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Abstract 13 

Hybridisation in nature is part of the continuum of speciation. Under the ecological speciation 14 

model, divergent selection acts on ecological differences between populations, gradually 15 

creating barriers to gene flow and ultimately leading to reproductive isolation. Here, we used 16 

white-tailed (Odocoileus virginianus) and mule deer (O. hemionus) to investigate patterns of 17 

speciation in hybridising sister species. We quantified genome-wide introgression and 18 

performed genome scans to look for signatures of four different selection scenarios. Despite 19 

modern evidence of hybridization, we found no sign of introgression, no signature of 20 

divergence with gene flow, and localized patterns of allopatric and balancing selection in the 21 

genome. Of note, genes under balancing selection were related to immunity and MHC or 22 

sensory perception of smell, the latter of which is consistent with deer biology. The deficiency 23 

of patterns selection suggests that white-tailed and mule deer were spatially separated during 24 

the glaciation cycles of the Pleistocene where genome wide differentiation accrued via drift.  25 

Absence of historical introgression signs could suggest Dobzhansky-Muller incompatibilities 26 

and selection against hybrids, and that both species are now far along the speciation 27 

continuum.  Our results suggests that WTD & MD do not conform to a speciation with gene flow 28 

scenario, but that they evolved via drift in allopatry during the Quaternary and that both 29 

species are currently advanced along the speciation continuum. 30 

  31 
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Introduction 32 

Hybridisation is a widespread phenomenon that occurs at variable rates (Mallet 2005; Ragavan 33 

et al. 2017; Iacolina et al. 2019; Taylor and Larson 2019; Adavoudi and Pilot 2021). The 34 

prevalence of hybridisation suggests speciation follows a continuum as opposed to the more 35 

discrete and allopatric view introduced by Mayr (1942) (Mallet 2005; Stankowski and Ravinet 36 

2021). However, both ideas are not incompatible as the speciation continuum ultimately leads 37 

to reproductive isolation with hybridisation being a natural outcome (Stankowski and Ravinet 38 

2021). Under the ecological speciation model (sensu Darwin, 1859), hybrids are common and 39 

can even facilitate speciation (Nosil 2012). Ecological speciation works when ecological 40 

differences lead to divergent selection between populations; eventually, the underlying 41 

genetic mechanisms (i.e. causative loci) gradually create barriers to gene flow, ultimately 42 

leading to reproductive isolation (Rundle and Nosil 2005; Nosil 2012; Shafer and Wolf 2013).  43 

The genetic mechanisms involved in ecological speciation can take the form of barrier 44 

loci which act as a restraint to gene flow in different ways: for example, such loci can be under 45 

divergent selection, involved in mate choice or contribute to assortative mating, or reduce 46 

hybrids fitness (Abbott et al. 2013; Ravinet et al. 2017). Divergent selection should produce 47 

genomic islands in this context, also referred to as genomic islands of speciation, that are 48 

regions of the genome where the differentiation (e.g. FST) is higher than the neutral genomic 49 

background (Ravinet et al. 2017; Campbell et al. 2018). Such loci and islands have been 50 

observed in several species, underpinning a wide array of speciation and divergence processes 51 

(Poelstra et al. 2014; Momigliano et al. 2017; Lavretsky et al. 2019; Marques et al. 2019). 52 

Scanning the genome for just FST peaks when speciation with gene flow is ongoing, however, is 53 

problematic as other mechanisms can create similar FST profiles such as genetic drift, global 54 
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adaptation, or simply reduced genetic diversity due to background selection (Cruickshank and 55 

Hahn 2014; Burri 2017; Ravinet et al. 2017; Booker et al. 2021). Joint genome scans including 56 

FST, dxy and p  facilitate a better depiction of the processes of selection and ecological 57 

speciation (Cruickshank and Hahn 2014; Ravinet et al. 2017; Campbell et al. 2018; Shang et al. 58 

