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Abstract13

Surviving in an uncertain environment requires not only the ability to select the best14

action, but also the flexibility to withhold inappropriate actions when the environmen-15

tal conditions change. Although selecting and withholding actions have been extensively16

studied in both human and animals, there is still lack of consensus on the mechanism un-17

derlying these action regulation functions, and more importantly, how they inter-relate.18

A critical gap impeding progress is the lack of a computational theory that will integrate19

the mechanisms of action regulation into a unified framework. The current study aims to20

advance our understanding by developing a neurodynamical computational theory that21

models the mechanism of action regulation that involves suppressing responses, and pre-22

dicts how disruption of this mechanism can lead to motor deficits in Parkinson’s disease23
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(PD) patients. We tested the model predictions in neurotypical individuals and PD pa-24

tients in three behavioral tasks that involve free action selection between two opposed25

directions, action selection in the presence of conflicting information and abandoning an26

ongoing action when a stop signal is presented. Our results and theory suggest an inte-27

grated mechanism of action regulation that affects both action initiation and inhibition.28

When this mechanism is disrupted, motor behavior is affected, leading to longer reaction29

times and higher error rates in action inhibition.30

Author Summary31

Humans can rapidly regulate actions according to updated demands of the environment.32

A key component of action regulation is action inhibition, the failure of which contributes33

to various neuropsychiatric disorders. When faced with multiple choices, dealing with34

conflicting information, or current actions become inappropriate or unwanted, we should35

be able to pause or completely abandon actions. Despite extensive efforts to understand36

how the brain selects, pauses, and abandons actions based on environmental demands, the37

mechanisms underlying these action regulation functions and, perhaps more importantly,38

how they inter-relate remain elusive. Part of this challenge lies in the fact that these39

mechanisms were rarely explored together, making it difficult to develop a unified theory40

that explains the computational aspects of action regulation functions. The current study41

introduces a large-scale model that better characterizes the computations of action reg-42

ulation functions, how they are implemented within brain networks that involve frontal,43

motor and basal ganglia (BG) circuits, and how disruption of these circuits can lead to44

deficits in motor behavior seen in Parkinson’s disease (PD).The model was developed by45

studying the motor behavior of healthy individuals and PD patients in three motor tasks46
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that involve action inhibition. Overall, the model explains many key aspects on how47

the brain regulates actions that involve inhibitory processes, opening new avenues for48

improving and developing therapeutic interventions for diseases that may involve these49

circuits.50

1 Introduction51

Surviving in an uncertain environment requires not only the ability to accurately and52

rapidly select the best action, but also the flexibility to abandon obsolete actions when53

they are rendered unwanted or inappropriate. How actions are initiated and regulated54

is a fundamental neurobiological question that is of high impact for understanding how55

the human brain functions. A key component of action regulation is inhibiting actions,56

which when abnormal contributes to neuropsychiatric diseases, such as Parkinson’s disease57

(PD), obsessive-compulsive disorder (OCD), and others [1–5]. Action inhibition occurs in58

at least 3 ways: (a) action selection – selecting one action requires suppressing alternative59

motor plans, (b) decision conflict – choosing in the presence of conflicting information60

requires suppressing alternative actions to buy more time to make a correct decision and61

(c) outright stopping – inhibiting a response when it is rendered inappropriate.62

Over the past years, a number of studies attempted to characterize the mechanism of63

action regulation that involves action inhibition under different experimental paradigms.64

A recent cognitive theory suggests that action selection occurs through a competitive65

process between movement plans [6–10]. According to this theory, in situations affording66

more than one alternatives, animals prepare multiple actions in parallel that compete for67

selection through mutual inhibitory interactions before choosing to execute one. This68

affordance competition theory received empirical support from neurophysiological inves-69
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tigations in the sensorimotor areas of non-human primates (NHPs) showing that the70

brain encodes parallel reach, grasp and saccade plans before the animals select between71

them [11–13]. It is consistent with the continuous flow model of perception, which sug-72

gests that response preparation can begin even before the goal is fully identified and a73

decision is made [14–16]. In addition, psychophysical support for this theory comes from74

the “go-before-you-know” experiments, in which individuals had to initiate reaching or75

saccade movements towards multiple potential targets, without knowing the actual lo-76

cation of the goal [17–19]. The individuals compensate for the goal location uncertainty77

by aiming towards an intermediate location, a strategy consistent with an averaging of78

multiple competing action plans.79

Recent studies have also explored the mechanisms underlying pausing or abandon-80

ing actions using functional MRI [20, 21], local field potential (LFP) recordings [22, 23],81

electroencephalography (EEG) recordings [24,25], as well as single-unit recordings in hu-82

mans [26, 27], non-human primates (NHPs) [28, 29] and rodents [30]. The basal ganglia83

(BG), and in particular the subthalamic nucleus (STN), has been functionally implicated84

in action regulation functions, but in association with distinct frontal areas, such as the85

primary motor cortex (M1), the premotor cortex (preMC), the pre-supplementary motor86

area (preSMA) and the right inferior frontal gyrus (rIFG) [31–34]. In a sense, STN is acti-87

vated when a stop signal is detected, as well as when conflicting information is presented,88

to rapidly suppress ongoing or planned actions [35–37].89

Despite the significant contribution of these studies on understanding how the brain90

selects between competing options, deals with conflicting information, and stops planned91

or ongoing actions during decisions, the mechanisms of these action regulation functions92

and their inter-relations remain elusive. Part of this challenge lies in the fact that previ-93

ous studies rarely explore these functions together, making it difficult to develop a unified94
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and integrated theory of action regulation. The current study aims to advance our un-95

derstanding on the mechanism underlying action regulation and how disruption of this96

mechanism can lead to deficits in motor behavior exhibited in Parkinson’s disease (PD).97

To address these questions, we trained neurotypical individuals and PD patients to per-98

form three motor tasks that involve motor decision between two opposed directions, action99

selection in the presence of conflicting information and suppression of unwanted motor re-100

sponses when a stop signal is presented. To elucidate the action regulation mechanism in101

control and disease state, we modeled the tasks within a neurodynamical computational102

framework that combines dynamic field theory with stochastic optimal control theory,103

and simulates the processes underlying selection, planning, initiation and suppression of104

actions [38, 39].105

Our study presents the first unified theory on action regulation that involves response106

inhibition, providing important predictions on how the disruption of major nodes, such107

as STN, can deteriorate motor performance leading to longer reaction times in motor108

decisions and higher error rates when stopping ongoing actions. Additionally, the neu-109

rodynamical theory provides a potential explanation on why PD patients exhibit longer110

reaction times than neurotypical individuals even in the lack of competing alternatives111

or conflicting information in motor decisions. Overall, our findings shed light on how112

the brain regulates actions that involve inhibitory processes, opening new avenues for113

improving and developing therapeutic interventions for diseases that may involve these114

circuits.115
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2 Results116

2.1 Experimental paradigms117

Participants were instructed to perform reaching movements using a 2-dimensional joy-118

stick under three experimental paradigms: i) decision-making task (action selection), ii)119

Eriksen flanker task (decision conflict) and iii) stop-signal task (outright stopping) (Fig.1).120

