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ABSTRACT 

Transcription factor (TF) binding is a key component of genomic regulation. There 
are numerous high-throughput experimental methods to characterize TF-DNA 
binding specificities. Their application, however, is both laborious and expensive, 
which makes profiling all TFs challenging. For instance, the binding preferences of 
~25% human TFs remain unknown; they neither have been determined 
experimentally nor inferred computationally. We introduce a structure-based 
learning approach to predict the binding preferences of TFs and the automated 
modelling of TF regulatory complexes. We show the advantage of using our 
approach over the state-of-art nearest-neighbor prediction in the limits of remote 
homology. Starting from a TF sequence or structure, we predict binding preferences 
in the form of motifs that are then used to scan a DNA sequence for occurrences. 
The best matches are either profiled with a binding score or collected for their 
subsequent modeling into a higher-order regulatory complex with DNA. Co-
operativity is modelled by: i) the co-localization of TFs; and ii) the structural modeling 
of protein-protein interactions between TFs and with co-factors. As case examples, 
we apply our approach to automatically model the interferon-β enhanceosome and 
the pioneering complex of OCT4, SOX2 and SOX11 with a nucleosome, which are 
compared with the experimentally known structures.  
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Introduction 
 
Transcriptional regulatory elements are key players of the genome during 
development, cell and tissue homeostasis, responses to external stimuli, and 
disease1. Unravelling the mechanisms that regulate gene expression has 
consequently become one of the major challenges in Biology. With this objective the 
increase in the scale of experimental data, across multiple data types,  has provided 
a plethora of activating regulatory elements of the genome2. Classical definitions of 
activating regulatory elements are focused in two classes: promoters (where 
transcription is initiated) and enhancers (elements that amplify such transcription 
initiation in cis, i.e. located within less than 1M bases distance of the initiation). 
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However, this distinction is becoming increasingly unclear, suggesting an updated 
model based on DNA accessibility of binding sites and enhancer/promoter potential 
1. The sequence preferences of transcription factors (TFs) for these binding sites 
can be assessed by a wide variety of experimental techniques, both in vitro (such as 
SELEX3, 4, SMiLE-SEQ 5, protein-binding microarrays (PBM)6-8 and MPRA9, 10) and 
in vivo (such as bacterial and yeast one hybrid assays11, 12, ChIP-Seq13 and other 
high-throughput techniques14, 15). Recent models show similar potential of 
enhancers and promoters to promote the transcription machinery. Andersson et al.1 
have pointed towards the TF and RNA polymerase II-centric cooperative model, in 
which regulatory elements work together to increase or maintain the local 
concentrations of transcription factors (TFs), RNA polymerase II (RNAPII), and other 
co-factors, thereby increasing the probability to target gene transcription start sites. 
Besides, it appears that very few proteins in humans occupy most of their motif 
matches under physiological conditions16, which highlights the importance of the 
balance between the co-operativity of TFs and their strength upon binding. Co-
operative recognition of DNA by multiple TFs defines unique genomic positions on 
the genome and confers a systemic stability of regulation. Co-operative binding is 
most easily understood when it is mediated by protein-protein interactions that confer 
additional stability when two (or more) interacting proteins bind DNA16. Most 
eukaryotic TFs recruit cofactors as ‘‘coactivators’’ or ‘‘corepressors’’ forming large 
protein complexes to regulate transcription17. They commonly contain domains 
involved in chromatin binding, nucleosome remodelling, and/or covalent modification 
of histones or other proteins16. In the absence of direct protein–protein contacts 
between TFs, co-operativity can be mediated through DNA. Using CAP-SELEX18 
Jolma et al.19 unveiled in vitro the co-operation of pairs of TFs through protein-protein 
and protein-DNA interactions. However, experimental protocols are both laborious 
and difficult to apply, and consequently most high-throughput efforts have been 
focused on a limited number of organisms. 
 
Here, we have developed a structure-based learning approach to predict TF binding 
features and model the regulatory complex(es) in cis-regulatory modules (i.e. 
enhancers and promoters). Our objective is to characterize the role of structural 
elements, taking advantage of the recent developments on protein structure 
prediction (i.e. AlphaFold20) to reinforce both its modelling and prediction. Our 
approach integrates the experimental knowledge of structures of TF-DNA 
complexes and the large amount of high-throughput TF-DNA interactions to develop 
statistical knowledge-based potentials with which to score the binding capability of 
TFs in cis-regulatory elements. We have developed a server to characterize and 
model the binding specificity of a TF sequence or its structure. The server can 
automatically produce structural models of TF-DNA interactions and their complexes 
with co-factors. The approach is applied to the examples of interferon-β 
enhanceosome21 and the recent complex of “pioneer factors” SOX11/SOX2 and 
OCT4 with the nucleosome22. The model of interferon-β enhanceosome highlights 
the co-operativity of TFs with a more holistic view of domain-domain interactions that 
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were missed in the experimental structures.  The model of the pioneering regulatory 
complex locates OCT4, which is missing in the experimental structure, suggesting a 
potential role for nucleosome opening.  
 
 
Results 
 
A structure-based learning approach to score TF-DNA interactions. 
 
There are many methods to score the quality of protein folding23-25  and protein-
protein interactions26, 27,  such as knowledge-based potentials, also known as 
statistical potentials28-32. In previous works we developed a set of statistical 
potentials33 to analyse protein structures and their interactions34-36. Ours is a 
structure-based learning approach that considers the frequency of contacts between 
pairs of residues and includes their structural environment, such as solvent 
accessibility and type of secondary structure, to evaluate the interaction between 
transcription factors (TFs) and nucleic-acids. It is optimized by grid searching to get 
the best parameters for each TF family. However, a limitation of this approach is the 
scarcity of known structures and in particular the scarcity of structures of protein-
DNA interactions. To overcome this limitation, recently we developed a method for 
the C2H2 zinc-fingers (C2H2-ZF) family of TFs 37 that incorporated non-structural 
experimental information from systematic yeast-one-hybrid (Y1H) experiments38. 
Here, we have integrated experimental interactions from protein-binding microarrays 
(PBMs) for 37 TF families (plus some of their combinations) using the dataset of 
CisBP39, 40, notably increasing the landscape of protein-DNA contacts (see Figure 1; 
Supplementary Materials). The integration of experimental data from PBMs 
increased both the number and coverage for different types of contacts over many 
interval distances. For example, the use of PBMs data substantially increased the 
number of contacts for the AP2 and the homeodomain families; however,  for the 
bHLH family the increase was more subtle (see Figure 1). We have named our 
approach ModCRE (Modelling of Cis-Regulatory Elements) and we offer a 
webservice for its practical use (https://sbi.upf.edu/modcre). 
 
