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Abstract

Surviving in an uncertain environment requires not only the ability to select the best
action, but also the flexibility to withhold inappropriate actions when the environmen-
tal conditions change. Although selecting and withholding actions have been extensively
studied in both human and animals, there is still lack of consensus on the mechanism un-
derlying these action regulation functions, and more importantly, how they inter-relate.
A critical gap impeding progress is the lack of a computational theory that will integrate
the mechanisms of action regulation into a unified framework. The current study aims to
advance our understanding by developing a neurodynamical computational theory that
models the mechanism of action regulation that involves suppressing responses, and pre-

dicts how disruption of this mechanism can lead to motor deficits in Parkinson’s disease
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2 (PD) patients. We tested the model predictions in neurotypical individuals and PD pa-
»s  tients in three behavioral tasks that involve free action selection between two opposed
» directions, action selection in the presence of conflicting information and abandoning an
27 ongoing action when a stop signal is presented. Our results and theory suggest an inte-
s grated mechanism of action regulation that affects both action initiation and inhibition.
2 When this mechanism is disrupted, motor behavior is affected, leading to longer reaction

s times and higher error rates in action inhibition.

» Author Summary

» Humans can rapidly regulate actions according to updated demands of the environment.
13 A key component of action regulation is action inhibition, the failure of which contributes
s to various neuropsychiatric disorders. When faced with multiple choices, dealing with
55 conflicting information, or current actions become inappropriate or unwanted, we should
s be able to pause or completely abandon actions. Despite extensive efforts to understand
;7 how the brain selects, pauses, and abandons actions based on environmental demands, the
;s mechanisms underlying these action regulation functions and, perhaps more importantly,
3 how they inter-relate remain elusive. Part of this challenge lies in the fact that these
s mechanisms were rarely explored together, making it difficult to develop a unified theory
s that explains the computational aspects of action regulation functions. The current study
2 introduces a large-scale model that better characterizes the computations of action reg-
5 ulation functions, how they are implemented within brain networks that involve frontal,
« motor and basal ganglia (BG) circuits, and how disruption of these circuits can lead to
s deficits in motor behavior seen in Parkinson’s disease (PD).The model was developed by

s studying the motor behavior of healthy individuals and PD patients in three motor tasks
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« that involve action inhibition. Overall, the model explains many key aspects on how
s the brain regulates actions that involve inhibitory processes, opening new avenues for
s improving and developing therapeutic interventions for diseases that may involve these

50 circuits.

« 1 Introduction

s Surviving in an uncertain environment requires not only the ability to accurately and
53 rapidly select the best action, but also the flexibility to abandon obsolete actions when
s« they are rendered unwanted or inappropriate. How actions are initiated and regulated
55 is a fundamental neurobiological question that is of high impact for understanding how
s the human brain functions. A key component of action regulation is inhibiting actions,
s7 - which when abnormal contributes to neuropsychiatric diseases, such as Parkinson’s disease
ss (PD), obsessive-compulsive disorder (OCD), and others [1-5]. Action inhibition occurs in
so at least 3 ways: (a) action selection — selecting one action requires suppressing alternative
o0 motor plans, (b) decision conflict — choosing in the presence of conflicting information
&1 requires suppressing alternative actions to buy more time to make a correct decision and
2 (c) outright stopping — inhibiting a response when it is rendered inappropriate.

63 Over the past years, a number of studies attempted to characterize the mechanism of
& action regulation that involves action inhibition under different experimental paradigms.
s A recent cognitive theory suggests that action selection occurs through a competitive
6 process between movement plans [6-10]. According to this theory, in situations affording
ez more than one alternatives, animals prepare multiple actions in parallel that compete for
¢ selection through mutual inhibitory interactions before choosing to execute one. This

s affordance competition theory received empirical support from neurophysiological inves-
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w0 tigations in the sensorimotor areas of non-human primates (NHPs) showing that the
7 brain encodes parallel reach, grasp and saccade plans before the animals select between
7 them [11-13]. Tt is consistent with the continuous flow model of perception, which sug-
73 gests that response preparation can begin even before the goal is fully identified and a
71 decision is made [14-16]. In addition, psychophysical support for this theory comes from
75 the “go-before-you-know” experiments, in which individuals had to initiate reaching or
7% saccade movements towards multiple potential targets, without knowing the actual lo-
7 cation of the goal [17-19]. The individuals compensate for the goal location uncertainty
7 by aiming towards an intermediate location, a strategy consistent with an averaging of
7 multiple competing action plans.

80 Recent studies have also explored the mechanisms underlying pausing or abandon-
s ing actions using functional MRI [20,21], local field potential (LFP) recordings [22,23],
& electroencephalography (EEG) recordings [24,25], as well as single-unit recordings in hu-
&3 mans [26,27], non-human primates (NHPs) [28,29] and rodents [30]. The basal ganglia
s« (BG), and in particular the subthalamic nucleus (STN), has been functionally implicated
&s in action regulation functions, but in association with distinct frontal areas, such as the
s primary motor cortex (M1), the premotor cortex (preMC), the pre-supplementary motor
& area (preSMA) and the right inferior frontal gyrus (rIFG) [31-34]. In a sense, STN is acti-
ss vated when a stop signal is detected, as well as when conflicting information is presented,
o to rapidly suppress ongoing or planned actions [35-37].

% Despite the significant contribution of these studies on understanding how the brain
a1 selects between competing options, deals with conflicting information, and stops planned
e or ongoing actions during decisions, the mechanisms of these action regulation functions
o3 and their inter-relations remain elusive. Part of this challenge lies in the fact that previ-

o ous studies rarely explore these functions together, making it difficult to develop a unified
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s and integrated theory of action regulation. The current study aims to advance our un-
o derstanding on the mechanism underlying action regulation and how disruption of this
ov mechanism can lead to deficits in motor behavior exhibited in Parkinson’s disease (PD).
s To address these questions, we trained neurotypical individuals and PD patients to per-
o form three motor tasks that involve motor decision between two opposed directions, action
0o selection in the presence of conflicting information and suppression of unwanted motor re-
101 sponses when a stop signal is presented. To elucidate the action regulation mechanism in
12 control and disease state, we modeled the tasks within a neurodynamical computational
w03 framework that combines dynamic field theory with stochastic optimal control theory,
s and simulates the processes underlying selection, planning, initiation and suppression of
s actions [38,39)].

106 Our study presents the first unified theory on action regulation that involves response
w7 inhibition, providing important predictions on how the disruption of major nodes, such
ws as STN, can deteriorate motor performance leading to longer reaction times in motor
o decisions and higher error rates when stopping ongoing actions. Additionally, the neu-
no rodynamical theory provides a potential explanation on why PD patients exhibit longer
m  reaction times than neurotypical individuals even in the lack of competing alternatives
u2 or conflicting information in motor decisions. Overall, our findings shed light on how
3 the brain regulates actions that involve inhibitory processes, opening new avenues for
us improving and developing therapeutic interventions for diseases that may involve these

115 circuits.
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s 2 Results

1

[

w 2.1 Experimental paradigms

us  Participants were instructed to perform reaching movements using a 2-dimensional joy-
uo stick under three experimental paradigms: i) decision-making task (action selection), ii)
10 Eriksen flanker task (decision conflict) and iii) stop-signal task (outright stopping) (Fig.1).
121 In the decision-making task, participants had to respond to arrow stimuli presented on a
122 computer screen by freely moving the joystick towards the left or right direction. Choice
123 trials were interleaved with instructed trials in which all arrows pointed to the same di-
4 rection. In the Eriksen flanker task, flanking arrows were presented on the screen, all
125 pointing to the same direction. A target arrow was then presented to indicate the di-
s rection to move, either in the same (no conflict, congruent trials) or opposite (conflict,
17 incongruent trials) direction as the flanking arrows. Finally, in the stop-signal task, the
18 participants were instructed to reach towards the direction of the arrows. In a minority
129 of trials, the color of the arrows turned red after a short delay, and the action had to be
1o abandoned immediately.