2021). Of note, Shang et al. (2021) recently conceptualized the expected patterns FST, dxy and p  59 

under the main modes of selection; this approach allows for neutral patterns of evolution to 60 

be disentangled from selection based on contrasting patterns of the aforementioned summary 61 

statistics.   62 

White-tailed deer (Odocoileus virginianus; WTD) and mule deer (O. hemionus; MD) are 63 

abundant in North America with similar morphology, activity patterns and life-history traits, 64 

but they differ in several ecological aspects (Douzery and Randi 1997; Gilbert et al. 2006; Pitra 65 

et al. 2004; Brunjes et al. 2006; Berry et al. 2019). WTD prioritise security and thermoregulation 66 

whereas MD favour food availability (Whittaker and Lindzey 2004); consequently, WTD prefer 67 

habitats at lower altitude and with denser visual cover than MD that favour open areas at higher 68 

elevation (Anthony and Smith 1977; Brunjes et al. 2006). White-tailed deer and MD also differ in 69 

their sociality and associated predator response. Mule deer live in large cohesive groups 70 

including both sexes, and, as a group, adopt an aggressive behaviour in presence of predators, 71 

whereas WTD live in smaller female-biased groups and flee in response to predators (Lingle 72 

2001; Lingle 2003). Both species represent a high economic value in North America as hunting-73 

related activities generate billions of dollars annually (Cambronne 2013), and both species are 74 

important cultural component of Indigenous communities (Adams and Hamilton 2011; Peres 75 

and Altman 2018). 76 
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 Despite a species divergence date estimated at ~3.13 mya (Wright et al. 2021), WTD and 77 

MD hybridise in areas of sympatry with estimated hybridisation rates ranging from 1 to 19% 78 

depending on the region (Carr and Hughes 1993; Hornbeck and Mahoney 2000; Combe et al. 79 

2021; Russell et al. 2021). Both species likely spent considerable time in allopatry (i.e. separate 80 

refugia) during glacial events (e.g Moscarella et al. 2003; Latch et al. 2009). It has also been 81 

shown that however restricted, gene flow appears bidirectional as there are signs of 82 

introgression at both mitochondrial and nuclear levels, such that some MD acquired WTD 83 

mitochondrial DNA around ~1.32 Mya (Carr et al. 1986; Cronin 1991; Derr 1991; Carr and Hughes 84 

1993; Cathey et al. 1998; Bradley et al. 2003; Russell et al. 2019; Wright et al. 2021). This pattern 85 

also suggests ancestral hybridisation and gene flow has taken place. Given their clear 86 

phenotypic and behavioural differences, and their documented hybridisation, white-tailed 87 

and mule deer do not conform to the biological species concept (Mayr 1942). Here, we 88 

hypothesize that WTD and MD have evolved via ecological speciation, and more specifically a 89 

speciation with gene flow scenario. To test this hypothesis, we quantified genome-wide 90 

introgression and past admixture events and performed genome scans to look for signatures 91 

of four different selection regimes. We expected to find genetic signs of divergent selection, 92 

such as speciation islands, consistent with patterns of divergence with gene flow (DwGF). We 93 

also predicted higher rates of admixture and historical introgression in areas of sympatry. 94 

Results  95 

We sequenced 28 individuals to an average coverage of approximately 4x. We called 10,397,088 96 

SNPs, which represented 0.4% of the genome. In the PCA based on allele frequencies, PC1 97 

accounted for 59% of the variation and separated both species (Fig.1B). PC2 explained an 98 

additional 8% of the variation and showed a spread of MD individuals that is consistent with 99 
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their longitudinal distribution (Pearson correlation = 0.8; p-value = 0.00057). Latitude was not 100 

important in shaping PC1 or PC2 variation (p > 0.05). Admixture analysis showed a well-defined 101 

genetic clustering between species (Evanno’s method: best K = 2; Fig.1C). The WTD individual 102 

Ov_MX2 was partially admixed in both analyses, with NGSAdmix assigning it 92.5% WTD and 103 

7.44% MD ancestry (Fig.1C). This individuals’ admixed pattern disappeared in the admixture 104 

analysis with higher K values (K = 3 to 7, Fig.S1), though additional within species clusters are 105 

observed. 106 

We performed an ABBA-BABA test based on genotype likelihoods between all 107 

combinations of our 28 individuals in a first analysis and between all four populations in a 108 

second, with the caribou as outgroup.  We computed 9828 ABBA-BABA individual topologies 109 

in ANGSD; inter-species introgression estimates were all very close to 0, with a D-statistic 110 

ranging from 0.011 to -0.013 and Z-score from 6.92 to -8.85. D-statistic in intra-species 111 

comparisons range from 0.25 to 0.916 (Z-score from 114.54 to 13111.97) in ABBA and from -112 

