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13
INTRODUCTION14
Spatial transcriptomics reveals the spatial context of gene expression, but current methods are limited to15
assaying polyadenylated (A-tailed) RNA transcripts. Here we demonstrate that enzymatic in situ16
polyadenylation of RNA enables detection of the full spectrum of RNAs, expanding the scope of17
sequencing-based spatial transcriptomics to the total transcriptome. We apply this Spatial Total RNA-18
Sequencing (STRS) approach to study skeletal muscle regeneration and viral-induced myocarditis. Our19
analyses reveal the spatial patterns of noncoding RNA expression with near-cellular resolution, identify20
spatially defined expression of noncoding transcripts in skeletal muscle regeneration, and highlight host21
transcriptional responses associated with local viral RNA abundance. In situ polyadenylation requires the22
addition of only a single step to a widely used protocol for spatial RNA-sequencing, and thus could be23
broadly and quickly adopted. Spatial RNA-sequencing of the total transcriptome will enable new insights24
into spatial gene regulation and biology.25

26
MAIN TEXT27
Spatial transcriptomics provides insight into the spatial context of gene expression1–5. Current methods28
are restricted to capturing polyadenylated transcripts and are not sensitive to many species of non-A-29
tailed RNAs, including microRNAs, newly transcribed RNAs, and many non-host RNAs. Extending the30
scope of spatial transcriptomics to the total transcriptome would enable observation of spatial31
distributions of regulatory RNAs and their targets, link non-host RNAs and host transcriptional responses,32
and deepen our understanding of spatial biology.33

34
Here, we demonstrate Spatial Total RNA-Sequencing (STRS), a method that enables spatial profiling of35
both the A-tailed and non-A-tailed transcriptome. This is achieved with a simple modification of a36
commercially available protocol for spatial RNA-sequencing. STRS uses poly(A) polymerase to add37
poly(A) tails to RNAs in situ. STRS otherwise follows conventional protocols to capture, spatially barcode,38
and sequence RNAs. STRS is compatible with existing approaches for sequencing-based spatial39
transcriptomics, is straightforward to implement, and adds minimal cost and time to an already widely40
used commercially available workflow. STRS enables the capture of many RNAs that are missed by41
conventional workflows, including noncoding RNAs, newly transcribed RNAs, and viral RNAs. To42
demonstrate the versatility of the method, we applied STRS to study the regeneration of skeletal muscle43
after injury and the pathogenesis of viral-induced myocarditis.44

45
RESULTS46
In situ polyadenylation enables capture of coding and noncoding RNAs47
STRS adds a single step to a commercially available method for spatial RNA-sequencing (Visium Spatial48
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Gene Expression, 10x Genomics) to capture the total transcriptome6. As in the Visium method, the49
sample is first sectioned, fixed with methanol, and stained for histology. After imaging, the sample is50
rehydrated and then incubated with yeast poly(A) polymerase for 25 minutes at 37oC. This enzyme adds51
poly(A) tails to the 3’ end of all RNAs so that endogenous poly(A) tails are extended and non-A-tailed52
transcripts are polyadenylated. After in situ polyadenylation, STRS again follows the Visium protocol53
without modification (Fig 1a). One important feature of the Visium method that we leverage in STRS, is54
its use of a strand-aware library preparation. We found that strandedness is critical for the study of55
noncoding and antisense RNAs (see below) and must be considered in bioinformatic analyses (Fig S1).56

