Fig. 10). To visualize this for SPA, segments of the simulated 
efferent activity were extracted around each efferent Down-Up transition, sorted according to the ensuing 
Up state duration, and assembled into a single matrix, with each row corresponding to a single efferent 
Down-Up transition (Fig 4B). The underlying afferent activity matrix for the same time points exhibited 
alternating bands of UDS, with integer multiples of afferent UDS fitting inside each efferent Up state (Fig 
4C). The same visualization with in vivo data matched strikingly well with model predictions (Fig 4D). We 
repeated this for efferent Down states and SPI, yielding a similar quantitative match between the model 
and experiment (Fig 4E-F). When consolidating the rescaled state durations over all experiments and their 
matched simulations, the probability distributions for both were significantly multimodal, with peaks at 
half integers, indicating that ECIII state transitions were locked to the neocortical transitions, and that the 
ECIII skipped entire neocortical Up/Down states in integer quantities (Fig 4G, Sup. Fig. 11).  

 

Figure 4: SPA and SPI are quantized in units of afferent neocortical UDS cycles. A) In the model, the efferent SPA (blue) span a continuous 
range of durations, but they are quantized (green boxes, 1,2,3… n) in the units of the number of afferent UDS cycles (gray). B) All efferent 
Up states were aligned to the efferent Down-Up transition and ordered with increasing duration. Each row represents a single efferent 
Down-Up transition. C) A second matrix was constructed using the same time points, but using the afferent network activity. The 
examples (1-3) in (A) correspond to the row numbers in (B/C). Efferent SPA can last 8 seconds, spanning several afferent UDS cycles. 
Same colorbar axis is used for the amplitude (z-score) for all the panels. D) In vivo data from an MECIII neuron validates the model by 
showing efferent MECIII Up states (blue) last an integer multiple (i-iii) of afferent neocortical LFP UDS cycles (gray). E) Similar to A-D, but 
for SPI, showing that efferent Down states and SPI show a continuous duration but are quantized (red boxes) in the units of afferent 
neocortical LFP UDS cycles, in the model and F) experiment. G) With time measured in units of the varying afferent UDS cycles, the model 
(inset) predicted that the distribution of both Up and Down state durations should be multimodal, with peaks at the half integers 
(reflecting state transitions after an Up/Down state). In vivo data combined from all experiments showed the predicted multimodality 
and quantization when ECIII Up/Down state durations were measured w.r.t. variable neocortical UDS cycle lengths. 
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The multimodality of quantized durations was also observed for individual experiments and their 
corresponding simulations (Fig 5A, Sup. Fig. 11). We leveraged this distribution, unique to each cell, to 
investigate the precise history-dependence of SPA and SPI, further testing our model. One can imagine 
three scenarios. First, the SPA and SPI are entirely stochastic, in which case their probability distribution 
would follow a memoryless Bernoulli process, like a sequence of coin flips. Second, SPA and SPI arise due 
to some change in the overall state of the animal, such that all the SPA and SPI co-occur. However, our 
model predicts a third possibility: it should be rarer to have consecutive sets of SPA and SPI compared to 
singular events. This is because the probability of SPA and SPI is strongly history-dependent. If the network 
exhibits SPA at a given afferent Down state, the efferent network’s recurrent excitation WINT would be 
more adapted than usual, reducing the resources needed to sustain SPA in the next Down state, thus 
reducing the probability of consecutive SPAs. Similarly, the occurrence of SPI at a given afferent Up state 
would make the efferent network less adapted and hence reduce the probability of consecutive SPIs. To 
test this prediction, we used the first two modes of the quantized probability distribution (in Fig 5A) to 
calculate a1, the probability of a solitary SPA and SPI, and a2, the probability that another SPA and SPI 
occurred given a1 already happened.  Here, a2=a1 for the first memoryless hypothesis, a2 > a1 for the 
second brain-state dependent hypothesis, and a1 > a2 for the third hypothesis, predicted by our model. 
The experiments strongly corroborated our predictions: the probability of SPA and SPI diminished after 
the first such event (Fig 5B). Thus the two network system has a “memory” of SPA and SPI due to the 
adaptation of the recurrent excitation WINT in the efferent network.  