0.046 to -0.914 (Z-score from -25.42 to -1348.55) in BABA (Fig.2A). In the comparisons between 113 

the four populations, three ABBA-BABA topologies presented signatures of introgression on a 114 

total of 12. The single inter-species comparison presents a D-statistic of -0.07 (Z-score = -7.66) 115 

for an introgression between sympatric MD and WTD. The other two comparisons show a 116 

reciprocal introgression between MD in allopatry and sympatry of 0.9 and 0.89 (Z-score = 117 

1342.83 & 1376.69; Fig.S2). The treemix analyses showed a topology with no migration that 118 

explained over 99% of the variation (Fig.2B).  119 

We further analysed introgression through the measure of fd across 50kb non-120 

overlapping windows in two different introgression scenarios: 1) WTD_allopatry, 121 

WTD_sympatry, MD_sympatry, Caribou and 2) MD_allopatry, MD_sympatry, WTD_sympatry, 122 
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Caribou (Fig.S3). We found 1243 outlier windows with a fd higher than the 97.5% percentile in 123 

the first scenario and 1248 in the second, each representing ~2.45% of the genome with 68 124 

windows overlapping between comparisons (Fig.S3). 125 

Measures of relative genomic divergence between WTD and MD were elevated (FST = 0.26) but 126 

absolute divergence was relatively low (dxy = 0.011); genetic diversity (p) was higher in WTD than 127 

in MD (WTD = 0.008, MD = 0.004, Mann-Whitney test: p < 2.2e-16). We identified a total of 1183 128 

windows presenting patterns consistent with one of the four selection scenarios (Fig.3, Fig.S4). 129 

Of those, 1016 suggest a pattern of balancing selection, they were distributed across 236 130 

scaffolds and represent 1.99% of the genome. Those windows contained 121 genes, some of 131 

which showed an enrichment in ontologies associated with the sense of smell and chemical 132 

stimuli, including three categories presenting an enrichment above 15-fold (Fig.4A, Fig. S5). We 133 

also detected GOs related to the MHC and immunity, these include three categories with an 134 

enrichment above 24-fold (Fig. S5). We identified patterns of background selection in 165 135 

windows across 58 scaffolds, representing 0.32% of the genome. These windows harboured 136 

208 genes identified with a UniProt ID and for which we found enrichment in GOs related to 137 

epigenetic factors such as “Unmethylated CpG binding” (25-fold) or “Histone demethylation” 138 

(15-fold) (Fig.4B, Fig. S6).  These windows were either isolated or clustered together into 139 

putative islands of divergence (Fig.S4). We found 2 windows under allopatric selection, each 140 

window containing one gene: ACAP2, a GTPase activating protein, and PCDHB4 potentially 141 

involved in cell-binding (UniProt 2022a; UniProt 2022b). When we applied a more liberal cut-142 

offs for FST, dxy, and p we still observed no evidence for divergence with gene flow (Table S3). 143 

Discussion  144 
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We investigated the speciation history of the Odocoileus genera through introgression analyses 145 

and genome scans. Our results show the absence of historical hybridisation between WTD & 146 

MD suggesting speciation between those species took place without gene flow despite 147 

contemporary and historical evidence (Stubblefield et al. 1986; Cronin et al. 1988; Cronin 1991; 148 

Derr 1991; Hughes and Carr 1993; Cathey et al. 1998; Hornbeck and Mahoney 2000; Combe et 149 

al. 2021; Russell et al. 2021). The main pattern of selection from the genome scans is that of 150 

balancing selection, with notably patterns of divergence with gene flow absent. Moreover, the 151 

scarcity of allopatric selection (i.e., positive selection post divergence) suggests isolation and 152 

drift primarily underlies the species differentiation, with WTD and MD likely only recently 153 

coming into secondary contact. The genome-wide scans combined with the absence of 154 

introgression suggests that WTD & MD are far along the speciation continuum (i.e. Phase 3-4 in 155 

Feder 2012), despite contemporary hybridization.  156 

Speciation with an absence of historical introgression  157 

Contemporary hybridisation in wild WTD & MD is documented at rates ranging from 1 to 19% 158 

depending on the region (Stubblefield et al. 1986; Cronin et al. 1988; Cronin 1991; Derr 1991; 159 

Hughes and Carr 1993; Cathey et al. 1998; Hornbeck and Mahoney 2000; Combe et al. 2021; 160 