 
ModCRE predicts TF binding preferences.  
 
We propose two tests to evaluate the predictive power of ModCRE: 1) evaluate the 
capacity to classify DNA 8-mers as bound/unbound for all TFs of the PBMs 
experiments and specifically for the TFs of each family; and 2) evaluate the capacity 
to predict the DNA binding motifs of the TFs in the JASPAR dataset41(which are 
described by means of position weight matrices, i.e. PWM), analyzing the results by 
TF families. Our objective is to select the binding region of a TF with the purpose of 
automatically modelling the structure of protein-DNA complexes; therefore, our tests 
are addressed to check the capacity of recognizing the binding site rather than 
identifying the critical nucleotides that may be affected by mutations (i.e., 
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characterizing the relevance of each position in the binding site). This goal is 
achieved by selecting the correct binding or predicting a PWM sufficiently similar to 
the experimental PWM of a TF target. Further analysis of the binding region and the 
role of each nucleotide and its position can be addressed in the webserver using the 
predicted PWMs to scan a DNA sequence uploaded by the user (see in 
“Characterizing/Identifying the binding sites of TFs”). 
 
First, we tested the structure-based potential (i.e. named in short ZES3DCdd in 
methods and supplementary material) to discern positive (binding) from negative 
(non-binding)  8-mers as described in the PBMs experiments of the CisBP database 
(version 2.0) 40 (see methods for details). We avoided redundancies within the TFs 
of each family by filtering out all other TFs of the same family with more than 70% 
identical contacts in the interface, and 40% for the general potential with 
independence of the TF family. We applied a 5-fold cross validation to train the 
potentials and test. Taking this into account, each TF was not tested with the 
statistical potential of itself or a too close homolog (family-specific potentials are 
defined per structure and fold, not by sequence). The purpose of this test was to 
understand the role of the features used to describe the knowledge-based potential. 
Despite this filtering, a relevant number of TFs in the training set had similar 
interfaces in the testing set of the family-specific potentials. However, the number of 
TFs in the test of some families was already too small and we could not use a more 
stringent cut-off without a dramatic loss of applicability. We scored the interaction of 
each TF with all their positive and negative 8-mers by modelling the TF-DNA 
complexes. We obtained precision-recall curves and calculated the area under the 
curve (AUROC and AUPRC) to compare TF families and the features characterizing 
the statistical potential (Figure 2). Interestingly, some features were better than 
others depending on the family. Consequently, we designed a grid-search protocol 
to optimize the best features for each family of TFs to predict their PWMs (see 
methods).  
 
Second,  we used these optimized parameters to predict the motifs of TFs in 
JASPAR dataset41 which structure could be modelled (most PWMs in this set were 
obtained by SELEX instead of PBMs, thus representing an independent testing set). 
The structural models of many TFs were obtained with different templates (i.e., using 
several known structures of close homologs interacting with a double-strand DNA 
helix). Therefore, to equilibrate the number of models, we limited to 100 the number 
of models for each TF, obtained by using all available templates from PDB42 and/or 
generating several conformations with MODELLER43. We used the version of 
JASPAR 2020 consisting of 1934 PWMs. After discarding TFs with more than one 
PWM to avoid misinterpretation of predictions, the final dataset contained 1210 TFs 
(i.e. approximately 62% of the original dataset). We predicted 100 PWMs per TF and 
compared them with the experimental motif from JASPAR using TOMTOM44. We 
obtained the P-value provided by TOMTOM from each comparison and transformed 
it into a measure of similarity (similarity score) defined as −𝑙𝑜𝑔!"(𝑃𝑣𝑎𝑙𝑢𝑒).   Figure 
3 shows the results of the prediction for several families of TFs by plotting the 
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average (in Figure 3A) and the best scores (in Figure 3B) out of 100 models of each 
TF. For most TFs (around 75%) we predicted at least one motif significantly similar 
to the experimental (P-value < 0.05). However, we must note that the criterion of P-
value from the comparison of two PWMs may have some intrinsic dependencies (for 
example on the size of the two PWMs or in the variance of DNA binding sequences 
for different TF families); thus, it is not the best criterion to compare results from 
different TF families. Besides, we notice that having a good match out of 100 doesn’t 
imply the other 99 are either good or bad. This only ensures that the method can find 
at least one good match. Therefore, in the next section (“ModCRE predicts well in 
the twilight zone”) we will use a different criterion, independent of the TF families and 
the size of their PWMs, to score these comparisons. Then, we will use the score-
distributions to avoid the problem of the selection of a single motif per TF (see 
further).  
 