57
To test the performance and versatility of STRS, we applied it to two distinct mouse tissue types: injured58
hindlimb muscle5 and virally infected heart tissue4. We quantified the percentage of unique molecules59
(UMIs) as a function of RNA biotype (GENCODE M28 annotations; Fig 1b). Compared to the Visium60
method, we found similar counts for protein coding and other endogenously polyadenylated transcripts61
(Fig S1-2). STRS enabled robust detection of several types of noncoding RNAs which are poorly62
recovered or not detected at all by the Visium method, including ribosomal RNAs (rRNAs; mean of 5.4%63
and 2.6% of UMIs for STRS and Visium respectively; computed across all Visium and STRS samples64
included in this study), microRNAs (miRNAs; 0.4% in STRS versus 0.004% in Visium), transfer RNAs65
(tRNAs; 0.4% in STRS versus 0.02% in Visium), small nucleolar RNAs (snoRNAs; 0.2% in STRS versus66
0.002% in Visium), and several other biotypes (Fig 1b, Fig S3-4). STRS libraries also had an increased67
fraction of unspliced transcripts (2.7% in Visium versus 18.3% in STRS). Unspliced or nascent RNA68
counts have been used to predict transcriptional trajectories for single cells. Improved detection of69
nascent RNAs may enable more accurate trajectory imputation and reveal the dynamics of spatial gene70
expression. Finally, STRS libraries had an increased fraction of reads which map to intergenic regions,71
reflecting increased capture of unannotated transcriptional products (22.2% in STRS versus 9.5% in72
Visium; Fig S1b-c). We found that STRS captured manyRNAs which were not present in Visium libraries.73
Many of these features map outside of or antisense to known annotations (Fig 1c). We also found that74
STRS detectedmany noncoding transcripts which are intragenic to other genes (Fig 1c). Standard short-75
read sequencing was sufficient to delineate these features from the surrounding host genes, as reflected76
by the expression count matrices for STRS versus Visium data (Fig 1d). Most importantly, we were able77
to spatially map each of these features and visualize spatial patterns of gene expression (Fig 1e). We78
found that features which were incompletely annotated (ENSMUSG00002075551) showed sparse spatial79
expression. Several highly abundant genes showed homogenous patterns of expression, reflecting80
putative (Gm42826) or known (7SK) housekeeping roles7.81

82
We also asked whether in situ polyadenylation enables capture of non-A-tailed viral RNA. To this end,83
we assayed murine heart tissues infected with Type 1-Lang reovirus (REOV), a segmented double-84
stranded RNA virus that expresses ten transcripts which are not polyadenylated. No reovirus transcripts85
were detected with the Visium workflow, whereas STRS enabled detection of more than 200 UMIs86
representing all ten reovirus gene segments (Fig 1f). To deeply profile viral RNAs, we performed targeted87
enrichment of viral-derived cDNA from the final sequencing libraries and re-sequenced the products. This88
enrichment led to a further ~26-fold increase of the mean viral UMIs captured per spot (minimum L189
segment with 262 UMIs, maximum S4 segment with 1095 UMIs). Taken together, these findings90
demonstrate that STRS enables the study of many types of RNAs that are not detectable with existing91
technologies.92
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Figure 1. In situ polyadenylation enables spatial profiling of noncoding and non-host RNAs. (a) Workflow for
Spatial Total RNA-Sequencing (STRS). (b) Comparison of select RNA biotypes between Visium and STRS
datasets. Y-axis shows the percent of unique molecules (UMIs) for each spot. (c) Detection of coding and
noncoding RNAs between Visium and STRS workflows. Color scale shows average log-normalized UMI counts.
Dot size shows the percent of spots in which each RNA was detected. (d) Log10-transformed coverage of
deduplicated reads mapping to sense (light gray) and antisense (dark gray) strands at the Vaultrc5,
ENSMUSG00002075551, and Rps8 loci. Annotations shown are from GENCODE M28 and include one of the
five isoforms for Rps8 as well as the four intragenic features within introns of Rps8. (e) Spatial maps of coding
and noncoding transcripts for Visium and STRS workflows. Spots in which the transcript was not detected are
shown as gray. (f) Detection of reovirus transcripts using the standard workflow, STRS, and STRS with targeted
pulldown enrichment. Spots in which the virus was not detected are shown as gray.

0%

25%

50%

75%

100%

m
R
N
A

0%

5%

10%

15%

20%

rR
N
A

Sk
M
(2d
pi)

Sk
M
(2d
pi)

He
art
(R
EO
V)

He
art
(R
EO
V)

0%

20%

40%

60%

80%

U
ns
pl
ic
ed

0%
2%
4%
6%
8%

m
iR
N
A

Sk
M
(2d
pi)

Sk
M
(2d
pi)

He
art
(R
EO
V)

He
art
(R
EO
V)

Percent of unique molecules

log2(UMIs+1)

0 2 4 6 8

targeted
pulldown

STRS
+

Visium

STRS

Gapdh
Ckm

Malat1
Neat1

Gm42826
Gm37357

Rny1
Rny3
7SK

Rpph1
mt−Ta
mt−Th

Snord118
Mir6236

0
1
2
3
4

Average
Log-normalized
Expression

Percent
Expressed

0
25
50
75
100

Sk
M
(2d
pi)

He
art
(R
EO
V)

He
art
(R
EO
V)

Sk
M
(2d
pi)

library
preparation

sequencing

gatgcggtgat
tgatatgtgca
aagaactgctg
gcgcgc...