131

132 Figure 1 somewhere here

133

s 2.2 Motor behavior of neurotypical individuals and PD patients

135 in action regulation tasks

13 We computed the reaction time (RT) for initiating an action as the time interval between

17 the presentation of the target arrows on the screen and the initiation of the reaching
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s movement. We found that in the decision-making task, choice trials had longer RT than
130 instructed trials in both populations (Fig. 2A) (p<0.001, two-way ANOVA). Interest-
o ingly, although the neurotypical participants responded faster than the PD patients in
11 the instructed trials (p<0.001, two-way ANOVA), we found no significant difference in
12 RT between the two groups in the choice trials (p=0.878, two-way ANOVA), (Fig.2A). In
13 the Eriksen flanker task, both groups exhibited shorter RT in the congruent trials than
1« in the incongruent trials (Fig. 2B) (p<0.001 for both neurotypical participants and PD
s patients,two-way ANOVA). However, PD patients had slower responses than neurotypical
s participants in both congruent and incongruent trials (p<0.01 for congruent trials, p<0.05
17 for incongruent trials, two-way ANOVA). Regarding the stop-signal task, interestingly,
us we found that neurotypical participants had slower responses than PD patients in the go
o trials (Fig.2C) (p<0.001, two sample t-test). In particular, the neurotypical group seems
150 to have strategically slowed down their responses in the go trials by 233 ms on average
151 in order to be more successful in inhibiting their response in stop trials (p<0.001, two
12 sample t-test on RT between instructed trials and go trials for the neurotypical popu-
153 lation). On the other hand, PD patients exhibited much subtler modification of their
154 response between instructed trials (decision-making task) and go trials (stop-signal task)
155 - the reaction time for go trials increased only by 47 ms on average compared to instructed
15 trials (p<0.001, two sample t-test), suggesting that the anticipation of the stop signal had
157 smaller effect on their motor planning behavior.

158

150 Figure 2 somewhere here

160

161 These findings predict that PD patients will perform worse in stop trials than neu-

12 rotypical participants, since a lower probability of stopping has often been associated with

o
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163 faster responses in go trials [40-42]. To test this hypothesis, we computed the probability
e to stop an action for different stop-signal delay (SSD) values across all participants in
s each group. The results showed that the probability to successfully stop an action was
166 inversely correlated with SSD, and consistent with the hypothesis, PD patients exhibited
167 lower probability of stopping an action compared to neurotypical individuals (Fig.3).

168

160 Figure 3 somewhere here

170

m 2.3 An integrated neurodynamical theory of action regulation

172 predicts motor behavior

i3 Our findings require a computational theory that could explain the mechanism of action
s regulation that involves inhibition and predicts how disruption of this mechanism can
s lead to motor impairments in PD patients. Building on our previous successful work in
s modeling visuomotor tasks [38,39], we developed a neurodynamical theory to unify the
77 action regulation mechanism that involves inhibition. The theory builds on the affordance
s competition hypothesis, according to which multiple actions are formed concurrently and
o compete over time until one has sufficient evidence to win the competition [6, 7, 12].
1o It combines dynamic neural field (DNF) theory [43,44] with stochastic optimal control
1 theory [45,46] and its architectural organization is illustrated in Fig.4. Each DNF field
1.2 simulates the dynamic evolution of firing rate activity of a network of neurons over a
13 continuous space with local excitation and surround inhibition. It consists of 181 neurons
18a - with exception of the context signal field and the pause field - and each of them has

185 a preferred direction between 0° and 180°. The “spatial sensory input” field encodes
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18 the angular representation of the competing actions (i.e., left vs. right movements in
g7 our study). The “expected outcome” field encodes the expected reward for reaching
188 to a particular direction. The outputs of these two fields send excitatory projections
189 (green arrows) to the “reach planning” field in a topological manner. The “reach cost”
o field encodes the effort cost required to implement an action at a given time and state.
1 The reach cost field sends inhibitory projections (red arrow) to the reach planning field
12 to penalize high-effort actions. For instance, an action that requires changing of moving
13 direction is more “costly” than an action of keeping going in the same direction. Although
s the cost field does not have a critical role in this study, since all planning actions are
105 associated with about same effort, it is required for generating reaching movements from
106 the optimal control part of the model.

197 We also added to the model architecture a Basal Ganglia (BG)-type mechanism for
108 implementing the inhibitory process. This mechanism consists of three DNF platforms:
1w (a) two context signal fields (stop and conflict) that represent information related to
20 the contextual requirement of the tasks; (b) a pause field that suppresses the activity of
21 the reach planning field to inhibit planned or ongoing actions. Each of the context fields
202 consist of 100 neurons which project to the corresponding sub-population of the pause field
203 via one-to-all excitatory connections. The stop signal field and the conflict signal field are
204 activated when they detect a stop cue and conflict cue, respectively. Regarding the action
205 selection function, the model does not need a context field to signal the decision task,
206 since it can collect this information from the spatial sensory input field. In particular, the
207 spatial sensory input field projects to the corresponding sub-population on the pause field
28 with one-to-all excitatory connections. If more than one targets is encoded in the spatial
200 sensory input field, the corresponding population on the pause field is triggered. Notably,

210 this architecture is consistent with experimental studies which suggest dissociable frontal-
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10

au BG circuits for different action suppression functions [34]. The pause field consists of 3
212 sub-populations of 75 neurons, each of them associated with one of the action regulation
23 functions (i.e., action decisions between multiple options, action selection in the presence
2e of conflicting information and outright stopping of actions). Once the pause field is
a5 triggered, the activity of the reach planning field is suppressed to delay a decision when
26 more time is needed (i.e. during action selection or decision with conflicting information),
217 or to completely suppress an action when it is no longer wanted or rendered inappropriate
2 (i.e., outright stopping).

210 Each neuron in the reach planning field is connected with a stochastic optimal con-
20 troller. Once the activity of a reach neuron j exceeds the action initiation threshold (cyan
21 discontinuous line in Fig.4) at the current time and state a;, the corresponding controller
22 initiates an optimal policy 7r;(a;) to move the joystick towards the preferred direction of
23 that neuron (see materials and methods section for more details). Reaching movements
24 are generated as a mixture of active policies (i.e., policies in which the associated neuronal
»s activity in the reach planning field is above the action initiation threshold) weighted by
26 the normalized activity of the corresponding reaching neurons. The normalized activity
27 s called relative desirability since it reflects the attractiveness of a policy with respect to
»s alternatives (for more details see [19,38].