We studied more deeply the prediction of 177 TFs that have motifs in JASPAR and 
in CisBP (as obtained with PBMs). These TFs have 295 motifs in CisBP and 213 in 
JASPAR, which is about 20% of the original data with representation for most TF 
families. Considering that some TFs have more than one motif in JASPAR and in 
CisBP, the total number of comparisons between motifs was 369. All families except 
for TCR/CxC had at least one TF for which one model produced a PWM like the 
experimental (in JASPAR and CisBP). Table 1 shows the predicted motifs of a 
selected set of TFs compared with the experimental ones from JASPAR and CisBP. 
Despite our approach having learned the parameters of the predictive model using 
data from CisBP, the flexibility introduced with the variety of structural models helped 
to achieve good predictions of JASPAR motifs. In supplementary Table S2 is shown 
a summary of the predictions for these TFs. From Table S2, considering successful 
the prediction for a TF if more than 50% of the predicted PWMs are significatively 
like the experimental motif, we correctly predicted almost 48% TFs’ motifs compared 
with JASPAR and 57% with CisBP.  Then, if we consider successful the prediction 
for a TF if at least one of the predicted PWMs is significatively similar to the 
experimental motif, we predict 82% motifs compared with JASPAR and 89% with 
CisBP. In the next section we will apply these ideas to develop a new algorithm, like 
a jury-vote approach, to improve the accuracy and help in the selection of a single 
PWM and the detection of a binding site. Two facets of this validation with JASPAR 
must be noted: 1) We test the sequence of a TF blindly; therefore, although we have 
avoided TFs with more than one motif in JASPAR, the structural model can be 
produced by partial structures combining more than one domain (e.g., for sequences 
of the C2H2-Zf family with several domains). Then, an issue for this test is that for 
some TFs a portion of their models might correspond to regions of the protein 
addressed to a different binding site than the motif under test and consequently the 
comparison will fail. In addition, some structures contain more than one binding pose 
and some correspond to incomplete binding sites caused by the crystal (e.g. for the 
homeodomain family, the crystal structures of 2HOT, 2HOS, 1HDD, 2HDD, 3HDD, 
and 1DUO from PDB show two different poses of the homeodomain binding, one of 
them incomplete), yielding the same problem. We assumed these problems as 
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failures of the method because the region of the protein cannot be selected before 
the comparison with the real motif is done (we could compare the predicted PWMs 
and cluster them; nevertheless, selecting one or another cluster would still be 
random). 2) The approach searches in the database of structures of TF-DNA 
complexes to obtain the structural model(s) of a TF. Therefore, finding a sufficiently 
similar TF sequence automatically imposes a specific conformation and sequence 
of the DNA. We can further stress this point by simply searching on a database of 
TF sequences with known DNA binding sites or motifs. This is known as nearest-
neighbor approach. In our validation, we neglected the DNA sequence of the 
template, but we assumed the same conformation in the model as in the template. 
A relatively large number of TFs preserve a B-DNA conformation (where subtle 
differences are unnoticed by the coarse-grained potential of our approach), but for 
some others, such as the TATA-box, the conformation in the template may be 
determinant of the sequence of the binding site. Therefore, it is more appropriate to 
validate ModCRE by comparison with the nearest-neighbor (see next section). 
Finally, if we plan to use our approach on novel complexes without previous 
knowledge of the structure of the TF-DNA interaction, then the role of the DNA 
conformation must be considered, as this affects the quality of the prediction.  
 
ModCRE predicts well in the twilight-zone.  
 
We simultaneously compared and validated the prediction of the PWM with the state-
of-the-art approach based on sequence homology. This approach is also known as 
prediction by nearest-neighbor. The nearest neighbor approach consists on using 
the experimental PWM of the closest homolog of a TF45. The accuracy of such 
prediction depends on the degree of similarity between TFs: hypothetically, close 
homologs should have similar DNA binding domains and in consequence their 
PWMs should be similar too. As dataset, we used the TFs of CisBP that had been 
studied by PBMs. First, we compared their sequences using MMseq246. Then, for 
each target sequence we grouped the other TFs of the dataset by sequence 
similarity with the target. Each group contains sequences that align with the target 
between a minimum and a maximum percentage of identical residues defined by the 
group. The groups range between 15% and 95% binned in intervals of 10% (e.g., 
the group at 95% contains all closest homologs of a target TF which alignment 
produces a percentage of identical residues between 90% and 100%). The analysis 
of the prediction was performed by grouping TFs by families and the results by bins 
of the same interval of sequence similarity.  Notice that it was not always possible to 
find relatives in all bins for all TFs. The total number of TFs in each bin and family 
varies, as well as the total number of predictions (homologs with a known PWM). 
Table S3 shows the number of TFs for which the nearest-neighbor approach can be 
applied and the total of predictions for each bin and family. For ModCRE, given a 
family and a bin, we used the same TFs that were tested in the nearest neighbor 
approach, for which we modelled 100 conformations (yielding 100 motifs). Then, 
instead of using the P-value as a criterion to test the predictions, we tested the 
success by ranking: we used TOMTOM47 from the MEME suit44 to compare the 
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predicted PWMs with all the experimental motifs from CisBP, including the motif that 
corresponds to the target, and ranked them according to TOMTOM score (from best 
to worst). The rank of the actual motif of the target indicates the quality of the 
prediction. We scored and normalized the rank to fit between 0 and 100 (then the 
highest score is achieved with the best rank). The normalized score is defined as: 
𝑛𝑜𝑟𝑚𝑎𝑙	𝑠𝑐𝑜𝑟𝑒 = 100 × ($%&'()*!)

$
, where M is the total amount of PWMs of the 

dataset. The normalized score is null if the Pvalue of the comparison between the 
predicted PWM and the actual motif is higher than 0.05 (i.e. non-significant). The 
prediction for all TFs is produced by the accumulation of results for all families in 
each bin (see Figure 4).  
 
 
The comparison between the nearest-neighbor and ModCRE clearly shows that the 
latter outperforms the state of the art (nearest-neighbor) at low sequence identity.  
For example, ModCRE predictions in the twilight zone, around 15-25% sequence 
identity, outperformed the nearest-neighbor approach for TF families such as C2H2 
ZF, ETS and Homeodomains. For some families ModCRE outperformed the nearest 
neighbor approach at bins around 50% of sequence identity (i.e. families such as 
Forkhead, Nuclear Receptor and SOX). Nevertheless, for some families such as 
bHLH and bZIP, the nearest-neighbor method was still the best approach to predict 
their binding preferences, because these were preserved by distant and remote 
homologs. This was also reflected in the poor increase of new amino-acid and 
nucleotide contacts incorporated from PBMs experiments in the statistical potentials, 
showing that both TF families have a limited landscape of protein-DNA contacts that 
was easily covered by evolution. Interestingly, Lambert et al.40 had already predicted 
by similarity regression the similarity in DNA sequence specificity between two TFs 
(specially for members of the Homeodomain family), showing the relevance of the 
amino-acids in contact with the DNA, and helping to unveil the preservation of the 
binding motif between remote homologs. Lambert et al.40  also noticed many highly 
or ambiguously similar homolog TFs in the bHLH and bZIP families, appearing rigid 
in their DNA-binding motifs and suggesting that TFs of these families had diversified 
through changes in heterodimerization partners. Consequently, we note that an 
acceptable error of the rank must be considered for each TF family specifically, 
because many TFs have PWMs like the motifs of other TFs in the same family. 
Hence, depending on the number of neighbors with similar PWM and how such 
similarity is defined, the rank can be confused with those of other very similar motifs. 
Supplementary tables S4 show the acceptable errors of the rank for several families 
of TFs. Acceptable errors in tables S4 are shown as a function of the P-Value, Q-
value and E-value to qualify if two PWMs are significantly similar. This helps us to 
determine the quality of predictions by nearest-neighbor and ModCRE approaches. 
Therefore, the evaluation by ranking permits us to compare the results of different 
TF families with independence of the size and variance of the PWMs of their TFs, 
while the margins of errors enable us to qualify the quality of the comparison with 
the predictions. 
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On the improvement of the prediction of binding preferences of TFs. 
 