targeted
pulldown

AAAAA...AAA...antisense
RNA

AAA...non-host
RNAs

AAAAAAA...lncRNA

A
A
AA...AAAAmRNA

AAA...snoRNA

AA A...AA A...miRNA

AAA...tRNA

in situ polyadenylation

yPAP
ATPA computational analyses

Visium
section

fix/
permeabilize

histology

in situ
polyadenylation

poly-dT
RNA capture

library
preparation

STRSa b

c d

e f

ENSMUSG00002075551

lo
g1
0(
co
ve
ra
ge
)

SkM
(2dpi)
Visium

SkM
(2dpi)
STRS

Heart
(REOV)
Visium

Heart
(REOV)
STRS

450 bp

Gm22980

Snord38a Snord55

Rps8
Gm26330

snoRNA snoRNA

snoRNA

[2.6e1]

[7.9e4]
[2.6e1]

[7.9e4]

[2.6e1]

[7.9e4]
[2.6e1]

[7.9e4]

[2.4e3]

[2.7e6]

[2.4e3]

[2.7e6]

[2.4e3]

[2.7e6]
[2.4e3]

[2.7e6]

[1.9e3]

[1e2]

[1.9e3]

[1e2]

[1.9e3]

[1e2]
[1.9e3]

[1e2]

mRNA

snoRNA

3,000 bp

Vaultrc5
misc RNA

200 bp

miRNA

Gapdh

1 2 3 4 2 4 6 2 4 6 1 2 3 4 1 2 3 4 1 2 3 1 2

ENSMUSG00002075551 Gm42826 7SK mt−Th Rny1 Snord118
mRNA miRNA unclassified/TEC misc RNA tRNA misc RNA snoRNA

0

1 2 3 4 2 4 6 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 0.5 1 21.5

Log-normalized expression

Log-normalized expression

0 0 0 0 0 0

0 0 0 0 0 0 0

SkM
(2dpi)
Visium

SkM
(2dpi)
STRS

Heart
(REOV)
Visium

Heart
(REOV)
STRS

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.20.488964doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488964


Spatial total RNA-sequencing reveals spatial patterns of gene regulation in skeletal muscle regeneration94
Skeletal muscle regeneration is a coordinated system guided by complex gene regulatory networks5,8–12.95
We applied STRS to spatially map the coding and noncoding transcriptome in a mouse model of skeletal96
muscle regeneration. We injured tibialis anterior muscles and then collected tissues at 2-, 5-, and 7-days97
post-injury (dpi) in addition to an uninjured control (Methods). H&E imaging showed immune infiltration98
centrally within tissue sections at 2 and 5dpi, which was mostly resolved by 7dpi (Fig 2a). Unsupervised99
clustering identified spots in the injury loci, spots around the border of the injury loci, and spots under100
intact myofibers (Fig 2b, Methods).101

102
We performed differential gene expression analysis across the regional clusters to identify noncoding103
RNAs specific to the injury locus (Fig 2c, Methods). We found several RNAswhich were spatiotemporally104
associated with injury locus,many of which are undetected or poorly detected by Visium (Fig 2c-d).Meg3105
is an endogenously polyadenylated lncRNA which has been shown to regulate myoblast differentiation106
in vitro. We found Meg3 expression to be confined to the injury locus at 5dpi, when myoblast107
differentiation and myocyte fusion occurs5,13. Gm10076, a transcript with a biotype annotation conflict108
(Ensembl: lncRNA; NCBI: pseudogene) and no known function, was highly and specifically expressed109
within the injury locus 2dpi. Gm10076 expression was reduced but still localized to the injury site by 5dpi110
and returned to baseline levels by 7dpi. Rpph1, a ribozyme and component of the RNase P111
ribonucleoprotein which has also been shown to play roles in tRNA and lncRNA biogenesis14,15, showed112
broad expression by 2dpi which peaked and localized to the injury site at 5 dpi. We also found that STRS113
captured high levels of antisense transcripts for Rpph1which were not detected by the Visium chemistry.114
This demonstrates that STRS can robustly profile both polyadenylated and non-polyadenylated RNAs115
across heterogeneous tissues.116

117
The role of miRNAs in skeletal muscle regeneration has been well-established11,16–18. Mature miRNAs19118
are ~22 nucleotides long, are not polyadenylated, and are not captured by the standard Visium workflow119
(Fig S5). We asked if STRS was able to detect mature miRNAs. We first generated matched bulk small120
RNAseq libraries from entire tibialis anterior muscles as a gold standard reference (n=2 per timepoint).121
We used miRge3.020 to quantify mature miRNA abundance in the STRS and matched small RNA-122
sequencing libraries (Methods). We found strong correlation in the abundance of the most highly123
expressed miRNAs between STRS and small RNA-sequencing, with only minor drop-out of lowly124
expressed miRNAs (Fig 2e, Fig S5). We identified many examples of mature miRNA expression in STRS125
data, including expression of classic “myomiRs”, miR-1a-3p, miR-133a/b-3p, and miR-206-3p (Fig 2f)21.126
Consistent with previous studies22, we detected static expression ofmiR-1a-3p across all four timepoints127
(Fig 2d), whereas miR-206-3p was highly expressed within the injury locus five days post-injury, with128
very low levels of expression detected at other timepoints.129

