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Abstract 14 

The prognosis for pancreatic ductal adenocarcinoma (PDAC) patients has not significantly improved in the past 3 15 

decades, highlighting the need for more effective treatment approaches. Poor patient outcomes and lack of response 16 

to therapy can be attributed, in part, to the dense, fibrotic nature of PDAC tumours, which impedes the uptake of 17 

systemically administered drugs. Wet-spun alginate fibres loaded with the chemotherapeutic agent gemcitabine have 18 

been developed as a potential tool for overcoming the physical and biological barriers presented by the PDAC tumour 19 

microenvironment and deliver high concentrations of drug to the tumour directly over an extended period of time. 20 

While exciting, the practicality, safety, and effectiveness of these devices in a clinical setting requires further 21 

investigation. Furthermore, an in-depth assessment of the drug-release rate from these devices needs to be undertaken 22 

to determine whether an optimal release profile exists. Using a hybrid computational model (agent-based model and 23 

partial differential equation system), we developed a simulation of pancreatic tumour growth and response to treatment 24 

with gemcitabine loaded alginate fibres. The model was calibrated using in vitro and in vivo data and simulated using 25 

a finite volume method discretization. We then used the model to compare different intratumoural implantation 26 

protocols and gemcitabine-release rates. In our model, the primary driver of pancreatic tumour growth was the rate of 27 

tumour cell division and degree of extracellular matrix deposition. We were able to demonstrate that intratumoural 28 

placement of gemcitabine loaded fibres was more effective than peritumoural placement. Additionally, we found that 29 

an exponential gemcitabine release rate would improve the tumour response to fibres placed peritumourally. 30 

Altogether, the model developed here is a tool that can be used to investigate other drug delivery devices to improve 31 

the arsenal of treatments available for PDAC and other difficult-to-treat cancers in the future. 32 

Author Summary 33 

Pancreatic cancer has a dismal prognosis with a median survival of 3-5 months for untreated disease. The treatment 34 

of pancreatic cancer is challenging due to the dense nature of pancreatic tumours which impedes retention of drug at 35 
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the tumour site. As such, systemic administration of chemotherapies, such as gemcitabine, has a limited efficacy. To 36 

overcome this, sustained-release devices have been proposed. These devices are injected locally and release drug 37 

slowly over time, providing a concentrated local, sustained drug concentration. To investigate the possible efficacy of 38 

these devices, we developed a mathematical model that would allow us to probe treatment perturbations in silico. We 39 

modelled the individual cancer cells and their growth and death from gemcitabine loaded into the sustained delivery 40 

devices. Our platform allows future investigations for these devices to be run in silico so that we may better understand 41 

the forms of the drug release-profile that are necessary for optimal treatment.  42 

Introduction 43 

Inoperable pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median survival of 3−5 months 44 

for untreated disease [1]. Treatment of PDAC with the chemotherapeutic agent gemcitabine can achieve clinical 45 

benefit and symptom improvement in 20−30% of patients [1, 2], although PDAC is still regarded as a chemotherapy-46 

resistant tumour [3, 4]. Gemcitabine is designed to target and kill cancer cells by incorporating into the DNA strand 47 

of a PDAC cell allowing only one deoxynucleotide to be incorporated, which prevents strand elongation [5, 6], 48 

resulting in cell cycle arrest and subsequent cell death [7, 8]. Despite gemcitabine being established as a standard 49 

treatment for advanced PDAC over 20 years, most subsequent large phase III studies have not shown significantly 50 

improved survival benefit [9]. Overall prognosis for PDAC has seen little improvement in the last 3 decades, largely 51 

due to drug resistance and poor intratumoural drug accumulation.  52 

 The majority of chemotherapeutics, gemcitabine included, are administered systemically via bolus or 53 

infusion intravenous administration. This often results in significant systemic toxicity, with only a fraction of the 54 

injected dose reaching the tumour. As such, there has been a growing interest in the development of localized targeted 55 

delivery systems which can modify the bio-distribution of drugs and achieve local drug accumulation in the tumour 56 

tissue [10–12] (Figure 1). For example, drug-eluting polymeric implants are designed to deliver high concentrations 57 

of chemotherapeutic drugs directly at the tumour site, overcoming transport and tissues barriers as well as limiting 58 

off-target toxicities [13]. Biodegradable implants, can be designed to provide sustained drug release over weeks or 59 

months, avoiding repeated external drug dosing, clinic visits and other surgical interventions. The characteristics of 60 

these devices make local delivery especially attractive for chemotherapeutics with a narrow therapeutic window or 61 

short in vivo half-life [14], such as gemcitabine.  62 

Drug-loaded polymeric fibres can be prepared by various cross-linking methods and allow for drug molecules 63 

to be released in a controlled manner depending on the cross-linking type and methods [15]. Previously, Wade et al. 64 

[14] showed that wet-spun gemcitabine-loaded alginate fibres inhibited ex vivo PDAC spheroid growth and reduced 65 

PDAC cell viability compared to gemcitabine delivered as a free drug. In a subsequent study, Wade et al. [13, 16] 66 

showed that a coaxial fibre formulation, in which the alginate was encased by a polycaprolactone (PCL) shell 67 

demonstrated significant in vivo antitumour efficacy; however, it is not possible to conclude experimentally whether 68 

an alternative release-profile of gemcitabine may be more effective. Fortunately, computational and mathematical 69 

modelling is well situated as a predictive tool for quantifying the efficacy of alternative drug release profiles and drug 70 

administration patterns.  71 
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 72 
Figure 1 Motivation for sustained-delivery implants for treatment of PDAC. Sustained-delivery implants are a promising treatment 73 

methodology over conventional single free-drug intravenous or intrantumoural injections. A hypothetical comparison of drug concentrations at 74 

the tumour site under these two protocols is pictured. Systemic injections of anti-cancer drugs often result in a rapid decrease of drug 75 

concentration at the tumour site. In comparison, sustained-release mechanisms deliver drug over a prolonged period resulting in a durable 76 

drug presence at the tumour site. Created using biorender.com. 77 

 78 

 Mathematical models have been used to help understand formation and treatment of a range of different 79 

cancers for some time now [17–20]. In particular, agent-based models (ABM) have been used extensively in cancer 80 

modelling as they allow for the consideration of spatial and phenotypic heterogeneity [21–27] which are known to be 81 

major drivers of variations in treatment outcomes. In ABMs, the likelihood of events, such as cell proliferation, 82 

movement, death or mutation are modelled as probabilities, allowing the simulation to evolve stochastically in time. 83 

Phillips et al. [28] presented a hybrid mathematical approach that characterized vascular changes during tumour 84 

growth via an ABM, with treatment, nutrient, and VEGF changes captured through a continuum model. Insights on 85 

therapeutic failure in immunotherapy have also been provided through an ABM software known as PhysiCell [29, 86 

30]. Oncolytic virotherapy has also been the focus of numerous ABMs [31–35], with an ABM of virotherapy 87 

demonstrating that the parameter range leading to tumour eradication is small and hard to achieve in 3D. There have 88 

been ABMs developed that specifically focus on pancreatic cancer growth [36, 37]; however, an ABM describing 89 

pancreatic cancer growth and treatment with a degradable polymer implant has not yet been developed.  90 

For some time, mathematical models of degradable drug delivery mechanisms have been used to assist in the 91 

understanding of polymer degradation, hydrolosis kinetics and the subsequent effect of drug release on the applied 92 

system [10, 38–45]. Using mass-balance kinetic equations, McGinty et al. [42] investigated the extent to which 93 

variable porosity drug-eluting coatings can provide better control over drug release using transport diffusion equations. 94 

