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ABSTRACT 

 
Since the start of COVID-19 pandemic, a huge effort has been devoted to 

understanding the Spike(SARS-CoV-2)-ACE2 recognition mechanism. As prominent 
examples, two deep mutational scanning studies traced the impact of all possible 
mutations/variants across the Spike-ACE2 interface. Expanding on this, we benchmark four 
widely used structure-based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe) 
and two naïve predictors (HADDOCK, UEP) on the variant Spike-ACE2 deep mutational 
interaction set. Among these approaches, FoldX ranks first with a 64% success rate, followed 
by EvoEF1 with a 57% accuracy. Upon performing residue-based analyses, we reveal 
algorithmic biases, especially in ranking mutations with increasing/decreasing 
hydrophobicity/volume. We also show that the approaches using evolutionary-based terms 
in their scoring functions misclassify most mutations as binding depleting. These 
observations suggest plenty of room to improve the conventional affinity predictors for 
guessing the variant-induced binding profile changes of Spike-ACE2. To aid the improvement 
of the available approaches we provide our benchmarking data at https://github.com/CSB-
KaracaLab/RBD-ACE2-MutBench  
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INTRODUCTION 

At the beginning of the 21st century, the Severe Acute Respiratory Syndrome 
Coronavirus (SARS-CoV)1 and the Middle East Respiratory Syndrome Coronavirus2 caused 
serious public health concerns. During late 2019, a new SARS virus, SARS-CoV-2, has led to 
the most severe pandemic of the 21st century3. Since then, an enormous amount of effort 
has been devoted to dissecting the SARS-CoV-2 infection cycle. SARS-CoV-2 infection is 
initiated upon having its Spike protein interacting with the host Angiotensin Converting 2 
(ACE2) enzyme4. The widespread infection of SARS-CoV-2 has been linked to higher binding 
affinity of Spike to ACE25. Alpha, beta, gamma, eta, iota, kappa, lambda, mu, omicron 
variants have shown to have at least one mutation across Spike-ACE2 interface6. This 
realization has placed the characterization of interfacial Spike-ACE2 mutations at the center 

of COVID-19-related research. Within this context, in 2020, two deep mutational scanning 
(DMS) studies explored how Spike/ACE2 variants impact Spike-ACE2 interactions7,8. In these 
DMS studies, the residues on the Receptor Binding Domain (RBD) of Spike and the catalytic 
domain of human ACE2 were mutated to the other 19 amino acid possibilities, followed by 
tracing of the new RBD-ACE2 binding profiles. 

In addition to these experimental efforts, several in silico studies investigate the 
impact of the variation on RBD-ACE2 interface (Table 1). As an example, Laurini et al. 
performed molecular mechanics/Poisson−Boltzmann surface area, computational alanine 
scanning mutagenesis, and interaction entropy calculations to find the critical RBD-ACE2 
interactions9. As a result, they propose several hot spot residues on RBD and ACE2, where 
Q498F/H/W/Y on RBD and K31F/W/Y, Y41R on ACE2 are reported as affinity enhancers in 
the DMS sets. In parallel, Blanco et al. used FoldX with the inclusion of water molecules 
(FoldXwater) to trace the binding enhancing RBD and ACE2 mutations10. From their 
predictions, in the DMS sets, Q493F/L/M/Y, Q498F/Y, N501T, and V503R RBD mutations 
come up as affinity enhancing. On the ACE2 side, Rodrigues et al. investigated the impact of 
ACE2 orthologs on their RBD binding with HADDOCK, where they propose affinity improving 
ACE2 mutations11. Among these, D30E and A387E are profiled as affinity enhancing in the 
ACE2 DMS set. Complementary to this study, Sorokina et al. performed computational 
alanine scanning on ACE2 with HADDOCK12. Here, N49A, R393A, and P389A are classified as 
binding enriching in the ACE2 DMS set. Finally, Gheeraert et al. performed molecular 
dynamics simulations of five RBD variants (alpha, beta, gamma, delta, and epsilon) in 
complex with ACE213. They find that mutations on the delta variant cause drastic changes 
across the RBD and ACE2 interface. These mutations are also classified as binding enriching 
in the RBD DMS dataset.  