130
Spatial total transcriptomics spatially resolves viral infection of the murine heart131
We next explored the potential for STRS to profile host-virus interactions in a mouse model of viral-132
induced myocarditis. We orally infected neonatal mice with type 1-Lang reovirus (REOV), a double-133
stranded RNA virus with gene transcripts that are not polyadenylated.Within seven days of oral infection,134
REOV spreads to the heart and causes myocarditis23–25. We performed Visium and STRS on hearts135
collected from REOV-infected and saline-injected control mice (Fig 3a). We found that reovirus136
transcripts were only detected in the infected heart via STRS and that targeted enrichment of reovirus137
transcripts enabled deeper profiling of viral infection (Fig 1d, 3a; Methods). Mapping these reads across138
the tissue revealed pervasive infection across the heart (1,329/2,501 or 53% spots under the tissue; Fig139
1d). Foci containing high viral UMI counts overlapped with myocarditic regions as identified by histology.140
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141
We next compared the read coverage profiles across the ten REOV gene segments for REOV-enriched142
libraries from Visium and STRS samples (Fig 3d). As expected, STRS libraries had a peak in coverage143
at the 3’ end of viral gene segments. In contrast, the REOV-enriched Visium reads contained peaks in144
the middle of viral gene segments as expected for a chemistry that relies on the spurious capture of viral145

Figure 2. Spatial total RNA-sequencing of regenerating skeletal muscle (a) H&E histology of mouse tibialis
anterior muscles collected 2-, 5-, and 7-days post-injury (dpi). (b) Clustering of spot transcriptomes based on
total transcriptome repertoires (see Methods). (c) Differentially expressed RNAs across regional clusters. Y-
axis shows log-normalized expression of each feature. Mean expression across each cluster is reported, colored
according to the legend in (b). Error bars show standard deviation. Reported statistics to the right of plots reflect
differential gene expression analysis performed across clusters on merged STRS samples (Wilcoxon, see
Methods). Asterisks next to transcript names reflect differential expression analysis performed across skeletal
muscle Visium and STRS samples (**p_val_adj<10-50, ***p_val_adj<10-150; Wilcoxon, see Methods) (d) Spatial
maps for select features from (c). (e) Mature miRNA expression detected by STRS. Color scale shows log-
normalized miRNA counts, quantified by miRge3.0 (Methods). (f) Average detection of miRNAs compared
between small RNA-sequencing (n=8) and STRS (n=4). Axes show log2 counts per million transcripts,
normalized to the total number of transcripts which map to small RNA loci with miRge3.0. The top 100 most
abundant miRNAs detected by small RNA-sequencing are shown.
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RNA at poly(A) repeats within the transcripts26. Interestingly, we found that STRS led to an146
overrepresentation of reads from the 5’ end of the sense [+] strand of all ten REOV segments. These147
reads may represent incomplete transcripts generated by transcriptional pausing of the REOV RNA148
polymerase or transcripts undergoing 3' exonucleolytic degradation. Finally, we detected the 3’ end of149
the antisense [-] strand for nine of the ten segments of the reovirus genome, suggesting that STRS150
captures both strands of the dsRNA reovirus genome (Fig 3d). These antisense reads were present at151
an average ratio of ~1:40 compared to the sense reads. The current model for synthesis of reovirus152
dsRNA posits that dsRNA synthesis only occurs within a viral core particle after packaging of the ten viral153
positive-sense RNAs. There are several possible explanations for our detection of the antisense strands.154
One is that we are detecting negative-strand viral RNA that is part of dsRNA that has been released from155
damaged viral particles either within the cytoplasm or within lysosomes. dsRNA released within156
endolysosomes can be transported into the cytoplasm by RNA transmembrane receptors SIDT1 and157
SIDT227,28. A second possibility is that antisense [-] viral RNA is synthesized prior to packaging of dsRNA158
into viral particles.159