Their results indicate that the contrast in properties of two layers can be used as a means of better controlling the 95 

release, and that the quantity of drug delivered in early stages can be modulated by varying the initial drug distribution. 96 
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More recently, Spiridonova et al. [46] fitted drug release from polymer microparticles and investigated the effect of 97 

size distribution on diffusional drug release from sustained-delivery systems using a system of partial differential 98 

equations (PDEs). Whilst useful for capturing the drug delivery mechanism, most models of drug-loaded polymers 99 

such as these have not examined the influence of changes to drug release profiles on antitumour efficacy or how 100 

intratumoural stochasticity impacts drug delivery.  101 

In this work, we have developed a hybrid mathematical and computational model of PDAC tumour growth 102 

and death from treatment with gemcitabine released from a polymeric fibre. We extended a previously published ABM 103 

known as a Voronoi cell-based model (VCBM) [32] to model tumour cell growth and death and coupled this with a 104 

PDE model for gemcitabine release from polymeric implants. In vitro drug release curves were used to optimise the 105 

PDE formulation describing how gemcitabine is released from fibres. A numerical simulation was then used to 106 

initialise the parameters in the ABM using in vivo control PDAC tumour growth measurements. The potential impact 107 

of these fibres on tumour growth and cell death was then investigated with the VCBM-PDE model and improvements 108 

on drug release kinetics and fibre placement were suggested. The model was developed as a tool that can be applied 109 

to interrogate other cancer therapies using polymeric implants with the goal to improve treatment response for PDAC 110 

patients. 111 

Experimental methods 112 

Fibre fabrication and characterisation  113 

Full details for the fabrication and characterisation of alginate fibres loaded with our without gemcitabine are 114 

described in  Wade et al. [13, 14]. Briefly, gemcitabine-loaded alginate fibres had a uniform surface area from 50 −115 

120 μm in diameter. Fibres displayed different drug release profiles depending on the concentration of polymer 116 

used. Fibre diameter also varied depending on the materials used [14].  117 

 118 

Fibre gemcitabine release kinetics 119 

Full details for the experiments measuring gemcitabine release can be found in Wade et al. [14] with brief details here. 120 

Gemcitabine-loaded fibres were added to 2mL of simulated body fluid (SBF), Ph 7.4 and incubated at 37°C. At various 121 

time points (10, 30, 60, 90 min hourly for 10h and then daily for 3 weeks), buffer solution (200μL) was removed for 122 

analysis of gemcitabine release and replaced with fresh SBF. The amount of drug released from alignate fibres was 123 

determined using high performance liquid chromatography (HPLC). The amount of gemcitabine released (μg) was 124 

calculated by interpolating AUC values from the standard curve using Empower Pro V2 (Waters) software.  125 

 126 

Implant toxicity in vitro 127 

Gemcitabine loaded fibres were tested for their cytotoxicity against human pancreatic cancer cells (Mia-PaCa-2) cells 128 

over 72h. Cells were incubated with 0.5 cm lengths of gemcitabine loaded or non-drug loaded fibre formulation before 129 

an endpoint MTS cell viability assay was performed. Results are displayed as a percentage of an untreated control. 130 

Experiments were performed in triplicate. Full details for the toxicity experiments can be found in Wade et al. [13].   131 

 132 
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In vivo Mia-PaCa-2 cell growth 133 

Animals were subcutaneously inoculated with 100μL suspension of 1 × 106 Mia-PaCa-2 cells in PBS. Tumour 134 

volume measurements began when tumours reached a volume of 200 𝑚𝑚3 using  135 

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑤𝑖𝑑𝑡ℎ ×
𝑙𝑒𝑛𝑔𝑡ℎ2

2
 136 

where 𝑤 is the longest tumour measurement and 𝑙 is the tumour measurement along a perpendicular axis. Tumour 137 

volume was measured daily for a duration of approximately 33 days. Full details for this experiment can be found in 138 

Wade et al. [13]. All animal experiments were conducted in accordance with the NHMRC Australian Code for the 139 

Care and Use of Animals for Scientific Purposes, which requires 3R compliance (replacement, reduction, and 140 

refinement) at all stages of animal care and use, and the approval of the Animal Ethics Committee of the University 141 

of Wollongong (Australia) under protocol AE18/13. 142 

 143 

Mathematical methods 144 

The model developed for the release of gemcitabine from alginate fibres and the impact on a growing PDAC tumour 145 

was formulated in two parts. The first describes the PDE describing the concentration of gemcitabine in the tumour 146 

microenvironment (TME) and surrounding tissue over time. The second describes the VCBM [32] that captures the 147 

way tumour cells proliferate, move and undergo apoptosis from gemcitabine. All parameters introduced for the model 148 

are summarised in Table S1-S5 in the Supplementary Tables and Figures and a schematic for the model is in  149 

Figure 2. 150 

Model of gemcitabine  151 

To capture the concentration of gemcitabine in the tumour microenvironment, we first considered a 2D rectangular 152 

domain with boundary 𝐵 (Figure TS1). Inside this domain, is implanted a gemcitabine drug-loaded fibre which is 153 

represented by a vertical line source (Figure TS2A and Figure 2A). Gemcitabine diffuses from the line source at 154 

some time-dependent rate that decreases as the polymeric fibre degradation slows. The gemcitabine concentration in 155 

the domain is diffusing and decaying. PDAC cells in the domain are also taking up gemcitabine, removing it from the 156 

concentration in the domain. Inside the fibre, we model the diffusion of drug as radially symmetric (Figure 2B). 157 

We denote the concentration of drug in the TME at position (𝑥, 𝑦) by 𝐶(𝑥, 𝑦, 𝑡) and model this concentration 158 

by 159 

 160 

 𝜕𝐶

𝜕𝑡
= 𝐷∇2𝐶 − 𝜆𝐶 − ∑ 𝛿(𝑥 − 𝑥𝑘)𝛿(𝑦 − 𝑦𝑘)𝑣𝐶𝑊𝑘𝐶

cells 𝑘

+ 𝛿(𝑥 − 𝑥𝐹)J(𝑦, 𝑡), 
(1) 

where 𝐷 is the diffusion coefficient in the TME, and 𝜆 is the decay rate of the drug. To model cancer cells taking up 161 

gemcitabine, we used 𝛿(𝑥) which is the Dirac delta function in one-dimension, where (𝑥𝑘 , 𝑦𝑘) is the 𝑘th cancer cell’s 162 

Voronoi centre position in the domain (Figure S1), and 𝑊𝑘 is the cell’s volume. Pancreatic cancer cells take up drug 163 

in the domain at a rate 𝜈𝑐 . Cell uptake was modelled by point sinks analogous to that in PhysiCell and BioFVM [30, 164 

47], where cells are considered discrete “point masses” in the domain that take up drug from a single rectangular 165 

diffusion decay cell uptake fibre release 
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discretized voxel weighted by the local concentration of drug. We then used a line source at 𝑥 = 𝑥𝐹 , 𝑦0 ≤ 𝑦 ≤ 𝑦0 +166 

𝐿 to model the release of gemcitabine from the polymeric fibre, where 𝑦0 is the location of the bottom of the fibre and 167 