229

230 Figure 4 somewhere here

231

22 2.3.1 Modeling the computations of motor decision-making

213 The first task to model is the motor decision-making task that involves reaching to either

24 a single direction (instructed trial) or selecting between two opposite directions (choice
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25 trial). Fig.5A illustrates the activity of the reach planning field as a function of time for
26 a representative instructed (top panel) and choice (bottom panel) trial. Initially, the field
237 activity is in the resting state. After the target onset in the choice trial, two neuronal
28 populations selective for the targets are formed and compete through mutual inhibitory
23 interactions. The activity of the pause field also increased to further inhibit the reach
20 planning field to delay the initiation of the action (Fig. 6A blue trace shows the mean
21 activity of the pause field across time in a choice trial). Once the activity of a neuronal
22 population exceeds an action initiation threshold, the corresponding target is selected,
a3 the activity of the non-selected target is inhibited by the “winning” population, and a
24 reaching movement is initiated. When only one target is presented (Fig.5A top panel), the
us  activity of the corresponding neuronal population exceeds the action initiation threshold
us faster due to the lack of inhibitory competition from an alternative option and the non-
27 activation of the pause field (Fig. 6A cyan trace shows that pause field activity remains
2s on baseline). To get better insight on the model computations, consider two neurons in
29 the choice trial, one from each population, centered at the target locations (Fig.5D). The
0 neuron that exceeds the action initiation threshold first (red continuous traces) dictates
21 the reaction time and the selected target (i.e., the selected direction of movement). In
22 the absence of action competition (instructed trial), the activity of the reach neuron (blue
23 trace) exceeds the action initiation threshold faster than when two actions compete for
2 selection (red traces). Hence, we predict that simulated instructed reaches have shorter
»s  RT than reaches in the choice trials. To test this prediction, we simulated 100 decision-
6 making trials in which 50 % of them involves choices between two competing options and
57 the rest of them were instructed trials. Consistent with the prediction, we found that free
28 choice movements have longer RT than instructed movements, as is shown in Fig.7A.

259
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260 Figure 5 somewhere here

261

262

263 Figure 6 somewhere here

264

% 2.3.2 Modeling the computations of conflicting information in motor deci-

266 sions

27 In the Eriksen flanker task, a “flanker” (i.e., distractor) appears 100 ms before the target.
s Once the flanker is presented and detected by the spatial sensory input field, a reach
x0 neuronal population tuned to the flanker direction is formed - i.e., the model prepares
o0 an action towards the direction of the flanker. If the upcoming target coincides with
o1 the flanker direction (congruent trial), the pause field will not be activated (Fig.6B cyan
a2 trace) and the activity of the reach neuronal population will be further increased, leading
o3 to fast reaching movements towards the target direction (Fig.5B top panel). On the
o other hand, if the target points to the opposite direction from the flanker (incongruent
o5 trial), a new reach neuronal population is formed and competes with the reach neuronal
26 population of the flanker (Fig.5B bottom panel). The conflict signal field detects the
an “conflicting information” and activates the pause field (Fig.6B blue trace) to suppress
s the reach planning field so that the target population will have time to further increase
79 its activity and win the competition. The expected outcome field, which encodes the
250 correct movement direction, biases the competition towards the target direction. To better
51 understand the mechanism of action regulation in the Eriksen flanker task, we consider two

22 neurons centered at the location of the target and the distractor, respectiely (Fig.5E). The
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23 neuronal activity of the distractor (red discontinuous trace) increases before the neuronal
¢ activity of the target (red continuous trace), since distractor precedes target presentation.
s Once the target is cued, the two neurons compete through inhibitory interactions. This
286 competition, as well as the inhibition of the reaching neuronal population from the pause
27 field, delay the action initiation, leading to longer RT. On the other hand, the lack of action
23 competition and the non-activation of the pause field in the congruent trials (Fig.6B cyan
20 trace) lead to shorter RT. To test this prediction, we simulated 100 Eriksen flanker task
200 trials with 50 % of them to be incongruent trials. Consistent with the prediction, we
20 found that reaching movements in incongruent trials have longer RT than in congruent

22 trials as illustrated in Fig. 7B.

203 2.3.3 Modeling the computations of outright stopping of actions

20 Regarding the stop-signal task, the model needs to generate actions while anticipating a
205 stop signal. The experimental results showed that when people anticipate a stop signal,
206 they have longer RT as compared to when they do not anticipate a stop signal (i.e.,
207 instructed trials). This suggests that the pause field is active even in the go trials to
28 increase the chances of being able to abandon an action in case stopping is required. The
200 reach planning field activity in the go task resembles that of an instructed trial in the
w0 decision-making task (Fig.5C top panel), the only difference being that in the go trials
sn the pause field is continuously active (Fig.6C blue trace). Hence, the activity of the
sz reach planning field increases slower compared to the instructed trial, resulting in longer
3 RT. In a go trial, the reach neuronal population tuned to the target direction is formed
54 preparing an action. Once the activity of the population exceeds an action initiation
35 threshold, the action is performed. However, in some trials, a stop signal is cued and the

w06 pause field activity is further increased, which subsequently inhibits the activity of the
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w7 reach planning field to completely stop the planned or the ongoing action (Fig.5C bottom
28 panel). To better understand the mechanism for stopping actions, consider one neuron
w0 from the population centered at the location of the target. The activity of the neuron
310 increases once the target is cued and an action is initiated when the activity exceeds the
su  action initiation threshold (Fig.5F blue trace). However, if a stop signal is cued, the pause
a2 field inhibits the activity of the neuron to stop the ongoing action (Fig.5F black trace).
a3 The stop signal is given with some delay (stop signal delay, SSD) in each trial. The longer
sie the SSD is, the harder it is for the pause field to suppress the activity of the reach neuron
a5 increasing the chance to fail to stop the action. To test the model prediction, we simulated
sis 50 go trials, as well as 250 stop trials, in which a stop stimulus appeared at different SSDs,
a7 signaling the model to abandon the action. Consistent with the model predictions, we
as found that go trials have longer RTs than instructed trials (p<0.001, two-way ANOVA,
s19 comparison made between the mean RT on instructed trials in the decision-making task
20 and mean RT on go trials in the stop-signal task), and the probability to successfully stop
;1 a response reduces with increased SSD - i.e., the longer the signal delay, the harder it is

22 for the model to stop an action (Fig.8 blue trace).

» 2.4 Dysfunction of the pause mechanism predicts motor impair-

32 ment in PD patients

»s S0 far the neurodynamical theory is capable of capturing the motor behavior of the
16 neurotypical participants in the 3 action regulation tasks. However, one of the main
w7 findings in our study is that PD patients exhibit overall slower responses in nearly all
w8 tasks compared to neurotypical participants. This motor impairment can be explained

29 within the neurodynamical theory as a deficit on the pause mechanism. That is, the
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a0 pause field is active even in the absence of conflicting information (congruent trials in
s the Eriksen flanker task) or competition between multiple actions (instructed trials in
s the decision-making task). To get a better understanding on how dysfunction of the
;3 pause mechanism affects motor behavior, Fig.6 shows the activity of the pause field as a
s function of time for a single trial across all tasks when simulating actions to model the
135 RT of neurotypical participants and PD patients. In the decision-making task, the pause
16 field is activated even when no action competition is presented (i.e., instructed trials)
a7 to capture the RT of the PD patient (Fig.6A magenta trace). This explains the slower
138 response on initiating an action on instructed trials from PD patients. Also, the lack
s9 of difference on RT between neurotypical and PD patients in free choice trials suggests
w0 that the pause field exhibits similar activation levels when deciding between competing
s options after targets onset in both groups (Fig.6A). Regarding the flanker task, the pause
s field is active before the target onset in PD patients, explaining the slower response in
13 both congruent and incongruent trials compared to neurotypical individuals (Fig.6B red
s and magenta traces). We need to point out here that although the pause field exhibits
us the same activation level in instructed and free choice trials (decision-making task) in PD
us patients, the slower response in choice trials compared to instructed trials is due to the
w7 inhibitory action competition between the two alternative movement directions.