Table 1. Important RBD and ACE2 variants/hotspots according to the recent in silico studies. The 

predictions overlapping with the RBD and ACE2 DMS sets are underlined and highlighted in bold. 

Work carried out 

by 

Important RBD 

residues/mutations 

Important ACE2 residues/ 

mutations 

Laurini et al.
9
 Q498, T500, R403 D38, K31, E37, K353, Y41 
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Blanco et al.
10

 

V445M/R/W, Q493F/L/M/Y, 

Q498F/L/M/Y, T500K, 

N501A/C/L/S/T, V503R/W/Y 

G326E 

Rodrigues et al.
11

  
Q24E, D30E, H34Y, L79H, 

A387E 

Sorokina et al.
12

  
N49A, R393A, M383A, 

P389A, G354A 

Gheeraert et al.
13 L452R, T478K   

The prediction mismatches outlined in Table 1 portrays a certain level of 
misprediction for each prediction method, calling for a proper benchmarking of the variant-
based affinity predictions. Expanding on this call, we benchmark four widely used structure-

based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe) and two naïve 
predictors (HADDOCK, UEP) on the variant Spike-ACE2 DMS sets14–20. Among these tools, 
FoldX and EvoEF1 use inter- and intra-molecular energies derived from empirical force field 
terms. Mutabind and SSPIe utilize FoldX and EvoEF1, respectively, to model the mutations 
that are scored with extra evolutionary-related terms. HADDOCK uses intermolecular van 
der Waals, electrostatics, and empirical desolvation terms, while UEP is based on 
statistically determined intermolecular contact potentials. As an outcome of our 
benchmarking efforts, we present the grounds of each method’s success/failure. To further 
aid the improvement of the field, all our benchmarking files are deposited at 
https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the visualization option at 
https://rbd-ace2-mutbench.github.io/ 12.
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RESULTS and DISCUSSION 

Most of the enriching mutations tends to decrease the polarity of the interface 

In ACE2 and RBD DMS sets, less than 15% of the mutations are located at the RBD-

ACE2 interface
7,8

. From these interfacial mutations, we selected an equal number of 

enriching and depleting mutations to create an unbiased experimental set. As a result, we 

isolated 84 RBD (42 enriching, 42 depleting) and 179 ACE2 mutations (89 enriching, 90 

depleting cases) (Figure 1, Table S1). In our final set, the most frequently appearing 

enriching mutation positions on RBD emanate from (in the decreasing frequency order) 

Q493, S477, F490, N501, V503, E484, Q498. Among these, Q493R, S477N, E484A are 

observed in omicron; E484K in beta, gamma, eta, iota, mu; E484Q in kappa; F490S in 

lambda, and N501Y in alpha, beta, gamma, mu, omicron variants
6
. On the ACE2 surface, the 

top enriching mutations come from T27, Q42, S19, and L79 positions (Figure 1A, Figure S1). 

All these residues, except S19, are reported as species-associated variations
21

. While 

appearing less frequently as binding enhancers, K31, E35, M82, and Y83 are earlier listed as 

critical residues for RBD-ACE2 interactions (Figure 1A, Figure S1)
9,10,22

. On the RBD and ACE2 

surfaces, most of the enriching mutation positions come from polar residues, where the 

most impactful changes are observed for polar to non-polar mutations, especially for Q493 

on RBD and T27, Q42 on ACE2 (Figure S2).   

 

 

Figure 1. (A) The experimental enrichment and depletion binding rates on the RBD (left) and ACE2 

(right). The values > 0 correspond to enhancing positions (light orange), where the values <0 are the 
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depleting ones (dark purple). The top enriching positions are highlighted in orange. (B) The 

interactions between SARS-CoV-2 RBD (yellow) and ACE2 catalytic domain (blue) (pdb id: 6M0J
20

, 

in cartoon illustrated with PyMOL23. The interface residues investigated in this study are shown in 

spheres and colored according to the color scale given in panel A. 
 
