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Multiple	 large-scale	 networks	 populate	 human	 association	 cortex.	 Here	 we	 explored	 the	 functional	
properties	of	these	networks	by	exploiting	trial-to-trial	variation	in	component	processing	demands.	In	two	
behavioral	studies	(N=136	and	N=238),	participants	quantified	strategies	used	to	solve	individual	task	trials	
that	spanned	remembering,	imagining	future	scenarios,	and	various	control	trials.	These	trials	were	also	all	
scanned	 in	 an	 independent	 sample	 of	 functional	 MRI	 participants	 (N=10),	 each	 with	 sufficient	 data	 to	
precisely	define	within-individual	networks.	Stable	latent	factors	varied	across	trials	and	correlated	with	
trial-level	functional	responses	selectively	across	networks.	One	network	linked	to	parahippocampal	cortex,	
labeled	Default	Network	A	(DN-A),	tracked	scene	construction,	including	for	control	trials	that	possessed	
minimal	episodic	memory	demands.	To	the	degree	a	 trial	encouraged	participants	 to	construct	a	mental	
scene	with	vivid	imagery	and	awareness	about	spatial	locations	of	objects	or	places,	the	response	in	DN-A	
increased.	The	 juxtaposed	Default	Network	B	 (DN-B)	 showed	no	such	response	but	varied	 in	 relation	 to	
social	processing	demands.	Another	adjacent	network,	labeled	Frontoparietal	Network	B	(FPN-B),	robustly	
correlated	 with	 trial	 difficulty.	 These	 results	 support	 that	 DN-A	 and	 DN-B	 are	 specialized	 networks	
differentially	 supporting	 information	 processing	 within	 spatial	 and	 social	 domains.	 Both	 networks	 are	
dissociable	from	a	closely	juxtaposed	domain-general	control	network	that	tracks	cognitive	effort.		

	
Introduction	

	

Diverse	 higher-order	 functions,	 including	 autobiographical	memory,	 spatial	 navigation	 and	 social	 inference,	
have	been	attributed	to	a	 large	monolithic	network	known	as	the	default	network	(DN;	Buckner	&	Carroll	2007,	
Buckner	et	al.	2008,	Spreng	et	al.	2009;	see	also	Gusnard	&	Raichle,	2001,	Hassabis	&	Maguire	2007,	Schacter	et	al.	
2007,	Binder	et	al.	2009).	This	network	extends	into	rostral	temporal	and	prefrontal	association	cortex	leading	to	its	
description	 as	 the	 apex	 higher-order	 association	 network	 (Margulies	 et	 al.	 2016,	 Buckner	 &	 DiNicola	 2019).	
Considerable	 attention	 has	 been	 given	 in	 recent	 years	 to	understand	 the	 processing	 contributions	 of	 the	DN	 to	
human	cognition	(e.g.,	Murphy	et	al.	2018,	Sormaz	et	al.	2018,	Beaty	et	al.	2020,	Lee	et	al.	2021,	Wen	et	al.	2021,	
Yeshurun	et	al.	2021,	Mancuso	et	al.	2022).	

One	 challenge	 for	 understanding	 processes	 supported	 by	 the	 DN	 is	 that	 most	 prior	 studies	 rely	 on	 group-
averaged	 data,	 which	 necessarily	 blurs	 anatomical	 details	 (see	 Steinmetz	 &	 Seitz	 1991,	 Fedorenko	 et	 al.	 2010,	
Laumann	et	al.	2015).	Recent	explorations	within	intensively	scanned	individuals	reveal	that	the	DN	comprises	at	
least	two	fully	distinct,	parallel	networks	(Braga	&	Buckner	2017,	Buckner	&	DiNicola	2019;	see	also	Deen	&	Friewald	
2021).	These	networks,	termed	DN-A1	and	DN-B,	contain	features	of	previously-hypothesized	DN	subsystems	(e.g.,	
Andrews-Hanna	et	al.	2010,	Yeo	et	al.	2011)	but	are	fully	distinct	(Braga	&	Buckner	2017),	raising	questions	about	
functional	differentiation.	Both	networks	possess	regions	distributed	across	multiple	association	zones	with	side-
by-side	juxtapositions	throughout	the	cortex,	sometimes	on	opposite	sides	of	the	same	sulcus	(Braga	et	al.	2019).	
Given	these	spatial	arrangements,	unraveling	their	distinct	processing	contributions	has	been	hampered	by	spatial	
averaging	over	individuals.	

Supporting	functional	heterogeneity,	within-individual	analyses	suggest	that	DN-A	is	preferentially	recruited	by	
tasks	 targeting	 episodic	 remembering	 and	 imagining	 the	 future,	 and	 DN-B	 by	 tasks	 targeting	 social	 inferences.	
Contrasting	these	task	domains	reveals	a	replicable	double	dissociation	(DiNicola	et	al.	2020;	see	also	Rosenbaum	et	

 
1	The	labels	DN-A	and	DN-B	were	chosen	because	of	the	literature’s	description	of	the	broader	network	as	the	default	network	or	
default	mode	network.	DN-A	and	DN-B	are	not	subnetworks	of	the	default	network.	Rather,	by	our	estimates,	they	are	two	parallel	
networks	that	have	been	historically	mischaracterized	as	a	composite	monolithic	network	because	of	spatial	blurring	in	group-
averaged	data	(including	in	our	own	work;	e.g.,	Buckner	et	al.	2008).	Thus,	the	labels	DN-A	and	DN-B	are	labels	of	convention	to	
relate	our	present	description	of	these	parallel	distributed	networks	to	the	historical	description	of	the	default	network.	The	network	
labels	should	not	be	taken	to	imply	strong	assumptions	about	the	functional	domains	of	these	networks.	
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al.	 2007,	 Andrews-Hanna	 et	 al.	 2014,	 Kurczek	 et	 al.	 2015).	 Adding	 further	 evidence	 for	 domain	 specialization,	
separate	 regions	 of	 DN-A	 and	 DN-B	within	 the	 posterior	midline	 differentially	 respond	 to	 spatial	 versus	 social	
content	(Peer	et	al.	2015,	Silson	et	al.,	2019,	see	also	Woolnough	et	al.	2020,	Deen	&	Friewald	2021).			

However,	 there	 is	 a	 second	 complicating	 factor	 for	 understanding	 the	 processing	 contributions	 of	 these	
juxtaposed	 networks.	 The	 tasks	 that	 elicit	 activation	 responses	 in	 these	 networks	 are	 often	 complex,	 involving	
temporally-extended	trial	structures	that	encourage	rich	and	varied	mental	constructions	(e.g.,	Hassabis	&	Maguire	
2009,	Schacter	et	al.	2012).	In	this	sense,	much	like	the	spatial	blurring	that	has	led	to	ambiguities	in	the	existing	
literature,	 the	mixing	 of	multiple	 task	 components	 in	 the	 lengthy	 task	 trials	 that	 activate	 the	 DN	 also	 leads	 to	
ambiguities.	Open	questions	thus	remain	about	the	nature	of	the	underlying	processes	that	these	recently	identified,	
parallel	 networks	 support,	 as	well	 as	 those	 that	 differentiate	 DN-A	 and	 DN-B	 from	 other	 juxtaposed	 networks.	
Answering	 questions	 about	 one’s	 past,	 for	 example,	 involves	 multiple	 processes	 traditionally	 associated	 with	
episodic	 memory	 retrieval	 (e.g.,	 Tulving,	 1983),	 as	 well	 as	 component	 processes	 that	 might	 generalize	 beyond	
episodic	 memory,	 such	 as	 constructing	 a	 scene	 in	 a	 spatially-coherent	 context	 (e.g.,	 Hassabis	 &	Maguire	 2007,	
Hassabis	&	Maguire	2009)	and	deployment	of	domain-general	controlled	processing	resources	(Kopelman	1991,	
Dobbins	et	al.	2002,	Bunge	et	al.	2004,	Vatansever	et	al.	2021;	see	also	Moscovitch	1992,	Badre	&	Wagner	2007).		

Here	we	explored	network	functions	using	a	behavioral	approach	to	probe	trial-to-trial	variation	in	processing	
demands	across	a	diverse	set	of	previously	scanned	task	trials	targeting	episodic	remembering	and	imagining	the	
future.	 The	 approach	 did	 not	 assume	 specific	 relations	 between	 component	 processes	 and	 individual	 network	
responses,	 but	 allowed	 relations	 to	 emerge	 to	 the	 degree	 that	 trial-to-trial	 variation	 in	 processing	 demands	
selectively	associated	with	network	responses.	For	each	trial,	participants	were	asked	questions	that	encouraged	
them	to	remember	or	imagine	distinct	scenarios	(see	examples	in	Figures	1	and	2).	The	questions	were	designed	to	
vary	 in	 self-relevance	 (Self	 or	 Non-Self)	 and	 temporal	 orientation	 (Past,	 Present	 or	 Future),	 and	 afforded	
considerable	 opportunity	 to	 adopt	 varied	 strategies.	 Prior	 analyses	 of	 these	 functional	 MRI	 data	 focused	 on	
predetermined	 contrasts	 between	 conditions	 that	 grouped	many	 trials	 together	 (DiNicola	 et	 al.	 2020).	 Plotting	
network	responses	across	separate	trials	within	each	condition	revealed	large	signal	variations	well	beyond	that	
expected	by	measurement	error,	reinforcing	that	there	is	unaccounted	for	trial-level	variation	and	creating	a	novel	
experimental	opportunity.	

Specifically,	we	behaviorally	assessed	how	people	responded	to	each	individual	trial	question,	to	quantify	trial-
level	properties	for	comparison	to	network	activity	(as	indirectly	measured	by	functional	MRI).	Evidence	from	prior	
studies	support	that	assessing	how	people	respond	to	complex	stimuli	can	provide	insight	into	processing	demands	
(e.g.,	related	to	memory	encoding	–	Kirchhoff	&	Buckner,	2006;	emotion	discrimination	–	Skerry	&	Saxe	2015;	and	
differentiating	physical	 from	emotional	pain	–	Bruneau	et	al.	2013).	Most	directly	 relevant	 to	 the	present	study,	
Andrews-Hanna	 et	 al.	 (2010)	 collected	 strategy	 ratings	 from	 both	 scanned	 participants	 and	 an	 independent	
behavioral	 group,	 and	 found	 that	 composites	 of	 strategy	 ratings	 tracked	 activity	 in	 network	 regions	 of	 interest.	
Strategy	 ratings	 can,	 therefore,	 tap	 into	 stable	 properties	 of	 individual	 task	 trials,	 providing	 an	 experimental	
approach	to	explore	component	processes.		We	adopted	such	an	approach	here	to	functionally	dissociate	multiple	
juxtaposed	networks	that	were	precisely	measured	within	individual	participants,	and	also	to	provide	insight	into	
each	network’s	functional	contributions	to	task	processing.	

	
Methods	

	

Overview	
Data	for	analyses	came	from	previously	collected	neuroimaging	participants	(DiNicola	et	al.	2020)	paired	with	

newly	 collected	 behavioral	 data	 that	 measured	 the	 idiosyncratic	 processing	 demands	 of	 each	 trial.	 The	 task	
neuroimaging	data	 included	180	 trials	where	participants	 answered	unique	questions	by	 selecting	one	of	 three	
possible	choices.	In	the	present	work,	independent	online	behavioral	participants	rated	the	strategies	they	used,	to	
assess	 how	 each	 of	 the	 180	 questions	 were	 answered	 (Table	 1).	 The	 strategy	 ratings	 were	 remarkably	 stable	
between	 independent	 behavioral	 samples	 and	 could	 be	 clustered	 into	 intercorrelated	 composites.	 Functional	
properties	of	the	networks	were	examined	by	asking	whether	activity	levels	in	distinct	brain	networks	preferentially	
tracked	strategy	composite	scores.	
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Experiment	1:	Initial	Exploration	of	Strategy	Ratings	
	

Participants	
175	paid	participants	ages	18-27	were	recruited	from	Amazon	Mechanical	Turk	using	Cloud	Research	(Litman	

et	al.	2017)	to	answer	trial	questions	and	complete	surveys	about	their	strategy	use	while	answering	the	questions.	
Participants	were	English-speakers	within	the	United	States	who	had	high	ratings	for	completion	of	prior	studies	
(90%+	approval	rating	for	at	least	100	prior	tasks).	Each	participant	provided	informed	consent	through	an	online	
protocol	approved	by	the	Institutional	Review	Board	(IRB)	of	Harvard	University.	Question	and	strategy	probe	forms	
were	created	and	administered	using	Harvard’s	Qualtrics	platform.	
	
Question	and	Strategy	Probe	Format	

Online	participants	answered	questions	from	the	episodic	projection	task	of	DiNicola	et	al.	(2020).	After	each	
individual	question,	the	participants	scored	the	strategies	they	used	across	16	probes	designed	to	tap	into	a	variety	
of	possible	processing	components	(Table	1).	Given	the	burden	of	rating	many	strategy	probes,	each	participant	
answered	only	a	subset	of	the	original	trial	questions	(34-38	total	trials	per	participant).	The	trials	were	rotated	
across	participants	so	that	25	participants	rated	strategies	used	for	each	unique	trial.	As	in	the	original	task,	each	
trial	asked	a	question	about	either	a	real-world	experience	or	general	knowledge,	and	featured	three	answer	choices	
(see	DiNicola	et	al.	2020).	A	few	trials	required	minor	wording	changes	for	generalization	to	online	participants	(e.g.,	
changing	“a	trip	out	of	Boston”	to	“a	trip	out	of	your	town”).	Finally,	as	control	procedures,	a	subset	of	trials	was	
repeated,	including	5	shown	to	all	participants	(each	from	a	different	condition)	to	test	for	potential	cohort	effects,	
as	well	 as	 two	attention	 checks	 (i.e.,	 one	 that	probed	whether	participants	were	 reading	questions	 and	another	
targeting	task	focus).		