348 Additionally, another important finding in our study is that PD patients have shorter
s RT in go trials than neurotypical participants in the stop signal task. By comparing
0 the RT of movements between go trials in the stop-signal task and instructed trials in
;1 the decision-making task, we found that neurotypical participants delayed their responses
2 in the go trials because they anticipated a stop signal as compared to when they did
33 not anticipate a stop signal (i.e., instructed trials). This response delay effect (RDE)

3« has been reported in previous studies [47-50] and has been associated with an “active
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35 braking mechanism” that increases the chance of abandoning a response in case stopping
36 1S required [51]. Note that PD patients also exhibited this active braking mechanism, but
57 the difference in RT between go trials with anticipation of stopping signal and instructed
s trials was much smaller compared to neurotypical participants. Overall, these findings
10 suggest that the pause field is active in the go trials for predicting the motor behavior
w0 in both groups of participants. In fact, the pause field activity is higher in neuropytical
1 participants than PD patients, before a stop signal is detected, to explain the slower
32 response of the first group compared to the latter group (Fig.6C, blue and red traces). We
w3 simulated 50 go trials with elevated pause field activity for both neurotypical participants
s and PD patients. Consistent with the behavioral findings, the go trials have longer RT
s in the simulated neurotypical participants than PD patients (Fig. 7C) (p<0.001, two
36 sample t-test). Additionally, the model predicts that the probability to successfully stop
37 a response is lower in PD patients than in neurotypical individuals (Fig. 8) due to the
ws faster response of PD patients.

369

370 Figure 7 somewhere here

371

372

373 Figure 8 somewhere here

374
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- 3 Discussion

s 3.1 General

sz Survival of species in an ever-changing environment requires flexibility in action selec-
s tion. Traditional theories suggest that action selection takes place before action prepa-
wo  ration [52-55]. However, recent cognitive theories challenge this view suggesting that in
;0 situations affording more than one alternative options, individuals prepare multiple ac-
31 tions in parallel that compete for selection before choosing one to execute [6-10]. This
;2 theory received empirical support from neurophysiological investigations in the sensorimo-
383 tor areas of non-human primates (NHPs) showing that the brain encodes parallel reach,
s grasp and saccade plans before the animals select between them [11,12,56]. It is consistent
;s with the continuous flow model of perception, which suggests that response preparation
;s can begin even before the goal is fully identified and a decision is made [14-16]. Psy-
sz chophysical support for this theory comes from the observation that when reaching to
;s multiple potential targets, the initial movement is directed towards the average location
0 of the targets, consistent with the theory that multiple prepared reaches being executed
w0 simultaneously [17-19].

301 Flexibility in action selection includes not only being fast and accurate enough when
s selecting between competing options, but also being flexible enough to change actions
33 according to updated demands of the environment. This includes delaying actions in the
s presence of conflicting information and completely abandoning obsolete actions when they
s are rendered inappropriate [57-60]. Series of studies have explored how different brain
w6 regions contribute to programming, re-programming and stopping of actions using neural
27 recordings and functional neuroimaging techniques [20,21,24,25,28,29,61,62]. The basal

ws  ganglia (BG), and in particular, the subthalamic nucleus (STN), has been functionally
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30 implicated in action regulation, but in association with distinct frontal areas, such as the
w0 primary motor cortex (M1), the premotor cortex (preMC), the presupplementary motor
w1 area (preSMA) and the right inferior frontal gyrus (rIFG) [31-34]. In a sense STN seems
w2 to act as a “brake” when a stop signal is presented to rapidly suppress ongoing actions.
w3 Furthermore, various computational theories including the drift-diffusion model (DDM),
ws urgency-gating model (UGM), evidence accumulation models (EAMs), race models and
s0s mutual inhibition models, have been constructed to explain how the brain selects between
w6 competing options, inhibits actions in the presence of conflicting information and aban-
w7 dons planned or ongoing action when they are rendered inappropriate [63-66]. Although
we  these theories provide significant insights into the action regulation mechanisms, a major
w0 limitation is that they explored separately each of these three motor functions, making it
a0 challenging to develop a unified theory of action regulation. A computational theory that
a1 can simulate the mechanisms underlying selecting, inhibiting and outright stopping of
a2 actions is needed to unify and integrate these distinctly studied actions and mechanisms.
3 Our research focuses exactly on what has been missing from previous studies — to
as design a large scale computational theory that can predict: 1) how the brain selects
ss  between competing actions, delays actions in the presence of conflicting information and
a6 stops actions when they are rendered inappropriate, 2) how neuropsychiatric diseases,
a7 such as PD, affect the action regulation circuitry and lead to motor deficits. Building
s on our previous work [38,39], we developed a neurodynamical framework to integrate the
a0 three action regulation functions into a unified computational theory. This computational
20 theory is based on the affordance competition hypothesis, in which multiple actions are
a2 formed concurrently and compete over time until one has sufficient evidence to win the
a2 competition [6]. We replace evidence accumulation with desirability — a continuously

23 evolving quantity that integrates all sources of information about the relative value of an
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24 action with respect to alternatives. The winning action determines the reaction time and
w5 the direction of movement. The computational theory includes a BG-type mechanism
26 of inhibiting actions in the presence of competing options, conflicting information and
27 stopping signals. We tested the computational model in a series of tasks that involve
w8 action selection, decision conflict and outright stopping using neurotypical individuals
2o and PD patients. Our findings showed that the model captures many aspects on human
s0 behavior, such as the longer RT in the presence of competing actions and conflicting
s information, as well as the inverse relationship between the probability to successfully
s stop an action and stop signal delay (SSD). It also predicts the motor impairment on PD
;3 patients when performing these three motor tasks as a deficit in the pause mechanism.
ss In particular, the model explains the longer responses in generating actions even without
i35 the presence of competing action and conflicting information in PD patients compared
16 to neurotypical participants as a consequence of hyperactivity on the pause field. This is
a7 consistent with experimental evidence showing that STN is overacting in PD patients [67]
ss leading to longer responses in visuomotor tasks. Overall, to the best of our knowledge,
130 our study presents the first neuro-computational theory that integrates the mechanisms
a0 of three action regulation functions and predicts how disruption of these mechanisms can

w1 lead to motor deficits reported in neurological diseases such as PD.

w 3.2 Mapping to neurophysiology

w3 The computational theory presented in the current study is a systems-level framework
ws aimed to qualitatively predict response patterns of neuronal activities in ensembles of
us neurons, as well as motor behavior, in action regulation tasks. It captures many key
us features of the functional properties of the cortical-subcortical network involved in action

w7 regulation. The spatial sensory input field mimics the organization level of the posterior
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ug  parietal cortex (PPC) [68,69]. The expected reward field can be associated with the
a9 ventromedial prefrontal cortex (vimPFC) and orbitofrontal cortex (OFC), two frontal areas
0 with important role in computation and integration of reward [70,71]. The reach cost field
s1 can be equated to the anterior cingulate cortex (ACC) that has a key role in computing
2 the cost for performing an action [72,73]. The reach planning field can be associated with
3 the parietal reach region (PRR) [74, 75] and the premotor dorsal cortex (PMd) [76,77],
sa  two cortical areas involved in planning of reaching movements. The stop signal field can
ss be equated with the right inferior frontal gyrus (rIFG), which is recruited when cues
6 associated with response inhibition are detected [78,79]. Regarding the conflict signal
ss7 field, the popular view is that the pre-supplementary motor area (preSMA) detects the
s co-activation of different but conflicted responses (e.g., naming the color of the word red
0 written with green color), it activates the STN to temporarily suppress a response [80,81].
w0 Finally the pause field can be equated to the STN which is activated in tasks that require

w1 stopping or pausing behavioral outputs to suppress actions [23,27,30, 35].