Predicting enriching mutations are more difficult than depleting ones 

Here, we benchmark the prediction capacity of four widely used structure-based 
binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe) and two naïve predictors 
(HADDOCK, UEP) on the variant Spike-ACE2 DMS sets14–20 (Table S1, Figure 2A, Figure S3, 
Supplementary Text). On the DMS set, the overall success rates of predictors vary between 
54% and 64%, where the top-ranking predictor is FoldX (Figure 2A). Surprisingly, FoldXwater 
ranks the second, implying that the inclusion of water effects does not improve the 
prediction accuracy. When we score the lowest ranking predictor, HADDOCK’s models with 
FoldX, HADDOCK’s success rate increases by 5% (from 54% from 59%) (Figure S4A).  
 

 
Figure 2. (A) The success rates on the curated DMS set. The naïve predictor HADDOCK success rates 

are shown in gray. The significantly low prediction rates are highlighted in bold. (B) Success rates of 

predictors are calculated by using highly packed residues only. If the success rate changes 

drastically according to overall dataset (left), it is represented in bold. The naïve predictors 

(HADDOCK and UEP) are highlighted in gray. The plots are prepared by using 24–27. 

 
Seventy mutations are successfully predicted by all approaches (26.6% of all cases, 

composed of 31 enriching and 39 depleting cases (Table S3)). The approaches fail to classify 
33 cases correctly (12.5% of the overall dataset), where most of them are enriching 
mutations (Figure 2A).  When we analyze ACE2 and RBD subsets individually, better 
prediction rates for depleting mutations are consistently observed, highlighting that this 
outcome is independent of the depletion value ranges. Strikingly, MutaBind2 and SSIPe 
predicts most mutations as depleting, hinting at a problem in using evolutionary-based 
terms in scoring an host pathogen interaction like RBD-ACE2.  

For benchmarking UEP, we use a subset of curated DMS set, as UEP can calculate the 
binding affinity changes of highly packed residues only (50% cases) (Table S2, Figure 2B). On 
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the UEP subset, the overall prediction performances vary within a broader range, i.e., 49%-
69% (Figure 2B), where again the top two predictors become FoldX and FoldXwater (69% vs. 
66%). The naïve predictors are the lowest ranking ones with 52% and 49% success rates for 
UEP and HADDOCK, respectively (Figure 2B). Even so, we see that all the predictors perform 
worse than the naïve predictor UEP for the ACE2 enrichment category. So, predicting 
packed enriching ACE2 mutations turns out to be a major challenge (Figure 2B).  

 

The volume and hydrophobicity changes impact the prediction accuracy 

To explore the prediction dependency on the type of mutations, we assess the 
prediction accuracies according to Van der Waals volume, hydrophobicity, flexibility, and 
physicochemical changes (Table S4, see Materials & Methods, Figure 3). As a result, we 
observe that HADDOCK has a volume bias, as it classifies most of the volume-increasing 
mutations as affinity enhancing (Figure 3A). We also discover that FoldX has a 
hydrophobicity bias, as it accurately predicts enriching mutations when the mutation leads 
to a decrease in the hydrophobicity (Figure 3A). Interestingly, we do not observe any bias 
toward flexibility and physicochemical changes (Figures 3C-D and S4B). 

To quantify these biases, we calculated the difference between success rates of 
depleting and enhancing mutations (∆Success, Figure S4B). ∆Success varies between -100 
and 100, where 0 means no bias and 100 and -100 mean extreme biases. Since MutaBind2 
and SSIPe predict almost all mutations as depleting, their ∆Success is extremely skewed for 
all metrics. According to this metric as well, FoldX and HADDOCK show moderate biases for 
hydrophobicity and volume changes with 34 and -31 ∆Success scores. Normalizing 
HADDOCK scores by buried surface area (BSA) of the interface does not alleviate this 
dependency, instead it introduces a strong enrichment bias (Figure S4A). When HADDOCK 
models are scored with FoldX, a moderate flexibility bias with -30 ∆Success score is 

observed.  
When we study the similarities/differences of generated mutant models by 