Trial	timing	was	as	follows:	participants	first	saw	the	question	and	answer	options,	and	were	asked	to	respond	
within	 10	 sec,	 mirroring	 the	 neuroimaging	 protocol.	 After	 10	 sec,	 participants	 received	 a	 reminder	 to	 select	 a	
response.	After	answering	the	question,	the	participants	were	then	presented	with	the	Response	Strategies	Scale	
(RSS;	Table	1)	and	asked	to	rate	their	use	of	16	strategies	on	a	scale	from	1	to	7.	The	RSS	expanded	upon	the	scale	
used	 by	 Andrews-Hanna	 and	 colleagues	 (2010)	 to	 incorporate	 previously-assessed	 strategies	 (e.g.,	 reliance	 on	
memory,	personal	significance,	effort),	as	well	as	new	strategies,	informed	by	work	probing	mind-wandering	and	
memory	 components	 (e.g.,	 consideration	of	 people’s	 attributes,	moral	 principles,	 and	 relationships;	 e.g.,	 Sutin	&	
Robins	2007,	Stawarczyk	et	al.	2011,	Andrews-Hanna	et	al.	2013,	Poerio	et	al.	2017;	see	also	Johnson	et	al.	1988).		

	
------------------------------------------------------------------	

Insert	Table	1	About	Here	
------------------------------------------------------------------	

	
Exclusion	Criteria	and	Quality	Control	

As	is	often	observed	in	online	experimentation,	participant	compliance	varied.	A	series	of	quality	control	criteria	
were	adopted	to	conservatively	include	only	participants	who	fully	engaged	the	task.	The	criteria	were	applied	prior	
to	any	analysis	of	factors	or	assessments	of	reliability.	Participants	were	excluded	if	they:	1)	spent	less	than	20	min	
on	the	survey,	2)	reported	being	outside	of	our	age	range	(18-27	years-old),	3)	had	no	mouse-clicks	registered	for	
multiple	 trial	 responses	 (indicating	 potential	 automation;	 Buchanan	 &	 Scofield	 2018),	 or	 4)	 showed	 clear	
stereotyped	patterns	of	responding	across	trials.	Participants	were	also	flagged	if	they	did	not	comment	or	write	
‘None’	(as	requested)	in	a	final	feedback	box,	or	if	they	missed	any	check	questions	(i.e.,	they	did	not	select	"fully	
focused",	did	not	choose	"cats	and	dogs"	as	popular	pets	or	did	not	respond	as	"reading	this	question"	on	a	question	
included	specifically	as	a	compliance	check).	A	single	flag	(e.g.,	selecting	"somewhat	focused"	or	not	writing	‘None’)	
did	not	result	in	exclusion	if	no	patterned	responding	or	other	flags	were	noted.		

Assessment	of	response	patterns	was	particularly	vital	to	quality	control.	13	strategy	probe	ratings	for	11	trials	
(7	that	appeared	across	surveys	and	4	unique	to	a	survey)	were	visualized	for	each	participant	by	two	independent	
experimenters	 (LMD	 and	 OIA).	 Strategies	 were	 unlabeled	 during	 visualization	 to	 prevent	 experimenter	 bias.	 A	
participant	was	flagged	for	exclusion	if	strategy	ratings	did	not	differ	across	or	within	each	trial,	or	if	trials	became	
uniform	near	the	end	of	a	survey.	For	example,	a	subset	of	participants	chose	a	single	value	for	all	strategies	within	
each	trial	(i.e.,	straight	lines	in	the	trial	plots),	a	subset	selected	values	in	a	clearly	stereotyped	pattern	(e.g.,	1-2-3-4-
3-2-1-2-3-4	ratings	across	strategies),	and	a	subset	showed	evidence	of	a	drop	off	 in	performance	(with	a	single	
rating	given	to	all	strategies,	only	in	 later	trials).	For	participants	flagged	due	to	stereotyped	responses,	all	 trials	
were	visualized	as	an	additional	check.		

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.04.20.488923doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

As	 a	 final	 quality	 control	 check,	 ratings	 across	 strategies	 for	 the	 5	 trials	 consistently	 included	 across	 all	
participants	were	visualized	to	explore	cohort	differences.	Strategy	ratings	for	each	trial	showed	similar	patterns.	A	
linear	model	testing	for	rating	differences	found	no	significant	cohort	effects	(F(6,	553)=	0.37,	p=0.90),	supporting	
that	a	trial’s	strategy	pattern	represented	stable	properties,	rather	than	idiosyncratic	aspects	of	the	rating	group.	As	
the	replication	experiment	will	reveal,	these	conservative	procedures	yielded	highly	stable	estimates	of	strategy	use	
across	independent	groups	of	participants.	

136	total	participants	ages	18	to	25	remained	(77.7%)	after	exclusion	(Table	2).	Included	participants	[mean	age	
=	22.7	yr	(SD	=	1.9	yr),	49%	identifying	as	female]	had	a	mean	completion	time	ranging	from	38.2	–	56.7	min	across	
the	7	cohorts	(mean	=	45.2	min).		

	
------------------------------------------------------------------	

Insert	Table	2	About	Here	
------------------------------------------------------------------	

	
Strategy	Clustering	

Strategy	clusters	were	identified	with	the	goal	of	constructing	robust	composite	scores	for	subsequent	functional	
network	analysis.	We	first	calculated	average	ratings	for	each	strategy,	across	respondents	and	for	each	unique	trial.	
We	z-scored	ratings	within	strategies,	creating	a	matrix	featuring	16	mean	strategy	ratings	x	180	trials.	The	raw	
correlation	 structure	was	 estimated	 and	 visualized,	 and	 then	 hierarchical	 clustering	was	 employed	 to	 estimate	
strategy	 groupings	 (hclust	 function	 and	 ward.D2	 amalgamation	 procedure	 in	 R	 v3.5.1).	 We	 chose	 hierarchical	
clustering	for	the	ease	of	visualizing	relations	across	variables	(see	also	Andrews-Hanna	et	al.	2013).		
	

Experiment	2:	Prospective	Replication	of	Strategy	Rating	Structure	
	

Exp.	2	was	conducted	to	examine	the	stability	of	online	strategy	ratings	across	trials,	as	well	as	to	replicate	the	
strategy	clusters	observed	in	Exp.	1	in	an	even	larger	sample,	prior	to	network	exploration	in	the	neuroimaging	data.	

	
Participants		

300	paid	participants	ages	18-27	were	again	 recruited	 from	Amazon	Mechanical	Turk	using	Cloud	Research	
(Litman	 et	 al.	 2017).	 Participants	 were	 English-speakers	 within	 the	 United	 States	 who	 had	 high	 ratings	 for	
completion	of	prior	studies	(90%+	approval	rating	with	at	least	100	prior	tasks	approved).	Each	participant	provided	
informed	 consent	 through	 an	 online	 protocol	 approved	 by	 the	 Institutional	 Review	 Board	 (IRB)	 of	 Harvard	
University.	Question	and	strategy	probe	forms	were	created	and	administered	using	Harvard’s	Qualtrics	platform.	
	
Question	and	Strategy	Probe	Format,	Exclusion	Criteria	and	Quality	Control	

Exp.	2	 followed	 the	same	procedures	 for	data	acquisition,	QC	and	clustering	as	 in	Exp.	1,	but	with	300	 total	
participants	yielding	50	participants	rating	each	unique	trial	question.	Each	participant	received	a	subset	of	38	total	
trial	questions	taken	from	the	episodic	projection	task’s	set	of	180	trials.	After	QC	exclusion,	238	participants	ages	
18	to	25	remained	(79.3%)	[mean	age	=	22.5	yr	(SD	=	1.9	yr),	61%	identifying	as	female]	with	a	completion	time	
ranging	from	38.1	–	46.6	min	across	the	6	cohorts	(mean	=	42.5	min).	Analysis	of	strategy	ratings	across	the	same	
subset	of	5	trials	as	in	Exp.	1,	repeated	for	all	subjects,	again	revealed	similar	patterns	and	no	cohort	effect	(F(5,	
474=0.20,	p=0.96).		
	
Quantifying	Behavioral	Rating	Stability	Across	Experiments	

To	 examine	 the	 stability	 of	 measures	 derived	 from	 behavioral	 strategy	 probes,	 we	 compared	 the	 strategy	
patterns,	for	each	trial,	across	independent	groups	of	respondents	from	Exp.	1	and	Exp.	2.	For	each	trial,	we	plotted	
the	mean	 (and	 standard	 error)	 across	 all	 16	 strategies	 from	 the	RSS	 and	 calculated	 trial-level	 inter-experiment	
reliability	 (correlations	 across	 mean	 strategy	 ratings	 for	 that	 unique	 trial).	 Varying	 numbers	 of	 participants	
contributed	 to	 the	 mean	 ratings	 across	 trials,	 depending	 on	 the	 final	 participants	 retained	 after	 blind	 QC	 for	
compliance.	For	non-repeated	trials,	the	number	of	respondents	estimating	strategy	use	for	each	unique	trial	was	no	
fewer	than	17	in	Exp.	1	(mean	=	19.4	across	cohorts,	max	=	22;	see	Table	2)	and	no	fewer	than	37	in	Exp.	2	(mean	=	
39.7	across	cohorts,	max	=	42,	see	Table	3).	Across	experiments,	2-4	trials	were	repeated	for	subsets	of	cohorts	(NExp.1	
=	72-117,	NExp.2	=	159	or	198),	and	at	least	5	additional	trials	across	all	cohorts	(NExp.1	=	136,	NExp.2	=	238).		
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In	addition,	to	quantify	whether	a	strategy	probe	was	rated	similarly,	across	trials,	from	one	experiment	to	the	
next,	we	calculated	probe-level	inter-experiment	reliability.	For	each	probe,	we	first	calculated	the	mean	ratings	(and	
SD)	across	all	180	trials	within	each	experiment.	We	then	correlated	the	means	across	experiments	(reported	in	
Table	1).		
	
Validating	Composite	Scores	Against	Trial	Response	Times	

Strategy	composite	scores	were	based	on	self-reported	strategy	use.	While	reliability	could	be	established	for	
trials,	probe	questions	and	composites,	 a	 specific	 challenge	of	our	approach	 is	validation.	As	will	be	 seen	 in	 the	
results,	one	behavioral	composite	emerged	that	reflected	trial	difficulty,	creating	an	opportunity	to	test	the	validity	
of	subjective	ratings	using	response	time	(RT).	For	each	trial,	a	mean	RT	was	calculated,	after	exclusion	of	rare	outlier	
trials	with	 an	RT	 greater	 than	 60	 sec	 (0.17%	of	 all	 trials).	 These	 objective	 RT	measures	 of	 trial	 difficulty	were	
compared	to	the	composite	scores	derived	from	the	self-reported	strategy	use.		
	

Experiment	3:	Examining	Strategy-Network	Relations	
	

Exp.	 3	 examined	 trial-level	 variation	 in	 functional	MRI	 responses	 to	 explore	 relations	 to	 trial-level	 strategy	
composite	scores.	The	MRI	data	were	included	in	a	prior	report	by	DiNicola	et	al.	(2020)	analyzed	at	the	level	of	
condition	 contrasts.	 Here	 the	 data	 were	 reanalyzed	 at	 the	 level	 of	 individual	 trials	 in	 the	 context	 of	 the	 novel	
behavioral	data	from	Exp.	1	and	Exp.	2.		
	
Participants	

Ten	paid	adult	participants	ages	18	to	25	[mean	age	=	20.5	yr	(SD	=	2.1),	9	right-handed,	8	identifying	as	female]	
were	recruited	from	the	Boston	area	to	complete	4	neuroimaging	sessions	each.	All	participants	provided	informed	
consent	through	a	protocol	approved	by	the	Harvard	University	IRB.	Each	neuroimaging	session	featured	a	battery	
of	 tasks,	 including	 fixation	 and	 the	 episodic	 projection	 task.	 Full	 details	 of	 task	 acquisition	 and	 preprocessing	
parameters	are	provided	in	DiNicola	et	al.	2020	(see	also	Braga	et	al.	2020).	Only	participants	who	completed	all	
runs	of	the	expanded	episodic	projection	tasks	were	included	in	the	current	study	(Exp.	2	and	Exp.	3	in	DiNicola	et	
al.	2020).	Two	individuals	who	completed	only	two	scanning	sessions	were	excluded	(S9	and	S13	in	DiNicola	et	al.	
2020).		
	
Fixation	and	Episodic	Projection	Task	Paradigms	

Each	participant	completed	11	runs	of	a	passive	fixation	task,	for	intrinsic	functional	connectivity	analysis	(7	min	
2s	each,	77m	total),	as	well	as	6	runs	of	an	episodic	projection	task	(10	min	12s	each,	61	min	12s	total).	Additional	
tasks	were	included	in	the	neuroimaging	battery,	not	discussed	here	(e.g.,	Braga	et	al.	2020,	DiNicola	et	al.	2020).	

During	 fixation,	 participants	 were	 instructed	 to	 fixate	 a	 black	 plus	 sign	 on	 a	 light	 grey	 background,	 while	
remaining	alert	and	still.	Fixation	runs	were	intermixed	with	runs	of	other	tasks,	and	fixation	data	were	used	for	
functional	connectivity	analysis	to	estimate	network	organization.	Critically,	networks	were	identified	within	each	
individual	 independently	 from	 (and	 prior	 to)	 other	 task	 analyses	 and	 without	 examination	 of	 any	 of	 the	 trial-
variation	effects	explored	in	this	paper.		

During	each	run	of	the	episodic	projection	task,	participants	responded	to	trials	varying	in	self-relevance	(Self	
vs.	Non-Self)	and	temporal	orientation	(Past,	Present,	or	Future).	Crossing	of	these	two	dimensions	(2	x	3)	yielded	6	
target	conditions	of	30	trials	each	(e.g.,	Past	Self,	Past	Non-Self	and	so	on	for	Present	and	Future	timeframes;	DiNicola	
et	al.	2020,	see	also	Andrews-Hanna	et	al.	2010).	5	trials	from	each	condition	were	presented	per	task	run.	Across	
the	6	runs,	each	participant	performed	all	180	unique	trials.	Participants	were	instructed	to	carefully	consider	the	
details	of	each	trial’s	question	before	selecting	a	response	(10s	trial,	10s	ISI).		
	