Russell et al. 2021). Moreover, a proposed historical mtDNA introgression would suggest 161 

ancestral hybridisation occurred (Wright et al. 2022). We therefore expected to find signs of 162 

hybridisation or introgression in our samples (e.g. Combe et al. 2021). We found evidence for 163 

some contemporary hybridisation in one sample (Fig.1C), but no strong signals of historical 164 

interbreeding at the genome-wide level were detected. Our sampling surely is limited for the 165 

detection of recent hybridisation, but  previous studies suggest gene flow is rather restricted 166 

(Cronin et al. 1988; Cronin 1991; Derr 1991; Hughes and Carr 1993; Russell et al. 2021). For 167 
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example, Russell et al. (2019) discovered a 1% hybridisation rate in Alberta by sampling 987 168 

individuals in a range overlap  of approximately 230,000 km2.  While signatures of fd identified 169 

potentially introgressed windows in ~1% of the genome, this metric can be a sign of 170 

incomplete lineage sorting (ILS) rather than introgression, particularly with no signs of 171 

genome-wide introgression as evidenced in the D statistic. Moreover, the independent treemix 172 

analysis does not support historical gene flow, thus collectively, we consider the fd signal to be 173 

reflective of ILS which  would be expected given the high genome-wide diversity and a relatively 174 

recent species-split (Cutter 2013). 175 

The absence of signatures of ancestral hybridisation suggest that WTD & MD evolved in 176 

allopatry and have recently come in secondary contact. The dynamic history of the North 177 

American continent, notably the glacial cycles of the Quaternary, shaped the evolution and 178 

distribution of many species (Avise et al. 1998; Hewitt 2000; Shafer et al. 2010). The use of 179 

different refugia for prolonged periods of time during the glaciation events has increased the 180 

differentiation between populations in several species, including deer (Latch et al. 2014; 181 

Dussex et al. 2020; Kinoshita et al. 2020; Colella et al. 2021; Ito et al. 2021). Previous studies 182 

show that MD persisted in several refugia during the glacial cycles of the Pleistocene, increasing 183 

the intraspecific divergence (Latch et al. 2009; Latch et al. 2014; Wright et al. 2022). 184 

Environmental shifts following the LGM also seem to have impacted the divergence between 185 

subspecies of WTD & MD in Florida and Mexico for example (Ellsworth et al. 1994; Alminas et al. 186 

2021). More recently, a form of allopatry was mediated through overharvest and habitat 187 

destruction of WTD where populations greatly decreased to extirpation in some regions 188 

(Deyoung et al. 2003; McDonald et al. 2004; Budd et al. 2018; Chafin et al. 2021). Here, the core 189 

of the current sympatric zone was greatly affected, notably Colorado, Montana, Idaho, 190 
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Nebraska and Wyoming where WTD was almost extirpated before restocking efforts took place 191 

starting in the mid 40’s (McDonald et al. 2004). Historical introgression could further be 192 

hindered by selection against hybrids, either through sexual selection, intrinsic or ecological 193 

incompatibilities (Rundle and Nosil 2005; Rundle and Nosil 2005; Nosil 2012). Given the 194 

genome-wide level of differentiation, we hypothesize that Dobzhansky-Muller incompatibles 195 

(DMIs) are in play, noting that they often occur early and rapidly (Schumer et al. 2015) 196 

Little is known about hybrid fitness in the Odocoileus genera. Assessment of a single F1 197 

male suggested it was fertile and it showed no overt genetic defects (Derr et al. 1991), but 198 

conclusions can not be drawn from a single observation. Sexual selection can be a powerful 199 

driver of selection against hybrids (Servedio 2004). In WTD, while females might favour males 200 

with larger antlers (Morina et al. 2018), sexual selection is overall poorly understood in 201 

Odocoileus and most studies focus on male breeding success rather than sexual selection by 202 

females (DeYoung et al. 2006; DeYoung et al. 2009; Jones et al. 2011; Newbolt et al. 2017). 203 