In the decision-making task, participants had to respond to arrow stimuli presented on a121

computer screen by freely moving the joystick towards the left or right direction. Choice122

trials were interleaved with instructed trials in which all arrows pointed to the same di-123

rection. In the Eriksen flanker task, flanking arrows were presented on the screen, all124

pointing to the same direction. A target arrow was then presented to indicate the di-125

rection to move, either in the same (no conflict, congruent trials) or opposite (conflict,126

incongruent trials) direction as the flanking arrows. Finally, in the stop-signal task, the127

participants were instructed to reach towards the direction of the arrows. In a minority128

of trials, the color of the arrows turned red after a short delay, and the action had to be129

abandoned immediately.130

131

Figure 1 somewhere here132

133

2.2 Motor behavior of neurotypical individuals and PD patients134

in action regulation tasks135

We computed the reaction time (RT) for initiating an action as the time interval between136

the presentation of the target arrows on the screen and the initiation of the reaching137
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movement. We found that in the decision-making task, choice trials had longer RT than138

instructed trials in both populations (Fig. 2A) (p<0.001, two-way ANOVA). Interest-139

ingly, although the neurotypical participants responded faster than the PD patients in140

the instructed trials (p<0.001, two-way ANOVA), we found no significant difference in141

RT between the two groups in the choice trials (p=0.878, two-way ANOVA), (Fig.2A). In142

the Eriksen flanker task, both groups exhibited shorter RT in the congruent trials than143

in the incongruent trials (Fig. 2B) (p<0.001 for both neurotypical participants and PD144

patients,two-way ANOVA). However, PD patients had slower responses than neurotypical145

participants in both congruent and incongruent trials (p<0.01 for congruent trials, p<0.05146

for incongruent trials, two-way ANOVA). Regarding the stop-signal task, interestingly,147

we found that neurotypical participants had slower responses than PD patients in the go148

trials (Fig.2C) (p<0.001, two sample t-test). In particular, the neurotypical group seems149

to have strategically slowed down their responses in the go trials by 233 ms on average150

in order to be more successful in inhibiting their response in stop trials (p<0.001, two151

sample t-test on RT between instructed trials and go trials for the neurotypical popu-152

lation). On the other hand, PD patients exhibited much subtler modification of their153

response between instructed trials (decision-making task) and go trials (stop-signal task)154

- the reaction time for go trials increased only by 47 ms on average compared to instructed155

trials (p<0.001, two sample t-test), suggesting that the anticipation of the stop signal had156

smaller effect on their motor planning behavior.157

158

Figure 2 somewhere here159

160

These findings predict that PD patients will perform worse in stop trials than neu-161

rotypical participants, since a lower probability of stopping has often been associated with162
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faster responses in go trials [40–42]. To test this hypothesis, we computed the probability163

to stop an action for different stop-signal delay (SSD) values across all participants in164

each group. The results showed that the probability to successfully stop an action was165

inversely correlated with SSD, and consistent with the hypothesis, PD patients exhibited166

lower probability of stopping an action compared to neurotypical individuals (Fig.3).167

168

Figure 3 somewhere here169

170

2.3 An integrated neurodynamical theory of action regulation171

predicts motor behavior172

Our findings require a computational theory that could explain the mechanism of action173

regulation that involves inhibition and predicts how disruption of this mechanism can174

lead to motor impairments in PD patients. Building on our previous successful work in175

modeling visuomotor tasks [38, 39], we developed a neurodynamical theory to unify the176

action regulation mechanism that involves inhibition. The theory builds on the affordance177

competition hypothesis, according to which multiple actions are formed concurrently and178

compete over time until one has sufficient evidence to win the competition [6, 7, 12].179

It combines dynamic neural field (DNF) theory [43, 44] with stochastic optimal control180

theory [45, 46] and its architectural organization is illustrated in Fig.4. Each DNF field181

simulates the dynamic evolution of firing rate activity of a network of neurons over a182

continuous space with local excitation and surround inhibition. It consists of 181 neurons183

- with exception of the context signal field and the pause field - and each of them has184

a preferred direction between 0◦ and 180◦. The “spatial sensory input” field encodes185
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the angular representation of the competing actions (i.e., left vs. right movements in186

our study). The “expected outcome” field encodes the expected reward for reaching187

to a particular direction. The outputs of these two fields send excitatory projections188

(green arrows) to the “reach planning” field in a topological manner. The “reach cost”189

field encodes the effort cost required to implement an action at a given time and state.190

The reach cost field sends inhibitory projections (red arrow) to the reach planning field191

to penalize high-effort actions. For instance, an action that requires changing of moving192

direction is more “costly” than an action of keeping going in the same direction. Although193

the cost field does not have a critical role in this study, since all planning actions are194

associated with about same effort, it is required for generating reaching movements from195

the optimal control part of the model.196

We also added to the model architecture a Basal Ganglia (BG)-type mechanism for197

implementing the inhibitory process. This mechanism consists of three DNF platforms:198

(a) two context signal fields (stop and conflict) that represent information related to199

the contextual requirement of the tasks; (b) a pause field that suppresses the activity of200

the reach planning field to inhibit planned or ongoing actions. Each of the context fields201

consist of 100 neurons which project to the corresponding sub-population of the pause field202

via one-to-all excitatory connections. The stop signal field and the conflict signal field are203

activated when they detect a stop cue and conflict cue, respectively. Regarding the action204

selection function, the model does not need a context field to signal the decision task,205

since it can collect this information from the spatial sensory input field. In particular, the206

spatial sensory input field projects to the corresponding sub-population on the pause field207

with one-to-all excitatory connections. If more than one targets is encoded in the spatial208

sensory input field, the corresponding population on the pause field is triggered. Notably,209

this architecture is consistent with experimental studies which suggest dissociable frontal-210

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.04.20.488864doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488864
http://creativecommons.org/licenses/by/4.0/


10

BG circuits for different action suppression functions [34]. The pause field consists of 3211

sub-populations of 75 neurons, each of them associated with one of the action regulation212

functions (i.e., action decisions between multiple options, action selection in the presence213

of conflicting information and outright stopping of actions). Once the pause field is214

triggered, the activity of the reach planning field is suppressed to delay a decision when215

more time is needed (i.e. during action selection or decision with conflicting information),216

or to completely suppress an action when it is no longer wanted or rendered inappropriate217