𝐿 is the fibre length (Figure TS1). This line source was represented by a Dirac delta function in one-dimension and 168 

the drug diffuses from the line source with flux J(𝑦, 𝑡). 169 

To derive the flux of drug from the line source, we first assumed that the release of drug from the fibre would 170 

be time dependent. As such, we chose to explicitly model a concentration of drug diffusing inside the fibre. We denote 171 

the concentration of gemcitabine at radial position 𝑟 and location (𝑥𝐹 , 𝑦) by 𝐹(𝑟, 𝑦, 𝑡) (Figure TS2 and Figure 2A). 172 

We model the diffusion and movement of drug inside the fibre assuming radial symmetry. We assumed that diffusion 173 

in the radial direction is significantly faster than along the fibre since the radius of the fibre 𝑟𝑡𝑜𝑡𝑎𝑙 is significantly less 174 

than the length of the fibre 𝐿 (Figure TS1 and Figure TS2). This gives 175 

 𝜕𝐹

𝜕𝑡
= 𝐷𝐹(𝑡)

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝐹

𝜕𝑟
), 

(2) 

where 𝐷𝐹(𝑡) is the time-dependent diffusion of drug inside the fibre. We imposed the continuity condition 176 

 𝐹(𝑟𝑡𝑜𝑡𝑎𝑙 , 𝑦, 𝑡) = 𝐶(𝑥𝐹 , 𝑦, 𝑡), (3) 

so that the diffusion of drug out of the fibre at the line source will depend on the location (𝑥𝐹 , 𝑦) and local exterior 177 

concentration. The flux out of the line source J(𝑦, 𝑡) in Eq. (1) can then be approximated from the release of drug 178 

across the boundary of the fibre: 179 

 

J(𝑦, 𝑡) =  {−
2𝜋𝑟𝑡𝑜𝑡𝑎𝑙

ℎ
𝐷𝐹(𝑡)

𝜕𝐹

𝜕𝑟
(𝑟𝑡𝑜𝑡𝑎𝑙 , 𝑦, 𝑡) 𝑦0 ≤ 𝑦 ≤ 𝑦0 + 𝐿

0                              𝑦 < 𝑦0,     𝑦 > 𝑦0 + 𝐿
. 

 

(4) 

This term is derived by converting the flux out of the radial fibre into the flux represented by the line source in Eq. 180 

(1) and converting to a concentration per surface area where ℎ is the depth of the rectangular region (presumed thing, 181 

see Figure TS1). Both Eq. (3) and Eq. (4) are necessary boundary conditions for Eq. (1) and Eq. (2). In this way, we 182 

assume the concentration is continuous and the flux of the fibre is equal to the flux into the TME, equivalent to a 183 

conservation of mass.  184 

The diffusivity of the drug, 𝐷𝐹(𝑡), is modeled by the function 185 

  
𝐷𝐹(𝑡) =

𝑘

𝑡 + 𝜖
+ 𝐷𝑐𝑜𝑛𝑠𝑡 , 

(5) 

 

where 𝑘 controls the decay rate to the constant decay rate from the fibre (i.e. how quickly the fibre swells), 𝐷𝑐𝑜𝑛𝑠𝑡 is 186 

the constant decay rate from the fibre and 𝜖 is a tuning constant to provide a finite initial diffusion coefficient, i.e. 187 

𝐷𝐹(0) = 𝑘/𝜖 + 𝐷𝑐𝑜𝑛𝑠𝑡. We expect 𝐷𝐹(0) to be initially large (>1) since the polymeric fibre is hydrophilic and drug 188 

would immediately diffuse out of the fibre. In addition, some drug is never properly loaded into the fibre and can be 189 

released instantaneously. The formalism in Eq. (5) was broadly chosen to capture the rapid decline in release as the 190 

polymeric fibre degrades. It is possible to model the breakdown of the drug release mechanisms to include device 191 

swelling and degradation and for examples of this see [46, 48–50].  192 

No-flux boundary conditions on 𝐵, the exterior of the TME, are imposed: 193 

𝜕𝐶

𝜕�⃗� 
= 0 194 
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 195 
 196 
Figure 2 The main components of the VCBM-PDE model. (A) The concentration of drug in the TME was modelled in a 2D domain bounded 197 

by 𝐵, where 𝐶(𝑥, 𝑦, 𝑡) was the concentration in the TME at position (𝑥, 𝑦). The fibre implant was then placed at a position 𝑥 = 𝑥𝐹 and modelled 198 

as a line source. To  capture the diffusion of drug from the fibre, we modelled the concentration of gemctiabine inside the fibre 𝐹(𝑟, 𝑦, 𝑡) at radial 199 

position 𝑟 and domain position 𝑦 where the continuity condition in Eq. (3) required equal concentrations at the fibre boundary and at the immedicate 200 

local microenvironment, i.e. 𝐹(𝑟𝑡𝑜𝑡𝑎𝑙, 𝑦, 𝑡) = 𝐶(𝑥𝐹, 𝑦, 𝑡). (B) The concentration of gemcitabine inside the polymeric fibres was modelled by radially 201 

symmetric difussion Eq. (2) using a finite volume method (FVM) discretisation and considering the 2D cylindrical cross section of the fibres which 202 

have length 𝐿 and radius 𝑟𝑡𝑜𝑡𝑎𝑙. The fibre was discretised into concentric annuli 𝐹𝑚,𝑗 at annulus 𝑚 andcross section 𝑗, (𝑖 = 0,1,… ,𝑀) and the 203 

concentration of drug in each annulus 𝐹𝑚,𝑗 was modelled by considering drug diffusion across the bounadaries (e.g. 𝐹𝑚−1,𝑗 and 𝐹𝑚+1,𝑗 flow into 204 

𝐹𝑚,𝑗 and vice vera). The full discretisation is presented in the Technical Supplementary Information). (C) Modelling assumptions for the VCBM 205 

were that cancer cells (pink) proliferate and some are able to cause epithelail to mesenchymal transtion and become invasive. We model this 206 
transition by assuming cells differentiate into an mesenchymal cancer cell (MCC) with one daughter cell placed on a neighbouring healthy cell. 207 

These MCCs cause the break down of surrounding tissue (i.e. replace healthy neighbouring cells with their progeny). Cancer cells can then die 208 
through gemcitabine uptake from their local environment. (D) Individual cells were modelled as cell centres connected by springs [32]. The 209 

proliferation of a cell introduced a new cell into the lattice network which caused the rearrangement of the cells in the lattice with movement 210 
governed by Hooke’s law. (E) To simulate the gemcitabine concentration in the TME, Eq. (1), we introduced a FVM discretisation, where the 211 

gemcitabine concentration was defined at discrete volumes centered around points in the discretisation. Cells could take up drug from the nearest 212 
grid point to their centre, and this concentration was used to determine their likelihood of drug-induced cell-death.  213 
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where �⃗�  is the outward unit normal on the boundary 𝐵 (Figure TS5). In the case of a fibre implantation, all drug in 214 

the domain is initially situated in the fibre: 215 

𝐹(𝑟, 𝑦, 0) =
𝐶0

𝜋𝑟𝑡𝑜𝑡𝑎𝑙
2 𝐿

,     𝐶(𝑥, 𝑦, 0) = 0, 216 

where 𝐶0 is the amount of drug in 𝜇𝑔, the denominator is the volume of the fibre and there is no drug initially in the 217 

domain 𝐵. We assume the location of the fibre is fixed in space over the course of the simulation and is not affected 218 

by cells around it. For more details on the derivation of the model see the Technical Supplementary Information. 219 