Morphologically, however, WTD & MD are very similar and the identification of their hybrids is 204 

often unreliable with the metatarsal gland and their escape gaits being the only characters 205 

consistently distinguishing hybrids (Lingle 1992; Wishart 1980). Thus, we propose a testable 206 

hypothesis that ecological incompatibilities combined with DMI maintain the species 207 

boundary.  More research is also needed on WTD/MD hybrids to quantify their fitness and 208 

genomic regions underlying any selected hybrid phenotypes. 209 

Mixed signatures of selection underly speciation in North American deer 210 

Given ongoing hybridisation between WTD & MD and a history of recurrent glacial cycles, we 211 

expected to find deer genomes showing patterns of divergence with gene flow. The absence of 212 

introgression and the nonexistence of DwGF in our genome scans, even with more liberal 213 
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thresholds, is surprising (Table S1). The further absence of allopatric selection suggests a 214 

diminished role of selection in deer speciation, lending support to drift-induced model more 215 

consistent with Mayr’s (1942) view. While the number of windows in allopatric selection 216 

increased with more liberal thresholds (Table S1), they are never the dominant pattern. We 217 

suggest this absence could be a result of species being far along on the speciation continuum 218 

such that patterns of AS (specifically high FST) are no longer detectable or meaningful, which is 219 

consistent with late stages of ecological speciation (Feder 2012). Recombination rates, 220 

demography and selection can influence the patterns investigated here (Shang et al. 2021), 221 

and thus future studies could integrate those factors to confirm the position of WTD & MD on 222 

the speciation continuum. 223 

Signatures of balancing selection (BLS) were widespread with windows containing 224 

genes consistent with deer biology (olfactory receptors) and previous literature (i.e., MHC 225 

genes). The major histocompatibility complex (MHC) is involved in pathogen recognition in 226 

vertebrate species (Bernatchez and Landry 2003; Piertney and Oliver 2006).  Polymorphism in 227 

this complex is directly linked to disease susceptibility, the most diverse are the most resistant, 228 

and there is evidence that MHC diversity is maintained by BLS (Bernatchez and Landry 2003; 229 

Piertney and Oliver 2006; Aguilar et al. 2004; Pierini and Lenz 2018; Zhang et al. 2018). The same 230 

is true for the results on sensory perception and particularly the olfactory receptors genes, both 231 

of which are under BLS (Liu et al. 2021). Each allele in the olfactory receptors genes is expressed 232 

by a single sensory neuron (Degl’Innocenti and D’Errico 2017), it is therefore plausible that 233 

diversity in these genes would be maintained by BLS. Olfactory receptors in WTD and MD, and 234 

more broadly deer, is critical to both predator detection and rutting behaviour (Ditchkoff 2011). 235 

Anatomically, WTD has an architecture optimised for the delivery of sensory stimuli to the 236 
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receptors in the nose (Ranslow et al. 2014). Chamaillé-Jammes et al. (2014) showed that MD 237 

inspect and respond differently to different predators’ olfactory cues, and both human and 238 

mammalian predators utilize wind direction and other mechanism to minimize scent 239 

detection by deer (Zagata and Haugen 1974; Cherry and Barton 2017). In other ungulates 240 

species, olfactory reception is associated with sexual activity (Cann et al. 2019), maternal 241 

behaviour (Keller and Lévy 2012; Blank and Yang 2017), territory choice (Deutsch and Nefdt 242 

1992), predator response (Kuijper et al. 2014; Wikenros et al. 2015) and foraging (Hirata and 243 

Kusatake 2021). Low differentiation (FST) but high diversity (p) of olfactory receptors in deer is 244 

consistent with their biology and behaviour and would be expected to be under strong 245 

selection pressures. 246 

Conclusion 247 

Our results suggests that WTD & MD do not conform to a speciation with gene flow scenario 248 

despite evidence of contemporary hybridization. We propose they were spatially separated 249 

during the Quaternary glaciation cycles where genome-wide differentiation accrued via drift.  250 

This is evidenced by the majority of the genome (> 97%) not matching a selection scenario. 251 

Increased sampling and model-based demographic assessment should help clarify the role of 252 

glaciers and secondary contact in North American deer. The near absence of patterns of 253 

allopatry and hybridisation suggest that white-tailed and mule deer are far along the 254 

speciation continuum, the absence of introgression signs could suggest DMIs and selection 255 

against hybrids which would contribute to the reinforcement of reproductive isolation. Future 256 

studies should focus on assaying hybrid phenotypes and vigour. 257 

Materials and Methods 258 

Sampling & Sequencing 259 
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We obtained tissue samples from harvested deer collected across the range of WTD & MD 260 

including areas of sympatry and allopatry (Fig.1A, Table 1). These areas were determined from 261 