160
Because STRS efficiently recovers viral RNA, we were able to directly correlate host transcriptomic161
responses with viral transcript counts for spots in inflamed regions (generalized additive model,162
Methods). We found inflammation-associated cytokine transcripts such as Ccl2 and Cxcl9, and immune163
cell markers such as Gzma and Trbc2 to be upregulated in spots with high viral counts (Fig 3e). We164
continued this analysis by performing unsupervised clustering (Fig 3b) and differential gene expression165
analysis to identify transcripts associated with infection which are more readily detected by STRS (Fig166
3c). AW112010, which has recently been shown to regulate inflammatory T cell states, was only found167
in infected samples and was more abundant in the STRS data compared to Visium. We also found that168
STRS led to increased detection of putative protein-coding genes, including Ly6a2, Cxcl11, and Mx2,169
which were associated with infection. Interestingly, all three genes are annotated as pseudogenes in170
GENCODE annotations but have biotype conflicts with other databases. The increased abundance as171
measured by STRS could reflect differential mRNA polyadenylation for these transcripts. Overall, STRS172
enabled more robust, spatially mapped analysis of the host response to infection by increasing the173
breadth of captured transcript types and by providing direct comparison with viral transcript abundance.174

175
DISCUSSION176
Here, we demonstrate in situ polyadenylation of RNA in sectioned tissue to enable Spatial Total RNA-177
Sequencing. Enzymatic polyadenylation is frequently implemented for bulk sequencing of total RNA and178
was recently adopted for single-cell RNA-sequencing29,30. STRS is the first implementation of in situRNA-179
labeling for spatial RNA-sequencing. STRS has several notable features. First, STRS is compatible with180
a commercial workflow and requires the use of only one additional reagent. STRS can easily be adopted181
by others as it requires minimal additional experimental time (~30 minutes) and cost (<$90 per sample)182
and does not require any specialized equipment. Second, because our RNA-labeling strategy is designed183
to work with poly(dT) reverse transcription, STRS is compatible with other sequencing-based spatial184
transcriptomics platforms. The resolution of our analyses is limited by the size and distribution of the185
barcoded spots on the Visium slides. Future iterations of STRS which use higher resolution RNA-capture186
platforms, including Slide-Seqv231, BGI Stereo-seq32, or new versions of Visium, promise substantial187
improvements in spatial resolution. Because STRS is not targeted and does not require prior sequence188
information, it is easily adapted to new biological systems and is well-suited for assaying unknown RNAs,189
including novel RNAs or non-host transcripts.190
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191
192

Figure 3. STRS enables simultaneous analysis of viral infection and host response. (a) H&E staining of control
and reovirus-infected hearts, collected using the standard Visium workflow and STRS. (b) Tissue regions
identified through unsupervised clustering of spot transcriptomes. (c) Log-normalized expression of noncoding
and coding RNAs which are highly expressed in myocarditic regions. Spots in which transcripts were not
detected are shown in gray. (d) Normalized coverage of deduplicated reads for the sense [+] and antisense [-]
strands of all ten reovirus gene segments. X-axis shows the length-normalized position across the gene bodies
of all ten reovirus segments. Note that the peak in antisense [-] coverage for the Visium sample (blue)
corresponds to only 11 total reads. (e) Co-expression of pulldown-enriched reovirus UMIs versus infection-
associated genes in spots underneath inflamed and myocarditic tissue. Spots are colored according to legend
in (b). Correlation and q-value reported are from general additive model analysis (Methods).
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We investigated the utility and versatility of STRS by applying it to two distinct models. First, we profiled193
the noncoding RNA repertoires of infiltrating immune cells and regenerating myogenic cells at injury loci194
in mouse muscle. Second, we analyzed the host transcriptome in response to mammalian orthoreovirus195
infection. Members of the Reoviridae family of viruses synthesize non-polyadenylated viral mRNAs as do196
Arenaviruses, and flaviviruses33–35. Because STRS can directly capture viral RNAs, we could directly197
compare viral RNA abundance to gene expression changes in heart tissue. This enabled identification of198
infection-related lncRNAs which were not detectable using standard techniques. Adding spatial context199
has clarified the underlying biology of gene expression measurements. STRS improves on these facets200
by extending the assayable transcriptome and enabling direct measurements of viral-derived RNA201
transcripts.202

203
With STRS, we demonstrated the first method to simultaneously map miRNAs and the mRNAs on which204
they act. Because of their short length and known biases in adapter ligation, miRNAs are notoriously205
difficult to assay36,37. Furthermore, the Visium Gene Expression protocol uses a tagmentation-based206
library preparation which depletes short molecules by either cutting the UMI/spot barcode or by producing207
a read which is too short to confidently align to the genome. Despite these issues, we showed robust208
detection for several known myomiRs and strong correlation with a gold-standard bulk method that does209
not suffer from ligation or length biases. With future improvements to the library preparation strategy,210
many of these hurdles can be further reduced.211