calculating the all-atom Root Mean Square Deviations (RMSDs), we reveal that HADDOCK 
generates the most distinctive models compared to the others (Figure S5). Further work is 
needed to understand the dependency of HADDOCK’s performance on the mutation 
modeling. Since SSIPe utilizes EvoEF1 to structurally model the mutations, EvoEF1 and SSIPe 
mutant models come out identical. MutaBind2 utilizes FoldX to generate the structural 
variation. However, as MutaBind2 employs further minimization on the mutant model 

generated, their models diverge from each other.  
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Figure 3. The effects of change in physical properties of amino acids upon a mutation on the 

success rate of predictors. (A) Volume change, (B) hydrophobicity change, (C) flexibility change, (D) 

physicochemical change in amino acids upon point mutations are depicted for the experimental 

dataset (gray), EvoEF1 (green), FoldX (yellow), MutaBind2 (red), HADDOCK (blue), FoldXwater 

(orange) and SSIP (purple). Dark and light colors represent depleting and enriching cases, 

respectively. 
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CONCLUSION 

We present the first study benchmarking the commonly used structure-based 
binding affinity predictors in gauging the impact of Spike-ACE2 variations. As a result, we 
show that FoldX is the best performing method with moderate accuracy (64%). We also 
demonstrate that all predictors have difficulties in predicting binding-enhancing mutations. 
Some methods have biases towards mutations with increasing/decreasing 
hydrophobicity/volume. These imply that we should use these methods cautiously for 
drawing general conclusions in the absence of experimental data. However, we should also 
keep in mind that the DMS set we used contains a certain noise level that could not be 
reflected in our accuracy calculations. For this, further DMS-based benchmarking studies 
should be carried out. Finally, we hope that our work will aid the computational community 

for being prepared not only for combatting SARS-CoV-2-related health concerns, as well as 
other related infectious diseases. 
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MATERIALS and METHODS 

Benchmark compilation 

For benchmarking, we use deep mutational scanning coupled with interaction 
profiling data sets for Spike-RBD8 and human ACE27. In these sets, 201 residues of Spike-
RBD and 117 residues of human ACE2 are mutated into other 19 amino acid possibilities. 
The RBD-ACE2 interface positions are calculated over 6m0j22 with PDBePISA29(Figure 1B): 
 
Twenty-six interfacial Spike-RBD positions: R403, K417, V445, G446, Y449, Y453, L455, F456, 

Y473, A475, G476, S477, Q484, G485, F486, N487, Y489, F490, Q493, G496, Q498, T500, 

N501, G502, V503, and Y505. 

Twenty-six interfacial ACE2 positions: S19, Q24, T27, F28, D30, K31, H34, E35, E37, D38, Y41, 

Q42, L45, L79, M82, Y83, T324, Q325, G326, N330, K353, G354, D355, R357, A386, R393.  

 
Since most of the depleting cases are close to the neutral point, we selected half of 

the depleted interactions among the highly depleting ones, whereas the other half was 
randomly selected (by using the default_rng function of the NumPy package, with 
seed=123). The heatmaps in Figure 1A are generated with pandas, Numpy and Seaborn 
libraries of Python 3.830–35. All the selected mutations show high expression rates.  

Performance Evaluation 

The predictions are evaluated from the perspectives of volume, hydrophobicity, 
flexibility, and physicochemical property change upon mutation (∆Propertychange = 
Propertymutation - Propertywildtype, Table S4). Volume change is the Van der Waals (vdW) 
volume change36. Amino acid hydrophobicities are taken from Eisenberg et al.

37. To 
measure flexibility change, we use the flexibility scale presented by Shapovalov & 
Dunbrack38. The physicochemical properties are considered as: polar amino acids - N, Q, S, 
T, Y; non-polar amino acids - A, G, I, L, M, F, P, W, V, C; charged amino acids - H, E, D, R, K. 
Success rate and metric evaluations are performed in Python 3.8.5 with Pandas, Numpy, 
seaborn, and Matplotlib libraries 30–35. For each category, the percentage of successfully 
predicted cases are calculated by [Success rate = Correct-Predictions/All-Predictions*100].  
 

DATA AVAILABILITY 

All results including the codes and notebooks are deposited in Github 
(https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench) and the models and the scores 
can be visualized at https://rbd-ace2-mutbench.github.io/ .  
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Supplementary Data are submitted with the manuscript. 
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