We solved Eqs. (1)-(4) numerically using a Finite Volume approximation. In particular, the diffusion of drug 220 

within the fibre, Eq. (6), was solved through discretising the cross section of a fibre into annuli (see Figure 2B and 221 

the Technical Supplementary Information). The model is solved using a finite volume method (FVM) 222 

discretization, for examples of this form of discretization in cancer growth and treatment see [51–59]. 223 

 224 

Voronoi Cell-Based Model (VCBM) of pancreatic tumour growth 225 

Agent-based models (ABMs) are primarily used to simulate heterogeneity that arises through stochasticity in cellular 226 

interactions. We present an ABM to capture the 2D formation of a pancreatic tumour in the pancreas. Our model 227 

extends a Voronoi cell-based model (VCBM) for tumour growth already published in [32]. The model describes how 228 

individual cells behave over time by considering their behaviour to be a stochastic process. It uses points as 229 

representatives of cell centres and then overlays this with a Voronoi tessellation to define individual cell boundaries. 230 

A Voronoi tessellation defines the region of space where the Euclidean distance to a point is less than the distance to 231 

any other cell centre in the lattice. Voronoi tessellations have been used to model tissue and cancer cell dynamics for 232 

some time [60–64]. Using a Voronoi tessellation for the ABM allows cell morphology to be heterogeneous and not 233 

fixed, and the morphology can change with cell movement. The model is solved on a time increment of 1hr to account 234 

for the fact that cellular interactions are slow in comparison to drug diffusion (Figure TS3). To model pancreatic 235 

tumour formation, we assumed the primary functions of pancreatic tumour cells were movement and proliferation. 236 

Below are details of the cell types, the model for cell movement and proliferation, a description of the dynamics of 237 

tumour mesenchymal cells, the model for cell death and details of how the domain changes as the tumour grows.  238 

PDAC cells can acquire mesenchymal-like phenotype properties through a process known as epithelial-239 

mesenchymal transition (EMT) [65–68]. In the EMT process, epithelial elements undergo cytoskeleton remodelling 240 

and migratory capacity acquisition due to the loss of intracellular contacts and polarity [66]. This enables the 241 

formation of mesenchymal-like cancer cells (MCCs) which have enhanced migratory capacities and invasiveness, as 242 

well as elevated resistance to apoptosis [67]. Since there is evidence that EMT plays an important role in PDAC 243 

progression [65–68], we have introduced this cell type into the model. 244 

We considered four main cell types in the model: healthy pancreatic cells, PDAC cells, MCCs and dead cells 245 

(cancer cells that have experienced drug-induced death), see Figure 2C. The initial tissue comprised of healthy cells, 246 

arranged so that the corresponding Voronoi cells form a hexagonal tessellation, analogous to other work in the 247 

literature [69, 70]. To initialise the tumour formation, we removed a healthy cell from the centre of the domain and 248 

replaced it with a pancreatic tumour cell (Figure S1, Supplementary Tables and Figures). These pancreatic tumour 249 
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cells could proliferate, die from gemcitabine, or form MCCs. Once formed, these pancreatic stem cells then move and 250 

proliferate until they die. Healthy cells are assumed to be able to move or become MCCs. 251 

Cell movement is governed by pressure-driven motility, modelled using Hooke’s law [32]. Each cell’s 252 

position is updated by calculating the effective displacement of the cell’s lattice point by the sum of the forces exerted 253 

on that cell, where force is modelled as a network of damped springs connecting a cell to its nearest neighbours 254 

(defined by a Delaunay triangulations). Consider cell 𝑘, the displacement of this point in time Δ𝑡𝑐𝑒𝑙𝑙𝑠 is given by 255 

 
𝑟 𝑘(𝑡 + Δ𝑡𝑐𝑒𝑙𝑙𝑠) = 𝑟 𝑘(𝑡) + 𝜆𝑚 ∑

𝑟 𝑘,𝑖(𝑡)

||𝑟 𝑘,𝑖(𝑡)||
(𝑠𝑘,𝑖(𝑡) − ||𝑟 𝑘,𝑖(𝑡)||) ,

∀𝑖

 
(7) 

where 𝑟 𝑘(𝑡) is the position of the 𝑘th point in the lattice at time 𝑡, 𝜆𝑚 is a damping and mobility constant, 𝑟 𝑘,𝑖 is the 256 

vector between 𝑘 and 𝑖, 𝑠𝑘,𝑖 is the spring rest length (equilibrium distance) between cell 𝑘 and 𝑖. The introduction of 257 

new cells in the lattice through proliferation introduces new spring connections and shortens or extends others, 258 

promoting the movement of cells in the environment (Figure 2D). 259 

Tumour cell proliferation was assumed to be a function of the cell’s distance, 𝑑𝑛𝑒𝑢𝑡, to the nutrient source 260 

(tumour periphery, i.e. nearest healthy cell centre, see Figure S3).  The maximum radial distance for nutrient-261 

dependent cell proliferation is 𝑑𝑚𝑎𝑥. Cells that are a further distance from the nutrients than 𝑑𝑚𝑎𝑥 enter a quiescent 262 

(non-proliferative state), forming what is commonly known as a necrotic core. The probability of a cell dividing 𝑝𝑑 in 263 

time step Δ𝑡𝑐𝑒𝑙𝑙𝑠 is given by  264 

 

𝑝𝑑 = {
𝑝0 (1 −

𝑑𝑛𝑒𝑢𝑡

𝑑𝑚𝑎𝑥

) 𝑑𝑛𝑒𝑢𝑡 ≤ 𝑑𝑚𝑎𝑥

0 𝑑𝑛𝑒𝑢𝑡 > 𝑑𝑚𝑎𝑥

,  

(8) 

where 𝑝0 is a proliferation constant derived based on the maximum rate of cell proliferation 𝑟 (i.e. 𝑝0 = 1 −265 

exp(−𝑟Δ𝑡) ≈ 𝑟Δ𝑡). The formalism in Eq. (8) is similar to what was used by Kansal et al. [71], Jiao and Tarquato [72] 266 

and Jenner et al. [32]. A cancer cell’s ability to proliferate was also based on whether there was enough local space 267 

for proliferation to occur. If a cell 𝑘 proliferates, a new lattice point 𝑙 is created and the two cells are placed at a 268 

distance 𝑠/𝑝𝑎𝑔𝑒  from the original proliferating cells position at a rotation 𝜃 ∼∈ 𝑈(0,2𝜋] (Figure 2D). To simulate the 269 

enlargement and repositioning of the daughter cells, the resting spring length of the connection between 𝑘 and 𝑙 270 

linearly increases over time from 𝑠/𝑝𝑎𝑔𝑒  to the mature resting spring length 𝑠 as was formulated in our previous work 271 

[32]. Once a cell has proliferated, it takes 𝑔𝑎𝑔𝑒 time steps before the daughter cell will try to proliferate again, 272 

accounting for G1 phase of the cell cycle where the cell transitions from mitosis M to DNA synthesis S [32]. It is well 273 

known that tumours contain highly heterogeneous populations of cells that have distinct reproductive abilities. To 274 

account for heterogeneity in the cell cycling, cells sampled the age at birth from a Poisson distribution with mean 50. 275 

 MCCs are created at the boundary of the tumour with probability 𝑝𝑀𝐶𝐶. These cells are created from tumour 276 

cells differentiation into a tumour cell and an MCC. We mode their invasive property by placing the daughter cell at 277 

the position of a neighbouring healthy cell, removing it from the domain. Through their creation, these MCCs 278 

contribute to the degradation of the healthy tissue surrounding the tumour.  279 

As in [73–76], we assumed that cancer cells die from gemcitabine contact at a rate described by the Michaelis-280 