« 3.3 Computational modeling of action inhibition deficits in PD

463 patients

s PD is a progressive neurodegenerative disease associated with progressive loss of dopamin-
w5 ergic neurons in the substantia nigra of the BG [67]. The disruption of frontal-BG circuitry
a6 is responsible for the development of major symptoms of PD, including rigidity, tremor,
w7 bradykinesia, and postural instability [82,83]. In particular, impairment of response in-
se hibition abilities, which greatly affects the life quality of PD patients, is considered to
wo be a sensitive measure to the progression of PD [84]. As a key player in the frontal-BG

a0 circuit, the STN is suggested to mediate a “pause” function by rapidly inhibiting the BG
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m activity. Therefore, it is considered to play a prominent role in the pathology of PD [85].
2 An increase in the neuronal activity of the STN has been demonstrated in electrophysi-
a3 ological and behavioral studies in non-human primate models of PD [86] as well as PD
s patients [87]. Our findings suggest that an increase in the STN-mediated “pause” signal is
a5 responsible for the impairment of action inhibition abilities in PD patients. In our model,
s we assigned higher baseline activation level of the pause field in the decision-making task
s7 and Eriksen flanker task in PD patients compared with neurotypical participants. Consis-
as  tent with the model predictions, PD patients exhibited longer RT than healthy individuals
a9 in the instructed trials of the decision making task, as well as in both incongruent trials
s0 and congruent trials of the Eriksen flanker task. Notably, RT in the free choice trials
i1 of the decision-making task wasn’t significantly different between PD patients and neu-
w2 rotypical participants. This suggests that pause field, which is already highly active in
w3 instructed trials, is not further activated in the choice trials.

484 An interesting finding in our study was that neurotypical individuals had slower re-
sss  sponse than PD patients to initiate an action in the stop-signal task. This is somewhat
s counter-intuitive since the STN is overactive in PD patients and therefore we would expect
s that they would had slower response than neurotypical participants. However, when we
s compared RT between instructed trials (decision-making task) and go trials (stop signal
a0 task) of the neurotypical individuals, we found that they responded slower when they
w0 anticipated a stop signal. On the other hand, we found much subtler difference in RT
w1 between instructed trials and go trials in PD patients. This suggests that the pause mech-
w2 anism is activated in the stop-signal task in neurotypical individuals even before a stop
w03 signal is presented. By activating the pause field to simulate the motor behavior of the
w4 neurotypical participants, the model predicts that PD patients will have faster responses

w5 and lower probability to stop planned or ongoing actions compared to neurotypical par-
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w6 ticipants. In other words, the model explains the slower responses of the neurotypical
w7 participants as a cognitive strategy adapted to minimize the probability to fail to stop an

w8 action if a stop signal is detected.

w 3.4 Activity suppression or increase of action initiation thresh-

500 Old?

s In our theory, the pause field delays motor decisions by suppressing the activity of the
s reach planning field. However, an alternative hypothesis is that the pause field mediates
so3 the action inhibition function by increasing the action initiation threshold. Previous
soa  studies suggest that STN low-frequency oscillatory activity and medial prefrontal cortex
505 (MPFC)-STN coupling are involved in determining the amount of evidence (i.e., action
sos initiation threshold) needed before making a decision [88-91]. Additionally, clinical studies
sov  showed that deep brain stimulation targeting the STN in PD patients can modulate the
s amount of evidence, and therefore the action initiation threshold, required to initiate an
s0 action [89]. Hence, it is also likely that the STN delays motor decisions in the presence
sio of competing actions and/or conflicting information by increasing the action initiation
su  threshold, instead of suppressing the activity of the motor areas that generate actions.
sz Our computational theory is capable of modeling this hypothesis by adjusting the action
s13 initiation threshold in the reach planning field. However, it cannot dissociate between
su the two hypotheses on how the STN pauses actions when needed. To do so, future
s15. neurophysiological or neuroimaging studies need to record activity from the STN and

si5 motor areas during decision tasks with multiple options and/or conflicting information.
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s 3.5 Hyperactive pause mechanism or altered cost/reward ratio

518 in PD patients?

s Although our study suggests that deficits in movement preparation in PD patients, such
s20 as slow reaction times, are related to hyperactivity in STN that inhibits planned actions,
sz other studies have associated motor impairments with motivational deficits [92]. In partic-
s22  ular, motivational deficits seem to significantly contribute to bradykinesia in PD patients
s23 and lead to alternation in the amount of effort required to perform a movement at normal
2« speed, as well as the perceived reward for successfully completing the action [93].

525 Motor decisions are frequently made based on expected reward and the associated
s26  effort cost required to obtain the reward. The cost has been considered to be detrimental,
so7 since we tend to choose the less costly actions especially when they are associated with
s2s  similar expected rewards [94,95]. The dopaminergic neurons seem to be critically involved
s20 in the process of cost versus reward (i.e., cost/reward ratio) evaluation. Dopamine deple-
s tion from rat results in decreased tolerance for effort cost, whereas enhanced dopamine
sun levels has the opposite effect [94,96]. Loss of dopaminergic neurons and their projec-
s tions is a major pathological hallmark in PD patients. Clinical studies have shown that
53 PD patients, regardless of medication status, tend to engage less effort for the lowest
s reward compared with neurotypical participants in a hand-squeezing task [93]. However,
s dopamine medication motivates PD patients to engage more effort for a given reward,
s3 comparing to their off medication state. In addition, Deep brain stimulation (DBS) of
s the STN establishes a reliable congruency between action and reward in PD patients and
s33 remarkably enhances it over the level observed in neurotypical individuals [97].