MRI	Data	Acquisition	and	Processing	

Data	were	acquired	at	the	Harvard	Center	for	Brain	Science	using	a	3T	Siemens	Prisma-fit	MRI	scanner	and	a	64-
channel	phased-array	head-neck	coil	(Siemens	Healthcare,	Erlangen,	Germany).	During	each	scan	session,	a	rapid	
T1-weighted	structural	image	was	acquired,	using	a	multi-echo	magnetization	prepared	rapid	acquisition	gradient	
echo	(ME-MPRAGE,	van	der	Kouwe	et	al.	2008)	sequence	(1.2mm	isotropic	voxels,	TR=2200ms,	TE=1.57,	3.39,	5.21,	
7.03ms,	TI=1100ms,	176	slices,	 flip	angle=7°,	matrix=192	×	192	×	176,	 in-plane	GRAPPA	acceleration=4).	Blood	
oxygenation	 level-dependent	 (BOLD)	 data	 were	 acquired	 using	 a	 multi-band	 gradient-echo	 echo-planar	 pulse	
sequence	(see	Feinberg	et	al.	2010,	Moeller	et	al.	2010,	Setsompop	et	al.	2012,	Xu	et	al.	2013),	provided	by	the	Center	
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for	Magnetic	Resonance	Research	at	the	University	of	Minnesota	(2.4mm	isotropic	voxels,	TR=1000ms,	TE=32.6ms,	
flip-angle=64°,	matrix=88	×	88,	65	slices	covering	cerebral	cortex	and	cerebellum).	All	data	were	processed	using	a	
custom	analysis	pipeline	(termed	‘iProc’;	see	Braga	et	al.	2019,	DiNicola	et	al.	2020),	designed	to	preserve	within-
individual	details.	Briefly,	each	participant’s	data	were	registered	to	a	subject-specific,	1mm-isotropic	T1	template	
through	a	 single	 interpolation,	which	combined	matrices	 for	motion,	 field	map	unwarping,	 alignment	 to	a	mean	
BOLD	image	and	then	to	the	T1	template.		

For	functional	connectivity	analysis,	nuisance	variables	(6	motion	parameters	and	whole-brain,	ventricular	and	
white	matter	signals,	along	with	their	temporal	derivatives)	were	regressed	from	the	T1-aligned	BOLD	fixation	data.	
These	 data	 were	 then	 bandpass	 filtered	 at	 0.01-0.10	 Hz	 (using	 AFNI	 v2016.09.04.1341;	 Cox	 1996,	 2012).	 For	
episodic	projection	task	analyses,	the	whole	brain	signal	was	regressed	from	the	T1-aligned	task	data	(see	DiNicola	
et	al.	2020).	All	BOLD	data	 from	both	 the	 fixation	 task	and	episodic	projection	 task	were	 then	resampled	 to	 the	
fsaverage6	cortical	surface	mesh	(using	trilinear	interpolation;	Fischl	et	al.	1999)	and	smoothed	using	a	2mm	full-
width	at	half-maximum	kernel.		

Data	were	examined	for	quality.	Run-level	exclusion	criteria	 included:	(1)	maximum	absolute	motion	greater	
than	1.8mm,	(2)	signal-to-noise	ratio	less	than	or	equal	to	135,	and,	for	the	episodic	projection	tasks,	(3)	eyes	closed	
during	skipped	task	trials.	16	fixation	runs	were	excluded	across	the	participants.	No	episodic	projection	task	runs	
were	excluded	(see	DiNicola	et	al.	2020	for	behavioral	performance).		

Functional	 connectivity	 (FC)	 analyses	 were	 conducted	 on	 fixation	 data,	 within	 each	 individual,	 in	 order	 to	
precisely	 estimate	whole-brain	network	organization.	k-means	estimates	of	networks	were	used,	 as	 reported	 in	
Braga	et	al.	2020.	Briefly,	for	each	individual,	medial	wall	vertices	were	removed,	and	then	time	series	data	from	the	
fixation	 runs	 were	 z-normalized,	 concatenated	 and	 input	 to	 the	 k-means	 algorithm,	 using	 default	 parameters	
(MATLAB	v2015b).	Networks	were	identified	within	the	whole-brain	k-means	outputs	based	on	referential	features	
(e.g.,	Braga	&	Buckner	2017).	Parcellations	were	computed	while	varying	k	from	10	to	20,	and	the	solution	featuring	
the	fewest	clusters	differentiating	6	networks	was	chosen	for	each	individual	(Braga	et	al.	2020).	These	networks	
included	default	network	A	(DN-A)	and	B	(DN-B),	a	 language	network	(LANG),	 frontoparietal	control	network	A	
(FPN-A)	and	B	(FPN-B),	and	a	salience	network	(SAL).	For	2	individuals,	features	of	one	network	were	observed	in	
two	clusters,	which	collectively	better	matched	seed-based	post	hoc	checks	of	the	networks.	Both	were	included	in	
the	network	estimate	(FPN-A	for	S10	and	FPN-B	for	S3),	prior	to	task	analysis	(Braga	et	al.	2020).	The	networks	were	
determined	fully	before	the	task	functional	MRI	data	were	examined	to	avoid	any	potential	bias.	

For	the	episodic	projection	task,	run-specific	GLMs	were	created	featuring	separate	regressors	for	every	trial	
(e.g.,	Hassabis	et	al.	2014),	producing	trial-specific	beta-maps	(see	full	details	in	DiNicola	et	al.	2020;	GLMs	created	
using	 FSL	 v5.0.4).	 Beta	 values	 within	 each	 network	 were	 then	 extracted	 and	 averaged,	 yielding	 trial-specific	
responses	for	each	separate	network	within	each	participant	(180	total	trials).		

Since	the	current	analyses	aimed	to	explore	trial-level	variation	(i.e.,	differences	in	stable	trial-level	properties),	
after	estimating	average	values	 for	each	network	within	 individuals,	we	averaged	trial	values	across	 individuals,	
producing	a	single	network	estimate	for	every	unique	trial.	In	this	way,	within-individual	network	definition	allowed	
for	estimates	of	network	activity	that	were	fully	constructed	within	the	idiosyncratic	anatomy	of	each	individual.	At	
the	same	time,	extremely	stable	functional	MRI	estimates	for	each	of	the	180	individual	trials	were	obtained	because	
each	trial	estimate	was	the	average	across	the	10	participant’s	individualized	networks.	
	
Examining	Strategy-Network	Relations	

Each	of	the	180	trials	from	our	episodic	projection	task	was	paired	with	5	mean	strategy	composite	scores	(from	
the	online	data)	and	6	mean	network	activity	values	(from	the	neuroimaging	data).	We	asked	whether	variation	in	
our	behavioral	composite	scores,	across	trials,	related	to	variation	in	network	activity.	As	a	first	step,	we	calculated	
correlations	between	trial-level	behavioral	composite	scores	and	mean	functional	MRI	BOLD	response	estimates	
from	each	of	the	6	networks.	Data	from	all	trials	were	included,	and	Pearson’s	correlation	values	were	plotted	to	
visualize	patterns	for	each	composite.	

As	will	 be	 seen	 in	 the	 results,	 particularly	 strong	 correlations	were	 found	 between	 the	 Scene	 Construction	
composite	scores	and	DN-A	response	and	between	the	Difficulty	composite	scores	and	FPN-B	response.	Building	on	
these	correlational	results,	we	next	sought	to	unpack	observed	strategy-network	relations.	Scene	Construction,	for	
example,	appeared	to	differentiate	DN-A	from	tightly	juxtaposed	DN-B,	as	well	as	other	networks.	Relations	between	
Scene	Construction	and	DN-A	and	Difficulty	and	FPN-B	appeared	dissociable.	We	sought	to	test	these	observations	
using	multiple	methods.	
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To	 quantify	 whether	 composite	 scores	 significantly	 predicted	 network	 activity,	 multiple	 regression	 was	
employed.	 Each	 regression	model	 probed	whether	 composite	 scores	 explained	 variance	 in	 a	 specific	 network’s	
response.	The	relative	importance	(i.e.,	R2	contribution	of	each	regressor)	for	each	composite	was	also	calculated	
(relaimpo	 R;	 Grömping	 2006).	 Scatterplots	 allowed	 for	 visualization	 of	 different	 composite-network	 relations,	
relative	to	regression	lines	and	across	all	180	trials.		

Regression	models	 thus	 provided	 insight	 into	 how	much	 variance	 in	 network	 activity	was	 captured	 by	 our	
composite	scores.	For	the	strongest	observed	correlations,	we	also	sought	to	contextualize	these	values	as	a	percent	
of	the	explainable	variance	–	the	highest	R2	one	could	expect,		constrained	by	the	internal	reliability	of	our	data	(i.e.,	
given	a	true	correlation	of	1	between	a	network-composite	pair;	e.g.,	Konkle	et	al.	2010;	see	Vul	et	al.	2009).	Toward	
this	goal,	we	first	calculated	split-half	reliability	for	the	composites	and	networks,	by	halving	each	dataset,	creating	
vectors	of	mean	values	for	each	half,	and	correlating	those	values	(adjusted	by	the	Spearman-Brown	formula).	For	
network	 estimates,	 all	 split-half	 combinations	were	 used,	 and	 for	 composite	 estimates,	 1,000	 split-half	 samples	
(featuring	36	participants	per	strategy	probe	from	Exp.	2).	A	maximum	explainable	variance	value	was	estimated	as	
the	product	of	the	reliability,	which	we	compared	to	our	estimated	R2	values.		
	
Exploring	the	Impact	of	Difficulty		

As	 will	 emerge	 in	 the	 results,	 initial	 regression	 models	 revealed	 evidence	 of	 inter-correlation	 between	 a	
composite	score	reflecting	Difficulty	and	the	other	composite	scores.	In	post	hoc	analyses	we	directly	tested	whether	
Difficulty	impacted	other	composite-network	relations	by	regressing	the	impact	of	Difficulty	ratings	from	all	other	
composite	scores	and	plotting	residual	composite-network	correlations.		

	
Probing	Scene	Construction	and	Difficulty	Contrasts	to	Verify	Network	Dissociations	

Finally,	the	analyses	supported	a	double-dissociation	between	composite	scores	reflecting	Scene	Construction	
and	Difficulty	in	relation	to	activity	in	brain	networks	DN-A	and	FPN-B.	As	a	final	stringent	test	of	this	discovery,	we	
used	 the	 composite	 scores	 to	 create	 contrast	maps	 based	 on	 trials	 with	 high	 and	 low	 values	 on	 each	 of	 these	
composites.	For	Difficulty,	we	identified	the	10	trials	with	the	highest	and	10	trials	with	the	lowest	composite	scores.	
For	each	individual,	we	then	created	a	whole-brain	contrast	map,	and	overlaid	the	border	of	the	individual’s	FPN-B,	
to	compare	each	individual’s	contrast	map	to	their	specific	FPN-B	estimate.	For	Scene	Construction,	we	used	the	
same	process,	but	only	included	trials	originally	considered	controls	(i.e.,	from	Present	Self,	Past	Non-Self	and	Future	
Non-Self	conditions).	We	selected	the	10	controls	trials	with	the	highest	and	10	controls	trials	with	the	lowest	Scene	
Construction	composite	scores,	and	then	visualized	resultant	contrast	maps	in	relation	to	each	individual’s	DN-A	
estimate.		

	
Results	

	

Behavioral	Strategy	Probe	Ratings	Capture	Stable	Trial-to-Trial	Variance	
Nearly	every	strategy	probe	showed	high	inter-experiment	reliability	(all	r	>	0.80	except	Specificity;	see	Table	

1).	Within	each	trial,	mean	ratings	from	the	independent	cohorts	were	also	strikingly	similar	(mean	r	=	0.94	across	
trials,	r	>	0.80	for	98%	of	trials;	see	Figures	1	and	2	for	examples).	These	stable	patterns	across	raters	provided	
evidence	that	trial	‘traits’	could	also	inform	brain	network	activity	(as	indirectly	estimated	by	BOLD	functional	MRI)	
from	the	independent	neuroimaging	sample.		

In	 addition,	 trials	 showed	 trial-to-trial	 variation,	 including	within	 originally-designed	 task	 conditions.	 Trials	
designed	to	target	episodic	projection,	for	example,	were	previously	shown	–	on	average	–	to	preferentially	recruit	
DN-A	(DiNicola	et	al.	2020).	But	strategy	patterns	varied	substantially	among	individual	episodic	projection	trials	
(see	Figure	1),	raising	the	question	of	which	component	dimensions	might	explain	DN-A	recruitment.	Original	control	
trials	(i.e.,	designed	not	to	require	episodic	memory	or	prospection)	also	showed	marked	variability	(see	Figure	2).	
The	 variation	 went	 well	 beyond	 differences	 between	 conditions.	 For	 example,	 while	 on	 average,	 control	 trials	
exhibited	lower	reliance	on	the	personal	past	than	target	trials,	as	intended,	multiple	control	trials	also	showed	high	
ratings	 on	 strategies	 relevant	 to	mental	 scenes	 or	 events,	 also	 observed	 in	 target	 trials’	 patterns.	 These	 results	
highlighted	the	opportunity	to	leverage	trial-level	variation	toward	novel	exploration	of	network	processes,	beyond	
condition-level	distinctions.		