(i.e., outright stopping).218

Each neuron in the reach planning field is connected with a stochastic optimal con-219

troller. Once the activity of a reach neuron j exceeds the action initiation threshold (cyan220

discontinuous line in Fig.4) at the current time and state xt, the corresponding controller221

initiates an optimal policy πj(xt) to move the joystick towards the preferred direction of222

that neuron (see materials and methods section for more details). Reaching movements223

are generated as a mixture of active policies (i.e., policies in which the associated neuronal224

activity in the reach planning field is above the action initiation threshold) weighted by225

the normalized activity of the corresponding reaching neurons. The normalized activity226

is called relative desirability since it reflects the attractiveness of a policy with respect to227

alternatives (for more details see [19, 38].228

229

Figure 4 somewhere here230

231

2.3.1 Modeling the computations of motor decision-making232

The first task to model is the motor decision-making task that involves reaching to either233

a single direction (instructed trial) or selecting between two opposite directions (choice234
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trial). Fig.5A illustrates the activity of the reach planning field as a function of time for235

a representative instructed (top panel) and choice (bottom panel) trial. Initially, the field236

activity is in the resting state. After the target onset in the choice trial, two neuronal237

populations selective for the targets are formed and compete through mutual inhibitory238

interactions. The activity of the pause field also increased to further inhibit the reach239

planning field to delay the initiation of the action (Fig. 6A blue trace shows the mean240

activity of the pause field across time in a choice trial). Once the activity of a neuronal241

population exceeds an action initiation threshold, the corresponding target is selected,242

the activity of the non-selected target is inhibited by the “winning” population, and a243

reaching movement is initiated. When only one target is presented (Fig.5A top panel), the244

activity of the corresponding neuronal population exceeds the action initiation threshold245

faster due to the lack of inhibitory competition from an alternative option and the non-246

activation of the pause field (Fig. 6A cyan trace shows that pause field activity remains247

on baseline). To get better insight on the model computations, consider two neurons in248

the choice trial, one from each population, centered at the target locations (Fig.5D). The249

neuron that exceeds the action initiation threshold first (red continuous traces) dictates250

the reaction time and the selected target (i.e., the selected direction of movement). In251

the absence of action competition (instructed trial), the activity of the reach neuron (blue252

trace) exceeds the action initiation threshold faster than when two actions compete for253

selection (red traces). Hence, we predict that simulated instructed reaches have shorter254

RT than reaches in the choice trials. To test this prediction, we simulated 100 decision-255

making trials in which 50 % of them involves choices between two competing options and256

the rest of them were instructed trials. Consistent with the prediction, we found that free257

choice movements have longer RT than instructed movements, as is shown in Fig.7A.258

259
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Figure 5 somewhere here260

261

262

Figure 6 somewhere here263

264

2.3.2 Modeling the computations of conflicting information in motor deci-265

sions266

In the Eriksen flanker task, a “flanker” (i.e., distractor) appears 100 ms before the target.267

Once the flanker is presented and detected by the spatial sensory input field, a reach268

neuronal population tuned to the flanker direction is formed - i.e., the model prepares269

an action towards the direction of the flanker. If the upcoming target coincides with270

the flanker direction (congruent trial), the pause field will not be activated (Fig.6B cyan271

trace) and the activity of the reach neuronal population will be further increased, leading272

to fast reaching movements towards the target direction (Fig.5B top panel). On the273

other hand, if the target points to the opposite direction from the flanker (incongruent274

trial), a new reach neuronal population is formed and competes with the reach neuronal275

population of the flanker (Fig.5B bottom panel). The conflict signal field detects the276

“conflicting information” and activates the pause field (Fig.6B blue trace) to suppress277

the reach planning field so that the target population will have time to further increase278

its activity and win the competition. The expected outcome field, which encodes the279

correct movement direction, biases the competition towards the target direction. To better280

understand the mechanism of action regulation in the Eriksen flanker task, we consider two281

neurons centered at the location of the target and the distractor, respectiely (Fig.5E). The282
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neuronal activity of the distractor (red discontinuous trace) increases before the neuronal283

activity of the target (red continuous trace), since distractor precedes target presentation.284

Once the target is cued, the two neurons compete through inhibitory interactions. This285

competition, as well as the inhibition of the reaching neuronal population from the pause286

field, delay the action initiation, leading to longer RT. On the other hand, the lack of action287

competition and the non-activation of the pause field in the congruent trials (Fig.6B cyan288

trace) lead to shorter RT. To test this prediction, we simulated 100 Eriksen flanker task289

trials with 50 % of them to be incongruent trials. Consistent with the prediction, we290

found that reaching movements in incongruent trials have longer RT than in congruent291

trials as illustrated in Fig. 7B.292

2.3.3 Modeling the computations of outright stopping of actions293

Regarding the stop-signal task, the model needs to generate actions while anticipating a294

stop signal. The experimental results showed that when people anticipate a stop signal,295

they have longer RT as compared to when they do not anticipate a stop signal (i.e.,296

instructed trials). This suggests that the pause field is active even in the go trials to297

increase the chances of being able to abandon an action in case stopping is required. Τhe298

reach planning field activity in the go task resembles that of an instructed trial in the299

decision-making task (Fig.5C top panel), the only difference being that in the go trials300

the pause field is continuously active (Fig.6C blue trace). Hence, the activity of the301

reach planning field increases slower compared to the instructed trial, resulting in longer302

RT. In a go trial, the reach neuronal population tuned to the target direction is formed303

preparing an action. Once the activity of the population exceeds an action initiation304

threshold, the action is performed. However, in some trials, a stop signal is cued and the305

pause field activity is further increased, which subsequently inhibits the activity of the306
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reach planning field to completely stop the planned or the ongoing action (Fig.5C bottom307

panel). To better understand the mechanism for stopping actions, consider one neuron308

from the population centered at the location of the target. The activity of the neuron309

increases once the target is cued and an action is initiated when the activity exceeds the310

action initiation threshold (Fig.5F blue trace). However, if a stop signal is cued, the pause311

field inhibits the activity of the neuron to stop the ongoing action (Fig.5F black trace).312

The stop signal is given with some delay (stop signal delay, SSD) in each trial. The longer313

the SSD is, the harder it is for the pause field to suppress the activity of the reach neuron314

increasing the chance to fail to stop the action. To test the model prediction, we simulated315

50 go trials, as well as 250 stop trials, in which a stop stimulus appeared at different SSDs,316

signaling the model to abandon the action. Consistent with the model predictions, we317

found that go trials have longer RTs than instructed trials (p<0.001, two-way ANOVA,318

comparison made between the mean RT on instructed trials in the decision-making task319

and mean RT on go trials in the stop-signal task), and the probability to successfully stop320

a response reduces with increased SSD - i.e., the longer the signal delay, the harder it is321

for the model to stop an action (Fig.8 blue trace).322

2.4 Dysfunction of the pause mechanism predicts motor impair-323

ment in PD patients324

So far the neurodynamical theory is capable of capturing the motor behavior of the325

neurotypical participants in the 3 action regulation tasks. However, one of the main326

findings in our study is that PD patients exhibit overall slower responses in nearly all327

tasks compared to neurotypical participants. This motor impairment can be explained328

within the neurodynamical theory as a deficit on the pause mechanism. That is, the329
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pause field is active even in the absence of conflicting information (congruent trials in330

the Eriksen flanker task) or competition between multiple actions (instructed trials in331

the decision-making task). To get a better understanding on how dysfunction of the332

pause mechanism affects motor behavior, Fig.6 shows the activity of the pause field as a333

function of time for a single trial across all tasks when simulating actions to model the334