As observed in the structure-based prediction of ModCRE, we generated several 
PWMs for a target TF. Having a successful prediction out of 100 models is useless 
when we don’t know the real PWM of the target. However, if a relevant number of 
models points to the same PWM (e.g. more than 50%), we could take this as the 
final prediction (e.g. by a majority vote selection). This suggests a potential new 
approach to predict the motif of a TF that can also be applied to the nearest-neighbor 
approach. We propose as solution (i.e. the predicted motif) the most often selected 
motif among the best rankings. For the nearest-neighbor approach, instead of 
selecting the PWM of the closest homolog, we consider all the motifs of TFs with 
sufficiently similar sequence to the target. Thus, a collection of motifs is used as in 
the structure-based approach. We name the approach “rank-enrichment prediction”.  
 
As in the previous ranking of motifs of the dataset (which includes the actual motif of 
the TF target), we rank by the score of TOMTOM the motifs of the database for all 
the predicted PWMs of the target. We remove all non-significantly aligned PWMs 
and select a limited number of top solutions. The number of potential solutions 
selected affects the quality of the prediction, i.e. if we use too many the success is 
not significant, or in other words, it can be achieved at random (see more details in 
the supplementary material). In the selected set, some motifs may have been 
included several times. Then, we calculate the enrichment of a motif as the ratio of 
the number of times it appears in the selection. The final prediction (i.e. solution) 
corresponds to the motif with highest enrichment (i.e. the motif that was more often 
selected, either among homologs of the target in the nearest-neighbor approach, or 
among modelled conformations in the structure-based approach). Finally, to 
evaluate the quality of the predicted motif, we compare it with the motifs of the 
database and calculate the ranking of the experimental motif of the target. If the motif 
of the target is not selected among the potential solutions, then the ranking cannot 
be calculated and the prediction is removed, affecting the coverage of predictions 
(i.e. the sensitivity to find solutions). Besides, depending on the number of models 
used for the enrichment and the total number of acceptable correct solutions 
(sufficiently similar PWMs), the prediction may not be significant. Thus, non-
significant predictions are also removed.  
 
The ranking is scored and normalized as before, and the distribution is plotted for 
several bins of sequence-similarity. We must note that now a single solution is 
proposed for each TF in both approaches, nearest-neighbor and structure-based 
with ModCRE. Figure 5 shows the distribution of the normalized ranking on the 
application of rank-enrichment prediction using ModCRE and the nearest-neighbor. 
The rank-enrichment increases the accuracy of the predictions of both methods. 
ModCRE often achieves better coverage than nearest-neighbor at low percentages 
of similarity, while preserving most ranking scores at the top (around 98%). 
Supplementary tables S4 shows the acceptable errors in the normalized score as 
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function of the P-value, E-value and Q-value for all families (e.g. when using all 
families, the average number of similar motifs with Q-value < 10-3 is around 60, and 
this implies a rank of about 98%, which is also in the same rank and with about the 
same number of similar motifs with P-value <10-7). The acceptable errors for families 
such as Nuclear Receptors, C2H2-Zf, GATA or SOX are smaller than for 
Homeodomains. Interestingly, the enriched ranks of ModCRE predictions for TFs of 
Nuclear receptors and SOX families are high and the coverage is improved with 
respect to the nearest-neighbor approach. 
 
 
Characterizing/Identifying the binding sites of TFs 
 
In practice, unless the binding preferences of a TF have been experimentally tested, 
there is no access to the real motif(s) of a TF and consequently the rank-enrichment 
approach cannot be applied directly. However, the approach indicates that the best 
prediction is produced by a majority of similar motifs out of a collection of predicted 
PWMs.  Therefore, a sensible approach to predict the binding site of a TF in a DNA 
sequence is: 1) to predict a set of PWMs, either by nearest-neighbor or with the 
structure-based approach; the latter if the homologs of the target are not sufficiently 
similar and the former if the percentage of sequence identity with the homolog is 
higher than 50%; 2) scan the DNA sequence with all predicted motifs using FIMO48; 
and 3) select the fragment matched by the majority of motifs with a significant score. 
 
To analyze the binding sites of a DNA sequence, we have developed ModCRE as a 
web server that predicts the PWM of a TF based on its structure or by modelling 
several conformations with its sequence. Then, the DNA sequence can be scanned 
with the PWMs and either the accumulation of matches can be profiled (i.e. using a 
score for the prediction of binding), or a selection of matches can be collected to 
build the structure of a cooperative binding (i.e. considering the formation of a 
potential complex of transcription). The webserver permits the substitution of the 
predicted PWM by another (in MEME format). This is more convenient if we know 
experimentally the PWM or if we know the PWM of a close homolog of the target (as 
it had been shown in the previous sections). To facilitate the scanning of a large DNA 
sequence and the construction of a structural model of cooperative binding, we have 
included the PWMs of three datasets associated with TF structures. Two datasets 
are defined with the experimental motifs from JASPAR and CisBP. In each of these 
sets a motif is associated with the sequence of a TF. Therefore, we have modelled 
the potential conformations of each one of these TFs and selected the model with 
the PWM most similar to the experimental motif. Then, a target DNA sequence is 
scanned with FIMO using the motifs of the corresponding database and the 
associated models can be selected in ModCRE web server. Similarly, the third 
database is obtained using the structures of TFs complexed with a DNA double 
strand: we use BLAST49 and HMMER50 to obtain the sequences of potential 
homologs in UniProt and TrEMBL51 that align (without gaps in the binding interface) 
with the sequences of these TFs. A motif is predicted for any of these sequences 
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using the alignment and the template structure. Consequently, we can scan the DNA 
with any of the sequences of specific species (see further details in supplementary 
material). Additionally, specific TF sequences can be uploaded to predict their motifs 
and scan the DNA.  
 