	
------------------------------------------------------------------	

Insert	Figures	1	and	2	About	Here	
------------------------------------------------------------------	
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Five	Strategy	Composite	Scores	are	Supported	by	Hierarchical	Clustering	

To	visualize	relations	among	the	16	strategies,	we	created	a	correlation	matrix,	using	data	from	all	180	trials.	In	
Exp.	1,	the	matrix	revealed	strong	correlations	between	groups	of	strategies	(Figure	3,	left),	adding	to	evidence	that	
trials	 feature	 distinct	 rating	 combinations.	 Trials	 with	 high	 ratings	 for	 visual	 imagery	 (“Visual_Imagery”),	 for	
example,	 were	 also	 likely	 to	 have	 high	 ratings	 for	 envisioning	 the	 physical	 locations	 of	 objects	 and	 places	
(“Loc_Obj_Places”).	Trials	with	high	ratings	for	considering	others’	mental	states	(“Others_Feelings”)	tended	also	to	
require	imagining	others’	personality	traits	(“Others_Personality”).	In	Exp.	2,	the	correlation	matrix	showed	similar	
structure	(Figure	3,	right),	supporting	the	reliability	of	inter-strategy	correlations.		

Using	hierarchical	clustering,	we	next	 identified	5	strategy	groupings	that	could	be	combined	into	composite	
scores	 for	 subsequent	 network	 analysis.	 In	 Exp.	 1,	 the	 greatest	 strategy	 differentiation	 appeared	 for	 a	 pair	 of	
correlated	 strategies	 (“Facts”	 and	 “Difficulty”;	 see	 Figure	3,	 left).	We	 cut	 the	 clustering	dendrogram	 to	preserve	
clusters	 at	 least	 as	 strong	 as	 this	pair,	which	 revealed	5	 groupings	 (Figure	4,	 top).	 In	Exp.	 2,	 the	 independently	
estimated	 dendrogram	 revealed	 a	 similar	 structure.	 Using	 the	 same	 cut	 point	 (above	 “Facts”	 and	 “Difficulty”)	
produced	5	strategy	groupings	that	largely	matched	those	from	Exp.	1,	which	we	heuristically	labeled:	(I)	Difficulty,	
(II)	Autobiographical,	(III)	Scene	Construction,	(IV)	Others-Relevant,	and	(V)	Self-Relevant.		

The	 two	 strategies	 that	 were	 not	 identically	 grouped	 between	 Exp.	 1	 and	 Exp	 2.	 (“Loc_People”	 and	
“Relationships”),	 as	 well	 as	 those	 that	 showed	 weaker	 grouping	 across	 both	 experiments	 (“Specificity”,	
“Moral_Principles”),	were	 excluded	 from	 composite	 scores.	 Out	 of	 all	 strategy	 probes,	 “Specificity”	 also	 had	 the	
lowest	 inter-experiment	 reliability	 (r	=	 0.66)	 and	 “Moral_Principles”	 had	 the	 lowest	mean	 rating	 and	 SD	 (likely	
reflecting	few	morally-relevant	questions	in	our	task	trials;	see	Table	1).		

Given	that	strategy	ratings	from	Exp.	1	and	Exp.	2	exhibited	comparable	correlational	structure	and	clustering	
results,	ratings	from	the	larger	dataset	(Exp.	2)	were	used	to	create	the	strategy	composite	scores	carried	forward	
to	analyses	of	the	functional	MRI	data.	
	

------------------------------------------------------------------	
Insert	Figures	3	and	4	About	Here	

------------------------------------------------------------------	
	
Difficulty	Composite	Scores	Correlate	with	Response	Times	Across	Trials	

Difficulty	composite	scores	tracked	RT	values	(Figure	5;	r	=	0.65;	CI[0.56,	0.73]).	Overall,	results	from	Exp.	1	and	
2	provided	evidence	that	trial-level	ratings	were	stable	(Figures	1	and	2),	captured	trial-to-trial	variation	(Figures	1	
and	 2),	 and	 clustered	 in	 reliable	 ways	 across	 experiments	 (Figures	 3	 and	 4).	 For	 Difficulty	 (the	 only	 possible	
instance),	 the	composite	 score	was	validated	against	a	 separate	objective	measure	 (Figure	5).	These	 findings	all	
supported	proceeding	with	analyses	of	the	functional	MRI	data	in	relation	to	strategy	composite	scores.	
	

------------------------------------------------------------------	
Insert	Figure	5	About	Here	

------------------------------------------------------------------	
	
Strategy	Composites	Scores	Correlate	Differentially	with	Network	Activity	

We	first	calculated	correlations	between	each	of	the	5	strategy	composites	and	functional	MRI	response	in	each	
of	 the	 6	 independently-estimated	 networks	 (Figures	 6	 and	7),	 using	 data	 from	 all	 180	 trials.	 Plotting	 Pearson’s	
correlation	values	revealed	a	particularly	striking	relation	between	Scene	Construction	scores	and	DN-A	activity	
(Figure	8).	Scene	Construction	differentiated	DN-A	from	interwoven	DN-B	and	from	all	four	additional	networks.	
DN-B,	 in	 turn,	 showed	 a	 selective	 (albeit	 weaker)	 correlation	 to	 Others-Relevant	 scores.	 In	 addition,	 strong	
correlations	 were	 noted	 between	 the	 Difficulty	 composite	 score	 and	 both	 FPN-A	 and	 FPN-B.	 More	 ambiguous	
network-composite	 results	 were	 revealed	 for	 Autobiographical	 and	 Self-Relevant	 scores	 (due,	 in	 part,	 to	
confounding	effects	of	Difficulty;	see	Figure	12).	

To	 unpack	 these	 findings,	 we	 first	 probed	 Scene	 Construction’s	 relation	 to	 DN-A	 and	 DN-B.	 The	 episodic	
projection	 task	was	 originally	 designed	 to	 differentiate	 these	 parallel	 networks,	 using	 condition-level	 contrasts	
(DiNicola	 et	 al.	 2020).	 The	 observed	 correlation	 suggested	 that	 DN-A	 might	 preferentially	 support	 Scene	
Construction	 processes,	 which	 would	 inform	 differentiation	 between	 these	 tightly	 juxtaposed	 networks	 (e.g.,	
Buckner	&	DiNicola	2019,	DiNicola	et	al.	2020,		see	also	Deen	et	al.	2020).			
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------------------------------------------------------------------	

Insert	Figures	6-8		About	Here	
------------------------------------------------------------------	

	
Scene	Construction	is	Selectively	Related	to	DN-A	But	Not	DN-B	Activity	

Comparing	 Scene	 Construction	 scores,	 across	 trials,	 to	 DN-A	 activity	 revealed	 a	 strong	 positive	 correlation	
(Figure	9;	r	=	0.61,	CI	[0.51,	0.69]).	Conversely,	DN-B	showed	a	weakly	negative	correlation	to	Scene	Construction	
(Figure	9;	r	=	-0.07,	CI	[-0.21,	0.08]).		

Multiple	regression,	with	network-specific	models,	supported	the	observed	dissociation.	Of	note,	initial	models	
included	all	5	strategy	composites,	but	variance	inflation	factors	(VIF)	revealed	moderate	intercorrelation	between	
Difficulty,	 Autobiographical	 and	 Self-Relevant	 scores	 (VIF	 >	 3;	 e.g.,	 see	 Johnston	 et	 al.	 2018).	 To	 avoid	
multicollinearity	 from	 a	 Difficulty	 confound	 (which	 can	 reduce	model	 accuracy	 and	 introduce	 redundancy),	we	
removed	Autobiographical	and	Self-Relevant	composites	from	subsequent	models	(see	also	Figure	12).	Remaining	
VIF	factors	suggested	no	persisting	multicollinearity	(i.e.,	equaled	1),	so	we	interpreted	regression	models	featuring	
Difficulty,	Scene	Construction	and	Others-Relevant	composite	scores.	

For	DN-A,	this	model	significantly	predicted	activity	(F(3,176)	=	36.91,	p	<	0.001),	and	Scene	Construction	was	
the	only	significant	predictor,	accounting	for	most	of	the	variance	in	DN-A	response	(R2Scene	Construction	=	0.36,	p	<	0.001;	
R2Full	Model	=	0.39).	For	DN-B,	the	overall	model	was	significant	(F(3,176)	=	28.55,	p	<	0.001),	but	Scene	Construction	
was	not	a	significant	predictor	and	accounted	for	almost	no	variance	in	DN-B	response	(R2Scene	Construction	=	0.01,	p	>	
0.05;	R2Full	Model	=	0.33).	These	results	supported	a	selective	relation	between	Scene	Construction	scores	and	DN-A	
activity.	Although	DN-B	is	tightly	juxtaposed	to	DN-A	across	the	cortical	mantle	(e.g.,	Braga	&	Buckner	2017),	DN-A	
appears	to	play	a	distinct	role	in	Scene	Construction	processes.		

As	an	additional	consideration,	the	Scene	Construction	composite	included	strategies	for	using	visual	imagery	
and	 for	 considering	 the	 locations	 of	 objects	 or	 places.	 A	 third	 strategy,	 for	 considering	 the	 locations	 of	 people,	
clustered	with	this	composite	in	Exp.	1	and	was	related,	but	more	weakly,	in	Exp.	2.	To	test	whether	excluding	this	
strategy	impacted	the	observed	dissociation	between	DN-A	and	DN-B,	in	post	hoc	analyses,	we	created	a	separate	
composite	that	included	“Visual_Imagery”,	“Loc_Obj_Places”,		and	“Loc_People”	ratings.	Findings	were	comparable.	
For	DN-A,	this	composite	(replacing	Scene	Construction	in	the	original	model)	was	still	a	significant	predictor,	again	
accounting	for	most	of	the	variance	in	DN-A	response	(R2	=	0.38,	p	<	0.001;	R2Full	Model	=	0.43;	all	three	predictors	now	
p	<0.05).	For	DN-B,	this	composite	was	not	a	significant	predictor	(R2	=	0.00,	p	>	0.05;	R2Full	Model	=	0.32).		
	

------------------------------------------------------------------	
Insert	Figure	9		About	Here	

------------------------------------------------------------------	
	
Trial-Level	Variation	in	Scene	Construction	Tracks	DN-A	Activity,	Including	for	Control	Trials	

Given	that	the	episodic	projection	task	was	designed	to	target	DN-A	activity	(DiNicola	et	al.	2020),	we	next	aimed	
to	test	whether	a	link	between	Scene	Construction	and	DN-A	simply	recapitulated	previous,	condition-level	results.	
Namely,	in	prior	work,	trials	from	the	Past	and	Future	Self	conditions	were	shown	to	preferentially	recruit	DN-A	
(DiNicola	et	al.	2020).	Correlations	between	DN-A	response	and	Scene	Construction	scores	might	predominantly	
reflect	the	same	condition-level	distinctions.		

We	 therefore	 ran	 additional	 analyses	 restricted	 either	 to	 those	 original	 target	 trials	 or	 to	 control	 trials	
constructed	 not	 to	 include	 episodic	 projection	 demands	 (from	 Present	 Self,	 Past	 Non-Self	 and	 Future	 Non-Self	
conditions).	Correlation	results	revealed	that	Scene	Construction	scores	for	both	the	original	target	(r	=	0.33,	CI[0.19,	
0.45])	 and	 original	 control	 trials	 (r	 =	 0.48,	 CI[0.35,	 0.58])	 tracked	 DN-A	 response	 (Figure	 10).	 Although	 Scene	
Construction	scores	were	higher,	on	average,	for	the	target	trials	as	compared	to	the	control	trials	(t(146)	=	-10.82,	
p	<	0.001;	 see	 triangles	 in	Figure	10),	Scene	Construction	ratings	were	significant	predictors	of	DN-A	activity	 in	
models	restricted	to	the	control	trials	and	still	accounted	for	the	most	variance	(R2Scene	Construction	=	0.19,	p	<	0.001;	
R2Full	Model	=	0.32,	Difficulty	also	p	<	0.01).		

To	reiterate,	even	for	trials	designed	not	to	require	episodic	projection,	the	extent	to	which	trials	required	scene	
construction	predicted	DN-A	activity.	This	provides	evidence	that	a	core	process	subserved	by	DN-A,	regardless	of	
episodic	projection,	is	mental	construction	of	scenes	(see	also	Hassabis	&	Maguire	2007,	Hassabis	&	Maguire	2009).		
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------------------------------------------------------------------	

Insert	Figure	10		About	Here	
------------------------------------------------------------------	

	
Scene	Construction	and	Difficulty	Support	a	Robust	Functional	Double	Dissociation	Between	DN-A	and	Another	
Juxtaposed	Network	FPN-B	

	To	 further	 examine	 network	 heterogeneity,	 we	 leveraged	 the	 composites	 with	 the	 strongest	 network	
correlations	–	Scene	Construction	and	Difficulty	–	toward	probing	potential	functional	dissociation	between	DN-A	
and	FPN-B.	These	networks	also	feature	juxtaposed	regions	in	multiple	cortical	zones	(Figures	6	and	7;	see	also	Braga	
&	Buckner	2017,	Braga	et	al.	2020).		

As	described,	Scene	Construction	scores	correlated	to	DN-A	activity	(r	=	0.61,	CI	[0.51,	0.69]).	Conversely,	DN-A	
showed	a	weakly	negative	correlation	to	Difficulty	scores	(r	=	-0.16,	CI	[-0.30,	-0.02]),	which	were	strongly	associated	
with	activity	in	the	adjacent	FPN-B	(r	=	0.70,	CI	[0.62,	0.77]).	FPN-B,	in	turn	showed	no	relation	to	Scene	Construction	
(r	=	0.00,	CI	[-0.15,	0.14]),	illustrating	a	functional	double	dissociation	(Figure	11).		

Multiple	regression	confirmed	the	double	dissociation.	In	a	model	featuring	Scene	Construction,	Difficulty	and	
Others-Relevant	scores,	Scene	Construction	accounted	for	the	most	variance	in	DN-A	activity	across	trials	and	was	
the	only	significant	predictor,	as	described	above	(R2	=	0.36,	p	<	0.001).	For	FPN-B,	Difficulty	was	the	only	significant	
predictor	and	accounted	for	most	of	the	model’s	variance	in	network	response	(R2Difficulty	=	0.48,	p	<	0.001;	R2Full	Model	
=	0.50).		