RT of neurotypical participants and PD patients. In the decision-making task, the pause335

field is activated even when no action competition is presented (i.e., instructed trials)336

to capture the RT of the PD patient (Fig.6A magenta trace). This explains the slower337

response on initiating an action on instructed trials from PD patients. Also, the lack338

of difference on RT between neurotypical and PD patients in free choice trials suggests339

that the pause field exhibits similar activation levels when deciding between competing340

options after targets onset in both groups (Fig.6A). Regarding the flanker task, the pause341

field is active before the target onset in PD patients, explaining the slower response in342

both congruent and incongruent trials compared to neurotypical individuals (Fig.6B red343

and magenta traces). We need to point out here that although the pause field exhibits344

the same activation level in instructed and free choice trials (decision-making task) in PD345

patients, the slower response in choice trials compared to instructed trials is due to the346

inhibitory action competition between the two alternative movement directions.347

Additionally, another important finding in our study is that PD patients have shorter348

RT in go trials than neurotypical participants in the stop signal task. By comparing349

the RT of movements between go trials in the stop-signal task and instructed trials in350

the decision-making task, we found that neurotypical participants delayed their responses351

in the go trials because they anticipated a stop signal as compared to when they did352

not anticipate a stop signal (i.e., instructed trials). This response delay effect (RDE)353

has been reported in previous studies [47–50] and has been associated with an “active354
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braking mechanism” that increases the chance of abandoning a response in case stopping355

is required [51]. Note that PD patients also exhibited this active braking mechanism, but356

the difference in RT between go trials with anticipation of stopping signal and instructed357

trials was much smaller compared to neurotypical participants. Overall, these findings358

suggest that the pause field is active in the go trials for predicting the motor behavior359

in both groups of participants. In fact, the pause field activity is higher in neuropytical360

participants than PD patients, before a stop signal is detected, to explain the slower361

response of the first group compared to the latter group (Fig.6C, blue and red traces). We362

simulated 50 go trials with elevated pause field activity for both neurotypical participants363

and PD patients. Consistent with the behavioral findings, the go trials have longer RT364

in the simulated neurotypical participants than PD patients (Fig. 7C) (p<0.001, two365

sample t-test). Additionally, the model predicts that the probability to successfully stop366

a response is lower in PD patients than in neurotypical individuals (Fig. 8) due to the367

faster response of PD patients.368

369

Figure 7 somewhere here370

371

372

Figure 8 somewhere here373

374
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3 Discussion375

3.1 General376

Survival of species in an ever-changing environment requires flexibility in action selec-377

tion. Traditional theories suggest that action selection takes place before action prepa-378

ration [52–55]. However, recent cognitive theories challenge this view suggesting that in379

situations affording more than one alternative options, individuals prepare multiple ac-380

tions in parallel that compete for selection before choosing one to execute [6–10]. This381

theory received empirical support from neurophysiological investigations in the sensorimo-382

tor areas of non-human primates (NHPs) showing that the brain encodes parallel reach,383

grasp and saccade plans before the animals select between them [11,12,56]. It is consistent384

with the continuous flow model of perception, which suggests that response preparation385

can begin even before the goal is fully identified and a decision is made [14–16]. Psy-386

chophysical support for this theory comes from the observation that when reaching to387

multiple potential targets, the initial movement is directed towards the average location388

of the targets, consistent with the theory that multiple prepared reaches being executed389

simultaneously [17–19].390

Flexibility in action selection includes not only being fast and accurate enough when391

selecting between competing options, but also being flexible enough to change actions392

according to updated demands of the environment. This includes delaying actions in the393

presence of conflicting information and completely abandoning obsolete actions when they394

are rendered inappropriate [57–60]. Series of studies have explored how different brain395

regions contribute to programming, re-programming and stopping of actions using neural396

recordings and functional neuroimaging techniques [20,21,24,25,28,29,61,62]. The basal397

ganglia (BG), and in particular, the subthalamic nucleus (STN), has been functionally398

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.04.20.488864doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488864
http://creativecommons.org/licenses/by/4.0/


18

implicated in action regulation, but in association with distinct frontal areas, such as the399

primary motor cortex (M1), the premotor cortex (preMC), the presupplementary motor400

area (preSMA) and the right inferior frontal gyrus (rIFG) [31–34]. In a sense STN seems401

to act as a “brake” when a stop signal is presented to rapidly suppress ongoing actions.402

Furthermore, various computational theories including the drift-diffusion model (DDM),403

urgency-gating model (UGM), evidence accumulation models (EAMs), race models and404

mutual inhibition models, have been constructed to explain how the brain selects between405

competing options, inhibits actions in the presence of conflicting information and aban-406

dons planned or ongoing action when they are rendered inappropriate [63–66]. Although407

these theories provide significant insights into the action regulation mechanisms, a major408

limitation is that they explored separately each of these three motor functions, making it409

challenging to develop a unified theory of action regulation. A computational theory that410

can simulate the mechanisms underlying selecting, inhibiting and outright stopping of411

actions is needed to unify and integrate these distinctly studied actions and mechanisms.412

Our research focuses exactly on what has been missing from previous studies – to413

design a large scale computational theory that can predict: 1) how the brain selects414

between competing actions, delays actions in the presence of conflicting information and415

stops actions when they are rendered inappropriate, 2) how neuropsychiatric diseases,416

such as PD, affect the action regulation circuitry and lead to motor deficits. Building417

on our previous work [38,39], we developed a neurodynamical framework to integrate the418

three action regulation functions into a unified computational theory. This computational419

theory is based on the affordance competition hypothesis, in which multiple actions are420

formed concurrently and compete over time until one has sufficient evidence to win the421

competition [6]. We replace evidence accumulation with desirability – a continuously422

evolving quantity that integrates all sources of information about the relative value of an423
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action with respect to alternatives. The winning action determines the reaction time and424

the direction of movement. The computational theory includes a BG-type mechanism425

of inhibiting actions in the presence of competing options, conflicting information and426

stopping signals. We tested the computational model in a series of tasks that involve427

action selection, decision conflict and outright stopping using neurotypical individuals428

and PD patients. Our findings showed that the model captures many aspects on human429

behavior, such as the longer RT in the presence of competing actions and conflicting430

information, as well as the inverse relationship between the probability to successfully431

stop an action and stop signal delay (SSD). It also predicts the motor impairment on PD432

patients when performing these three motor tasks as a deficit in the pause mechanism.433

In particular, the model explains the longer responses in generating actions even without434

the presence of competing action and conflicting information in PD patients compared435

to neurotypical participants as a consequence of hyperactivity on the pause field. This is436

consistent with experimental evidence showing that STN is overacting in PD patients [67]437

leading to longer responses in visuomotor tasks. Overall, to the best of our knowledge,438

our study presents the first neuro-computational theory that integrates the mechanisms439

of three action regulation functions and predicts how disruption of these mechanisms can440

lead to motor deficits reported in neurological diseases such as PD.441

3.2 Mapping to neurophysiology442

The computational theory presented in the current study is a systems-level framework443

aimed to qualitatively predict response patterns of neuronal activities in ensembles of444

neurons, as well as motor behavior, in action regulation tasks. It captures many key445

features of the functional properties of the cortical-subcortical network involved in action446

regulation. The spatial sensory input field mimics the organization level of the posterior447
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parietal cortex (PPC) [68, 69]. The expected reward field can be associated with the448

ventromedial prefrontal cortex (vmPFC) and orbitofrontal cortex (OFC), two frontal areas449

with important role in computation and integration of reward [70,71]. The reach cost field450

can be equated to the anterior cingulate cortex (ACC) that has a key role in computing451

the cost for performing an action [72,73]. The reach planning field can be associated with452

the parietal reach region (PRR) [74, 75] and the premotor dorsal cortex (PMd) [76, 77],453

two cortical areas involved in planning of reaching movements. The stop signal field can454

be equated with the right inferior frontal gyrus (rIFG), which is recruited when cues455

associated with response inhibition are detected [78, 79]. Regarding the conflict signal456

field, the popular view is that the pre-supplementary motor area (preSMA) detects the457

co-activation of different but conflicted responses (e.g., naming the color of the word red458

written with green color), it activates the STN to temporarily suppress a response [80,81].459