212
This work highlights opportunities for improvements in current bioinformatic tools and resources for213
single-cell and spatial transcriptomics. Current alignment and transcript counting tools are not optimized214
for total RNA data and genome annotations are incomplete outside of protein coding genes. Furthermore,215
new tools that go beyond UMI counts and better leverage the wealth of information in sequence read216
alignment patterns are likely to be highly impactful.217

218
In conclusion, we have demonstrated a versatile strategy for spatial mapping of the total transcriptome.219
We think STRS will expand the scope of spatial transcriptomics and enable new types of analyses on220
spatial gene regulation at tissue scale.221

222
METHODS223
Mice224
The Cornell University Institutional Animal Care and Use Committee (IACUC) approved all animal225
protocols, and experiments were performed incompliance with its institutional guidelines. For skeletal226
muscle samples, adult female C57BL/6J mice were obtained from Jackson Laboratories (#000664; Bar227
Harbor, ME) and were used at 6months of age. For heart samples, confirmed pregnant female C57BL/6J228
mice were ordered from Jackson Laboratories to be delivered at embryonic stage E14.5.229

230
Viral infection231
Litters weighing 3 gram/ pup were orally gavaged using intramedic tubing (Becton Dickinson Cat #427401232
with 50 μl with 107 PFU reovirus type 1-lang (T1L) strain in 1X phosphate buffered saline (PBS) containing233
green food color (McCormick) via a 1ml tuberculin slip tip syringe (BD 309659) and 30G x 1/2 needle (BD234
Cat #305106). Litters treated with 1X PBS containing green food color alone on the same day were used235
as mock controls for the respective infection groups. The mock-infected and reovirus-infected pups were236
monitored and weighed daily until the time points used in the study (7 days post infection). After237
dissection, samples were embedded in O.C.T. Compound (Tissue-Tek) and frozen fresh in liquid238
nitrogen.239

240
241

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2022.04.20.488964doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488964


Muscle injury242
To induce muscle injury, both tibialis anterior muscles of old (20 months) C57BL/6J mice were injected243
with 10µl of notexin (10 µg/ml; Latoxan; France). Either before injury or 2-, 5-, or 7-days post-injury (dpi),244
mice were sacrificed and tibialis anterior muscles were collected. After dissection, samples were245
embedded in O.C.T. Compound (Tissue-Tek) and frozen fresh in liquid nitrogen.246

247
In situ polyadenylation and spatial total RNA-sequencing (STRS)248
Spatial total RNA-sequencing was performed using a modified version of the Visium protocol. 10um thick249
tissue sections were mounted onto the Visium Spatial Gene Expression v1 slides. For heart samples,250
one tissue section was placed into each 6x6mm capture area. For skeletal muscle samples, two tibialis251
anterior sections were placed into each capture area. After sectioning, tissue sections were fixed in252
methanol for 20 minutes at -20oC. Next, H&E staining was performed according to the Visium protocol,253
and tissue sections were imaged on a Zeiss Axio Observer Z1 Microscope using a Zeiss Axiocam 305254
color camera. H&E images were shading corrected, stitched, rotated, thresholded, and exported as TIFF255
files using Zen 3.1 software (Blue edition). After imaging, the slide was placed into the Visium Slide256
Cassette. In situ polyadenylation was then performed using yeast Poly(A) Polymerase (yPAP; Thermo257
Scientific, Cat #74225Z25KU). First, samples were equilibrated by adding 100µl of 1X wash buffer (20µl258
5X yPAP Reaction Buffer, 2µl 40U/µl Protector RNase Inhibitor, 78µl nuclease-free H2O) to each capture259
area and incubating at room temperature for 30 seconds. The buffer was then removed. Next, 75µl of260
yPAP enzyme mix (15µl 5X yPAP Reaction Buffer, 3µl of 600U/µl yPAP enzyme, 1.5µl 25mM ATP, 3µl261
40U/µl Protector RNase Inhibitor, 52.5µl nuclease-free H2O) was added to each reaction chamber. STRS262
was also tested with 20U/µl of SUPERase-In RNase-Inhibitor, but we found that SUPERase was not able263
to prevent degradation of longer transcripts during in situ polyadenylation (Fig S6c-d). The reaction264
chambers were then sealed, and the slide cassette was incubated at 37oC for 25 minutes. The enzyme265
mix was then removed. Prior to running STRS, optimal tissue permeabilization time for both heart and266
skeletal muscle samples was determined to be 15minutes using the Visium Tissue Optimization Kit from267
10x Genomics. Following in situ polyadenylation, the standard Visium library preparation was followed to268
generate cDNA and final sequencing libraries. The libraries were then pooled and sequenced according269
to guidelines in the Visium Spatial Gene Expression protocol using either a NextSeq 500 or NextSeq270
2000 (Illumina, San Diego, CA).271