To	better	interpret	the	robustness	of	these	relations,	we	also	calculated	the	internal	reliability	of	our	measures	
and	estimated	the	proportion	of	explainable	variance	for	each	composite-network	pair.		The	split-half	reliability	of	
the	composite	scores	was	high	(rScene	Construction	=	0.92,	rDifficulty	=	0.95),	as	was	reliability	of	the	network	activity	values	
(rDN-A	=	0.87,	rFPN-B	=	0.862).	Comparing	our	models’	R2	 values	 to	 the	product	of	 these	 reliability	 scores,	 for	each	
composite-network	 pair	 (as	 an	 estimate	 of	 explainable	 variance)	 suggested	 that	 Scene	 Construction	 scores	
accounted	for	about	47%	of	the	explainable	reliable	variance	in	DN-A	activity,	and	Difficulty	scores	for	about	60%	in	
FPN-B	 activity.	 Overall,	 the	 dissociation	 between	 DN-A	 and	 FPN-B	 adds	 to	 evidence	 that	 parallel	 association	
networks,	with	side-by-side	regions	across	association	cortex,	can	be	robustly	functionally	dissociated	(as	originally	
suggested	by	Fedorenko	et	al.	2012).		

	
------------------------------------------------------------------	

Insert	Figure	11		About	Here	
------------------------------------------------------------------	

	
Strategy	Composite	Score	Correlations	After	Regression	of	Difficulty	

Given	evidence	of	a	possible	confounding	effect	of	Difficulty	on	multiple	composite-network	relations,	in	post	hoc	
analyses,	we	regressed	the	Difficulty	composite	scores	from	all	other	composites.	Residual	data	continued	to	reveal	
a	strong,	selective	relation	between	Scene	Construction	scores	and	DN-A	activity	(r	=	0.59,	CI	[0.50,	0.68]).	Effort	
does	not	account	for	Scene	Construction’s	relation	to	DN-A	response	(see	top	panel	of	Figure	12).		

Autobiographical	scores	also	showed	a	selective,	positive	correlation	to	DN-A	activity	after	Difficulty	regression,	
and	the	correlation	between	Scene	Construction	and	Autobiographical	composites	strengthened.	Scene	Construction	
was	still	the	strongest	predictor	of	DN-A	response,	including	within	a	model	including	both	Autobiographical	and	
Self-Relevant	composites	(both	of	which	were	also	significant:	R2Scene	Construction	=	0.25,	p	<	0.001;	R2Autobiographical	=	0.09,	
p	<	0.05;	R2Self	Relevant	=	0.05,	p	<	0.001;	R2Full	Model	=	0.40).	We	unpacked	these	results	in	further	post	hoc	testing	(see	
Further	Tests	Do	Not	Support	Contribution	of	DN-A	to	Recollection	of	the	Personal	Past,	below).	

Others-Relevant	scores	maintained	a	weak	but	selective	positive	relation	to	DN-B	response	after	regression	of	
Difficulty.	We	initially	expected	a	relation	between	Others-Relevant	scores	and	DN-B	response,	based	on	evidence	of	
DN-B	recruitment	for	social	functions	(e.g.,	DiNicola	et	al.	2020)	and	ample	evidence	that	relevant	regions	participate	
in	representing	others’	thoughts	(e.g.,	see	Lieberman	2007,	Koster-Hale	&	Saxe	2013,	Schurz	et	al.	2020).	A	model	
featuring	the	four	remaining	composites	was	significant	(p	<	0.01)	but	only	modestly	predicted	variance	in	DN-B	

 
2	Split-half	reliability	for	all	composite	scores	was	greater	than	0.90	and	for	all	networks	was	greater	than	0.70,	except	for	the	SAL	
network.	One	hypothesis	for	lower	SAL	reliability	(0.52)	in	this	task	is	individual	differences,	across	trials,	in	which	elements	captured	
attention,	but	this	requires	testing.		
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activity	overall	(R2Full	Model	=	0.08),	and	the	positive	relation	to	Others-Relevant	scores	accounted	for	similar	variance	
to	a	negative	relation	to	Scene	Construction	(R2Others-Relevant,	=	0.03,	R2Scene	Construction	=	0.03).	

For	 both	 Autobiographical	 and	 Self-Relevant	 composites,	 other	 interpretable	 network	 correlations	 did	 not	
survive	regression	of	the	Difficulty	composite	scores	(compare	Figure	8	to	Figure	12).	These	results	aligned	with	the	
evidence	of	multicollinearity	between	Difficulty,	Autobiographical	and	Self-Relevant	scores	in	our	initial	regression	
model.	 Comparing	Autobiographical	 and	 Self-Relevant	 scores	 to	mean	behavioral	RT	 also	 supported	 a	Difficulty	
confound:	both	composite	scores	were	strongly,	negatively	correlated	with	RT	(r	=	-0.44	for	both).	No	relation	to	RT	
was	found	for	Scene	Construction	composite	scores	(r	=	0.00)	and	a	much	weaker	relation	for	Others-Relevant	scores	
(r	=	-0.16).	

These	 findings	 indicate	 that	 our	 data	 could	 reduce	 to	 three	 clusters,	 related	 to	 Scene	 Construction,	 Others-
Relevant,	and	trial	Difficulty	dimensions	(e.g.,	with	Self-Relevant	scores	along	a	continuum	of	effort).	Revisiting	our	
initial	 composite	 characterization,	 both	 regressing	 and	 reverse-coding	 Difficulty	 composite	 strategies	 (i.e.,	 with	
higher	 values	 for	 easier	 and	 subjective	 trials)	 preserved	 Scene	 Construction	 and	 Others-Relevant	 correlations,	
separable	from	an	intercorrelated	Self-Relevant	cluster.		

The	relation	between	Scene	Construction	scores	and	DN-A	response	and	the	separate	relation	between	Difficulty	
scores	and	FPN-B	response	become	even	more	compelling	given	these	additional	analyses.	As	an	additional	post	hoc	
test,	in	the	next	section,	we	probed	these	two	relations	to	assess	whether	maps	based	solely	on	trial	groupings	from	
the	composite	scores	could	yield	selective	network	recruitment	within	individual	participants.			

	
------------------------------------------------------------------	

Insert	Figure	12		About	Here	
------------------------------------------------------------------	

	
Distinct	 Networks	 Can	 Be	 Recapitulated	 Within	 Individuals	 From	 Small	 Numbers	 of	 Trials	 That	 Differ	 in	
Strategy	Composite	Scores		

As	a	test	of	the	discovery	that	Scene	Construction	and	Difficulty	scores	differentiate	activity	between	juxtaposed	
networks,	we	created	within-individual,	whole-brain	contrast	maps	using	 trials	with	high	and	 low	scores	on	 the	
Scene	Construction	and	Difficulty	composites.	Importantly,	for	Scene	Construction,	we	restricted	the	analysis	only	to	
trials	from	the	original	control	conditions.	Thus,	this	contrast	is	completely	orthogonal	to	the	originally	envisioned	
condition	contrasts	in	DiNicola	et	al.	(2020).	

Each	 individual’s	 estimated	 DN-A	 border	was	 overlaid	 upon	 the	 Scene	 Construction	 contrast	maps.	Results	
revealed	alignment	between	the	contrast	maps	and	DN-A	(Figure	13,	 left	column).	Overlap	was	observed	within	
midline	regions,	including	in	retrosplenial	cortex	and	posterior	parahippocampal	cortex	(PHC),	previously	linked	to	
Scene	 Construction	 ratings	 (e.g.,	 Andrews-Hanna	 et	 al.	 2010,	 see	 also	 Hassabis	 &	Maguire	 2007),	 as	 well	 as	 in	
distributed	DN-A	regions,	including	in	dorsolateral	PFC,	lateral	posterior	parietal	cortex	and	lateral	temporal	cortex.	
Although	correspondence	was	not	perfect	and	varied	by	individual,	the	overlap	with	DN-A	estimates	in	a	subset	of	
participants	was	striking,	particularly	given	that	this	contrast	included	a	relatively	small	number	of	control	trials.	
Thus,	even	when	only	considering	trials	explicitly	designed	to	minimize	demands	on	episodic	projection,	contrasting	
trials	with	higher	versus	lower	Scene	Construction	scores	reveals	activity	across	the	distributed	DN-A	network.		

For	Difficulty	contrasts,	each	individual’s	estimated	FPN-B	border	was	overlaid.	Comparing	the	contrast,	within	
individuals,	 to	 network	 borders	 again	 revealed	 evidence	 of	 overlap	 (Figure	 13,	 right	 column).	 In	 most	 tested	
individuals,3	Difficulty	maps	corresponded	to	FPN-B	regions	across	distributed	cortical	zones,	including	in	prefrontal	
cortex	(as	might	be	expected	for	cognitive	control;	e.g.,	Miller	&	Cohen	2001;	see	also	Badre	&	Nee	2018),	but	also	in	
parietal,	temporal,	and	midline	zones.	The	maps	provide	evidence	that	FPN-B	supports	processes	related	to	effortful	
control	 and	 illustrate	 the	 power	 of	 the	 described	 data-driven	 approach:	 individually-defined	 networks	 can	 be	
reproduced	from	process-level	dissociations,	with	contrasts	created	from	independent	ratings,	not	possible	in	prior	
condition-level	analyses.	This	strategy	is	powerful	even	for	dimensions	(Difficulty)	beyond	the	task’s	original	design	
and	in	networks	(FPN-B)	not	included	in	the	initial	analyses.		

	
	

 
3	For	one	individual	(S4),	the	Difficulty	contrast	map	showed	more	overlap	with	an	estimate	of	FPN-A.	As	described	previously,	this	
individual	had	a	more	ambiguous	k-means	output	(S11	in	DiNicola	et	al.	2020),	and	this	result	likely	reflects	uncertainty	in	network	
assignment,	rather	than	true	network	differences,	in	this	subject.	This	result	raises	the	importance	of	exploring	network	responses	
in	additional	individuals.	
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------------------------------------------------------------------	

Insert	Figure	13		About	Here	
------------------------------------------------------------------	

	
Further	Tests	Do	Not	Support	Contribution	of	DN-A	to	Recollection	of	the	Personal	Past 

In	 addition	 to	 the	 strong	 relation	 between	 Scene	 Construction	 and	 DN-A,	 following	 Difficulty	 regression,	
Autobiographical	 scores	 showed	 a	 selective	 relation	 to	 DN-A	 response.	 In	 additional	post-hoc	tests,	 we	 further	
examined	DN-A’s	contributions	to	scene	construction	and	self-reported	reliance	on	mnemonic	processes. 

Scene	Construction	and	Autobiographical	scores	were	strongly	correlated	across	all	trials	(r	=	0.58;	Figure	14,	
top)	and	even	across	control	trials	(r	=	0.49;	Figure	14,	middle),	presenting	a	challenge	to	parsing	differences.	But	
among	 the	 control	 trials,	 subsets	 showed	 higher	 scores	 on	 either	 the	 Autobiographical	 or	 Scene	 Construction	
composite	(Figure	14,	middle).	Examining	DN-A	response	across	these	trials	revealed	higher	values	for	the	Scene	
Construction	subset	(t(11.40)	=	3.24,	p	<	0.01;	Figure	14,	bottom).	
	

------------------------------------------------------------------	
Insert	Figure	14		About	Here	

------------------------------------------------------------------	
 

What’s	more,	unpacking	the	Autobiographical	composite,	one	strategy	probe	measured	reliance	on	memory	(i.e.,	
Pers_Past_Exper	in	Table	1),	while	the	other	measured	envisioning	a	sequence	of	events	(Sequence_Events),	also	
relevant	 to	 constructing	 mental	 scenes.	 To	 assess	 whether	 component	 strategies	 differentially	 accounted	 for	
variance	in	DN-A	activity,	we	tested	a	model	featuring	each	of	the	Scene	Construction	and	Autobiographical	probes	
in	relation	to	DN-A	response	(following	Difficulty	regression).4	Within	the	model	(R2Full	Model	=	0.50),	three	predictors	
were	significant,	including	both	Scene	Construction	probes	(R2Loc_Obj_Places	=	0.31,	p	<	0.001,	R2Visual_Imagery	=	0.09,	p	<	
0.01)	 and	 Sequence_Events	 (R2	=	 0.10,	p	<	 0.01).	 Little	 variance	 in	 DN-A	 activity	 was	 accounted	 for	 by	 the	
Pers_Past_Exper	probe	(R2	=	0.01,	p	>	0.05),	the	only	one	specific	to	recollection	of	the	past. 

Plotting	 correlation	 values	 between	 DN-A	 response	 and	 each	 individual	 strategy	 probe	 (Figure	 15,	 top)	
illustrated	these	results,	with	high	correlations	to	both	Scene	Construction	probes	(before	and	after	regression	of	
Difficulty),	and	higher	correlation	to	Sequence_Events	than	Pers_Past_Exper	within	the	Autobiographical	composite.	
A	positive	correlation	to	Specificity	(not	assigned	to	a	composite	during	clustering)	was	also	revealed.	Collectively,	
these	 results	 add	 to	 evidence	 for	 DN-A’s	 role	 in	 constructing	mental	 scenes,	 likely	 including	 specific	 details	 of	
dynamic	events.	
	