Menten term 281 
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𝛽 = 
𝛿𝐶𝑖,𝑗

𝐶𝑖,𝑗 + 𝐼𝐶50

, 282 

where 𝛿 is the maximum death rate due to the drug, 𝐶𝑖,𝑗 is the concentration of drug at the grid position (𝑖, 𝑗) in the 283 

FVM discretization closest to the cell’s centre (Figure 2E and the Technical Supplementary Information), and 𝐼𝐶50 284 

is the concentration at which half the effect of the drug is attained. From this, the probability of an individual cell 285 

dying can be determined by assuming Prob(cell death)= 1 − exp(−𝛽Δ𝑡) ≈ 𝛽Δ𝑡. While we chose not to model 286 

explicitly the resistance to gemcitabine that cancer cells can develop [3, 4], we believe that by modelling cell death 287 

probabilistically we can capture some of the heterogeneity that may exist intratumourally. If a cell dies, then its 288 

phenotype changes to be a dead cell and and takes 𝑑𝑎𝑔𝑒  hours to disintegrate. To simulate disintegration, at each time 289 

increment the spring rest lengths of a dead cell to each of its neighbours, 𝑠𝑘,𝑖, decreases by 𝑠𝑘,𝑖/𝑑𝑎𝑔𝑒.  290 

As the tumour grows, the model domain expands. To reduce computational cost, new healthy cells are added 291 

to the domain only when a tumour cell’s radial distance from empty space is < 10𝜇𝑚 (Figure S2 Supplementary 292 

Tables and Figures).  293 

 294 

Numerical simulations and parameter estimation 295 

 296 

The VCBM-PDE model was written in C++ and simulations called through Matlab 2021b by creating a definition file 297 

for the C++ library using clibgen and build in Matlab 2021b. Code for the model at the various stages (e.g. fibre, single 298 

injections) can be found on github (https://github.com/AdrianneJennerQUT/hybrid-VCBM-of-gemcitabine-and-299 

pancreatic-cancer). Full details on all aspects of the code can be found in Code Documentation.  300 

An approximation for tumour volume was then determined from the 2D simulations using the same formula 301 

as the calibre measurements, multiplied by a scalar 𝜎: 302 

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑤𝑖𝑑𝑡ℎ2 ×
𝑙𝑒𝑛𝑔𝑡ℎ

2
× 𝜎3 303 

where  𝑤𝑖𝑑𝑡ℎ is the longest distance of a cell on the periphery from the centre and 𝑙𝑒𝑛𝑔𝑡ℎ is the distance of the farthest 304 

cell from the centre on the radial axis perpendicular to the radial axis of the longest distance (Figure S5 305 

Supplementary Tables and Figures) where 𝜎 unit length of the model is equivalent to 1 mm. This calculation choice 306 

was made to closely resemble the tumour volume calculation with calibres done in vivo. As the size of the 307 

computational domain was smaller than the size of the real tumour, the length unit was scaled by 𝜎, which scaled the 308 

unit length in the VCBM domain to a comparable mm unit measurement that reduced the computational cost. We 309 

chose 𝜎 = 0.1728.  310 

All fitting was undertaken using lsqnonlin in Matlab 2021b using pdepe and ode45 to simulate the model. 311 

Parameters in the model were fit using experimental data or estimated from the literature. To fit the parameters relating 312 

to drug release from the fibre we used the in vitro drug release experiments. We simplified the model to consider only 313 

one cross section, i.e. 𝐹𝑚,𝑗 = 𝐹𝑚, since the outside concentration of drug was independent of location in the absence 314 

of cells in the in vitro experiment.  315 
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To estimate parameters for the pancreatic cell growth kinetics, we did a large Latin Hypercube sample of the 316 

parameter space and determined parameters that resulted in a minimal least squares distance to the in vivo control 317 

tumour growth measurements. Other parameters were either fixed to previous values in the literature or estimated 318 

based on previous work. See Tables S1-S5 in Supplementary Tables and Figures for a full summary of all parameter 319 

values and relevant references.  320 

Results  321 

 322 

Calibration of drug release kinetics and drug-induced cell death to in vitro measurements 323 

Gemcitabine-loaded fibres were placed in a solution bath and the resulting cumulative concentration of gemcitabine 324 

measured (Figure 3A). To obtain a model describing the release rate of the drug from the fibre, we fitted parameters 325 

from Eq. (1)-(4) to these in vitro measurements for the release of gemcitabine from 3% alginate 15% PCL fibres [14].  326 

Fitting the release curve parameters 𝑘, 𝑑𝑐𝑜𝑛𝑠𝑡 , 𝐶0 and 𝐴𝑜𝑢𝑡 gave the fit in Figure 3B and parameter values in Table 327 

S1. Overall, the model was able to obtain the fit to the data and followed the trend which showed a rapid initial release 328 

of gemcitabine followed by a steady-state threshold. We validated the model’s predictive capability by also fitting 329 

gemcitabine release from 1% and 2% alginate fibres (Figure S4 Supplementary Tables and Figures). 330 

To assess the efficacy of the drug on inducing death in PDAC cells, cell viability studies were performed 331 

using Mia-PaCa-2 cell lines. To model these experiments, we considered a simplified deterministic and spatially 332 

independent version of our model with only live cancer cells 𝑃𝐿(𝑡), dead cancer cells 𝑃𝐷(𝑡) and a concentration of 333 

drug 𝐶(𝑡): 334 

 𝑑𝑃𝐿

𝑑𝑡
= 𝑟𝑃𝐶 −

𝛿𝐶

𝐶 + 𝐼𝐶50

𝑃𝐶 , 
(9) 

 𝑑𝑃𝐷

𝑑𝑡
=

𝛿𝐶

𝐶 + 𝐼𝐶50

𝑃𝐶 , 
(10) 

 𝑑𝐶

𝑑𝑡
= 𝜇(𝑡) − 𝜆𝐶, 

(11) 

where 𝑟 is the exponential proliferation rate of cancer cells in vitro, 𝛿 is the death rate of cancer cells by gemcitabine, 335 

𝐼𝐶50 is the drug’s half effect concentration, and 𝜆 is the decay rate of the drug (Figure 3C). To first determine the 336 

proliferation rate of pancreatic cancer cells in vitro, an exponential growth curve was fit to cell count measurements 337 

for Mia-PaCa-2 cells [77] (Figure 3D, parameter values Table S2) using simple exponential growth (i.e. setting 338 

𝐶(0) = 0 in Eq. (9)). Fixing this growth rate and the estimate for the decay rate of drug, we then determined the 339 

antitumour efficacy of gemcitabine-loaded fibres in the cell viability experiments. Cells were treated with aliquots of 340 

simulated body fluid from gemcitabine-loaded fibres that had been incubating for 24, 48 or 72 h (Figure 3E). To 341 

simulate these experiments, the model is solved piecewise such that 𝜇(𝑡) = 𝛿(𝑡 − 𝑡𝑎𝑙𝑖𝑞𝑢𝑜𝑡)𝐶(𝑡𝑎𝑙𝑖𝑞𝑢𝑜𝑡), where 𝑡𝑎𝑙𝑖𝑞𝑢𝑜𝑡  342 

are the times of the drug administrations. An approximation for the concentration of drug at each time point, 343 