 
 
 
Integration of transcription factors and co-factors in a regulatory complex. 
 
To complete the modelling, co-factors can be included in the network of interactions 
when the species selected are human or mouse. Interactions between TFs and 
transcription co-factors (TcoFs) are retrieved from the TcoF-DB database52. After 
selecting a set of protein-protein and protein-DNA interactions, these can be 
modeled using a homology modeling pipeline26, 35. Then, ModCRE models the 
structure of DNA in a specific conformation (B conformation by default), and for very 
long DNA sequences the server splits the sequence in fragments of 250 base-pairs 
(with an overlap of 50bp to be able to assemble them later).  Models with clashes 
between proteins are removed and only acceptable combinations of each fragment 
are selected to construct a model. Next, the structures are optimized by several 
steps of conjugate gradient and short annealing dynamic simulations with 
MODELLER. Finally, distance restraints are extracted from the models of protein-
protein interactions and TF-DNA interactions, and we use the package IMP53 to 
integrate them in a model of DNA with all TFs and TcoFs (see more details in 
supplementary material). We are not aware of any other web-service method to 
automate the structural modeling of these complexes and very few experimentally 
known complexes to benchmark. The most similar approach was recently described 
if  RoseTTAFoldNA 54. 
 
Example 1: the interferon-beta (IFN-β) enhanceosome 
 
We have used the server to automate the modelling of the interferon-beta (IFN-β) 
enhanceosome, an ensemble of TFs and Cis-regulatory elements that cooperate in 
the enhancer of the IFN-β gene21, 55. The TFs binding at the IFN-β enhanceosome 
are ATF-2, c-Jun, IRF-3, IRF-7, and NFKβ-1 (subunits p105 and p65). We have used 
a sequence of 250bp containing the region of the enhanceosome and the database 
of human TFs, using their predicted PWMs based on their modelled structures, to 
predict and model the co-operative complex. These PWMs are used to scan the 
DNA sequence with FIMO. In supplementary Figure S4 we select the bindings of the 
specific TFs (i.e. ATF-2, c-Jun, IRF-3, IRF-7, and NFKβ-1) that are significant (P-
values < 5.0e-4). Hence, we are able to recreate a structural model similar to the 
model provided by Panne21, 55 based on experimental data. On the binding sites 
predicted for NFKβ-1 (subunits p105 and p65) the automated approach produces a 
homodimer of NFKβ-1 with two subunits p105 instead of a heterodimer with RelA 
(subunit p65). Not all the binding regions of IRF-3 are detected exactly, but some 
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other regions are predicted instead. Besides, the IRF-7 binding site from Panne’s 
model is occupied by IRF-3. The analysis highlights the accumulation of TFs in a 
short section of the DNA and brings a potential explanation for the formation of the 
transcription complex by gathering TFs (Figure 6). 
 
 
 
Example 2: TF-DNA interactions on top of the nucleosome. 
 
An interesting case of co-operation between TFs are the “pioneer factors” (the first 
to engage target sites in chromatin culminating in transcription by displacing 
nucleosomes56), or  TFs that can bind on top of the nucleosome complex (as 
detected by NCAP–SELEX57). A structural view of this complex has shed light on 
the characteristics of the TF-DNA interaction and its effect upon the conformation of 
the nucleosome22. The server also has the possibility to produce a bent conformation 
such as the nucleosome that includes histones to form the complex (IMP is not 
applied because the structure of DNA is already defined). We have used the 
automated modelling of a nucleosome in complex with SOX2, SOX11 and OCT4 
from the study of Dodonova et al. 22 to analyze these “pioneer factors”. Interestingly, 
we found two very significant binding regions of SOX2 and SOX11 (P-value <1.0e-4, 
around 58bp and 85bp positions) with the PWM predicted by ModCRE, but they 
were hampered by histones. We also found 3 sites with less significance (P-value < 
1.0e-3) but accessible to SOX11/SOX2 and OCT4 (SOX11 and SOX2 share the 
same binding site preferences). However, SOX2 is missing in the predicted complex 
and the models of SOX11 and OCT4 clash with the DNA, implying the need of a 
posterior distortion to produce the complex (Figure 7). For OCT4 the model recreates 
the binding with both domains, but we must notice that with only one domain the 
binding is possible without producing clashes in the nucleosome second turn of DNA 
(in 98-112bps). 
 
Discussion 
 
Knowledge of TF-binding specificities is the foremost condition to understand gene 
regulation. Still, the binding preferences for many eukaryotic TFs are unknown or 
very complex in vivo7, 58. In this regard, computational tools can complement 
experimental methods. Several approaches have been taken in the recent years to 
computationally predict the binding of certain TF families such as the C2H2-Zf 59 or  
homeodomains60. Other approaches have also considered the use of statistical and 
molecular-mechanics potentials61, 62. In this work we have developed a structure-
based approach to predict specific binding motifs of TFs, to identify cis-regulatory 
elements and to automatically model the structure of the transcription complex 
entailing the regulation. A similar structural-learning approach was recently 
developed and applied on homeodomain and C2H2-Zf families63 that predicted the 
PWMs by mapping experimentally known PWMs in the contacts of the interface of 
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the TF-DNA structure, which in principle (but not suggested) it can be applied to any 
other TF by providing the structure of the complex with DNA. Our approach has been 
implemented in a server for the scientific community named ModCRE. The main 
limitation of these approaches is that they can only be applied to TFs for which the 
structure of the interaction with DNA is known. The scarcity of these experimental 
structures also affects the number of templates to be used by homology modeling. 
As shown in supplementary figure S5, ModCRE can be applied to most TF families 
defined in UniProt, and in combination with JASPAR database, our approach can be 
applied to 88.7% of the TF sequences (it is worth to remind that if the sequence 
similarity between the target and a TF in JASPAR is high, the PWM from this TF in 
JASPAR can be used to identify the binding preferences of the target). Besides, 
thanks to the recent advent of AlphaFold2 20, 64 the structure of almost all TFs can 
be predicted, and remarkably the DNA binding motif, that often contains a large 
percentage of regular secondary structures, can be build.  
 