------------------------------------------------------------------	
Insert	Figure	15		About	Here	

------------------------------------------------------------------	
	

Discussion	
	

Processes	linked	to	scene	construction	selectively	recruited	one	specific	distributed	network,	termed	DN-A,	that	
includes	 PHC,	 retrosplenial	 cortex	 and	 multiple	 cortical	 association	 regions.1	 The	 interwoven	 but	 anatomically	
distinct	DN-B	showed	no	such	response.	The	functional	dissociation	between	these	two	juxtaposed	networks	was	
striking	 (Figure	 9)	 and	 suggests	 that	 DN-A	 is	 domain	 specialized.	 When	 functional	 response	 properties	 were	
examined	broadly,	across	multiple	distributed	association	networks,	scene	construction	was	associated	only	with	
DN-A	response	and	could	be	further	dissociated	from	responses	tracking	cognitive	effort.	Moreover,	the	relation	of	
DN-A	to	scene	construction	held	even	for	trials	designed	not	to	include	episodic	memory	demands.	DN-A	appears	to	
subserve	scene	construction	processes,	likely	encouraged	by	–	but	not	limited	to	–	autobiographical	memory	tasks	
(see	 also	 Hassabis	 &	 Maguire	 2007,	 2009).	 We	 discuss	 the	 implications	 of	 these	 observations	 as	 well	 as	 the	
opportunities	and	limitations	of	our	methods	that	leverage	trial-to-trial	variation	in	processing	demands	to	constrain	
understanding	of	network	functions.	

 
4	Within	this	model,	the	two	Scene	Construction	probes	were	highly	intercorrelated	(VIF	>	3).	A	similar	model,	with	these	probes	
combined,	produced	comparable	results.	Most	DN-A	variance	was	captured	by	Scene	Construction	(R2Scene	Construction	=	0.25,	p	<	0.001;	
R2Full	Model	=	0.40),	followed	by	Sequence_Events	(R2	=	0.12,	p	<	0.001),	and	almost	none	by	Pers_Past_Exper	(R2	=	0.02,	p	<0.05).	
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Trial-Level	Variation	in	Scene	Construction	Robustly	Tracks	DN-A	Response	

Comparing	trial-to-trial	variation	in	Scene	Construction	ratings	to	network	activity	revealed	a	selective,	strong	
relation	to	DN-A	response.	Prior	notions	that	a	monolithic	DN	makes	an	extremely	broad	processing	contribution	to	
diverse	forms	of	mental	simulation	(e.g.,	Buckner	&	Carroll	2007,	Spreng	et	al.	2009)	are	not	consistent	with	our	
data.	Rather,	our	results	support	the	hypothesis	that	DN-A	and	DN-B	contribute	to	distinct	domains	of	processing,	
and	further,	that	the	hippocampally-linked	DN-A	specifically	subserves	scene	construction,	including	as	used	during	
episodic	remembering	and	imagining	future	scenarios,	but	also	during	atemporal	imagination	and	for	scenarios	that	
are	 not	 necessarily	 relevant	 to	 oneself	 (see	 Hassabis	 &	Maguire	 2007,	 2009,	 Andrews-Hanna	 et	 al.	 2010).	 The	
selectivity	 for	 processes	 associated	 with	 scene	 construction	 and	 not	 episodic	 retrieval	 is	 important	 to	 refining	
functional	understanding.	

DN-A	is	strongly	recruited,	on	average,	for	trials	featuring	remembering	and	constructing	future	scenarios	when	
these	trials	are	contrasted	to	control	trials	involving	semantic	or	non-personal	reference	(DiNicola	et	al.	2020;	see	
also	Addis	et	al.	2007,	Spreng	et	al.	2009).	But	such	complex	task	trials	rely	on	multiple	distinct	component	processes	
(for	relevant	discussion,	see	Hassabis	&	Maguire	2009).	While	mental	scene	construction	presumably	always	utilizes	
some	form	of	internal	process	as	the	scenes	are	imagined	(not	experienced),	a	clear	finding	is	that	DN-A	activity	is	
not	specifically	linked	to	whether	a	trial	demands	reliance	on	episodic	memory	–	that	is,	retrieval	from	one’s	own	
personal	 past.	Within	 the	 entire	 trial	 set,	 the	 relation	 between	 DN-A	 and	 reported	 utilization	 of	 personal	 past	
experiences	was	weak,	and	when	restricted	to	control	trials,	negative.	However,	trials,	including	controls,	that	rated	
low	on	utilizing	past	personal	experience	activated	DN-A	to	the	degree	they	rated	high	on	Scene	Construction.	Thus,	
the	high	average	response	of	DN-A	across	 trials	 involving	episodic	remembering	and	 imagining	 future	scenarios	
appears	driven	by	covariation	with	the	more	basic	component	process	of	scene	construction.	To	the	degree	a	trial	
encouraged	participants	to	construct	a	mental	scene	with	vivid	imagery	and	awareness	about	spatial	locations	of	
objects	or	places,	 the	 response	 in	DN-A	 increased.	Providing	 further	 support	 that	 scene	construction	 is	 the	core	
process	driving	DN-A	activity,	 contrast	maps	made	only	 from	control	 trials,	using	 ratings	on	Scene	Construction	
probes,	overlapped	with	DN-A	estimates	within	individuals	(Figures	13).		

A	nuance	to	interpreting	our	data	arose	in	the	more	detailed	analysis	of	behavioral	strategies	once	Difficulty	was	
regressed.	Although	Autobiographical	ratings	also	tracked	DN-A	response,	a	strategy	probe	for	envisioning	event	
sequences	largely	accounted	for	this	relation.	The	probe	directly	measuring	reliance	on	personal	past	experiences	
still	 only	weakly	 related	 to	DN-A	 activity.	 Across	 all	 probes,	 those	 for	 visualizing	 scene	 and	 event	 details,	 even	
including	the	specificity	of	such	details,	related	most	strongly	to	DN-A.	This	strategy	pattern	supported	DN-A’s	role	
in	internally	constructing	scenes,	including	dynamically	unfolding	event	sequences,	even	when	minimally	reliant	on	
the	personal	past	(see	also	Hassabis	et	al.	2009).		

The	observed	relations	between	DN-A	and	scene-relevant	probes	were	not	only	strong	but	selective.	Comparing	
functional	relations	across	multiple	distributed	association	networks	illustrated	that	only	DN-A	was	recruited	for	
Scene	Construction.	Interwoven	DN-B	showed	almost	no	relation	to	scene-relevant	strategies,	nor	did	any	of	four	
other	 juxtaposed	 networks.	 And	 although	multiple	 nearby	 networks	 tracked	 Difficulty	 (a	 composite	measuring	
cognitive	effort),	DN-A	showed	no	relation	to	Difficulty	scores,	and	Difficulty-related	networks	did	not	track	Scene	
Construction.	DN-A	can	thus	be	functionally	dissociated	from	parallel	–	and	even	interdigitated	–	networks	within	
association	cortex	through	a	unique	role	in	scene	construction.		

These	results	build	evidence	in	support	of	domain	specialization	for	individually-defined,	distributed	network	
DN-A.	Our	 findings	 converge	with	work	 linking	medial	 temporal	 lobe	DN	 regions	 to	 constructing	mental	 scenes	
(Andrews-Hanna	et	al.	2010;	see	also	Axelrod	&	Rees	2017,	Palombo	et	al.	2018)	and	to	vivid	visual	imagery	of	events	
(e.g.,	Wen	et	al.	2020;	Lee	et	al.	2021).	And	our	work	aligns	with	prior	studies	linking	regions	of	DN-A	to	category-
specific	reasoning	about	places,	including	in	posteromedial	cortex	(Peer	et	al.	2015,	Silson	et	al.	2019,	Woolnough	et	
al.	2020)	and	in	more	distributed	regions	(Deen	&	Friewald	2020).	Ultimately,	rather	than	the	canonical	DN,	our	
evidence	 supports	 DN-A	 contributing	 to	 a	 previously-hypothesized	 ‘construction	 system’	 (Hassabis	 &	 Maguire	
2009),	supporting	processes	for	mentally	creating	coherent	scenes.		

	
Method	Intuitions:	Behavioral	Ratings	Capture	Stable	Properties	of	Trial-to-Trial	Variation	

In	addition	to	network	insights,	the	present	work	provided	evidence	that	behavioral	strategy	ratings	can	tap	into	
stable	 trial-level	 properties.	 If	 behavioral	 ratings	 varied	 by	 respondent	 group	 or	 by	 individual	 answers	 to	 trial	
questions,	they	would	not	inform	independent	neuroimaging	data.	But	across	two	behavioral	experiments,	ratings	
of	strategy	probes	showed	striking	stability.	Even	for	individual	trials,	patterns	were	highly	reliable,	akin	to	trial-
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level	fingerprints,	and	inter-experiment	reliability	was	high	for	nearly	every	strategy	probe	(Figures	1	and	2).	What’s	
more,	correlated	strategies	formed	replicable	clusters,	suggesting	that,	for	trials	like	ours	(requiring	consideration	
of	different	scenarios),	participants	have	insight	into	how	they	choose	a	response	(Figures	3	and	4).	Self-reported	
strategy	ratings	thus	capture	stable	trial	properties,	informative	to	independent	neuroimaging	results	from	the	same	
trial	set	(see	also	Andrews-Hanna	et	al.	2010).	

Here,	neuroimaging	data	were	also	reliabile,2	with	activity	levels	accounting	for	behavioral	variation.	Specifically,	
trial-to-trial	behavioral	 strategy	 ratings	 correlated	with	 fMRI	 response	activity	within	 the	 individually-identified	
networks.	At	first	glance,	our	correlation	results	are	surprising.	The	scatterplot	showing	Scene	Construction	scores	
plotted	against	DN-A	response,	for	example,	reveals	a	remarkably	clean	relation	(Figure	9),	reminiscent	of	the	kind	
of	 artifactual	 relations	 that	 emerge	when	 there	 is	 circularity	 in	 region	 definition,	 colloquially	 known	 as	 double	
dipping	(Kriegeskorte	et	al.	2009;	Vul	et	al.	2009).	The	network	regions	analyzed	here	were	defined	a	priori	without	
any	 bias	 to	 elicit	 well-behaved	 relations.	 The	 well-behaved	 plots	 likely	 emerge	 because	 of	 the	 stability	 of	 the	
estimates.	Each	dot	in	the	plots	depicted	in	Figures	9	and	11	represents	not	a	single	person	but	two	robust	estimates	
–	two	means	of	reliable	datasets	–	for	a	single	trial.	Each	dot,	therefore,	includes	a	lot	of	data,	from	multiple	groups	
of	participants,	stabilizing	the	estimate.		
	
Limitations	and	Considerations	for	Future	Work	

Despite	the	strengths	of	this	approach,	our	datasets	were	limited	by	the	trials	and	strategy	probes	we	used.	We	
asked	online	participants	to	rate	strategy	probes	for	multiple	questions	in	a	row,	so	we	restricted	the	total	number	
of	probes.	Additional	ratings	could	target	such	dimensions	as	perspective,	temporal	orientation,	emotional	valence,	
or	certainty	(e.g.,	Andrews-Hanna	et	al.	2013,	Stawarczyk	et	al.	2013).	Our	task	could	also	be	expanded	to	include	
additional	trial	questions.	Trials	were	not	explicitly	designed	to	target	social	reasoning	or	effort,	for	example,	which	
impacted	our	ability	to	probe	relevant	processes.		

Varying	levels	of	cognitive	effort	across	trials	appears	particularly	crucial	to	dissecting	network	functions.	In	the	
present	work,	a	confounding	effect	of	Difficulty	 impacted	 the	Autobiographical	and	Self-Relevant	composites.	As	
discussed	elsewhere,	failure	to	control	for	difficulty	can	lead	to	spurious	interpretations	of	differences	between	other	
trial	features	(e.g.,	see	Caramazza	&	Shelton	1998).	Our	task	was	designed	to	target	other	dimensions	but	nonetheless	
varied	 in	 difficulty,	 and	 our	 findings	 leave	 open	 questions	 about	 potential	 contributions	 of	 individually-defined	
networks	 to	 complex	 affective,	 narrative,	 and	 other	 processes	 that	 could	 relate	 to	 Self-Relevant	 probes,	 when	
difficulty	is	better	controlled.		

The	described	composite-network	links	also	raise	questions	that	could	not	be	answered	with	the	current	data.	
For	example,	though	we	largely	focused	here	on	the	strongest	network-composite	relation	relevant	to	Difficulty	(i.e.,	
FPN-B),	both	frontoparietal	networks	(FPN-A	and	FPN-B)	showed	positive	correlations	to	the	Difficulty	composite	
score.	A	question	for	future	work	concerns	the	precise	roles	of	these	networks.	Distinct	contributions	to	aspects	of	
control	and	to	network	coordination	have	been	proposed	(see	Dixon	et	al.	2018,	Badre	&	Nee	2018,	Murphy	et	al.	
2020,	Nee	2021,	see	also	Marek	&	Dosenbach	2018)	and	yet-unappreciated	roles	are	also	a	possibility	(e.g.,	even	
beyond	the	control	domain).		

In	addition,	the	observed	dissociation	between	DN-A	and	FPN-B	supports	a	hypothesis	that	tightly-juxtaposed	
association	networks	can	distinctly	subserve	more	domain-specialized	(DN-A)	or	domain-general	(FPN-B)	processes	
(see	 also	 Fedorenko	 et	 al.	 2012,	 DiNicola	&	 Buckner	 2020).	Whether	 these	 patterns	 hold	 across	 all	 distributed	
association	zones	is	an	open	question.	Contrast	maps	produced	from	strategy	ratings	showed	network	overlap	not	
only	in	specific	regions,	but	across	distributed	cortical	zones	for	both	DN-A	(in	relation	to	Scene	Construction)	and	
FPN-B	(to	Difficulty;	Figure	13).	These	maps,	along	with	findings	of	task	differentiation	in	multiple	network	zones	
(DiNicola	et	al.	2020;	see	also	Deen	&	Friewald	2020),	lead	us	to	predict	that	functional	distinctions	span	the	cortex.	
We	aim	to	test	this	hypothesis	more	directly	in	future	work.	

Finally,	although	DN-A	has	been	linked	to	the	hippocampal	formation	(Braga	et	al.	2019)	and	the	hippocampus	
has	long	been	shown	to	play	a	role	in	representing	space	(e.g.,	O’Keefe	&	Dostrovsky	1971)	and	scene	construction	
(e.g.,	Hassabis	&	Maguire	2007;	see	also	Maguire	et	al.	2016),	the	present	analyses	were	limited	to	cortical	network	
regions.	Further	examination	of	network	connectivity	to	and	function	of	the	hippocampus	itself	could	further	clarify	
DN-A's	functional	role.		
	