Finally�the pause field can be equated to the STN�which is activated in tasks that require460

stopping or pausing behavioral outputs to suppress actions [23, 27, 30, 35].461

3.3 Computational modeling of action inhibition deficits in PD462

patients463

PD is a progressive neurodegenerative disease associated with progressive loss of dopamin-464

ergic neurons in the substantia nigra of the BG [67]. The disruption of frontal-BG circuitry465

is responsible for the development of major symptoms of PD, including rigidity, tremor,466

bradykinesia, and postural instability [82, 83]. In particular, impairment of response in-467

hibition abilities, which greatly affects the life quality of PD patients, is considered to468

be a sensitive measure to the progression of PD [84]. As a key player in the frontal-BG469

circuit, the STN is suggested to mediate a “pause” function by rapidly inhibiting the BG470
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activity. Therefore, it is considered to play a prominent role in the pathology of PD [85].471

An increase in the neuronal activity of the STN has been demonstrated in electrophysi-472

ological and behavioral studies in non-human primate models of PD [86] as well as PD473

patients [87]. Our findings suggest that an increase in the STN-mediated “pause” signal is474

responsible for the impairment of action inhibition abilities in PD patients. In our model,475

we assigned higher baseline activation level of the pause field in the decision-making task476

and Eriksen flanker task in PD patients compared with neurotypical participants. Consis-477

tent with the model predictions, PD patients exhibited longer RT than healthy individuals478

in the instructed trials of the decision making task, as well as in both incongruent trials479

and congruent trials of the Eriksen flanker task. Notably, RT in the free choice trials480

of the decision-making task wasn’t significantly different between PD patients and neu-481

rotypical participants. This suggests that pause field, which is already highly active in482

instructed trials, is not further activated in the choice trials.483

An interesting finding in our study was that neurotypical individuals had slower re-484

sponse than PD patients to initiate an action in the stop-signal task. This is somewhat485

counter-intuitive since the STN is overactive in PD patients and therefore we would expect486

that they would had slower response than neurotypical participants. However, when we487

compared RT between instructed trials (decision-making task) and go trials (stop signal488

task) of the neurotypical individuals, we found that they responded slower when they489

anticipated a stop signal. On the other hand, we found much subtler difference in RT490

between instructed trials and go trials in PD patients. This suggests that the pause mech-491

anism is activated in the stop-signal task in neurotypical individuals even before a stop492

signal is presented. By activating the pause field to simulate the motor behavior of the493

neurotypical participants, the model predicts that PD patients will have faster responses494

and lower probability to stop planned or ongoing actions compared to neurotypical par-495
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ticipants. In other words, the model explains the slower responses of the neurotypical496

participants as a cognitive strategy adapted to minimize the probability to fail to stop an497

action if a stop signal is detected.498

3.4 Activity suppression or increase of action initiation thresh-499

old?500

In our theory, the pause field delays motor decisions by suppressing the activity of the501

reach planning field. However, an alternative hypothesis is that the pause field mediates502

the action inhibition function by increasing the action initiation threshold. Previous503

studies suggest that STN low-frequency oscillatory activity and medial prefrontal cortex504

(mPFC)-STN coupling are involved in determining the amount of evidence (i.e., action505

initiation threshold) needed before making a decision [88–91]. Additionally, clinical studies506

showed that deep brain stimulation targeting the STN in PD patients can modulate the507

amount of evidence, and therefore the action initiation threshold, required to initiate an508

action [89]. Hence, it is also likely that the STN delays motor decisions in the presence509

of competing actions and/or conflicting information by increasing the action initiation510

threshold, instead of suppressing the activity of the motor areas that generate actions.511

Our computational theory is capable of modeling this hypothesis by adjusting the action512

initiation threshold in the reach planning field. However, it cannot dissociate between513

the two hypotheses on how the STN pauses actions when needed. To do so, future514

neurophysiological or neuroimaging studies need to record activity from the STN and515

motor areas during decision tasks with multiple options and/or conflicting information.516
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3.5 Hyperactive pause mechanism or altered cost/reward ratio517

in PD patients?518

Although our study suggests that deficits in movement preparation in PD patients, such519

as slow reaction times, are related to hyperactivity in STN that inhibits planned actions,520

other studies have associated motor impairments with motivational deficits [92]. In partic-521

ular, motivational deficits seem to significantly contribute to bradykinesia in PD patients522

and lead to alternation in the amount of effort required to perform a movement at normal523

speed, as well as the perceived reward for successfully completing the action [93].524

Motor decisions are frequently made based on expected reward and the associated525

effort cost required to obtain the reward. The cost has been considered to be detrimental,526

since we tend to choose the less costly actions especially when they are associated with527

similar expected rewards [94,95]. The dopaminergic neurons seem to be critically involved528

in the process of cost versus reward (i.e., cost/reward ratio) evaluation. Dopamine deple-529

tion from rat results in decreased tolerance for effort cost, whereas enhanced dopamine530

levels has the opposite effect [94, 96]. Loss of dopaminergic neurons and their projec-531

tions is a major pathological hallmark in PD patients. Clinical studies have shown that532

PD patients, regardless of medication status, tend to engage less effort for the lowest533

reward compared with neurotypical participants in a hand-squeezing task [93]. However,534

dopamine medication motivates PD patients to engage more effort for a given reward,535

comparing to their off medication state. In addition, Deep brain stimulation (DBS) of536

the STN establishes a reliable congruency between action and reward in PD patients and537

remarkably enhances it over the level observed in neurotypical individuals [97].538

Overall, these studies provide evidence that impairment of movement preparation in539

PD patients can also be related to deficits in the mechanism that evaluates reward and540
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effort cost associated with actions - i.e., alternation of the cost/reward ratio. Notably,541

this can be also modeled within our neurodynamical framework by increasing the amount542

of effort required to perform actions towards the cued directions. Additionally, the alter-543

nation of the cost/reward ratio in PD patients could be also related to the hyperactivity of544

the STN - more effort is required to increase the activity of the motor population, which545

is continuously inhibited by the STN, to initiate an action. Today, the mechanism for546

motor and information processing deficits in PD patients is still under extensive study.547