The structure of any TF-DNA complex can be modelled either by docking or by 
superposition with other members of the TF family. As a tailored example we have 
studied the human motif of the CCAAT/enhancer-binding protein alpha (C/EBPα.).  
The human protein has not been crystallized, but the DNA binding motif of rat is 
100% identical and the structure of the dimer is available in PDB with code 1NWQ 
65. We downloaded the AlphaFold structure of C/EBPα. from human (AF-P49715-F1 
from UniProt) and selected only the DNA binding domain (α-helix residues 284-344). 
We superposed this domain on each chain of the structure of the heterodimer of 
ATF-2 and c-Jun (PDB code 1T2K 66 ) to get the dimer complex of C/EBPα. with 
DNA. We used both structures to predict the PWM with ModCRE, one by submitting 
the sequence and getting the motif with 1NWQ as template, and the other by 
submitting the structure. This example shows almost identical motifs (see 
supplementary figure S6). In this line, the latest versión of RoseTTAFold, 
RoseTTAFoldNA 54, has incorporated the ab initio modelling of the structure of 
protein-DNA interactions that could be used straightforward in ModCRE to predict 
the PWM and scan one or more DNA sequences. 
 
By incorporating the structural variability and flexibility of a TF we have designed an 
improvement of the prediction of its binding-sites based on the largest preference of 
motifs, each motif generated with one conformation. Thus, by scanning with several 
theoretical motifs of a TF, the majority of regions detected and predicted to bind will 
hit around the right location of the binding site. Using a collection of motifs derived 
from different models of a TF is in consonance with the idea that TFs can interact 
with the DNA adopting different conformations7. Not only the dynamics of the protein 
but also the flexibility of the conformation of the DNA plays a relevant role in the 
identification of the binding site. Molecular dynamics of such complexes have 
recently been used to predict the binding affinity of TFs and to predict its 
corresponding PWMs67. We used homology modelling in the same line in our 
approach. Homology modelling is very convenient when several templates are 
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available because it generates a collection of models of a TF without requiring large 
computational resources. Still, the time of computation to calculate the PWM in the 
server is between 30’ and 5 hours (depending on the size of the interface). Similarly, 
AlphaFold can be applied to obtain several conformations. In agreement with this, 
ModCRE’s modeling pipeline is a valuable resource to study the conformations of 
large regulatory complexes. Structural models of TF-DNA interactions provide 
fundamental information to understand TF function and behavior. Our pipeline 
models complexes of TF-DNA interactions involving DNA bindings and protein-
protein interactions between TFs and transcription co-factors. We hypothesize that 
the correct binding site is among the selection of sites where most conformations of 
TFs accumulate when considering the cooperation with other TFs and co-factors. A 
drawback for the server is that the final steps to model the macro-complex require a 
large time of computation. Nevertheless, this may be a promising strategy helping to 
overcome the number of false positives found when scanning a DNA sequence with 
a single PWM7, 58 or at least to narrow the predictions and simultaneously 
comprehend the cooperativity between transcription factors and co-factors. 
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Methods 
 
Software 
 
We use DSSP (version CMBI 2006)68 to obtain the secondary structure and surface 
accessibility; X3DNA (version 2.0)69 to obtain DNA structures; matcher and needle, 
from the EMBOSS package (version 6.5.0)70, to obtain local and global alignments, 
respectively; BLAST (version 2.2.22)49 to obtain potential homologs of a protein 
sequence; MODELLER (version 9.9)43 to model the structure of a protein by 
homology; CD-HIT to obtain a non-redundant set of sequences of TFs71  and the 
programs FIMO48 and TOMTOM of the MEME suite44  to obtain the fragments of a 
DNA sequence that aligns with a Position-Weight Matrix (PWM) 72 and to compare 
two PWMs, respectively.  
 
Databases 
 
Atomic coordinates of protein complexes are retrieved from the PDB repository73  
and protein codes and sequences are extracted from UniProt51. We only selected 
the structures of PDB corresponding to TF-DNA interactions. Binding information of 
TFs was obtained from protein binding microarrays (PBMs) experiments in the Cis-
BP database (version 2.00) 39, 40. PBMs experiments indicate the binding affinity 
between TFs and DNA 8-mers with the E-score value (between -0.50 and 0.50). 
DNA 8-mers of a TF with E-scores above 0.45 correspond to high affinity interactions 
(also named positive), while DNA 8-mers with E-scores below 0.37 are considered 
non-bound (or negative); the rest of E-scores are discarded for statistic analyses.  
 
Interface of protein-DNA structures 
 
We defined the contacts between TF and DNA using three residues: one amino acid 
and two contiguous nucleotides of the same strand. The distance of a contact is the 
distance between the Cβ atom of the amino acid residue and the average position 
of the atoms of the nitrogen-bases of the two nucleotides and their complementary 
pairs in the opposite strand28. Additional features are considered for a contact, such 
as the secondary structure and solvent accessibility of the amino-acid or the DNA 
closest groove (major or minor) of the two nucleotides. 
 
Statistical potentials 
 
We used the definition of statistical potentials described by Feliu et al.74 and Fornes 
et al.28 applied on the selected database of structures of TF-DNA interactions. These 
were calculated with the distribution of contacts at less than 30 Å, using an interval 
criterion or a distance threshold. We used positive DNA 8-mers from PBMs to extend 
the number of contacts. Briefly, we modelled the interactions of the DNA 8-mers with 
the TFs using the available structures of TF-DNA pairs in PDB or those of their 
closest homologs (see details in supplementary material). We transformed the 
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statistical potentials into Z-scores to identify the contacts with best scores (best 
distance and best contact residues: i.e. the amino acid and the two nucleotides). To 
avoid redundancies in the statistical potentials we used a criterion of around 70-80% 
identical contacts for family-specific potentials (i.e. calculated with members of the 
same TF family sharing the same fold structure) and 40-50% for a general scenario. 
 