539 Overall, these studies provide evidence that impairment of movement preparation in

ss0  PD patients can also be related to deficits in the mechanism that evaluates reward and
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sa effort cost associated with actions - i.e., alternation of the cost/reward ratio. Notably,
s22  this can be also modeled within our neurodynamical framework by increasing the amount
sa3  of effort required to perform actions towards the cued directions. Additionally, the alter-
s« mnation of the cost/reward ratio in PD patients could be also related to the hyperactivity of
sss the STN - more effort is required to increase the activity of the motor population, which
sa6 1S continuously inhibited by the STN, to initiate an action. Today, the mechanism for
se7 - motor and information processing deficits in PD patients is still under extensive study.
si PD is considered not only a disease caused by degeneration of substantia nigra dopamin-
sa9  ergic neurons, but also a system-level disease caused by dysfunction of the cortical-BG
ss0 circuit [67]. Therefore, both the hyperactivity of the STN and the altered cost/reward
ss1 ratio can be considered parts of PD pathophysiology, and contribute to the motor deficits

ss2 in PD patients.

s 3.6 Conclusions

ss«  In conclusion, the current study aims to advance our understanding on the computations
sss  underlying action regulations in tasks that involve action inhibition, the failure of which
ss6 - contributes to various neuropsychiatric diseases. We proposed a large scale neurodynam-
ss7 ical computational framework that combines dynamic neural field theory with stochastic
sss  optimal control theory to simulate the mechanisms of action regulation and to predict
550 how disruption of this mechanism lead to motor deficits in PD patients. We evaluated the
ss0o model predictions by comparing the motor behavior of neurotypical individuals and PD
ss1  patients in three tasks that require action inhibition. To the best of our knowledge, our
se2  results revealed for the first time an integrated mechanism of action regulation that affects
ss3  both action planning and action inhibition. When this mechanism is disrupted (as in PD

s« patients), motor behavior is affected, leading to longer reaction times and higher error
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sss rates in decisions and actions. Overall, our findings provide significant insight on how the
ss6 brain regulates actions that involve inhibition, and open new avenues for improving and

ss7 developing therapeutic interventions for diseases that may involve these circuits.

« 4 Methods

0 4.1 Participants

s A sample of 15 adults with PD and 32 neurologically healthy, age-matched adults took
s part in the study. The study was approved by the University of California, Los Angeles

sz Review Board and all individuals signed an informed consent before participating.

s 4.2 Stimuli and Procedure
s 4.2.1 Decision-Making Task

s All experiments were programmed using Psychtoolbox 3 for Matlab. Experimental setup
st 1s shown in Figure 1. In the decision-making task, participants sat in a dark room in front
sz of a 22-inch Dell LED monitor where stimuli would be presented on. The screen was ap-
s proximately 50 cm away from the participant. A two-dimensional joystick (Thrustmaster
s 'T.16000M FCS, maximum range of axis value is -32,000 +32,000) was placed in front
ss0  of the monitor. During the task, the participants were instructed to move the joystick
ss1 towards the left or right direction using their right hand in reaction to the corresponding
se2 stimulus. Each trial started with the screen turning black. After 1.0-1.1 s, a white fixation
ss3  cross appeared in the center of the black screen for 1.0-1.1 s, then the white fixation cross
s« disappeared, and four white arrows appear in the center of the black screen. In 50% of

ss the trials (choice trials), two of the arrows pointed to the left, and the other two to the
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s6 right (e.g. < < > >), in which case the participant needed to freely decide whether they
se7 would move the joystick to the left or right. In the other 50% of the trials (instructed
ses  trials), the four arrows were pointing to the same direction (left or right) (e.g. < < <
s90 <), in which case the participant needed to move the joystick towards the direction the
s0 arrows were pointing to. The arrows remained on the screen for up to 1.5 s before they
s disappear, then the screen turned black for 0.5 s. If the participant responded to the
s stimulus by moving the joystick to the left or right (axis value threshold for response:
s03 -25000 to the left/+25000 to the right) when the arrows were presented on the screen,
soa after 10ms, the screen would turn black for the remaining of the 1.5 s plus 0.5 s, after
ss  which the screen would remain black and the next trial would start. If the joystick did
ss 1ot return to the baseline (axis value between -2500 and +2500), the next trial would not
sov start until the joystick returned to the baseline. Every participant performed 2 blocks
se¢ Of trials, with 52 trials in each block. In each block of trials, there are 26 choice trials
so0 and 26 instructed trials. The trial type (choice or instructed) were randomized. Before
s0 each trial, the participant did not know whether the next trial would be a choice trial or
o1 an instructed trial. The RT for each trial was recorded as the time interval between the

sz appearance of the arrows on the screen and the participant’s response.

ss 4.2.2 Eriksen flanker Task

e An arrow version of the Eriksen flanker Task [98] with arrows pointing to the left and
s right was performed in our study. During the Eriksen Flanker task, the same equipment
o6 as described in 3.2.1 were used, the major difference being that in each trial, the target
o7 stimulus was flanked by stimuli which were pointing to the opposite direction of the target
08 arrow (incongruent trial) or to the same direction as the target arrow (congruent trial),

so and every participant was told to move the joystick towards the same direction as the
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s0 target arrow using his/her right hand. In each trial, the screen first turned black for 1.0-
s 1.1 s, then a white fixation cross appeared in the center of the screen for 1.0-1.1 s. After
s12 this interval, four white flanker arrows pointing to one direction (left or right) appeared
s in the center of the screen, leaving a blank space in the middle (e.g. < < < <). After
s1a 100 ms, a white target arrow appeared in the blank space, pointing either to the opposite
a5 direction of the flankers (incongruent trial) or the same direction (congruent trial). The
s16  target arrow and the flankers remained on the screen for up to 1.5 s, then disappeared,
s17 and the screen turned black for 0.5 s. If the participant responded to the target arrow by
s moving the joystick to the left or right, after 10ms, the screen would turn black for the
s19 remaining of the 1.5 s plus 0.5 s, after which if the joystick returned to baseline, the screen
s20 would remain black and start the next trial. Each participant performed two blocks of
21 trials, with 52 trials in each block, making a total of 104 trials. In each block of trials,
22 there are 26 incongruent trials and 26 congruent trials. The direction of the target arrows
e and the type of flanker (incongruent or congruent) were randomized. The RT for each
s« trial was recorded as the time interval between the appearance of the target arrow and

&5 the participant’s response.

e 4.2.3 Stop Signal Task

sz A trial in a stop signal task is either a go trial or a stop trial. In each trial, arrows pointing
e2s  to the left or right direction were presented on the screen as a stimulus. In a go trial (no
620 stop signal is presented), the participant should respond as fast as possible by moving the
30 joystick towards the direction the arrows were pointing to. In a stop trial, the participant
a1 should try to inhibit their response after the stop signal was cued. Participants were told
s22  that stop was not always possible, and that stop trials and go trials are equally important.