NatureServe records and adjusted with IUCN range data (IUCN 2015a; IUCN 2015b; 262 

NatureServe 2021a; NatureServe 2021b). Specifically, the state of Washington and the province 263 

of British Columbia, for which the coasts are largely MD allopatric whereas the eastern parts 264 

are sympatric, were divided in two by the 120th meridian West. We also removed Manitoba from 265 

the sympatric list given the area is quite small and not sampled. We extracted DNA from tissue 266 

using the Qiagen DNeasy Blood and Tissue Kit following manufacturer's instructions and 267 

checked the samples concentration using Invitrogen Qubit assays. WGS libraries were 268 

generated at The Centre for Applied Genomics in Toronto, Canada and sequenced to an 269 

average of 4x coverage on an Illumina HiSeqX. 270 

Data processing 271 

Raw reads quality was examined using FastQC (v0.11.9; (Andrews S. 2010). We trimmed the 272 

reads using Trimmomatic (v0.36; Bolger et al., 2014), and aligned them to the WTD genome 273 

(GCA_014726795.1) with bwa-mem (v0.7.17; Li & Durbin, 2009). We sorted the reads using 274 

SAMtools sort (v1.10; Li et al., 2009), identified duplicates reads with Picard MarkDuplicates 275 

(v2.23.2; Broad Institute, GitHub Repository., 2019) and removed them using Sambamba view  276 

(v0.7.0; Tarasov et al., 2015). We performed a local re-alignment using GATK 277 

RealignerTargetCreator and IndelRealigner (v4.1.7.0; McKenna et al., 2010). For further quality 278 

checks, we used Sambamba flagstat, mosdepth (v0.3.1; Pedersen and Quinlan 2018) and 279 

MultiQC (v1.10; Ewels et al., 2016).  Some samples were sequenced to a higher depth on 280 

multiple lanes, for those samples, before the duplicate removal step, the read groups were 281 

specified and both sequencing files merged using Picard AddOrReplaceReadGroups and 282 
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MergeSamFiles. The rest of the pipeline was performed as described above with the addition 283 

of a final step: we reduced the final coverage to the average coverage of all other samples (4x) 284 

using Picard DownsampleSam.  285 

We created three datasets for our different analyses. The first contained the variants 286 

among all deer individuals (hereafter called DeerSNP dataset). We produced it using ANGSD 287 

(v0.918; Korneliussen et al., 2014) and estimated genotype likelihoods following the GATK 288 

model (-gl 2) and called genotypes (-doGeno 4) with the following filtering: SNPs with a 289 

minimum p-value of 1e-6, a minimum base quality of 20 and Minimum mapQ quality of 20 (-290 

SNP_pval 1e-6, -minMapQ 20 & -minQ 20). The second dataset additionally included invariant 291 

sites (referred to as DeerALL), it was produced following the same method as DeerSNP except 292 

for the filtering on the SNP p-value (-SNP_pval 1e-6) which was removed. Our third dataset 293 

comprises the 28 deer individuals and one caribou sample, all mapped to the caribou genome 294 

(GCA_014898785.1; afterwards called DeerCAR dataset). For this dataset, we first sorted the 295 

deer data by read name and converted them to fastq using SAMtools sort and fastq 296 

respectively. We mapped the deer data to the caribou reference genome using bwa-mem. We 297 

ran ANGSD using the same procedure as for DeerSNP dataset and with the addition of a 298 

caribou genome sequence obtained for this analysis (Dedato et al. 2022).  299 

Population structure analyses 300 

To infer admixture proportions and compute a PCA on allele frequencies based on genotype 301 

likelihood data we used PCAngsd (Meisner and Albrechtsen 2018) and NGSadmix (Skotte et al. 302 

2013) on the DeerSNP dataset. NGSadmix was run with K = 1 up to K =7 and the best K value 303 

was determined with CLUMPAK (Kopelman et al. 2015) following the Evanno method (Evanno 304 

et al. 2005) with 7 replicates for each K value. We investigated the correlation between the 305 
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distribution on each PC and each individual’s range in R with a linear model including the 306 

species and either latitude or longitude, and a Pearson’s correlation. 307 

Genome-wide introgression  308 

To evaluate the extent of introgression between sympatric MD and WTD, we used the ABBA-309 