272
Small RNA-sequencing273
For skeletal muscle samples, following the injury time course, tibialis anterior muscles were dissected274
and snap frozen with liquid nitrogen. The Norgen Total RNA Purification Kit (Cat. 17200) was used to275
extract RNA from 10mg of tissue for each sample. For heart samples, following the infection time course,276
hearts were dissected, embedded in OCT, and frozen in liquid nitrogen. RNA was extracted with Trizol277
(Invitrogen, Cat. 15596026) and glycogen precipitation for a small fraction of each of the heart samples.278
RNA quality was assessed via High Sensitivity RNA ScreenTape Analysis (Agilent, Cat. 5067-5579) and279
all samples had RNA integrity numbers greater than or equal to 7.280

281
Small RNA sequencingwas performed at the Genome Sequencing Facility of Greehey Children’s Cancer282
Research Institute at the University of Texas Health Science Center at San Antonio. Libraries were283
prepared using the TriLink CleanTag Small RNA Ligation kit (TriLink Biotechnologies, San Diego, CA).284
Libraries were sequenced with single-end 50× using a HiSeq2500 (Illumina, San Diego, CA).285

286
Preprocessing and alignment of Spatial Total RNA-Sequencing data287
All code used to process and analyze these data can be found at https://github.com/mckellardw/STRS.288
An outline of the pipelines used for preprocessing and alignment is shown in Fig S1.289

290
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Reads were first trimmed using cutadapt v3.438 to remove the following sequences: 1) poly(A) sequences291
from the three prime ends of reads, 2) the template switch oligonucleotide sequence from the five prime292
end of reads which are derived from the Visium Gene Expression kit (sequence:293
CCCATGTACTCTGCGTTGATACCACTGCTT), 3) poly(G) artifacts from the three prime ends of reads,294
which are produced by the Illumina two-color sequencing chemistry when cDNA molecules are shorter295
than the final read length, and 4) the reverse complement of the template switching oligonucleotide296
sequence from the five prime ends of reads (sequence:297
AAGCAGTGGTATCAACGCAGAGTACATGGG). Next, reads were aligned using either STAR v2.7.10a39298
or kallisto v0.48.040. Workflows were written using Snakemake v6.1.041.299

300
For STAR, the genomic reference was generated from the GRCm39 reference sequence using301
GENCODE M28 annotations. For STAR alignment, the following parameters, based on work by Isakova302
et al, were used: outFilterMismatchNoverLmax=0.05, outFilterMatchNmin=16,303
outFilterScoreMinOverLread=0, outFilterMatchNminOverLread=0, outFilterMultimapNmax=50. Aligned304
reads were deduplicated for visualization using umi-tools v1.1.242.305

306
For kallisto, a transcriptomic reference was also generated using the GRCm39 reference sequence and307
GENCODE M28 annotations. The default k-mer length of 31 was used to generate the kallisto reference.308
Reads were pseudoaligned using the `kallisto bus` command with the chemistry set to “VISIUM” and the309
`fr-stranded` flag activated to enable strand-aware quantification. Pseudoaligned reads were then310
quantified using bustools v0.41.0. First, spot barcodes were corrected with `bustools correct` using the311
“Visium-v1” whitelist provided in the Space Ranger software from 10x Genomics. Next, the output bus312
file was sorted and counted using `bustools sort` and `bustools count`, respectively. To estimate the313
number of spliced and unspliced transcripts, reads pseudoaligned using kb-python v0.26.0, using the314
“lemanno” workflow.315

316
Spots were manually selected based on the H&E images using Loupe Browser from 10x Genomics.317
Spatial locations for each spot were assigned using the Visium coordinates provided for each spot318
barcode by 10x Genomics in the Space Ranger software (“Visium-v1_coordinates.txt”). Downstream319
analyses with the output count matrices were then performed using Seurat v4.0.443,44. In addition to320
manual selection, spots containing fewer than 500 detected features or fewer than 1000 unique321
molecules were removed from the analysis. Counts from multimapping features were collapsed into a322
single feature to simplify quantification.323