33 Before the experiment, each participant performed 24 training trials, including 16 go trials
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3« and 8 stop trials. At the beginning of a trial, the screen turned black. After 1.0-1.1 s, a
35 white fixation cross appeared in the center of the screen for 1.0-1.1 s, then the fixation
36 cross disappeared, and four white arrows pointing to the left or right appeared in the
37 center of the screen. In a go trial, the arrows remained on the screen for up to 1.5 s before
ss they disappeared, then the screen turned black for 0.5 s. If the participant responded
630 to the stimulus by moving the joystick when the arrows were presented on the screen,
a0 after 10ms, the screen turned black for the remaining of the 1.5 s plus 0.5 s, after which
sa1 if the joystick returned to baseline, the screen remained black and the next trial was
2 started. A stop trial is nearly identical to a go trial, except that the arrows turned red
sa3 after an interval termed “stop signal delay” (SSD) indicating that the participant should
saa  abandon any response immediately. If the participant inhibited their actions, the arrows
es remained on the screen for the rest of 1.5 s, and in the subsequent stop trial, the SSD
ss  would increase by 50 ms, making inhibition more challenging. If the participant failed to
a7 inhibit their actions, after 10 ms, the arrows disappeared, and the screen turned black for
sas  the remaining of the 1.5 s plus 0.5 s, after which if the joystick returned to the baseline,
s0  the screen remained black and the next trial would start. In this case, the SSD would
0 decrease by 50 ms, making it easier to inhibit actions. FEach participant performed 3
ss1  blocks of trials, with 60 trials in each block. In each block of trials, there were 40 go
es2 trials and 20 stop trials. The direction of the arrows and the type of trial (go or stop)
3 were randomized. The RT for each go trial and failed stop trial were recorded as the time

s« interval between the appearance of white arrows and the participant’s response.

s 4.3 Statistical Analysis

sss  Cubic interpolating splines were used to smooth the reach trajectories and compute the

es7 velocity of the movements. Reaction time (RT) was defined as the time between the target
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s appearance and the time that reach velocity exceeded 10% of the maximum velocity.
ss0 RTs faster than 100ms were removed because anticipation is considered to be involved
0 prior to actions, as well as RTs longer than 1500ms. RT outliers (RTs >3 standard
1 deviations below or above the mean RT) were also excluded from the analysis. The trials
s2 in which the participant changed their mind (moving towards one direction past 5% of the
63 maximum range, and then changed their mind to move towards the other direction) were
s also excluded from further analysis. RTs across all participants were pooled together, and
ss for the decision making task and the Eriksen flanker task, two-way ANOVA analysis was
s performed to determine the group differences in RTs. For the stop signal task, two-sample

7 t-test was performed to determine the group differences in go trial RTs.

o 4.4 Computational Model Architecture

60 We developed a neurodynamical framework based on our previous studies [38,39] to model
s the three action regulation functions. The computational framework combines dynamic
en neural field (DNF) theory with stochastic optimal control theory, and includes circuitry
ez for perception, expected outcome, effort cost, context signal, pause, action planning and
ez execution. Each DNF simulates the dynamic evolution of firing rate activity of a network
e« Of neurons over a continuous space with local excitation and surround inhibition. The
es functional properties of each DNF are determined by the lateral inhibition within the field
ers and the connections with other fields in the architecture. The projections between the
ez fields can be topologically organized — i.e., each neuron i in the field drives the activation
s at the corresponding neuron i in the other field (one-to-one connections), or unordered —
oo 1.e., each neuron in one field is connected with all neurons on the other field (one-to-all
0 connections). The activity of a field j evolves over time under the influence of external

1 inputs, local excitation and lateral inhibition interactions within the field, as well as
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> interactions with other & fields, as described by Equation (1):

6

<

Tl (2,1) = —uj(@, 8) + by + Sj(@, ) + [w; ® fi(u))] (2,0) + Y lwig @ fulwr)] (2,1) (1)

683 where u(z,t) is the local activity of the DNF at the position « and time ¢, and u;(z, t)
esa is the rate of change of the activity over time scale by a time constant 7. If there is
s N0 external input S(z,t), the field converges over time to the resting state h from the
ess current level of activation. The first convolution term [w; ® f;(u;)] (x,t) = [w(z —
o T )f [u(:c', t)] dz’ models interactions between the simulated neurons at different locations
sss  within the field j, and is shaped by the interaction kernel of Equation (2), which consists

o of both excitatory and inhibitory components:

/ — (zizl )2 _M
w(x —a ) = Cepee 208c — Cippe *inn (2)
690 where Cope, Cinny Oeze and o;,, describe the amplitude and the width of the excitatory

so1 and the inhibitory components, respectively. We convolved the kernel function with a
2 sigmoidal transformation of the field so that the neurons with activity above a threshold

3 participate in the intra-field interactions:

1
1) = T Zmm (3)
so« in which the steepness of the sigmoid function was controlled by /.
695 The function wj;, describes the connectivity kernel between fields u; and u; showing
eos the contribution of field wuy to the dynamics of field u;. The sigmoid fi(u;) and w;j are

7 convolved to determine the full contribution from field u; to u;.
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698 The architectural organization of the framework is shown in Figure 4. The “reach
so  planning” field encodes the potential movement directions, and is responsible for initi-
70 ating the reaching movements. The “spatial sensory input” field encodes the angular
71 representations of the competing targets. The “expected outcome” field encodes the ex-
2 pected reward for reaching to a particular direction centered on the hand position. The
03 outputs of these two fields send excitatory projections (green arrows) to the reach plan-
704 ning field in a topological manner. The “reach cost” field encodes the effort cost required
705 to implement an action at a given time and state. The reach cost field sends inhibitory
w6 projections (red arrow) to the reach planning field to penalize high-effort actions. For
77 instance, an action that requires changing of moving direction is more “costly” than an
708 action of keep going in the same direction. The “pause” field suppresses the activity of the
700 reach planning field to inhibit planned or ongoing actions via inhibitory projections to the
70 reach planning field. The stop signal field and the conflict signal field encode information
1 related to the contextual requirement of the task (i.e., stopping cue or flanker distractor),
72 and send one-to-all excitatory projections to the corresponding population of the pause
73 field. In particular, the stop signal field is projected to the neuronal population of the
7a pause field which is responsible for outright stopping of action, whereas the conflict signal
75 field projects to the neuronal population of the pause field, which is responsible for delay-
76 ing decisions when conflicting information is detected. Each of the context signal fields
n7 (stop signal field and conflict signal field) consists of 100 neurons, whereas the pause field
7s  consists of 3 neuronal sub-populations, each consists of 75 neurons. The rest of the fields
719 consist of 181 neurons with a preferred direction between 0 to 180 degrees. The activity
720 of the reach planning field S0, is given as the sum of the outputs of the fields encoding
721 the position of the target v, the expected reward vyeyard, the estimated reach cost veost,

72 and the activity from the pause field v,q4,, at any given time and state, corrupted by a
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723 Gaussian distributed additive noise &.
Szzctz'on = MNiocVUpos + NrewardVUreward — TcostVcost — TlpauVpau + 6 (4>
724 where Mioe, Nreward, Neost a0 7pq,, are scalar values that weigh the influence of the

725 spatial sensory input field, the expected outcome field, the reach cost and the pause field,
726 respectively, to the activity of the reach planning field. The values of the model parameters
727 are given in S1 Table. The normalized activity of the reach planning field describes the
228 relative desirability d; of each “reach neuron” with respect to the alternative options at
729 time t — i.e., the higher the activity of a reach neuron j, the higher the desirability to
70 move towards the preferred direction ¢; of this neuron with respect to the alternatives
71 at a given time t. Each neuron j in the reach planning field is connected with a control
722 scheme that generates reaching trajectories. Once the activity of that neuron exceeds the
733 action initiation threshold ~, the controller is triggered and generates an optimal policy
734 T, a sequence of motor actions towards the preferred direction of the neuron j. The

735 optimal policy is given by minimization of the cost function:

T;—1
Ji(@e, ;) = (@1, — 5p;)" Quy(wr, — Sp;) + Y w5(m:) " Rey(a) (5)

t=1
736 where 7;(;) is the policy from the time t = 1 to t = T); to reach towards the preferred