BABA test, which allows for the detection of introgression between three populations P1, P2 & 310 

P3 and an outgroup (Green et al. 2010; Durand et al. 2011). We ran the ABBA-BABA analysis 311 

implemented in ANGSD on the DeerCAR dataset between individuals (-doAbbababa 1) and 312 

between populations (-doAbbababa2 1; Soraggi et al. 2018), using the caribou as outgroup. 313 

The D-statistic, standard error and Z-score were computed with ANGSD’s accompanying R 314 

scripts: jackKnife.R and estAvgError.R. To further our understanding of the admixture events 315 

and build a maximum likelihood tree of our system, we used treemix (v1.13; Pickrell & 316 

Pritchard, 2012) on both DeerCAR and DeerSNP datasets. We constructed the maximum 317 

likelihood trees with migration events ranging from 0 to 5, either WTD_allopatry or Caribou as 318 

root, and accounted for linkage using 1000 SNPs per block. Tree and residuals visualisations 319 

were performed with associated R script plotting_funcs.R and the variance explained by each 320 

migration event was computed with the get_f() function.  321 

In-windows introgression  322 

The D statistic is sensitive to genomic variation (p), and should not be used to determine  323 

introgression on a small scale (Martin et al. 2015). The fd statistic, proposed by Martin et al. 324 

(2015), is less dependent on diversity than D and therefore allows to detect potentially 325 

introgressed regions of the genome. We used the python script ABBABABAwindows.py (Martin 326 

2021) to estimate in D and fd in 50Kbp windows to detect potentially introgressed loci in our 327 

DeerCAR dataset on two comparisons: 1) P1 = WTD allopatry, P2 = WTD sympatry, P3 = MD 328 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.04.20.488928doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488928
http://creativecommons.org/licenses/by-nc/4.0/


sympatry and 2) P1 = MD allopatry, P2 = MD sympatry, P3 = WTD sympatry, both with the 329 

caribou as outgroup. We then identified potentially introgressed windows as those having a fd 330 

value higher than the 97.5% quantile. Their position was used in BEDTools intersect (v2.30.0; 331 

Quinlan and Hall 2010) with the caribou annotation file to identify the genes present in 332 

putatively introgressed windows.  333 

Genome scans 334 

To detect islands of divergence between WTD & MD, we used the python script 335 

popgenWindows.py (Martin 2021) to estimate individual heterozygosity, FST, Dxy and p in 50Kbp 336 

windows (note we filtered out scaffolds shorter than 50kb). The accurate computation of Dxy 337 

and p require a dataset including the invariant sites, we performed this analysis on the DeerALL 338 

dataset. To detect the outlier loci, we based our approach on the four selection scenarios 339 

developed in Shang et al. (2021): I) Divergence with gene flow that presents as high FST and Dxy 340 

but low p; II) allopatric selection that shows  high FST, low p and stable Dxy; III) background 341 

selection that presents as high FST but low p and Dxy;  and IV) balancing selection that displays 342 

as low FST but high p and Dxy. Thresholds were set as the upper or lower 5% for a high or low 343 

criteria, and between 45 and 55% for a stable condition. Outliers were flagged as belonging to 344 

one of the four scenarios when they met the specific criteria shown in Table 2. For each 345 

scenario, we identified genes present in outlier regions by comparing the coordinates of the 346 

outlier windows and the WTD annotation file in BEDTools intersect. We extracted the gene 347 

names from those regions as well as those from their associated scaffolds. The gene list from 348 

outlier windows was uploaded to ShinyGO for enrichment analysis with the scaffold’s gene list 349 

as background information. We downloaded the enrichment analysis results for the molecular 350 

function, biological process, and cellular component GOs and analysed the results in R. We 351 
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also uploaded the gene list to UniProt’s Retrieve/ID mapping tool (Pundir et al. 2016) and 352 

downloaded the information for visual inspection. All results were analysed in R version 4.1.0 353 

"Camp Pontanezen” (R Core Team 2021) . 354 

Data availability 355 

Raw reads for the 28 deer individuals were deposited on the NCBI Sequence Read Archive 356 

(Accession number XXXX). All scripts are available on GitLab 357 

(https://gitlab.com/WiDGeT_TrentU/graduate_theses/-/tree/master/Kessler/CH_01 ) 358 
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Figure legends 

Figure 1: Deer individuals in the study. (A) Sampling locations, colours represent the 
different groups: WTD allopatry (blue), WTD sympatry (violet), MD sympatry (green), MD 
allopatry (orange). Areas of sympatry are coloured in dark grey and areas of allopatry in 
light grey, from the IUCN range data for both species (IUCN, 2015a, 2015b). (B) Principal 
component analysis performed in PCAngsd. (C) Admixture proportions for K = 2 calculated 
in NGSAdmix. 
 