𝐶(𝑡𝑎𝑙𝑖𝑞𝑢𝑜𝑡), can be determined using the calibrated PDE model for drug release from the fibres. Fitting the drug 344 

induced death rate and 𝐼𝐶50 gave a good approximation to the data (Figure 3F). The resulting parameter values from 345 

the fit of the model can be found in Table S2.  346 
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 347 

Figure 3 Calibration of model parameters to in vitro experiments. (A) Drug release profiles for gemcitabine with 3% alginate 15% PCL were 348 
measured by placing the gemcitabine-loaded alginate fibre in a solution bath and measuring the released drug concentration over time. (B) The 349 

drug concentration in the solution bath (black) was used to fit model parameters for the drug release from the fibre (green). Resulting parameters 350 
are inTable S1. (C) The drug-induced death rate of pancreatic cancer cells was determined by simplifying the full model assumptions to consider 351 

a homogeneous model for live cancer cells 𝑃𝐿(𝑡) that were proliferating and dying (become dead cells 𝑃𝐷(𝑡)) through the effect of the drug 352 

gemcitabine 𝐶(𝑡), Eqs. (9)(11). (D) Fitting an exponential growth curve to Mia-PaCa-2 cell proliferation in vitro [77] gave the growth rate of cells 353 

𝑟. Values are the mean±std. (E) To measure the efficacy of the protocol, the cell viability was determined after aliquots from drug released from 354 
gemcitabine-loaded fibre were placed in a well with proliferating Mia-PaCa-2 cells at 24, 48 and 72 hours. (F) The resulting cell viability at 72 355 

hours from the experiment depicted in (E) was used to fit the drug-induced cell death rate (Eq. 9-11). The data is plotted as a box and whisker plot. 356 
Resulting parameters for (D) and (F) are in Table S2.  357 

Calibration and sensitivity of pancreatic tumour growth 358 

The VCBM simulation of pancreatic tumour growth in the absence of treatment depicts invasive and disorganised 359 

movement of cancer cells into surrounding healthy tissue (Figure 4A). To calibrate tumour growth parameters in the 360 

model, we used an exhaustive numerical search of the parameter space using a Latin Hypercube Sampling for 361 

𝑔𝑎𝑔𝑒 , 𝑑𝑚𝑎𝑥 , 𝑝0 and 𝑝𝑀𝐶𝐶, where we were minimising the least squares of the simulation with the in vivo tumour volume 362 

of Mia-PaCa-2 cells over 33 days (Figure 4B, Table S3). To obtain an understanding of the stochasticity in our model, 363 

we fixed the parameter values obtained and we simulated the model 100 times and plotted the tumour volume over 33 364 

days. From Figure 4B, while the growth is varied at points, there are no distinct outliers or unusual tumour growth 365 

rates, and the standard deviation throughout the entire period of observation remains small. In addition, the simulations 366 

sit within the in vivo tumour growth measurements for pancreatic cancer growth. The histogram for the number of 367 

MCCs across the simulations (Figure 4C) shows only a small number of MCCs are created over the 33 days of growth, 368 

which is realistic when considering the ratio between a single cell agent in the model and a real cell in a biological 369 

tumour and which matches findings that MCCs will compose only a small subset of the tumour [78–80].  370 

To analyse the drivers of pancreatic tumour growth dynamics in our model, we conducted a detailed  371 
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 372 
Figure 4 Using the VCBM to model control tumour growth. (A) Snapshots of the model simulation at 0, 5 and 10 days with cancer cells in 373 

orange, MCCs in blue and healthy cells in grey (a zoomed in version is in Figure S6). (B) Mia-PaCa-2 tumour volume over 33 days measured in 374 
vivo in mice (black, n=4). Overlaid is the tumour volume from the VCBM simulation (pink, n=100) with parameters from Table S3. (C) MCC 375 

counts in the VCBM simulations (n=100). (D) Sensitivity analysis of control tumour growth. Maximum tumour volume over 33 days for 376 
perturbations of parameters with weights of 0.25, 0.75, 1.25, 1.75 and 2.25, and spatial plots of large and small tumours simulated using the depicted 377 

weightings. In the heatmap, each pixel represents 30 averaged simulations with two parameters. In the boxes, the parameters vertically and 378 

horizontally in the grid are the weightings in ascending order, with each pixel being a “coordinate” representing the weighting for each parameter 379 
and the result from 30 averaged tests. Diagonal pixels only use individual parameters with different weightings. 380 

sensitivity analysis. A systematic multi-parameter sensitivity analysis was performed for 𝒑 =381 

[𝑝0, 𝑝𝑀𝐶𝐶 , 𝑑𝑚𝑎𝑥 , 𝑔𝑎𝑔𝑒 , 𝑝𝑎𝑔𝑒] using weighting identified by Wells et al. [81] (Figure 4D). This sensitivity analysis can 382 

identify combinatorial influences of multiple parameters and elucidate systemic features of the model. The average 383 

tumour volume predicted by the model at day 33 for 10 simulations was recorded for each parameter set. Pairs of 384 

parameters were varied, with each cell of Figure 4D depicting the weighting applied to each parameter in 𝒑 from 385 

0.25, 0.75, 1.25, 1.75, and 2.25. This allowed for all combinations of alterations for two parameter values to be tested.  386 

The time taken for a cell to prepare for mitosis, 𝑔𝑎𝑔𝑒, has the greatest impact on final tumour volume (Figure 387 

4D). Increasing 𝑔𝑎𝑔𝑒 decreases tumour volume and conversely a decrease in 𝑔𝑎𝑔𝑒 increases the final volume. As a 388 
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result, the model predicts that if cells take longer to move through the cell cycle and undergo mitosis this will result 389 

in a smaller tumour volume. Reducing the maximum distance, a cell can be from the periphery and still proliferate, 390 

𝑑𝑚𝑎𝑥, also appears to have a decreasing effect on the final tumour volume. This is to be expected, as reducing the 391 

proliferating cell rim (through decreasing the distance from the periphery for which cells can proliferate) will reduce 392 

the number of cells available to proliferate and subsequently reduce the tumour volume. Decreasing the value of 𝑑𝑚𝑎𝑥 393 

only appears to have a significant impact on the final tumour volume when the weighting applied is ≤ 50%. In 394 

comparison with 𝑑𝑚𝑎𝑥 and 𝑔𝑎𝑔𝑒, the tumour volume is insensitive to changes in both the probability of a cell 395 

proliferating if it has reached mitosis, 𝑝0, and the probability of a new pancreatic cancer stem cell being created, 𝑝𝑀𝐶𝐶. 396 

The time taken for a cell to reach adult size (when it can proliferate), 𝑝𝑎𝑔𝑒 , similarly has a negligible impact on the 397 

tumour volume.  398 

 399 

Intratumoural implantation provide an alternate effective protocol 400 

Before quantifying the efficacy of gemcitabine-loaded fibres, we first looked to evaluate the impact of single point 401 

free-drug injections (Figure 1) of gemcitabine on the tumour volume. Simulating single point free-drug injections 402 

with the VCBM-PDE is a simplification of the full model presented in Eqs. (1)-(4) where 𝐹(𝑟, 𝑦, 𝑡) = 0. More details 403 

on this can be found in the Technical Supplementary Information. We considered free-drug injections of 404 

gemcitabine as administered along a radial axis of the tumour in either a single dose or four free-drug injections which 405 

are rotationally symmetric (Figure 5A). In the case of the four injections, the total dosage is spread across the 406 

injections so that the total amount of drug administered is conserved. Simulations of the model under the different 407 

injection protocols can be found in Figure 5B-C and Figure S7. The sensitivity of parameter values governing tumour 408 

volume were again probed, now under a single administration of gemcitabine at the centre of the tumour (Figure 5D-409 