737 direction ¢;; Tj is the time required to arrive at position p;; p; is the position planned
73 to arrive (goal position) at the end of the reaching movement, given by p; = [rcos(y;),
730 18in(¢p;)], in which r is the distance between the current location of the hand and the
70 location of the stimulus encoded by the neuron j. @7, is the state vector at the end of
1 the reaching movement, and matrix S selects the actual position of the hand and the goal

72 position at the end of the reaching movement from the state vector. Matrices Qr, and R
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73 define the cost dependent on precision and control, respectively. More details about the
744 optimal control model are described in [38,39]. Consequently, a action is initiated once
s a neuronal population exceeds the action initiation threshold and the executed action
746 Tmiz(T¢) 1S given as a mixture of the active policies (i.e., policies with active neurons)
7 weighted by relative desirability values of the corresponding neurons at any given time
ns and state.
M
i (L) = Z dj(@)m;(2:) (6)
J

749 where x; is the state of the system at time ¢ (i.e., position, velocity, orientation of
50 the trajectory), d; is the normalized activity of the neuron j (i.e., relative desirability
751 value of the neuron j), and 7r; is the optimal policy generated by the controller connected
72 with neuron j. Because desirability is time- and state-dependent, the weighted mixture of
753 the individual policies can change/correct the current trajectory in the presence of new
74 incoming information - e.g., a stop signal cued while acting. In order to handle contin-
755 gencies during the movement, the “receding horizon control”(RHC) [99, 100] technique,
756 also known as model predictive control (MPC), which is widely used in stochastic optimal
77 control models, was implemented in the framework. According to RHC, the framework
s would only execute the initial portion of the sequence of actions for a short period of time
50 T (7 =9 in our framework), after which the framework would recompute the optimal
0 policy Tiz(x; + 7) from time t+7 to t+7+7T;, and this approach would continue until

71 the hand reaches one of the targets.
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w Figure Legends

wa  Fig.1 Experimental setup for action regulation tasks that require action inhi-
sz bition.(A) Decision-making task, including instructed and choice trials. (B) An arrow
1063 version of the Eriksen Flanker task, including congruent (the flanker arrows point to the
s same direction as the central arrow) and incongruent (the flanker arrows point to the
s opposite direction from the central arrow) trials. (C) A stop-signal task with instructed
wes trials. Individuals are prompted to stop the action when the arrows turn red.

1067
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wes Fig.2 Behavioral findings from the decision-making task, the Eriksen flanker
e task and the stop-signal task. (A) Bar plots of the RT for neurotypical individuals
o (Neurotypical) and PD patients (PD) in the instructed and choice trials of the decision-
wn making task. Error bars correspond to standard error (SE). (B) Bar plots of the RT
w2 for neurotypical individuals (Neurotypical) and PD patients (PD) in the congruent and
w3 incongruent trials of the Eriksen flanker task. Error bars correspond to standard error
s (SE). (C) Bar plots of the RT for neurotypical individuals (Neurotypical) and PD patients
s (PD) in the go trials of the stop-signal task. Error bars correspond to standard error (SE).
1076

w7 Fig.3 Probability to successfully stop an action as a function of the stop signal
s delay (SSD). The probability to successfully stop an action as a function of the SSD for
s neurotypical individuals (Neurotypical,blue) and PD patients (PD,red).

1080

w1 Fig.4 Model Architecture. The architectural organization of the neurodynamical the-
w2 ory to model tasks that involve action inhibition, such as decisions between competing
ws3 options, decisions in the presence of conflicting information and outright stopping of ac-
08¢ tioms.

1085

wss Fig.5 Simulated reach planning field neuronal activity changes in the deci-
w7 sion making task, Eriksen flanker task and stop-signal task (A)-(C) Activity
wss changes of the 181 neurons in the reach planning field during the decision making task
s (instructed trial and choice trial)(A), the Eriksen flanker task (incongruent trial and con-
o gruent trial)(B), and the stop-signal task (go trial and stop trial)(C) .(D)-(F) Activity
e changes of single neurons in the reach planning field during the decision making task(D),

w2 the Eriksen flanker task(E), and the stop-signal task(F).
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1003
we  Fig.6 Simulated behavioral results from the three tasks. Simulated reaction time
s (RT) for the three experimental tasks predicted by the neurodynamical theory for both
s neurotypical individuals (Neurotypical, blue) and PD patients (PD, red).

1007

e Fig.7 Simulated pause field activity changes during the three tasks (A) Activity
we changes of single neuron in the pause field during the decision making-task. Cyan trace,
noo  simulated pause field activity during an instructed trial for a neurotypical individual.
nn  Magenta trace, simulated pause field activity during an instructed trial for a PD patient.
noe  Blue trace, simulated pause field activity during a choice trial for a neurotypical individ-
oz ual. Red trace, simulated pause field activity during a choice trial for a PD patient. (B)
nos  Activity changes of single neuron in the pause field during the Eriksen flanker task. Cyan
nos trace, simulated pause field activity during a congruent trial for a neurotypical individual.
ns  Magenta trace, simulated pause field activity during a congruent trial for a PD patient.
nor  Blue trace, simulated pause field activity during an incongruent trial for a neurotypical
uos individual. Red trace, simulated pause field activity during an incongruent trial for a PD
uos  patient. (C) Activity changes of single neuron in the pause field during the stop-signal
mo task. Blue trace, simulated pause field activity during a stop trial for a neurotypical
un  individual. Red trace, simulated pause field activity during a stop trial for a PD patient.
112

uz Fig. 8 Simulated probability to successfully stop an action as a function of the
i stop signal delay (SSD) The (simulated) probability to successfully stop an action as
s a function of the SSD for neurotypical individuals (Neurotypical,blue) and PD patients
s (PDjred).
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S1 Table
Model Parameters
Parameters Description Value
Nioe Visual input gain 8.5
Mreverd Expected outcome input gain 2.5
Moost Action cost input gain -0.1
Mo Pause input gain -4.0
Y Action initiation threshold 0.6
Spatial sensory input field & Expected outcome field parameters
Parameters Description Value
T Time constant 5.0
Cexc Amplitude of excitatory portion 0
of weight kernel
Cinn Amplitude of inhibitory portion of 0
weight kernel
Oexc Width of excitatory portion of 5.0
weight kernel
Gin Width of inhibitory portion of 40.0
weight kernel
h Resting activity level -5.0
q Noise level 0.25
oF Width of noise kernel 5.0
B Steepness of sigmoid activity 1.0
function
Reach planning field parameters
Parameters Description Value
T Time constant 5.0
Cexc Amplitude of excitatory portion 0
of weight kernel
Cimn Amplitude of inhibitory portion of 20
weight kernel
Gexc Width of excitatory portion of 5.0
weight kernel
Ginh Width of inhibitory portion of 180
weight kernel
h Resting activity level -5.0
q Noise level 0.5
oy Width of noise kernel 5.0
B Steepness of sigmoid activity 1.0
function
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Pause field parameters
Parameters Description Value
T Time constant 5.0
Cexc Amplitude of excitatory portion 0
of weight kernel
Cinn Amplitude of inhibitory portion of 0
weight kernel
Oexc Width of excitatory portion of 5.0
weight kernel
Ginh Width of inhibitory portion of 25.0
weight kernel
h Resting activity level -5.0
g Noise level 0.25
oy Width of noise kernel 5.0
B Steepness of sigmoid activity 1.0
function
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