 
Figure 5: Adaptation introduces history-dependence to SPA and SPI, a Bernoulli process. A) Quantization of SPA and SPI is evident 

within an individual experiment (same as Fig 4) and its corresponding simulation (inset). The probability decreases with SPA and SPI 

duration, reflecting a discrete Bernoulli process. B) To find the precise history-dependence, one can imagine the efferent response to 

afferent UDS as a sequence of coin flips, as SPA and SPI are all-or-nothing binary events. State transitions in the afferent network 

destabilize the efferent network, which either persists in its current state, resulting in SPA or SPI (heads, probability Pr=a), or makes a 

corresponding transition (tails, Pr=1-a). The probability that a given efferent state lasts a single afferent UDS cycle is Pr=1-a1 (the first 

mode in G), while the probability that it lasts between 1 and 2 cycles is Pr=a1(1-a2) (the second mode in G), where the subscript denotes 

the nth transition. Unlike a memoryless process (i.e. a1=a2) or brain state dependent process (i.e. a1<a2), the model (inset) predicted that 

the probability of SPA or SPI should decrease when conditioned on SPA or SPI having occurred previously (i.e. a1>a2, p<10-16). This was 

confirmed in the in vivo data (main, p<10-7) and reflects the underlying long-term memory of the adaptation in the efferent network.  
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Discussion:  

Persistent activity has been hypothesized to mediate working memory via reverberating activity26,53, and 
has been studied extensively in vivo54–56, in vitro57–60, and in silica18,19. Its ubiquity and diversity in different 
cell types, brain regions, brain states, and behavior supports the hypothesis that a common mechanism 
could apply, and a low dimensional theory could be well suited to explain it. We developed a mean field 
model to explain the recent discovery of spontaneous persistent activity in MECIII during sleep16, as 
existing models focus only on stimulus evoked persistent activity during awake behavior. Using two 
networks of excitation-inhibition neurons and adapting excitation, with an afferent network providing 
excitatory input to an efferent one, our model reproduced phase locked Up-Down state (UDS) oscillations 
and the reported spontaneous persistent activity. 

Further, the model exploited the symmetry of the discrete attractor landscape to make a surprising 
prediction, namely the existence of persistent inactivity. In contrast to persistent activity, which involves 
the efferent network sustaining activity while afferent inputs have shut off, persistent inactivity involves 
the efferent network sustaining inactivity while afferent input turns on. This has not been reported before 
in any experimental or theoretical studies, though there are hints 61,62. Computational studies have found 
coexisting Up and Down states in different neurons within the same spiking network 63,64, but these results 
are usually achieved when the network UDS is highly irregular and asynchronous. To test our model, we 
focused on the cortico-entorhinal interaction during UDS oscillations, using simultaneous LFP from the 
neocortex that served as a common afferent reference, along with the membrane potentials measured 
from anatomically identified neurons in the parietal, frontal, prefrontal, and entorhinal cortices.  

The experiments confirmed the presence of both persistent activity and inactivity; we were then able to 
leverage these two observables to probe the underlying network architecture. Our framework models 
different brain regions by varying only two biologically relevant parameters: the strength of internal 
connections WINT within the efferent network and the strength of external input WEXT from the neocortex 
while leaving all the other parameters unchanged. Dynamical systems analysis47,48 showed that SPA 
increases with WINT, while SPI decreases with WEXT; thus, each cell, and the local network in which it is 
embedded36, could be mapped to the WINT-WEXT parameter space. Our results predicted that neocortical 
input onto the entorhinal region should be weaker than to other regions within the neocortex, like 
parietal, frontal, and prefrontal cortex. This is consistent with anatomical observations of strong intra-
neocortical connections and weaker neocortical-entorhinal connections 29,30,32,65,66.Within the entorhinal 
region, the model predicted that neocortical input into LECIII was significantly stronger than to MECIII. 
This is consistent with classic anatomical studies 67,68, which show that a higher proportion of LEC afferents 
originate in cortical areas compared to MEC afferents, and more recent work 40,69 showing stronger 
projections from the orbitofrontal cortex, part of the prefrontal cortex, to LEC compared with MEC.   

Our analysis found greater amounts of persistent activity in MECIII than LECIII, and the model predicted 
that this is because the recurrent connections WINT should be larger within MECIII than within LECIII. This 
is indirectly supported by recent experiments showing greater recurrent connectivity between principal 
neurons within MECIII than within other MEC layers, and that MECIII network is crucial in the initiation 
and maintenance of the Up state during UDS in vitro in isolated EC slices44,70. Furthermore, excitatory 
cholinergic receptors are crucial for MECIII persistent activity71, and the application of acetylcholine to 
MEC slice preparations in vitro causes prolonged Up states in individual cells due to increased overall 
excitation and more frequent and rhythmic population-wide events, consistent with our hypothesis that 
persistent Up states are the result of networks having increased internal excitation WINT

72.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.15.488496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.15.488496


The model with above network connectivity not only predicted the prevalence of SPA and SPI in the 
efferent neurons but also predicted their relative timing to afferent neocortical activity51, at both 
population-wide and single-cell resolution. Cells with higher predicted WEXT, and thus stronger coupling, 
exhibited significantly shorter state transition lags, while larger recurrent excitation WINT, and thus 
stronger “inertia,” had longer lags, as expected. The latency patterns were quite different for Down-Up 
vs. Up-Down transitions: the former was more dependent on WEXT, and the latter more on WINT. Our 
results thus support the hypothesis that the Up state is terminated by internal network mechanisms but 
is initiated by external input20,73. Taken together, these mechanisms resulted in systematic differences in 
the response latencies of MECIII and LECIII neurons during Up and Down states, which would influence 
the information processing in downstream hippocampal neurons11,16 and hence the memory 
consolidation process via spike timing-dependent plasticity mechanisms13.   