PD is considered not only a disease caused by degeneration of substantia nigra dopamin-548

ergic neurons, but also a system-level disease caused by dysfunction of the cortical-BG549

circuit [67]. Therefore, both the hyperactivity of the STN and the altered cost/reward550

ratio can be considered parts of PD pathophysiology, and contribute to the motor deficits551

in PD patients.552

3.6 Conclusions553

In conclusion, the current study aims to advance our understanding on the computations554

underlying action regulations in tasks that involve action inhibition, the failure of which555

contributes to various neuropsychiatric diseases. We proposed a large scale neurodynam-556

ical computational framework that combines dynamic neural field theory with stochastic557

optimal control theory to simulate the mechanisms of action regulation and to predict558

how disruption of this mechanism lead to motor deficits in PD patients. We evaluated the559

model predictions by comparing the motor behavior of neurotypical individuals and PD560

patients in three tasks that require action inhibition. To the best of our knowledge, our561

results revealed for the first time an integrated mechanism of action regulation that affects562

both action planning and action inhibition. When this mechanism is disrupted (as in PD563

patients), motor behavior is affected, leading to longer reaction times and higher error564
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rates in decisions and actions. Overall, our findings provide significant insight on how the565

brain regulates actions that involve inhibition, and open new avenues for improving and566

developing therapeutic interventions for diseases that may involve these circuits.567

4 Methods568

4.1 Participants569

A sample of 15 adults with PD and 32 neurologically healthy, age-matched adults took570

part in the study. The study was approved by the University of California, Los Angeles571

Review Board and all individuals signed an informed consent before participating.572

4.2 Stimuli and Procedure573

4.2.1 Decision-Making Task574

All experiments were programmed using Psychtoolbox 3 for Matlab. Experimental setup575

is shown in Figure 1. In the decision-making task, participants sat in a dark room in front576

of a 22-inch Dell LED monitor where stimuli would be presented on. The screen was ap-577

proximately 50 cm away from the participant. A two-dimensional joystick (Thrustmaster578

T.16000M FCS, maximum range of axis value is -32,000 +32,000) was placed in front579

of the monitor. During the task, the participants were instructed to move the joystick580

towards the left or right direction using their right hand in reaction to the corresponding581

stimulus. Each trial started with the screen turning black. After 1.0-1.1 s, a white fixation582

cross appeared in the center of the black screen for 1.0-1.1 s, then the white fixation cross583

disappeared, and four white arrows appear in the center of the black screen. In 50% of584

the trials (choice trials), two of the arrows pointed to the left, and the other two to the585
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right (e.g. < < > >), in which case the participant needed to freely decide whether they586

would move the joystick to the left or right. In the other 50% of the trials (instructed587

trials), the four arrows were pointing to the same direction (left or right) (e.g. < < <588

<), in which case the participant needed to move the joystick towards the direction the589

arrows were pointing to. The arrows remained on the screen for up to 1.5 s before they590

disappear, then the screen turned black for 0.5 s. If the participant responded to the591

stimulus by moving the joystick to the left or right (axis value threshold for response:592

-25000 to the left/+25000 to the right) when the arrows were presented on the screen,593

after 10ms, the screen would turn black for the remaining of the 1.5 s plus 0.5 s, after594

which the screen would remain black and the next trial would start. If the joystick did595

not return to the baseline (axis value between -2500 and +2500), the next trial would not596

start until the joystick returned to the baseline. Every participant performed 2 blocks597

of trials, with 52 trials in each block. In each block of trials, there are 26 choice trials598

and 26 instructed trials. The trial type (choice or instructed) were randomized. Before599

each trial, the participant did not know whether the next trial would be a choice trial or600

an instructed trial.The RT for each trial was recorded as the time interval between the601

appearance of the arrows on the screen and the participant’s response.602

4.2.2 Eriksen flanker Task603

An arrow version of the Eriksen flanker Task [98] with arrows pointing to the left and604

right was performed in our study. During the Eriksen Flanker task, the same equipment605

as described in 3.2.1 were used, the major difference being that in each trial, the target606

stimulus was flanked by stimuli which were pointing to the opposite direction of the target607

arrow (incongruent trial) or to the same direction as the target arrow (congruent trial),608

and every participant was told to move the joystick towards the same direction as the609
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target arrow using his/her right hand. In each trial, the screen first turned black for 1.0-610

1.1 s, then a white fixation cross appeared in the center of the screen for 1.0-1.1 s. After611

this interval, four white flanker arrows pointing to one direction (left or right) appeared612

in the center of the screen, leaving a blank space in the middle (e.g. < < < <). After613

100 ms, a white target arrow appeared in the blank space, pointing either to the opposite614

direction of the flankers (incongruent trial) or the same direction (congruent trial). The615

target arrow and the flankers remained on the screen for up to 1.5 s, then disappeared,616

and the screen turned black for 0.5 s. If the participant responded to the target arrow by617

moving the joystick to the left or right, after 10ms, the screen would turn black for the618

remaining of the 1.5 s plus 0.5 s, after which if the joystick returned to baseline, the screen619

would remain black and start the next trial. Each participant performed two blocks of620

trials, with 52 trials in each block, making a total of 104 trials. In each block of trials,621

there are 26 incongruent trials and 26 congruent trials. The direction of the target arrows622

and the type of flanker (incongruent or congruent) were randomized. The RT for each623

trial was recorded as the time interval between the appearance of the target arrow and624

the participant’s response.625

4.2.3 Stop Signal Task626

A trial in a stop signal task is either a go trial or a stop trial. In each trial, arrows pointing627

to the left or right direction were presented on the screen as a stimulus. In a go trial (no628

stop signal is presented), the participant should respond as fast as possible by moving the629

joystick towards the direction the arrows were pointing to. In a stop trial, the participant630

should try to inhibit their response after the stop signal was cued. Participants were told631

that stop was not always possible, and that stop trials and go trials are equally important.632

Before the experiment, each participant performed 24 training trials, including 16 go trials633
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and 8 stop trials. At the beginning of a trial, the screen turned black. After 1.0-1.1 s, a634

white fixation cross appeared in the center of the screen for 1.0-1.1 s, then the fixation635

cross disappeared, and four white arrows pointing to the left or right appeared in the636

center of the screen. In a go trial, the arrows remained on the screen for up to 1.5 s before637

they disappeared, then the screen turned black for 0.5 s. If the participant responded638

to the stimulus by moving the joystick when the arrows were presented on the screen,639

after 10ms, the screen turned black for the remaining of the 1.5 s plus 0.5 s, after which640

if the joystick returned to baseline, the screen remained black and the next trial was641

started. A stop trial is nearly identical to a go trial, except that the arrows turned red642

after an interval termed “stop signal delay” (SSD) indicating that the participant should643

abandon any response immediately. If the participant inhibited their actions, the arrows644

remained on the screen for the rest of 1.5 s, and in the subsequent stop trial, the SSD645

would increase by 50 ms, making inhibition more challenging. If the participant failed to646

inhibit their actions, after 10 ms, the arrows disappeared, and the screen turned black for647

the remaining of the 1.5 s plus 0.5 s, after which if the joystick returned to the baseline,648

the screen remained black and the next trial would start. In this case, the SSD would649

decrease by 50 ms, making it easier to inhibit actions. Each participant performed 3650

blocks of trials, with 60 trials in each block. In each block of trials, there were 40 go651

trials and 20 stop trials. The direction of the arrows and the type of trial (go or stop)652

were randomized. The RT for each go trial and failed stop trial were recorded as the time653

interval between the appearance of white arrows and the participant’s response.654