E and Figure S8). The same trends with 𝑔𝑎𝑔𝑒 and 𝑑𝑚𝑎𝑥 were observed; however, an additional parameter, which 410 

represents the concentration the drug required to have an impact on the tumour volume, 𝐼𝐶50, was found to influence 411 

the volume under further perturbations of the parameter value (Figure 5E). As expected, a lower value of 𝐼𝐶50, which 412 

indicates that a smaller concentration of the drug is required for it to influence cancerous cells, leads to a lower tumour 413 

volume, while an increase leads to a higher tumour volume when compared to original estimate for 𝐼𝐶50. 414 

To determine the effect of injection placement on tumour volume over time, five placements of a single 415 

injection were considered at a distance 𝑑𝑚 from the centre: a central injection (𝑑𝑚 = 0), and injections 𝑑𝑚 = 0.9 mm 416 

from the centre, 𝑑𝑚 = 1.7 mm from the centre, 𝑑𝑚 = 2.5 mm from the centre and 𝑑𝑚 = 3.5 mm from the centre 417 

(Figure 5A). For each of these placements, 30 simulations were run over 33 days and both the number of tumour cells 418 

and the tumour volume over time were measured (Figure 5F). For a single injection, distance did not impact the 419 

effectiveness of the injection and the tumour volume is qualitatively similar. There was a deviation from the consistent 420 

standard deviation width for injections further from the tumour, but this can be attributed to the method used to 421 

calculate the tumour volume in terms of how it deals with tumour structures which are not part of the central mass. 422 

The tumour volume was more significantly affected by distance in the case of four injections (Figure 5F), with free-423 

drug injections further away from the centre of the tumour performing worse than those intratumoural injections. 424 

Primarily, single free-drug injections implanted peritumourally may encourage branching of external tumour  425 
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  426 

Figure 5 Impact of intratumoural free-drug point injections on tumour cell eradication. (A) Tumour growth was investigated under different 427 
gemcitabine single free-drug injections: central, 0.9 mm from centre, 1.7 mm from centre, 2.5 mm from centre, 3.5 mm from centre. Locations of 428 

injections on the tumour surface for single or four single free-drug injections is depicted schematically. (B) VCBM with a single central injection 429 

and the drug concentration at 24h. (C) The tumour volume with four injections placed 30𝜇𝑚 from the centre, and the drug concentration at each 430 

location at 6h. (D) Maximum tumour volume over 33 days for ±50% perturbations in parameter values compared to the normal value (i.e. baseline 431 

parameter values). (E) Maximum tumour volume over 33 days for different perturbations of 𝐼𝐶50  compared to the normal volume. (F) The tumour 432 
volume over 33 days with each injection protocol, averaged over 10 simulations.  433 

structures in the model, and hence increase the calculated volume as it is based on the maximum distance from the 434 

centre of the tumour to the edge. While we present an approximation for tumour volume and placement of injections 435 

in units relevant to in vivo models (i.e. mm3 and mm respectively), more work needs to be done to validate that the 436 

efficacy of treatment predicted by the model would map to the human scale.  437 

 438 

Fibre location and release kinetics are a major driver of tumour arrest or tumour growth 439 

Using the VCBM-PDE, we analysed the impact of  varying  the position of  the  fibre and the initial drug concentration 440 

on the tumour growth  dynamics  (Figure 6A). We introduced three classifications for the tumour growth dynamics: 441 

tumour eradication (i.e. a tumour volume <1mm3) tumour stabilisation, i.e. a tumour volume at day 33 less than the 442 

initial tumour size (≈ 100mm3), and tumour growth, i.e. a tumour volume on day 33 greater than the initial tumour 443 
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volume. Large concentrations of gemcitabine loaded into the fibre positioned at 𝑑𝑚 = 3.5 mm or 𝑑𝑚 = 4.3 mm from 444 

the tumour centre were unable to stabilise or eradicate the tumour, also known as tumour arrest (Figure 6B-C and 445 

Figure S10). Once the fibre was positioned closer to the tumour centre (≤ 1.7 mm) lower concentrations of drug were 446 

sufficient to result in stabilisation of the tumour growth (Figure 6B). It was only with high drug concentration and 447 

centered fibres that we saw complete tumour eradication (Figure S9). There are large variations in the response of 448 

tumour growth to the different protocols, suggesting that tumour stabilisation or arrest might be achievable for some 449 

tumours whereas others might experience tumour growth even in the presence of drug-loaded fibre.  450 

To then analyse the effects of changes to the drug release profile on the tumour growth, we investigated four 451 

different release profiles: constant release, exponential release, sigmoidal Emax/Imax release profiles [82–84] (See 452 

the Technical Supplementary Information, Section TS3). Each of these release profiles were parameterised by a 453 

release rate 𝛾 and for the Emax and Imax curves a half-effect term 𝜂. The different release profiles were tested with 454 

the fibre placed either centrally (intratumourally) (Figure 6D) or on the periphery of the tumour (peritumourally) 455 

(Figure 6E). The four different release profiles (constant, exponential, sigmoid emax, sigmoid imax) were tested with 456 

8 different release rates. For each parameter value,10 simulations were run over 33 days, with an initial amount of 500 457 

𝜇𝑔 of gemcitabine.  458 

For fibres positioned in the centre (Figure 6D), it is possible to eradicate the tumour with all release profiles 459 

considered given a small enough value of 𝛾. In comparison, none of the drug release profiles resulted in tumour 460 

eradication when positioned peripherally (Figure 6E). However, interestingly an exponential release profile with a 461 

release rate of 𝛾 =  10−4 results in the greatest decrease in tumour volume. This ideal release rate is likely because it 462 

allows the drug concentration to remain in the therapeutic range and kill newly developed pancreatic cancer cells 463 

aresting the process of cell proliferation. Comparing the drug release profiles (Figure S11), we see that the exponential 464 

release rate is similar to the sigmoid release profiles, but slightly steeper initially, suggesting that a smooth release 465 

rate with a sufficiently large initial drug release might be an optimal protocol to achieve a reduction in tumour size. 466 

 467 

Discussion 468 

 469 

PDAC is a difficult-to-treat cancer with a poor prognosis. Novel therapeutic interventions are desperately needed to 470 

improve patient survival. While chemotherapy drugs, such as gemcitabine, have shown durable efficacy for pancreatic 471 

cancer, there has been little to no improvement in patient survival in the last 30 years [85]. PDACs are notorious for 472 

a dense fibrotic stroma that is interlaced with ECM [86] and is a major cause of therapeutic resistance [87]. One way 473 

of improving drug retention at the tumour site, and by consequence increase tumour eradication and patient survival, 474 

is through sustained-delivery devices (Figure 1). Polymeric fibres loaded with gemcitabine have shown increased 475 

therapeutic efficacy over conventional treatment delivery. To further analyse the potential of these novel therapeutic 476 

implants, we have designed a hybrid Voronoi cell-based model (VCBM)-partial differential equation (PDE) model to 477 

describe pancreatic tumour formation in healthy pancreatic tissue and the resulting effect of gemcitabine on the tumour 478 

tissue when delivered locally. With this model, we considered both the impact of a single fibre implanted with varying 479 

drug release profiles and hypothesised alternative and more effective treatment protocols. 480 
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 481 
Figure 6 Comparison of different fibre release and placement options. (A) Tumour growth was investigated under different gemcitabine-loaded 482 

fibre placements 𝑑𝑚: central, 0.9 mm from centre, 1.7 mm from centre, 2.5 mm  from centre, 3.5 mm from centre and 4.3 mm from centre. Locations 483 

of fibres on tumour surface for single implantations is depicted schematically. (B) A heatmap for the averaged final state of a tumour after 33 days 484 

of simulation for different initial injection concentrations and fibre placements. “Eradicate” denotes a tumour volume below 1𝑚𝑚3, “stabilise” 485 
denotes a tumour volume less than the initial tumour volume, and “growth” denotes a tumour volume greater than the initial tumour volume. (C) 486 