324
Mature microRNA quantification325
For STRS data: after trimming (see above), barcode correction with STAR v2.7.10a, and UMI-aware326
deduplication with umi-tools v1.1.2, reads were split across all 4992 spot barcodes and analyzed using327
miRge3.0 v0.0.920. Reads were aligned to the miRbase reference provided by the miRge3.0 authors.328
MiRNA counts were log-normalized according to the total number of counts detected by kallisto and329
scaled using a scaling factor of 1000. For small RNAseq data: Readswere first trimmed using trim_galore330
v0.6.5. Reads were then aligned and counted using miRge3.0 v0.0.9.331

332
Unsupervised clustering and differential gene expression analysis of spot transcriptomes333
Spot UMI counts as generated by kallisto were used. First, counts were log-normalized and scaled using334
default parameters with Seurat. Principal component analysis was then performed on the top 2000 most335
variable features for each tissue slice individually. Finally, unsupervised clustering was performed using336
the `FindClusters()` function from Seurat. The top principal components which accounted for 95% of337
variance within the data were used for clustering. For skeletal muscle samples, a clustering resolution338
was set to 0.8. For heart samples, clustering resolution was set to 1.0. Default options were used for all339
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other parameters. Finally, clusters were merged according to similar gene expression patterns and based340
on histology of the tissue under each subcluster.341

342
Differential gene expression analysis was performed using the `FindAllMarkers()` function from Seurat.343
Default parameters were used, including the use of the Wilcoxon ranked sum test to identify differentially344
expressed genes. To identify features enriched in the skeletal muscle STRS datasets, all Visium and345
STRS were first merged and compared according to the method used (Visium vs. STRS). To identify346
cluster-specific gene expression patterns, skeletal muscle samples were first clustered as described347
above individually. STRS samples were then merged, and differential gene expression analysis was348
performed across the three injury region groups.349

350
Targeted pulldown enrichment of viral fragments351
We performed hybridization-based enrichment of viral fragments on the Visium and STRS libraries for352
reovirus-infected hearts using the xGen Hybridization and Wash Kit (IDT; 1080577)4. In this approach, a353
panel of 5’-biotinylated oligonucleotides was used for capture and pulldown of target molecules of354
interest, which were then PCR amplified and sequenced. We designed a panel of 202 biotinylated probes355
tiled across the entire reovirus T1L genome to selectively sequence viral molecules from the sequencing356
libraries (Table S1). After fragmentation and indexing of cDNA, 300ng of the final Visium or STRS357
sequencing libraries from reovirus-infected hearts were used for xGen hybridization capture using the358
xGen NGS Target Enrichment Kit protocol provided by the manufacturer. One round of hybridization359
capture was performed for the STRS library followed by 14 cycles of PCR amplification. Because of the360
reduced number of captured molecules, two rounds of hybridization were performed on the Visium361
libraries. Enriched VIsium libraries were PCR-amplified for 18 cycles after the first round of hybridization362
and by 5 cycles after the second round of hybridization. Post-enrichment products were pooled and363
sequenced on the Illumina NextSeq 500.364

365
Correlation analysis between reovirus counts and host gene expression366
We used a generative additive model (GAM) implemented in Monocle v2.18.045 to find genes that vary367
with viral UMI count. A Seurat object for STRS data and viral UMI counts from the reovirus-infected heart368
was converted to a CellDataSet object using the `as.CellDataSet()` command implemented in Seurat.369
The expression family was set to “negative binomial” as suggested for UMI count data in the Monocle370
documentation. The CellDataSet object was then preprocessed to estimate size factors and dispersion371
for all genes. Genes expressed in fewer than 10 spots were removed. Within the remaining genes, we372
then used the GAM implemented in the `differentialGeneTest()` command in Monocle to identify genes373
that vary with log-transformed viral UMI counts. To find the direction in which these genes varied with374
viral UMI counts, we calculated the Pearson correlation for all genes with log2-transformed viral UMI375
counts.376

377
DATA AND CODE AVAILABILITY378
Previously published spatial RNA-sequencing data were downloaded from Gene Expression Omnibus379
(GEO) and are available under the following accession numbers; regenerating skeletal muscle5380
GSE161318, infected heart tissue4 GSE189636. Spatial Total RNA-Sequencing data generated in this381
study can be found on GEO under the accession number GSE200481. Small RNA-sequencing data are382
available on GEO under the accession number GSE200480 A detailed protocol for performing STRS as383
well as custom analysis scripts for aligning and processing STRS data can be found at384
https://github.com/mckellardw/STRS.385
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