Conclusions	

Processes	 linked	 to	 scene	 construction	 selectively	 recruited	 DN-A.	 Even	 when	 examining	 trials	 explicitly	
designed	not	to	rely	on	personal	past	experiences,	neuroimaging	contrasts	created	from	extreme	Scene	Construction	
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ratings	revealed	a	preferential	response	in	DN-A.	Scene	Construction	did	not	recruit	interwoven	DN-B	or	four	other	
networks,	and	DN-A	response	did	not	track	Difficulty.	These	results	suggest	that	parallel	distributed	networks	in	
association	cortex	are	functionally	distinct	with	DN-A	making	a	domain-specialized	processing	contribution	that	can	
be	robustly	functionally	dissociated	from	multiple	other	association	networks.	
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Figure	Legends	
	

Figure	1.	Behavioral	ratings	illustrate	unique	and	reliable	strategy	use	patterns.	Mean	strategy	ratings	from	
independent	groups	of	behavioral	participants	show	striking	similarity	(red:	Exp.	1,	blue:	Exp.	2).	Four	example	trials	
are	 displayed,	 chosen	 from	 the	 original	 ‘target’	 conditions	 designed	 to	 demand	 episodic	 projection	 (e.g.,	
remembering	and	imagining	the	future).	Above	each	plot	is	the	actual	question	the	participants	viewed;	below	is	the	
measured	strategy	pattern.	The	strategies	plotted	on	the	x-axis	are	listed	in	Table	1.	The	trials	share	high	ratings	for	
strategies	 relevant	 to	 episodic	 memory,	 as	 intended,	 such	 as	 consideration	 of	 the	 personal	 past	
(Personal_Past_Exper),	events	(Sequence_Events)	and	mental	scenes	(Visual_Imagery,	Loc_Obj_Places).	High	inter-
trial	variability	on	other	strategy	dimensions	highlights	the	exploratory	opportunity	(see	also	Figure	2).	For	example,	
Difficulty	was	low	for	some	trials	and	higher	for	others.	Each	point	shows	a	mean	strategy	rating	across	participants	
with	standard	error	bars.	Pers	=	Personal;	Exper	=	Experiences.	*	Denotes	a	repeated	trial	with	a	larger	sample	size. 
	 
Figure	2.	Strategy	use	patterns	differ	markedly	among	the	control	trials.	Strategy	patterns	are	shown	for	four	
trials	taken	from	the	control	conditions.	For	each	trial,	mean	strategy	ratings	from	independent	groups	again	reveal	
notable	 overlap	 (red:	 Exp.	 1,	 blue:	 Exp.	 2).	 The	 four	 trials	 were	 selected	 from	 the	 original	 ‘control’	 conditions,	
designed	to	minimize	demands	on	episodic	projection.	Most	of	these	trials	show	lower	reliance	on	the	personal	past	
(Pers_Past_Exper)	and	greater	use	of	facts	than	the	target	trials	in	Figure	1.	The	control	trials	also	reveal	marked	
variability.	Multiple	trials	involve	strategies	related	to	mental	scenes	(Visual_Imagery,	Loc_Obj_Places),	for	example,	
or	to	considering	unfolding	events	(Sequence_Events).	Each	point	shows	a	mean	strategy	rating	across	participants	
with	standard	error	bars.	Pers	=	Personal;	Exper	=	Experiences.	*	Denotes	a	repeated	trial	with	a	larger	sample	size. 
	
Figure	3.	Reliable	strategy	clusters	emerge	 that	capture	 trial-to-trial	variation.	 (Left)	A	correlation	matrix	
illustrates	the	relations	among	the	16	scaled	strategy	probes,	using	data	from	all	180	trial	questions	in	behavioral	
Exp.	1.	Strong	correlations	emerge	between	subsets	of	strategy	probes	indicating	that	individual	trials	have	distinct	
rating	combinations.	For	example,	trials	high	in	use	of	visual	imagery	(Visual_Imagery)	also	tend	to	be	high	in	reports	
of	 imagining	 the	 locations	of	objects	and	places	 (Loc_Obj_Places)	and,	 to	a	 lesser	degree,	 the	 locations	of	people	
(Loc_People).	(Right)	An	independent	correlation	matrix	from	Exp.	2	reveals	that	the	strategy	relations	are	reliable	
(ordered	here	as	in	Exp.	1	for	visualization).	The	boxes	around	correlation	clusters	in	Exp.	2	reveal	the	groupings	
that	were	selected	based	on	hierarchical	clustering	as	shown	in	Figure	4.	Pers	=	Personal;	Exper	=	Experiences.	
	
Figure	 4.	 Hierarchical	 clustering	 yields	 five	 distinct	 strategy	 composite	 scores.	 Hierarchical	 clustering	
identified	 strategies	 that	 could	 be	 combined	 into	 composite	 scores	 for	 functional	 network	 analysis.	 (Top)	The	
dendrogram	from	Exp.	1	displays	composites	using	a	cut	point	above	“Facts”	and	“Difficulty,”	preserving	all	clusters	
at	least	as	strong	as	this	pair.	The	cut	point	is	noted	by	a	red	triangle	on	the	y-axis.	Dashed	boxes	show	the	cluster	
groupings.	(Bottom)	The	independently	estimated	dendrogram	from	Exp.	2	reveals	a	similar	structure.	Using	the	
same	cut	point	 above	 “Facts”	 and	 “Difficulty”	 leads	 to	 similar	 clusters	 that	 include	a	 core	 set	of	 strategy	probes	
converged	upon	across	both	experiments.	These	5	 strategy	composites	were	carried	 forward	 for	analysis	of	 the	
functional	MRI	data.	They	are	heuristically	labeled	as:	(I)	Difficulty,	(II)	Autobiographical,	(III)	Scene	Construction,	
(IV)	Others-Relevant,	and	(V)	Self-Relevant.	Strategy	probes	that	were	not	consistent	between	the	two	experiments	
(or	weakly	associated)	were	not	included	in	the	final	composite	scores,	allowing	only	the	most	robust	and	stable	
strategy	probes	to	be	incorporated	into	the	final	5	composite	scores.		
	
Figure	 5.	 Difficulty	 composite	 scores	 track	 trial-to-trial	 variation	 in	 response	 times	 supporting	 validity.	
Response	time	(RT)	estimates	provided	an	opportunity	to	validate	subjective	ratings	of	Difficulty.	Mean	RTs	were	
calculated	 for	 each	 trial	 (y-axis)	 and	 plotted	 against	 the	 Difficulty	 composite	 scores	 (x-axis)	 from	 Exp.	 2.	 The	
observed	strong	positive	relation	provides	evidence	for	the	validity	of	 the	Difficulty	composite,	even	though	it	 is	
based	on	participant	self-report.	The	Pearson’s	correlation	value	is	shown	in	the	bottom	left.	The	line	represents	a	
linear	model	predicting	Difficulty	scores	by	RT	across	trials.	
	
Figure	6.	Distributed	networks	estimated	from	functional	connectivity	within	individuals:	Left	hemisphere.	
Whole-brain	estimates	of	the	6	networks	are	displayed	for	each	of	the	10	extensively-sampled	individuals	(identical	
to	Braga	et	al.	2020;	see	also	DiNicola	et	al.	2020).	For	each	individual,	the	k-means	solution	featuring	the	fewest	
clusters	that	differentiated	the	6	target	networks	was	chosen.	Networks	are	shown	in	the	left	hemisphere	and	include	
Default	Network	A	(DN-A,	red),	Default	Network	B	(DN-B,	pink),	a	candidate	Language	Network	(LANG,	yellow),	two	
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candidate	Frontoparietal	Control	Networks	(FPN-A,	light	blue;	FPN-B,	dark	blue)	and	a	candidate	for	the	Salience	
Network	 (SAL,	 green).	 These	 networks	 were	 defined	 independently	 of	 assessments	 of	 functional	 response	
properties.		
	
Figure	 7.	 Distributed	 networks	 estimated	 from	 functional	 connectivity	 within	 individuals:	 Right	
hemisphere.	The	networks	from	Figure	4	are	displayed	for	the	right	hemisphere,	including	Default	Network	A	(DN-
A,	 red),	 Default	 Network	 B	 (DN-B,	 pink),	 a	 candidate	 Language	 Network	 (LANG,	 yellow),	 two	 candidate	
Frontoparietal	Control	Networks	(FPN-A,	 light	blue;	FPN-B,	dark	blue)	and	a	candidate	 for	 the	Salience	Network	
(SAL,	green).	
	
Figure	 8.	 Strategy	 composites	 are	 associated	 with	 differential	 and	 selective	 network	 activity.	 For	 each	
strategy	composite,	scores	from	all	180	trials	were	correlated	with	the	response	estimates	for	each	of	the	6	networks.	
The	strategy	 is	 labelled	at	 the	 top	of	each	plot;	 the	 six	 colored	bars	 reflect	 the	Pearson’s	 correlations	with	95%	
confidence	intervals.	(Scene	Construction)	A	particularly	striking	and	selective	relation	is	observed	between	Scene	
Construction	composite	scores	and	DN-A	activity.	(Difficulty)	The	Difficulty	composite	scores	show	a	strong	positive	
correlation	to	FPN-B	and	a	strong	but	weaker	relation	to	FPN-A.	(Others-Relevant)	The	Others-Relevant	composite	
scores	 reveal	 a	 modest	 association	 with	 DN-B.	 (Autobiographical	 and	 Self-Relevant)	 Results	 between	 the	
Autobiographical	and	Self-Relevant	composite	scores	are	more	ambiguous	(partially	related	to	confounding	effects	
of	Difficulty;	see	Figure	12).	Networks,	from	left	to	right:	Default	Network	A	(DN-A,	red),	Default	Network	B	(DN-B,	
pink),	a	candidate	Language	Network	(LANG,	yellow),	two	candidate	Frontoparietal	Control	Networks	(FPN-A,	light	
blue;	FPN-B,	dark	blue)	and	a	candidate	for	the	Salience	Network	(SAL,	green).	
	
Figure	9.	Scene	Construction	is	selectively	related	to	DN-A	but	not	DN-B	activity.	Scatter	plots	of	individual	trial	
activity	levels	within	DN-A	illustrate	a	strong	relation	to	the	Scene	Construction	composite.	(Top)	The	mean	activity	
level	for	each	of	the	180	trials	is	plotted	for	DN-A	(y-axis)	against	the	mean	Scene	Construction	composite	scores	(x-
axis).	 Note	 that	 each	 separate	 point	 represents	 the	 mean	 behavioral	 score	 for	 that	 unique	 trial	 from	 37-42	
participants	and	the	mean	functional	MRI	response	for	that	unique	trial	averaged	across	10	participants.	There	is	a	
striking	 linear	 relationship	 between	 the	 Scene	 Construction	 composite	 and	 DN-A	 activity.	 (Bottom)	 The	mean	
activity	level	for	each	trial	is	similarly	plotted	for	the	adjacent	network	DN-B	against	the	same	Scene	Construction	
composite	 scores	 (x-axis).	 There	 is	minimal	 relation.	 Pearson’s	 correlation	 values	 are	 shown	 in	 the	 bottom	 left	
corners.	
	
Figure	10.	Trial-to-trial	variation	in	Scene	Construction	tracks	DN-A	activity	levels	even	for	trials	that	do	not	
involve	episodic	remembering	or	prospection.	Scatter	plots	are	displayed	for	DN-A	split	by	whether	the	trials	
originated	from	the	target	conditions	constructed	to	demand	episodic	projection	(Top)	or	were	originally	included	
within	 control	 conditions	 constructed	 to	 minimize	 such	 demands	 (Bottom).	 The	 correlation	 with	 Scene	
Construction	is	present	in	both	sets	of	trials	with	a	strong	and	clear	linear	association	within	the	original	control	trial	
conditions.	Points	are	colored	based	on	their	condition	origin:	Past	Self	(pink),	Future	Self	(red),	Present	Self	(blue),	
Past	 Non-Self	 (dark	 green)	 and	 Future	 Non-Self	 (light	 green).	 Each	 point	 represents	 a	 single	 trial;	 Pearson’s	
correlation	values	are	shown	in	the	bottom	left	corners.	Regression	lines	in	color	include	only	the	trials	from	target	
(Top)	or	control	(Bottom)	conditions;	black	dashed	regression	lines	include	all	180	trials.	Triangles	indicate	the	
mean	composite	score	across	trials	in	each	plot,	highlighting	condition-level	differences.	Scene	Construction	tracks	
DN-A	response	both	for	trials	originally	constructed	to	target	DN-A	and	for	trials	constructed	to	minimize	demands	
on	episodic	projection.	
	
Figure	11.	Contrasting	Scene	Construction	and	Difficulty	reveals	a	double-dissociation	between	DN-A	and	
FPN-B.	Scatter	plots	contrast	the	differential	relations	of	DN-A	and	FPN-B	with	the	Scene	Construction	and	Difficulty	
composite	scores.	(Top,	Left)	The	mean	activity	level	for	each	of	the	180	trials	is	plotted	for	DN-A	(y-axis)	against	
the	mean	Scene	Construction	 composite	 scores	 (x-axis).	 (Bottom,	Left)	 The	mean	activity	 level	 for	 each	 trial	 is	
plotted	 for	FPN-B	(y-axis)	against	 the	mean	Scene	Construction	composite	scores	(x-axis).	Note	the	absence	of	a	
relation.	(Top,	Right)	The	mean	activity	level	for	each	trial	is	plotted	for	DN-A	(y-axis)	against	the	mean	Difficulty	
composite	scores	(x-axis).	(Bottom,	Right)	The	mean	activity	level	for	each	trial	is	plotted	for	FPN-B	(y-axis)	against	
the	mean	Difficulty	composite	scores	(x-axis)	revealing	a	strong,	positive	relation.	Pearson’s	correlation	values	are	
shown	in	the	bottom	left	corners.	Scene	Construction	scores	track	DN-A	activity	and	Difficulty	scores	track	FPN-B	
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activity,	 but	 not	 vice	 versa,	 illustrating	 a	 functional	 double-dissociation	 between	 these	 two	 closely	 juxtaposed	
networks.		
	