As a direct consequence of the underlying physics of the model, we predicted that both SPA and SPI 
durations, while showing continuous, long-tailed distributions, should also show quantization in the units 
of afferent neocortical UDS cycles. This too was verified experimentally, with not just qualitative but a 
quantitative match between the model and experiment. Our model went further to predict that SPA and 
SPI were highly history-dependent, reducing the probability of consecutive SPA and SPI, and this too was 
confirmed in vivo. This long time-scale memory is an emergent property of the adaptation in the efferent 
EC network, which has been implicated in the formation and maintenance of periodic spatial firing of grid 
cells in MEC74.  

While persistent activity has been studied extensively as the mechanism underlying working memory, it 
is far more energetically expensive than persistent inactivity. Furthermore, the models involving only 
persistent activity have a limited storage capacity, especially when dealing with memories that require 
overlapping representations75–77. Persistent inactivity introduces a new mechanism to overcome this 
difficulty. From an information theoretic perspective, a 0 is just as informative as a 1. Hence, a 
combination of persistent activity and inactivity would be an energy and information efficient scheme for 
storing overlapping memories by multiplexing the representation78,79. Related, our model predicted that 
the same neuron can show SPA and SPI, and this was experimentally confirmed. Recent theories 
investigated “persistent activity-silent” mechanisms for working memory and hypothesized that the 
information is stored in facilitated synapses80–82. One prediction is that non-specific inputs can reawaken 
the memory ensemble after the inactive period. Our model predicts, and experiments confirm, something 
similar: that the efferent network is more susceptible to inputs after SPI due to falling adaptation. These 
dynamics between adaptation and activity could drive the production of sequences of memories in neural 
networks with discrete83 and continuous phase spaces84. 

The long duration of UDS under anesthesia allowed unequivocal detection of both SPA and SPI. But, since 
SPA and SPI remained unchanged across a range of anesthesia depths, and SPA has been shown in MECIII 
during drug-free sleep, these results should be broadly applicable16. On the other hand, a large number 
of biological factors that we did not consider could modulate our system wide findings. For example, in 
addition to the direct inputs from the parietal cortex to EC, there is substantial indirect input via the 
perirhinal and postrhinal cortices that we did not consider85. Recent studies show some cortical inhibitory 
neurons that remain active during the down state, which can alter the nature of cortical UDS86. Finally, 
hippocampus receives EC input and projects back to EC, and EC projects back to the frontal cortices; these 
connections were not included in our model, but could be studied in the future87. Despite this, the simple 
model was able to predict and match a large amount of experimental observations in a quantitative, cell-
by-cell manner. Future studies can build on this approach to study SPA and SPI during drug-free sleep. 
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Given the direct and indirect pathways linking the entorhinal region to the hippocampus40,87, the 

decoupling of entorhinal activity from neocortical inputs during SPA and SPI could contribute to selective 

removal, strengthening, and weakening of memory traces from the hippocampus during slow-wave 

sleep, thus improving the signal to noise ratio in the space of memories, thereby improving 

experimentally observed task-related performance9. Our model is sufficiently general and could equally 

apply to other networks, e.g. parietal-prefrontal network, where persistent activity is seen during 

working memory tasks55,88. Indeed, recent studies of brain activity in humans has shown that functional 

network connectivity during spontaneous epochs is highly dynamic89, and that persistent activity during 

working memory gates the propagation of activity, and thus information, into the prefrontal network90.  

In sum, these results demonstrate that during UDS, the rich dynamics of the entire cortico-entorhinal 

circuit can be captured in a quantitatively precise fashion by a dynamic attractor landscape involving just 

two biologically important variables: the cortico-entorhinal excitation and the recurrent excitation 

within the entorhinal cortex. Our model is simple enough to be analytically tractable. Despite the 

apparent simplicity and with just two parameters, we were able to reproduce nearly a dozen different 

experimental observations in a quantitatively precise fashion. This provides a strong support for our 

model to reveal the nature of cortico-entorhinal functional connectivity during slow oscillations in vivo, 

and the differential nature of this connectivity between MECIII vs LECIII. This approach provides a 

powerful technique to understand the functional connectivity between large networks of neurons in 

vivo. 
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