4.3 Statistical Analysis655

Cubic interpolating splines were used to smooth the reach trajectories and compute the656

velocity of the movements. Reaction time (RT) was defined as the time between the target657
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appearance and the time that reach velocity exceeded 10% of the maximum velocity.658

RTs faster than 100ms were removed because anticipation is considered to be involved659

prior to actions, as well as RTs longer than 1500ms. RT outliers (RTs >3 standard660

deviations below or above the mean RT) were also excluded from the analysis. The trials661

in which the participant changed their mind (moving towards one direction past 5% of the662

maximum range, and then changed their mind to move towards the other direction) were663

also excluded from further analysis. RTs across all participants were pooled together, and664

for the decision making task and the Eriksen flanker task, two-way ANOVA analysis was665

performed to determine the group differences in RTs. For the stop signal task, two-sample666

t-test was performed to determine the group differences in go trial RTs.667

4.4 Computational Model Architecture668

We developed a neurodynamical framework based on our previous studies [38,39] to model669

the three action regulation functions. The computational framework combines dynamic670

neural field (DNF) theory with stochastic optimal control theory, and includes circuitry671

for perception, expected outcome, effort cost, context signal, pause, action planning and672

execution. Each DNF simulates the dynamic evolution of firing rate activity of a network673

of neurons over a continuous space with local excitation and surround inhibition. The674

functional properties of each DNF are determined by the lateral inhibition within the field675

and the connections with other fields in the architecture. The projections between the676

fields can be topologically organized – i.e., each neuron i in the field drives the activation677

at the corresponding neuron i in the other field (one-to-one connections), or unordered –678

i.e., each neuron in one field is connected with all neurons on the other field (one-to-all679

connections). The activity of a field j evolves over time under the influence of external680

inputs, local excitation and lateral inhibition interactions within the field, as well as681
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interactions with other k fields, as described by Equation (1):682

τ u̇j(x, t) = −uj(x, t) + hj + Sj(x, t) + [wj ⊛ fj(uj)] (x, t) +
∑
k

[wkj ⊛ fk(uk)] (x, t) (1)

where u(x, t) is the local activity of the DNF at the position x and time t, and u̇j(x, t)683

is the rate of change of the activity over time scale by a time constant τ . If there is684

no external input S(x, t), the field converges over time to the resting state h from the685

current level of activation. The first convolution term [wj ⊛ fj(uj)] (x, t) =
∫
w(x −686

x
′
)f

[
u(x

′
, t)

]
dx

′ models interactions between the simulated neurons at different locations687

within the field j, and is shaped by the interaction kernel of Equation (2), which consists688

of both excitatory and inhibitory components:689

w(x− x
′
) = Cexce

− (x−x
′
)2

2σ2
exc − Cinhe

− (x−x
′
)2

2σ2
inh (2)

where Cexc, Cinh, σexc and σinh describe the amplitude and the width of the excitatory690

and the inhibitory components, respectively. We convolved the kernel function with a691

sigmoidal transformation of the field so that the neurons with activity above a threshold692

participate in the intra-field interactions:693

fj(uj(x)) =
1

1 + e−β(uj(x))
(3)

in which the steepness of the sigmoid function was controlled by β.694

The function wjk describes the connectivity kernel between fields uj and uk showing695

the contribution of field uk to the dynamics of field uj. The sigmoid fk(uk) and wjk are696

convolved to determine the full contribution from field uk to uj.697
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The architectural organization of the framework is shown in Figure 4. The “reach698

planning” field encodes the potential movement directions, and is responsible for initi-699

ating the reaching movements. The “spatial sensory input” field encodes the angular700

representations of the competing targets. The “expected outcome” field encodes the ex-701

pected reward for reaching to a particular direction centered on the hand position. The702

outputs of these two fields send excitatory projections (green arrows) to the reach plan-703

ning field in a topological manner. The “reach cost” field encodes the effort cost required704

to implement an action at a given time and state. The reach cost field sends inhibitory705

projections (red arrow) to the reach planning field to penalize high-effort actions. For706

instance, an action that requires changing of moving direction is more “costly” than an707

action of keep going in the same direction. The “pause” field suppresses the activity of the708

reach planning field to inhibit planned or ongoing actions via inhibitory projections to the709

reach planning field. The stop signal field and the conflict signal field encode information710

related to the contextual requirement of the task (i.e., stopping cue or flanker distractor),711

and send one-to-all excitatory projections to the corresponding population of the pause712

field. In particular, the stop signal field is projected to the neuronal population of the713

pause field which is responsible for outright stopping of action, whereas the conflict signal714

field projects to the neuronal population of the pause field, which is responsible for delay-715

ing decisions when conflicting information is detected. Each of the context signal fields716

(stop signal field and conflict signal field) consists of 100 neurons, whereas the pause field717

consists of 3 neuronal sub-populations, each consists of 75 neurons. The rest of the fields718

consist of 181 neurons with a preferred direction between 0 to 180 degrees. The activity719

of the reach planning field Saction is given as the sum of the outputs of the fields encoding720

the position of the target vpos, the expected reward vreward, the estimated reach cost vcost,721

and the activity from the pause field vpau, at any given time and state, corrupted by a722
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Gaussian distributed additive noise ξ.723

Saction = ηlocvpos + ηrewardvreward − ηcostvcost − ηpauvpau + ξ (4)

where ηloc, ηreward, ηcost and ηpau are scalar values that weigh the influence of the724

spatial sensory input field, the expected outcome field, the reach cost and the pause field,725

respectively, to the activity of the reach planning field. The values of the model parameters726

are given in S1 Table. The normalized activity of the reach planning field describes the727

relative desirability di of each “reach neuron” with respect to the alternative options at728

time t – i.e., the higher the activity of a reach neuron j, the higher the desirability to729

move towards the preferred direction φj of this neuron with respect to the alternatives730

at a given time t. Each neuron j in the reach planning field is connected with a control731

scheme that generates reaching trajectories. Once the activity of that neuron exceeds the732

action initiation threshold γ, the controller is triggered and generates an optimal policy733

πj , a sequence of motor actions towards the preferred direction of the neuron j. The734

optimal policy is given by minimization of the cost function:735

Jj(xt,πj) = (xTj
− Spj)

TQTj
(xTj

− Spj) +

Tj−1∑
t=1

πj(xt)
TRπj(xt) (5)

where πj(xt) is the policy from the time t = 1 to t = TJ to reach towards the preferred736

direction φj; Tj is the time required to arrive at position pj ; pj is the position planned737

to arrive (goal position) at the end of the reaching movement, given by pj = [rcos(φj),738

rsin(φj)], in which r is the distance between the current location of the hand and the739

location of the stimulus encoded by the neuron j. xTj
is the state vector at the end of740

the reaching movement, and matrix S selects the actual position of the hand and the goal741

position at the end of the reaching movement from the state vector. Matrices QTj
and R742

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.04.20.488864doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488864
http://creativecommons.org/licenses/by/4.0/