Structural modeling of TF-DNA complexes 
 
Several structural models of a TF-DNA complex were obtained using all its available 
templates from PDB. First we used  BLAST to find the homologs with known 
structure (template), then the sequence of the query was aligned with the sequences 
of the templates using MATCHER from the EMBOSS package70  and  a model was 
built with each template using MODELLER43. The modeling of the DNA was obtained 
with the X3DNA package69   preserving the DNA conformation from the template. 
This approach required that all the templates used for TF-DNA modeling contained 
both a TF and a double stranded DNA molecule.   
 
Construction of PWMs using TF-DNA structural models 
 
We used the Z-scores of statistical potentials to obtain the PWM. We selected for 
each TF family the features optimizing the PWM prediction (see further) and we used 
the Z-score of ES3DCdd (ZES3DCdd) as defined in Meseguer et al. 37. First, we 
obtained several models of a TF-DNA interaction using all possible templates. 
Second, for each model we scored with ZES3DCdd all the potential DNA sequences 
of the binding site (i.e. 4N sequences, with N the size of the binding site, or an 
alternative heuristic approach as explained in the supplementary). Third, we 
normalized the scores between 0 and 1 and we ranked the DNA sequences. Finally, 
for each model we selected the sequences with the top scores (this cut-off threshold 
was also optimized, taking values between 0.7 and 1 in intervals of 0.01). We used 
the alignment of these sequences to calculate a predicted PWM for each model. 
 
Optimization of parameters to predict PWMs by grid search. 
 
The parameters to predict PWMs that needed to be optimized for each TF family 
are: 1) the definition of distances’ distribution used to calculate statistical potentials: 
either by interval-bins (i.e. 𝑥 − 1 < 𝑑 ≤ 𝑥) or a threshold (i.e. 𝑑 ≤ 𝑥); 2) the use of a 
theoretical approach to complete the space of contacts (i.e. using a Taylor’s 
polynomial approach, see supplementary); 3) the dataset of structures used to 
calculate the potentials: using only the contacts from structures of PDB or adding 
those from experiments of PBMs; 4) using a general statistical potential calculated 
with all known TF-DNA structures or a specific potential calculated with the 
structures of the same family and fold; 5) the maximum distance to include the 
contacts of an interface (testing distances at 15 Å, 22 Å and 30 Å); and 6) the cut-off 
threshold to select top ranked DNA sequences used to calculate the PWM (see 
above). The function to be optimized was the accuracy to predict the PWM of each 
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TF family (i.e. maximum accuracy). A predicted PWM was successful if the 
alignment with the experimental PWM taken from Cis-BP  database was significant 
(this was calculated with TOMTOM). Then, we selected the parameters that 
maximized the accuracy of the TF family with the following conditions: 1) maximum 
number of significant good predictions according to TOMTOM score; 2) best 
TOMTOM scores when a similar number of significant solutions were achieved; and 
3) the lowest value of the threshold, when several similar solutions were obtained.  
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Figures 

 
Figure 1: We defined the contact abundance score to capture the increase of 
coverage in the number and diversity of contacts thanks to the use of PBM 
experiments. This is defined as the logarithm of the ratio between the total number 
of potential accessible contacts and the number of contacts at less than 30Å. For 
the interaction between an amino-acid and two nucleotides there are 48 different 
types of contacts (considering the combination of all features, see supplementary 
methods), therefore the total number of potential contacts is 15360 (i.e. 42 x 20 x 
48), while the number of real contacts depends on the number occurrences in  the 
known structures of a TF family and in the PBMs experiments that can be used to 
increase them. The figure shows the contact abundance score of each family 
calculated using only the known structures (PDB 42) or including the potential 
(modelled) contacts of other TFs derived from PBMs experiments (PDB+PBM). The 
figure shows in the top the heatmaps of the distribution of contacts, calculated with 
and without experimental PBMs data, for three types of families (AP2, for which the 
use of PBMs significantly increases the coverage; bHLH, for which the increase is 
not relevant; and the homeodomain family for which the coverage was already very 
large with only data from PDB). The labels and details of the heatmaps are shown 
as example in Figure S1.  All heatmaps can be downloaded from 
http://sbi.upf.edu/modcre/##faq. 
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Figure 2 
Area under the curve of precision-recall (AUPRC) on the prediction of positive and 
negative 8-mers of the PBMs experiments. We analyzed TFs of all families from Cis-
BP database with PBMs experiments. We used the PWMs predicted with structural 
models of TFs using different features to calculate the ZES3DCdd statistical potential 
(i.e. using contacts extracted from PDB or from PDB plus those derived from PBMs 
experiments, using only contacts obtained with TFs of the same family, or using a 
Taylor polynomial approach to complement the missing contacts in the experimental 
data). Not all negative 8-mers were used, forcing the ratio of positive/negatives to be 
1 to 100 (negative 8-mers were selected randomly). We restricted the study to those 
families with at least 10 different TFs to sufficiently support the results (the test of 
the rest of families is in supplementary figure S2). The results of the area under the 
curve of true and false positive rates (AUROC) for all TF families are shown in Figure 
S2. 
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Figure 3. 
Distribution of “similarity scores” to compare predicted and experimental PWMs of 
TFs. The score of similarity is defined as −𝑙𝑜𝑔!"(𝑃𝑣𝑎𝑙𝑢𝑒), where the Pvalue is 
obtained with TOMTOM and it shows if the alignment of the two PWMs is significant 
(i.e. Pvalue is the probability that a random motif of the same width as the 
experimental PWM would have an optimal alignment as good or better than the 
PWM predicted with the structure of the TF). Each red dot in the plot shows either 
the average of scores (in A) or the highest score (in B) of the comparison of 100 
predicted PWMs obtained with the structural models of each TF. Boxes in blue show 
the best quartiles of the distribution for each TF highlighting in red the mean of the 
distribution for all TFs of a family. A red line indicates the threshold at which the 
predicted PWM is significantly similar to the experimental (i.e. Pvalue<0.05). For TFs 
of the C2H2-ZF family we used the parameters and statistical potentials derived from 
a previous work37. As in Figure 2, we restricted the study to those families with at 
least 10 different TF sequences (the comparison with the rest of families of TFs is in 
supplementary figure S3). 
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A) 

 
B)  

 
 