Figure 2: Introgression analyses. (A) ABBA-BABA analysis between individuals, we only show 
their assigned populations for clarity. Colour gradient represents Z score, excess of ABBA 
depicted as points, excess of BABA shown as triangles, arrows illustrate which populations 
are involved in gene flow. (B) Maximum likelihood tree inferred by Treemix for 0 migration 
(right) and the variance explained by each migration event (left). 
 
Figure 3: Distribution of windows presenting pattern of selection across the genome for dxy 
(top), Fst (middle) and p (bottom). Windows following a pattern of selection are coloured 
according to its corresponding evolutionary scenario, grey windows do not exhibit pattern 
of selection. The continuous and dashed line represent the mean and median respectively. 
 
Figure 4: Gene enrichment analysis from outlier windows. (A) Biological process GOs 
enriched in the Balancing selection outlier windows. (B) Molecular function GOs enriched 
in the Background selection windows. Colour represents -log10 FDR, size indicates the 
number of genes in our dataset that falls under given GO category. 
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Tables 

Table 1: Sample information 
Genome_ID Species Location Sex Group 
Ov_ON3 O_virginianus Ontario Female WTD_allopatry 
Ov_ON5 O_virginianus Ontario Male WTD_allopatry 
Ov_ON6 O_virginianus Ontario Male WTD_allopatry 
Ov_PA3 O_virginianus Pennsylvania Female WTD_allopatry 
Ov_VA3 O_virginianus Virginia Female WTD_allopatry 
Ov_AL3 O_virginianus Alabama Unknown WTD_allopatry 
Ov_SC1 O_virginianus South Carolina Female WTD_allopatry 
Ov_AB1 O_virginianus Alberta Female WTD_sympatry 
Ov_SK2 O_virginianus Saskatchewan Male WTD_sympatry 
Ov_SK3 O_virginianus Saskatchewan Male WTD_sympatry 
Ov_SD1 O_virginianus South Dakota Male WTD_sympatry 
Ov_KS1 O_virginianus Kansas Female WTD_sympatry 
Ov_MT1 O_virginianus Montana Male WTD_sympatry 
Ov_MX2 O_virginianus Mexico Male WTD_sympatry 
Oh_NV2 O_hemionus Nevada Male MD_allopatry 
Oh_CA3 O_hemionus California Unknown MD_allopatry 
Oh_BC6 O_hemionus British Columbia Male MD_allopatry 
Oh_BC8 O_hemionus British Columbia Male MD_allopatry 
Oh_BC1 O_hemionus British Columbia Female MD_allopatry 
Oh_AK1 O_hemionus Alaska Unknown MD_allopatry 
Oh_WA1 O_hemionus Washington Male MD_allopatry 
Oh_AB1 O_hemionus Alberta Female MD_sympatry 
Oh_UT2 O_hemionus Utah Male MD_sympatry 
Oh_CO1 O_hemionus Colorado Female MD_sympatry 
Oh_SK5 O_hemionus Saskatchewan Unknown MD_sympatry 
Oh_OR2 O_hemionus Oregon Unknown MD_sympatry 
Oh_SD2 O_hemionus South Dakota Female MD_sympatry 
Oh_NM2 O_hemionus New Mexico Male Oh_sympatry 
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Table 2: Different scenario and their thresholds for Fst, p  and Dxy percentiles 
Scenario Fst p Dxy Panel in Fig.1A 

Shang et al. (2021) 
Divergence with gene flow 
(DwGF) 

> 0.95 < 0.05 > 0.95 
 

1 

Allopatric selection (AS) > 0.95 < 0.05 Between 0.45 & 
0.55 

2 

Background selection (BGS) > 0.95 < 0.05 < 0.05 3 

Balancing selection (BLS) < 0.05 > 0.95 > 0.95 4 

 
 
 
 
 
 
 
 
 
 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.04.20.488928doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488928
http://creativecommons.org/licenses/by-nc/4.0/