Figure	 12.	 Strategy	 composites	 are	 associated	 with	 differential	 and	 selective	 network	 activity	 after	
regression	 of	 Difficulty.	 Given	 the	 possibility	 of	 a	 confounding	 effect	 of	 Difficulty	 on	 estimates	 of	 network	
selectivity,	the	network	correlation	bar	plots	were	recomputed	after	regressing	the	Difficulty	composite	scores	(see	
text).	(Scene	Construction)	Scene	Construction	composite	scores	maintained	a	strong	and	selective	correlation	to	
DN-A	activity.	(Difficulty)	As	mandated	by	the	analysis,	variation	related	to	 the	Difficulty	Composite	scores	was	
removed.	Since	correlations	could	not	be	estimated	to	a	vector	of	zeros,	the	original	Difficulty	plot	(from	Figure	8,	
faded	here)	is	shown	for	reference.	(Others-Relevant)	The	Others-Relevant	composite	scores	maintained	a	weaker	
but	selective	relation	to	DN-B	activity.	(Autobiographical)	Of	interest,	the	Autobiographical	composite	scores,	once	
Difficulty	was	regressed,	revealed	a	pattern	similar	but	weaker	to	that	of	Scene	Construction.	(Self-Relevant)	The	
Self-Relevant	 composite	 scores	were	 non-specific.	 Networks,	 from	 left	 to	 right:	 Default	 Network	 A	 (DN-A,	 red),	
Default	 Network	 B	 (DN-B,	 pink),	 the	 Language	 Network	 (LANG,	 yellow),	 two	 candidate	 Frontoparietal	 Control	
Networks	(FPN-A,	light	blue;	FPN-B,	dark	blue)	and	the	Salience	Network	(SAL,	green).	
	
Figure	 13.	 Post-hoc	 contrasts	 of	 extreme	 trials	 can	 recapitulate	 networks	 within	 the	 individual.	 	 As	 a	
confirmation	of	the	discovery	that	Scene	Construction	and	Difficulty	are	associated	with	functional	MRI	response	
levels	in	distinct	networks,	within-individual	contrast	maps	are	displayed.	(Left)	For	5	selected	individuals,	maps	
illustrate	the	contrast	of	the	10	trials	with	the	lowest	Scene	Construction	composite	scores	versus	the	10	trials	with	
the	 highest	 scores,	 selected	 only	 from	 the	 original	 control	 conditions.	 Note	 that	 even	with	 this	 relatively	 small	
amount	of	data	per	individual	(from	trial	conditions	originally	selected	to	minimize	demands	on	episodic	projection)	
functional	MRI	differences	emerge	across	the	distributed	regions	that	comprise	DN-A.	The	black	outlines	show	the	
independently	estimated	boundaries	of	DN-A	 for	each	participant.	(Right)	Maps	 illustrate	 the	contrast	of	 the	10	
trials	with	the	highest	Difficulty	composite	scores	versus	the	10	trials	with	the	lowest	scores.	Differences	emerge	
that	fall	within	FPN-B.	These	contrasts	were	not	possible	in	initial	condition-level	analyses	(DiNicola	et	al.	2020)	and	
provide	evidence	of	novel	processing	insights.	Maps	are	shown	for	the	right	hemisphere.	
	
Figure	 14.	 Further	 exploration	 of	 Autobiographical	 and	 Scene	 Construction	 scores	 in	 relation	 to	 DN-A	
response.	 Following	 regression	 of	 Difficulty,	 the	 trial-to-trial	 correlation	 between	 Autobiographical	 and	 Scene	
Construction	scores	strengthened	(r	=	0.58,	top).	Even	for	trials	originally	treated	as	controls	(from	Present	Self	and	
Past	and	Future	Non-Self	conditions),	this	correlation	remained	strong	(r	=	0.49,	middle).	But	among	control	trials,	
subsets	of	questions	were	identified	that	showed	higher	scores	either	on	the	Autobiographical	(blue)	or	the	Scene	
Construction	composite	(red).	Plotting	the	DN-A	response	values	for	each	trial	in	these	subsets	(bottom)	revealed	
higher	DN-A	activity	during	trials	in	the	Scene	Construction	subset.	Mean	DN-A	response	in	each	trial	subset	is	shown	
by	a	diamond.			
	
Figure	15.	Individual	strategy	probes	for	scene	construction	processes	show	the	strongest	relation	to	DN-A	
response.	For	 each	 individual	 strategy	 probe	 from	 the	 RSS,	 trial-level	 correlations	 to	 each	 network’s	 response	
pattern	are	plotted.	Grey	circles	show	correlations	prior	to	Difficulty	regression	and	black	circles	post-regression.	
Dotted	lines	demarcate	composites	(see	Figure	4).	The	strategy	probe	for	Locations	of	People	(Loc_People,	marked	
with	a	*)	is	grouped	with	the	Scene	Construction	probes	for	visualization.	DN-A	(top)	shows	high	correlations	to	
Scene	Construction	probes,	as	well	as	to	the	Sequence_Events	probe	from	the	Autobiographical	composite.	DN-A	is	
more	weakly	correlated	to	the	Pers_Past_Exper	probe.	This	pattern	supports	DN-A’s	role	in	mental	construction	of	
scenes	and	events.	Patterns	across	other	networks	show	strong	correlations	between	the	FPNs	and	Difficulty	probes	
(in	grey,	prior	to	regression)	and	a	weaker	but	unique	relation	between	DN-B	and	Others-Relevant	strategies,	which	
survives	 Difficulty	 regression.	 The	 Difficulty	 composite	 comprised	 Facts	 and	 Difficulty	 strategies,	 so	 only	 pre-
regression	correlations	to	these	strategies	are	shown	(in	grey).		
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Table	1.	The	Response	Strategies	Scale	(RSS)	included	16	strategy	probes.	
	

#	 Abbreviation	 Strategy	Probe	 Mean	
Rating	

SD	
Rating	

Inter-Experiment	
Reliability	(r)	

1	 Significance	
To	what	extent	did	this	question	…	ask	about	a	matter	that	is	
significant	to	you?	 3.18	 1.59	 0.92	

2	 Pers_Feelings	
…	lead	you	to	think	about	your	own	preferences,	feelings	or	
emotions?	 3.63	 1.59	 0.93	

3	 Emotions	
…	evoke	any	emotion	(e.g.,	happiness,	sadness,	excitement,	
etc.)?	 3.02	 1.62	 0.91	

4	 Pers_Past_Exper	 …	rely	on	personal	past	experiences?	 4.15	 1.71	 0.93	

5	 Sequence_Events	
…	lead	you	to	imagine	a	sequence	of	events	unfolding	in	your	
mind?	 3.61	 1.86	 0.91	

6	 Loc_Obj_Places	
…	lead	you	to	envision	the	location	of	objects	or	places	
mentioned	in	it?	 3.70	 1.98	 0.89	

7	 Loc_People	 …	lead	you	to	envision	the	physical	locations	of	other	people?	 2.83	 1.82	 0.86	

8	 Others_Feelings	
…	lead	you	to	speculate	about	the	preferences,	emotions,	or	
thoughts	of	other	people?	 2.90	 1.75	 0.92	

9	 Moral_Principles	 …	make	you	consider	general	moral	principles?	 1.89	 1.25	 0.91	

10	 Relationships	
…	require	you	to	think	about	the	nature	of	your	relationships	
to	other	people?	 2.16	 1.30	 0.96	

11	 Others_Personality	
…	lead	you	to	consider	the	personality	traits	or	appearances	of	
other	people?	 2.28	 1.58	 0.88	

12	 Visual_Imagery	 …	evoke	visual	imagery	in	your	mind?	 4.30	 1.89	 0.81	

13	 Recent_Thoughts	 …	evoke	thoughts	that	have	been	on	your	mind	recently?	 2.49	 1.53	 0.91	

14	 Difficulty	
When	answering	this	question	…	how	hard	did	you	have	to	
think?	(1	–	thoughts	were	spontaneous	or	easy,	7	–	thoughts	
were	deliberate	or	difficult)	

3.02	 1.65	 0.93	

15	 Facts	
…	to	what	extent	did	you	rely	on	facts,	as	opposed	to	subjective	
experiences?	(1	–	relied	only	on	subjective	experiences,	7	–	
relied	only	on	facts)	

3.85	 1.95	 0.86	

16	 Specificity	
…	how	specific	were	your	thoughts?	(1	–	thoughts	were	broad	
and	general,	7	–	thoughts	were	detailed	and	specific)	 4.21	 1.91	 0.66	

	

Notes:	Two	phrases	(‘To	what	extent	did	this	question…’	and	‘When	answering	this	question…’,	bolded	in	the	table)	
were	each	followed	by	multiple	probes.	All	probes	included	a	7-point	scale	(for	probes	1-13:	1	–	None,	7	–	A	lot;	for	14-
16:	scales	shown	in	the	table).	Strategy	probes	1-8,	14	and	15	were	adapted	from	Andrews-Hanna	et	al.	(2010;	see	
their	Table	S3).	For	each	probe,	rating	means	and	standard	deviations	(SD)	are	shown,	calculated	across	raters	in	Exp.	
1	and	Exp.	2.	Inter-experiment	reliability	shows	the	Pearson’s	correlation	between	mean	ratings	in	Exp.	1	and	Exp.	2,	
across	all	trials,	for	each	probe.	
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Table	2.	Summary	of	exclusions	in	Experiment	1.	
 

Cohort	
#	

Enrolled	

#	Exc:	
Time	
<	20	
min	

#	Exc:	
Click	
Count	
=	0	

#	Exc:	
Missed	
>	1	

Check	Q	

#	Exc:	
Patterned	
Responses	

#	Exc:	
Age	

Total	
Included	
(%)	

Mean	
Age	

#	Female	

1	 25	 4*	 1	 0	 2	 0	 18	(72%)	 23.0	 7	(39%)	

2	 25	 4	 0	 1	 3	 0	 17	(68%)	 22.8	 6	(35%)	

3	 25	 2	 0	 0	 5	 0	 18	(72%)	 22.2	 10	(56%)	

4	 25	 0	 0	 0	 3	 0	 22	(88%)	 22.7	 14	(64%)	

5	 25	 1	 0	 1	 2	 0	 21	(84%)	 23.0	 11	(52%)	

6	 25	 0	 1	 0	 2	 1	 21	(84%)	 22.6	 12	(57%)	

7	 25	 2	 0	 0	 4	 0	 19	(76%)	 22.5	 7	(37%)	

Overall	 175	 13	 2	 2	 21	 1	 136	(78%)	 22.7	 67	(49%)	
	

Notes:	78%	of	participants	were	included	in	analyses.	*In	Cohort	1,	one	participant	who	took	exactly	20	min	was	
excluded.	Patterned	responding	(assessed	by	2	independent	raters)	resulted	in	the	greatest	number	of	exclusions.	
Exc	=	excluded.		
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Table	3.	Summary	of	participant	exclusions	in	Experiment	2.	
	

	

Notes:	79%	of	participants	were	included	in	analyses.	Patterned	responding	again	resulted	in	the	greatest	number	
of	exclusions.	*In	cohort	5,	one	individual	was	excluded	due	to	reported	aphantasia	(i.e.,	inability	to	represent	visual	
imagery).	Exc	=	excluded.	

	 	

Cohort	
#	

Enrolled	

#	Exc:	
Time	
<	20	
min	

#	Exc:	
Click	
Count	=	

0	

#	Exc:	
Missed	
>	1	

Check	Q	

#	Exc:	
Patterned	
Responses	

#	Exc:	
Age	

Total	
Included	
(%)	

Mean	
Age	

#	Female	

1	 50	 3	 1	 1	 8	 0	 37	(74%)	 22.9	 21	(57%)	

2	 50	 5	 0	 0	 6	 0	 39	(78%)	 22.3	 26	(67%)	

3	 50	 5	 0	 1	 3	 1	 40	(80%)	 22.4	 18	(45%)	

4	 50	 4	 0	 1	 3	 0	 42	(84%)	 22.5	 25	(60%)	

5	 50	 2	 1	 0	 6	 0	 *40	(80%)	 22.6	 27	(68%)	

6	 50	 3	 0	 1	 4	 2	 40	(80%)	 22.3	 29	(73%)	

Overall	 300	 22	 2	 4	 30	 3	 238	(79%)	 22.5	 146	(61%)	
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Figure 1

* 29) Recall a specific time from your childhood when you felt like you were in trouble. Had 
you: disobeyed a parent, broken a school rule, done something else?

51) Speculate about the next time you go to a beach with a specific friend. On the beach, will 
you primarily: sit in a chair, go in the water, do something else?

110) Recall the last time you looked up directions before traveling to a specific destination. 
Did you search using: a phone, a computer, something else? 

Experiment 1
Experiment 2

157) Imagine that you are browsing at a specific bookstore or site two days from now. Do you 
envision spending your time in: the fiction section, the nonfiction section, another section? 
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Figure 2

* 4) Assess your current ability to live truthfully and communicate truthfully with others. Would 
you describe yourself as: telling only the truth, mixing truth and untruth, telling only untruth?

16) Consider the leadership in France a decade ago. Who was France's president then: 
Francois Hollande, Jacques Chirac, Nicolas Sarkozy? 

71) Consider how the world’s tallest building changed in the mid-twentieth century. The world’s 
tallest building in 1960 was: the Eiffel Tower, the Empire State Building, the Chrysler Building? 

124) Contemplate that the US receives heavy rainfall next year. Which states will likely 
experience the most rain: Hawaii & South Carolina, Arkansas & Florida, New Mexico & Iowa? 

Experiment 1
Experiment 2
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Figure 3

Exp. 1 Exp. 2
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