33

define the cost dependent on precision and control, respectively. More details about the743

optimal control model are described in [38, 39]. Consequently, a action is initiated once744

a neuronal population exceeds the action initiation threshold and the executed action745

πmix(xt) is given as a mixture of the active policies (i.e., policies with active neurons)746

weighted by relative desirability values of the corresponding neurons at any given time747

and state.748

πmix(xt) =

j+M∑
j

dj(xt)πj(xt) (6)

where xt is the state of the system at time t (i.e., position, velocity, orientation of749

the trajectory), dj is the normalized activity of the neuron j (i.e., relative desirability750

value of the neuron j), and πj is the optimal policy generated by the controller connected751

with neuron j. Because desirability is time- and state-dependent, the weighted mixture of752

the individual policies can change/correct the current trajectory in the presence of new753

incoming information - e.g., a stop signal cued while acting. In order to handle contin-754

gencies during the movement, the “receding horizon control”(RHC) [99, 100] technique,755

also known as model predictive control (MPC), which is widely used in stochastic optimal756

control models, was implemented in the framework. According to RHC, the framework757

would only execute the initial portion of the sequence of actions for a short period of time758

τ (τ = 9 in our framework), after which the framework would recompute the optimal759

policy πmix(xt + τ) from time t+τ to t+τ+Ti, and this approach would continue until760

the hand reaches one of the targets.761
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Figure Legends1060

Fig.1 Experimental setup for action regulation tasks that require action inhi-1061

bition.(A) Decision-making task, including instructed and choice trials. (B) An arrow1062

version of the Eriksen Flanker task, including congruent (the flanker arrows point to the1063

same direction as the central arrow) and incongruent (the flanker arrows point to the1064

opposite direction from the central arrow) trials. (C) A stop-signal task with instructed1065

trials. Individuals are prompted to stop the action when the arrows turn red.1066

1067
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Fig.2 Behavioral findings from the decision-making task, the Eriksen flanker1068

task and the stop-signal task. (A) Bar plots of the RT for neurotypical individuals1069

(Neurotypical) and PD patients (PD) in the instructed and choice trials of the decision-1070

making task. Error bars correspond to standard error (SE). (B) Bar plots of the RT1071

for neurotypical individuals (Neurotypical) and PD patients (PD) in the congruent and1072

incongruent trials of the Eriksen flanker task. Error bars correspond to standard error1073

(SE). (C) Bar plots of the RT for neurotypical individuals (Neurotypical) and PD patients1074

(PD) in the go trials of the stop-signal task. Error bars correspond to standard error (SE).1075

1076

Fig.3 Probability to successfully stop an action as a function of the stop signal1077

delay (SSD). The probability to successfully stop an action as a function of the SSD for1078

neurotypical individuals (Neurotypical,blue) and PD patients (PD,red).1079

1080

Fig.4 Model Architecture. The architectural organization of the neurodynamical the-1081

ory to model tasks that involve action inhibition, such as decisions between competing1082

options, decisions in the presence of conflicting information and outright stopping of ac-1083

tions.1084

1085

Fig.5 Simulated reach planning field neuronal activity changes in the deci-1086

sion making task, Eriksen flanker task and stop-signal task (A)-(C) Activity1087

changes of the 181 neurons in the reach planning field during the decision making task1088

(instructed trial and choice trial)(A), the Eriksen flanker task (incongruent trial and con-1089

gruent trial)(B), and the stop-signal task (go trial and stop trial)(C) .(D)-(F) Activity1090

changes of single neurons in the reach planning field during the decision making task(D),1091

the Eriksen flanker task(E), and the stop-signal task(F).1092
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1093

Fig.6 Simulated behavioral results from the three tasks. Simulated reaction time1094

(RT) for the three experimental tasks predicted by the neurodynamical theory for both1095

neurotypical individuals (Neurotypical, blue) and PD patients (PD, red).1096

1097

Fig.7 Simulated pause field activity changes during the three tasks (A) Activity1098

changes of single neuron in the pause field during the decision making-task. Cyan trace,1099

simulated pause field activity during an instructed trial for a neurotypical individual.1100

Magenta trace, simulated pause field activity during an instructed trial for a PD patient.1101

Blue trace, simulated pause field activity during a choice trial for a neurotypical individ-1102

ual. Red trace, simulated pause field activity during a choice trial for a PD patient. (B)1103

Activity changes of single neuron in the pause field during the Eriksen flanker task. Cyan1104

trace, simulated pause field activity during a congruent trial for a neurotypical individual.1105

Magenta trace, simulated pause field activity during a congruent trial for a PD patient.1106

Blue trace, simulated pause field activity during an incongruent trial for a neurotypical1107

individual. Red trace, simulated pause field activity during an incongruent trial for a PD1108

patient. (C) Activity changes of single neuron in the pause field during the stop-signal1109

task. Blue trace, simulated pause field activity during a stop trial for a neurotypical1110

individual. Red trace, simulated pause field activity during a stop trial for a PD patient.1111

1112

Fig. 8 Simulated probability to successfully stop an action as a function of the1113

stop signal delay (SSD) The (simulated) probability to successfully stop an action as1114

a function of the SSD for neurotypical individuals (Neurotypical,blue) and PD patients1115

(PD,red).1116
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S1 Table 

 

 

 

 

Spatial sensory input field & Expected outcome field parameters 

Parameters Description Value 

τ Time constant 5.0 

cexc Amplitude of excitatory portion 

of weight kernel 

0 

cinh Amplitude of inhibitory portion of 

weight kernel 

0 

σexc Width of excitatory portion of 

weight kernel 

5.0 

σinh Width of inhibitory portion of 

weight kernel 

40.0 

h Resting activity level -5.0 

q Noise level 0.25 

σq Width of noise kernel 5.0 

β Steepness of sigmoid activity 

function 

1.0 

 

 

 

 

 

Reach planning field parameters 

Parameters Description Value 

τ Time constant 5.0 

cexc Amplitude of excitatory portion 

of weight kernel 

0 

cinh Amplitude of inhibitory portion of 

weight kernel 

20 

σexc Width of excitatory portion of 

weight kernel 

5.0 

σinh Width of inhibitory portion of 

weight kernel 

180 

h Resting activity level -5.0 

q Noise level 0.5 

σq Width of noise kernel 5.0 

β Steepness of sigmoid activity 

function 

1.0 

 

 

Model Parameters 

Parameters Description Value 

ηloc Visual input gain 8.5 

ηreward Expected outcome input gain 2.5 

ηcost Action cost input gain -0.1 

ηpau Pause input gain -4.0 

γ Action initiation threshold 0.6 
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Pause field parameters 

Parameters Description Value 

τ Time constant 5.0 

cexc Amplitude of excitatory portion 

of weight kernel 

0 

cinh Amplitude of inhibitory portion of 

weight kernel 

0 

σexc Width of excitatory portion of 

weight kernel 

5.0 

σinh Width of inhibitory portion of 

weight kernel 

25.0 

h Resting activity level -5.0 

q Noise level 0.25 

σq Width of noise kernel 5.0 

β Steepness of sigmoid activity 

function 

1.0 
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