 
Figure 4 
Distribution of the normalized ranking score of motif predictions with the nearest-
neighbor (state-of-the-art) approach and the structure-based approach (ModCRE). 
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Results with the nearest-neighbor approach are shown in blue and results with the 
structure-based approach in red. The top distribution (A), entitled Global, 
corresponds to the distributions for all TFs (i.e. 2268 TFs, with 2638 motifs) in the 
dataset of CisBP with PBM experiments. The rank of the correct motif was scored 
and normalized with respect to the total size of the database of compared PWMs, 
yielding a normalized score. The normalized score is defined as: 𝑛𝑜𝑟𝑚𝑎𝑙	𝑠𝑐𝑜𝑟𝑒 =
100 × (2638 − 𝑟𝑎𝑛𝑘 + 1) 2638⁄ . The total number of TFs, motifs and predictions in 
each bin are shown in supplementary table S3. Tables of acceptable errors of the 
ranks are shown in tables S4 as a function of the average of the number of neighbors 
of the TFs that are significatively similar (see details in tables S4). The distributions 
of normalized scores of some families of TFs are also plotted in B (the title of each 
plot indicates the name of the family). Plots of distributions of normalized scores for 
the rest of families can be downloaded from web (http://sbi.upf.edu/modcre/##faq) 
and supplementary S7. 
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A) 

 
B) 

 
Figure 5 
Distribution of the normalized ranking score of motif predictions with the nearest-
neighbor (state-of-the-art) approach and the structure-based approach (ModCRE) 
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using rank-enrichment. Results with the nearest-neighbor approach are shown in 
blue and results with the structure-based approach in red. In A are shown the results 
for all TFs and in B the results of some TF families. Plot titles and normalized scores 
are defined as in Figure 4. On top of each plot are shown the curves of coverages 
after removing non-significant predictions. Coverages are calculated as the ratio of 
significant predictions over the total of predictions in each bin. The total number of 
TFs, motifs and predictions in each bin are shown in supplementary table S3. The 
distributions of normalized scores of some families of TFs are plotted as in Figure 4. 
The acceptable errors of normalized ranks are the same as in Figure 4. Plots for the 
rest of families can be downloaded from web (http://sbi.upf.edu/modcre/##faq) and 
supplementary S7. 
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Figure 6 
Model of the IFN-β enhanceosome complex. The structure of the complex formed 
by interactions between proteins and DNA is automatically built with the selected 
TFs and their binding sites in the enhancer sequence of IFN-β (see supplementary 
figure S4). A) Model of one of the complex structures obtained with the largest 
number of TFs while avoiding clashes between them. Due to the large time of 
computation, not all combinations of distinct conformations, produced by different 
templates, are tested. The structures of ATF-2 (purple), c-JUN (orange), IRF-3 
(yeast) and NFKβ-1 (light blue) are shown on their binding with DNA (cyan), 
highlighting in a squared framework the region corresponding to the model of the 
enhanceosome proposed by Panne21, 55. B) Detail of the automated model obtained 
with ModCRE (IRF-3 is indicated as IRF3, ATF-2 as ATF2, c-JUN as JUN and NFKβ-
1 subunit p105 as NFKB1): i) IRF-7 is missing; ii) NFKβ-1 forms a homodimer of two 
p105 subunits instead of the expected heterodimer with subunit p65 (RelA); and iii) 
an extra IRF-3 is bound at 5’ of the ATF-2/c-Jun binding. C) Detail of the 
superimposition of the model of ModCRE with the crystal structure of ATF-2/c-Jun 
and IRF-3 bound to the interferon-beta enhancer (code 1T2K66  from PDB, shown in 
blue). D) Detail of the superimposition of the model with the crystal structure of IRF-
3 bound to the PRDIII-I regulatory element of the human IFN-β enhancer (code 
2PI075 of PDB, shown in green). E) Detail of the superimposition of the automated 
model with the crystal structure of NFKβ-1 (subunits p105 and p65), IRF-7, and IRF-
3 bound to the IFN-β enhancer (code 2O6155 of PDB, shown in yellow). 
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Figure 7 
Model of the nucleosome complex with SOX11/SOX2 and OCT4. A) Front (left) and 
lateral (right) view of the complex obtained automatically with ModCRE superposed 
with the experimental structure (code 6T7C in PDB). Both model and experimental 
structures have only SOX11 bound (indicated as SOX11) to the nucleosome. The 
conformations modelled with ModCRE are shown in green (binding between 54 and 
64 bps) and dark red (binding in the interval 86-96bps); the conformations of SOX11 
from the experimental structure are shown in blue (binding in the interval of 50-60bps 
and 86-96 bps, respectively); and the model of OCT4 (indicated as OCT4) is shown 
in yellow (binding along an interval of 23-35bps). B) Detailed comparison of the 
binding of SOX11 between the automated model (green) and the experimental 
structure (blue). The predicted PWM fails to position neither SOX11 nor SOX2 
around the 50bp (the closest fragment is in the interval of 54-57bps).  C) Detail of 
the modelled binding of OCT4 (in yellow). Two domains of OCT4 produce the binding 
in a large interval of the DNA sequence (between 23 and 35bps), where the domain 
that binds in 3’ (around 28-35 bps) has also “non-binding” contacts (with many 
clashes) with the DNA fragment around 98-112bps.  This suggests a potential 
weakening of the nucleosome complex conformation that could lead to unfasten it. 
D) Similar binding of SOX11 around 86-96bps of the model (dark red) and 
experimental (blue) structures. The DNA sequence used in the model is DNA1 from 
the study of Dodonova et al. 22 :   
ATCTACACGACGCTCTTCCGATCTAATTTATGTTTGTTAGCGTTATACTATTCT
AATTCTTTGTTTCGGTGGTATTGTTTATTTTGTTCCTTTGTGCGTTCAGCTTAAT
GCCTAACGACACTCGGAGATCGGAAGAGCACACGTGAT 
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Tables 

Table 1 
Logos of experimental PWMs (from JASPAR and CisBP) and of their best 
predictions. The table shows the logos of only some TFs for which the PWMs were 
also obtained by PBMs in CisBP. The TF is identified by the UniProt code. The code 
of the PWMs corresponding to the logos in JASPAR and CisBP are shown at the 
bottom. For the logos of the predicted PWMs the PDB code of the protein used as 
template is shown at the bottom. The logos of TFs from other families is shown in 
supplementary Table S1. 
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