The mean (solid lines) and standard deviation (shades areas) of the tumour volume over 33 days for different fibre placement options with 487 
corresponding values highlighted in (B). (D) The tumour volume on day 33 for different release rates (indicated by the gamma value) and release 488 

profiles with a central fibre placement. (E) The tumour volume on day 33 for different release rates (indicated by the gamma value) and release 489 

profiles with a fibre placed on the edge of the tumour (50𝜇𝑚 away from centre). See Section TS3 of the Technical Supplementary Information 490 

for more details on these release functions.  491 

The model was calibrated to data and with these estimates, a parameter sensitivity analysis then revealed that 492 

the fundamental driver of tumour growth in our model was the rate of cell mitosis. The idea that the cell cycling time 493 

is a fundamental part of tumour progression has been found in other mathematical models [88], suggesting that the 494 
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model’s sensitivity in terms of tumour volume is in line with other models in the literature. It is also known that 495 

molecules can modulate the cell cycle of cancer cells, changing the cancer aggressivity. For example, melatonin is a 496 

hormone known for its antitumour efficacy as it significantly increases the duration of the cell cycle of human breast 497 

cancer cells [89]. Given a heterogeneous cohort of individuals with varying degrees of tumour growth rates, our model 498 

suggests that the driver of these differences is most likely the cell cycling rate. Drugs targeting this should, therefore, 499 

be considered.  500 

 Depending on the cancer type, administering an intratumoural injection of a drug can be extremely difficult 501 

and administering treatments on the periphery can be an easier course of action. Simulating the model, we found that 502 

intratumoural administration of gemcitabine-loaded fibres significantly outperforms peritumoural administration both 503 

in terms of the number of fibres and fibre placement. However, there is a threshold distance from the tumour to achieve 504 

an effective treatment, beyond which placing fibres further into the tumour bulk sees no added benefit.  There is a 505 

clear benefit to increasing the dosage multiplicity and spreading the administered drug out amongst the tumour 506 

compared to a single high dose. Tumour volume was most significantly decreased when four free-drug point injections 507 

were administered compared to a single free-drug point injection. This proposes the existence of a potential threshold 508 

above which increasing the multiplicity of dosages or dosage size has a negligible effect over spreading out the 509 

dosages.  510 

 The location of the fibre and the total drug concentration in the fibre was a major driver of tumour eradication. 511 

For fibres located within the centre of the tumour with a significantly high drug concentration, it was possible to 512 

completely eradicate the tumour. Moving the fibre farther away from the centre, we found that there was no 513 

concentration of drug that would inhibit growth. This suggests that a large amount of drug from the implants is lost to 514 

the surrounding tissue, and this has detrimental effects on the efficacy of these devices. Fortunately, simulations show 515 

there is a minimal concentration of drug necessary for stabilisation, allowing these predictions to be used a way to 516 

guide dosage so that toxicity is minimised and efficacy is maximised.  517 

 The release of the drug from the fibre has a major effect on the resulting tumour volume. Implementing an 518 

exponential drug release profile, we were able to optimise the treatment to reduce the tumour size most significantly. 519 

This suggests that an initial high dosage of drug followed by a slow decline in the drug release may be an optimal 520 

protocol. This may be because it initiated a large amount of cell death initially, followed by a slower diffusion to reach 521 

remaining viable cells. While exciting, an exponential release profile needs to be tested experimentally both for its 522 

feasibility for the polymer release and to verify the predicted efficacy.  523 

More recently, research has been focused on combining gemcitabine with other drugs to improve its efficacy. 524 

Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) administered in combination with gemcitabine [9] is one of 525 

the standard of care treatment regimens that has shown an increase in overall survival in patients with advanced PDAC, 526 

as shown in a Phase I/II clinical trial [9]. A phase III clinical trial showed that gemcitabine and erlotibin also 527 

significantly increased overall survival in advanced PDAC patients compared to gemcitabine alone [90, 91].  528 

Due to wanting to reduce the computational complexity of the VCBM, we made some simplifying 529 

assumptions that have introduced limitations into our model. To avoid simulating excessively large numbers of cells, 530 

we have chosen to scale the spatial unit appropriately so that we simulate on the order of ~106 cells. An improvement 531 
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for this model, could be to parallelise the agent update step to increase the speed of the simulation. In addition, we 532 

consider only a 2-dimensional cross section of the tumour, which is a simplification given tumour’s grow in 3-533 

dimensional environments. We feel that since we model neighbouring tissue as having a homogenous effect on tumour 534 

growth, there would be no significant impact of extending our model to 3 dimensions. Lastly, we model cell uptake 535 

by point sink terms; however, a cell would uptake drug across its surface area through drug molecule binding and 536 

internalisation. It would be possible to model this by extending the framework from a single point uptake to a uniform 537 

uptake across a cell’s defined Voronoi cell region.  538 

There are considerable avenues for future extensions of this work, and we feel the platform we have built is 539 

easily extendable by other computational oncologists. In particular, future modelling could extend the model to 540 

account for the dense fibrotic nature of PDAC [86, 87] and investigate the impact the release and delivery of drug. In 541 

addition, the model could be used to simulate the efficacy of dual drug-loaded polymer and verify whether 542 

improvements on the current treatment protocol exist. There are many applications of degradable polymeric drug 543 

delivery systems in cancer therapy [10], for example, Rezk et al. [10] developed a pH-sensitive polymeric carrier to 544 

study the local delivery of anticancer drug bortezomib. They fitted the release profile of the drug from their carrier 545 

system to a mathematical formalism. Using our pancreatic cancer growth VCBM, it would be possible to feed in their 546 

drug release mechanism and simulate the efficacy under alternative protocols and predict the remaining tumour 547 

volume. Lastly, while we did not consider gemcitabine resistance in our model, it does occur in PDAC [3, 4]. A simple 548 

extension of the model could consider the impact of resistance on the performance of therapy like other works on 549 

resistance of chemotherapeutics using mathematical models [22, 92].  550 

 551 

Conclusion 552 

Treatment for cancers with a poor prognosis, such as PDAC, are in vital need of novel therapeutic approaches that 553 

provide sustained, heightened, localised drug concentrations. The computational platform developed in this work can 554 

recapitulate spatially heterogeneous tumour growth and treatment with the chemotherapy drug gemcitabine. 555 

Investigating the efficacy of gemcitabine released from a degradable polymeric fibre implant, we are able to suggest 556 

that a minimum dosage for maximum efficacy exists based on the location of the device within the tumour. 557 

Furthermore, certain release profiles are significantly more effective than others, suggesting that the way in which 558 

drug is released from these devices is crucial to improving patient treatment. Moving forward, a study of this form 559 

could be used to help inform experimental design and be integrated into future device development.  560 
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