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Abstract

The success of CRISPR-mediated gene perturbation studies is highly dependent on the quality of gRNAs,
and several tools have been developed to enable optimal gRNA design. However, these tools are not all adapt-
able to the latest CRISPR modalities or nucleases, nor do they offer comprehensive annotation methods or
scalability for advanced CRISPR applications. Here, we present a new ecosystem of R packages that enables
efficient gRNA design and annotation for a multitude of CRISPR technologies, including CRISPR knockout
(CRISPRko), CRISPR activation (CRISPRa), CRISPR interference (CRISPRi) and CRISPR base editing
(CRISPRbe). The core package, crisprDesign, offers a comprehensive, user-friendly, and unified interface to
add on- and off-target annotations via several alignment methods, rich gene and SNP annotations, and a
dozen on- and off-target activity scores. These functionalities are enabled for any RNA- or DNA-targeting
nucleases, including Cas9, Cas12, and Cas13. We illustrate the general applicability of our tools by designing
optimal gRNAs for three case studies: tiling CRISPRbe library for BRCA1 using the base editor BE4max,
tiling RNA-targeting libraries for CD46 and CD55 using CasRx, and activation of MMP7 using CRISPRa.
Our suite of R packages is open-source and deployed through the Bioconductor project to facilitate their use
by the CRISPR community.

Keywords: CRISPR, Nuclease, gRNA, functional genomics, Sequence design, Bioconductor, Base Edi-
tor, CasRx.

1 Main

The performance of CRISPR-based experiments depends critically on the choice of the guide RNAs (gRNAs)
used to guide the CRISPR nuclease to the target site. Variable gRNA on-target activity, as well as unintended
off-targeting effects, can lead to inconsistent phenotypic readouts in screening experiments. For the purpose of
analyzing pooled screens, many approaches attempt to model gRNA quality in the generation of gene-level scores
to improve statistical inference [Meyers et al., 2017, Kim and Hart, 2021, Dempster et al., 2021, Allen et al.,
2019, Li et al., 2015]. However, suboptimal gRNA design is only partially mitigated by analysis strategies that
sacrifice statistical power for robustness to suboptimal guides. One way to increase the signal-to-noise ratio
in screening experiments is to enrich gRNA libraries for gRNAs that have high predicted on-target activity.
Predicting on-target activity from the spacer sequence is an extensive area of research, and several algorithms
leveraging experimental data have been developed for different nucleases and contexts [Doench et al., 2016b,
2014, 2016a, Wang et al., 2019b, Kim et al., 2018, Hart et al., 2017, Moreno-Mateos et al., 2015, Horlbeck et al.,
2016].

In addition to its sequence, the genomic context of the on- and off-target sites for each gRNA is another
important consideration for gRNA design. For example, designing gRNAs that uniquely map to the genome
can be challenging, especially for genes sharing high homology with other genomic loci, either in coding or non-
coding regions [Fortin et al., 2019]. In addition, knowing whether or not an off-target is located in the coding
region of another gene can rule out the use of a given gRNA. Finally, genetic variation, such as single-nucleotide
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polymorphisms (SNPs) and small indels, can have a direct impact on gRNA binding activity and on-target
specificity by altering complementarity between spacer sequences and the host cell genomic DNA [Scott and
Zhang, 2017, Lessard et al., 2017, Canver et al., 2017, Wang et al., 2018].

The rapid increase of CRISPR-based applications and technologies poses another challenge to gRNA library
design. A large variety of nucleases are now available and routinely used, including engineered nucleases that
recognize a larger set of PAM sequences [Hu et al., 2018, Nishimasu et al., 2018, Walton et al., 2020, DeWeirdt
et al., 2020] and novel classes of nucleases such as the RNA-targeting Cas13 family [Shmakov et al., 2015,
Abudayyeh et al., 2016, Konermann et al., 2018]. Each nuclease comes with its own set of gRNA design rules
and constraints. In addition, these nucleases can also be mixed and matched with different types of CRISPR
applications, increasing the complexity of gRNA design. As an example, CRISPR base editing (CRISPRbe)
[Gaudelli et al., 2017, Komor et al., 2016], which requires additional gRNA design functionalities to capture the
editing window and prediction of editing outcomes, can be combined with the Cas13 family to perform RNA
editing [Cox et al., 2017]. Finally, emerging screening modalities, such as optical pooled CRISPR screening
[Feldman et al., 2019], require additional specialized gRNA design considerations.

Given the complexity, heterogeneity, and fast growth of the aforementioned CRISPR modalities and applications,
it is paramount to develop and maintain adaptable, modular, and robust software for gRNA design. This ensures
that the scientific community can efficiently design first-class CRISPR reagents in a timely manner for both well-
established and emerging technologies. An ideal gRNA design framework has the following qualities: (1) it offers
multiple cutting-edge methods for on-target scoring and off-target prediction based on gRNA sequences, (2) it
provides comprehensive gRNA annotation to enable consideration of the genomic context for all gRNA on-target
and off-target sites, (3) it already supports (or can be easily extended to) newer CRISPR technologies, including
an arbitrary combination of nucleases and modalities, and (4) it easily scales for designing large-scale gRNA
libraries for different screening platforms. While a multitude of web applications and command line interfaces
has been developed to enable gene- or other target-specific gRNA design [Heigwer et al., 2014, Moreno-Mateos
et al., 2015, Perez et al., 2017, Bae et al., 2014, Montague et al., 2014, Concordet and Haeussler, 2018, Stemmer
et al., 2015, McKenna and Shendure, 2018, Heigwer et al., 2016, Bhagwat et al., 2020, Zhu et al., 2014], none
of the existing tools completely satisfies the requirements listed above.

In this work, we describe a modular ecosystem of R packages that enable the design of CRISPR gRNAs across
a variety of nucleases, genomes, and applications. The crisprBowtie and crisprBwa packages provide com-
prehensive on-target and off-target search for reference genomes, transcriptomes, or any custom sequences.
The crisprScore package provides a harmonized framework to access a large array of R- and Python-based
gRNA scoring algorithms developed by the CRISPR community, for both on-target and off-target scoring. The
crisprBase package implements functionalities to describe and represent DNA- and RNA-targeting CRISPR
nucleases and base editors, as well as genomic arithmetic rules that are specific to CRISPR design. Finally, the
package crisprDesign provides a user-friendly package to design and annotate gRNAs in one place, including gene
and TSS annotation, search for SNP overlap, characterization of edited alleles for base editors, sequence-based
design rules, and library design functionalities such as ranking and platform-specific considerations. Our ecosys-
tem currently supports five different CRISPR modalities: CRISPR knockout (CRISPRko), CRISPR activation
(CRISPRa), CRISPR interference (CRISPRi), CRISPR base editing (CRISPRbe) and CRISPR knockdown
(CRISPRkd) using Cas13.

We illustrate the rich functionalities of our ecosystem through three case studies: designing gRNAs to edit
BRCA1 using the base editor BE4max, designing gRNAs to knock down CD55 and CD46 using CasRx, and
designing optimal gRNAs to activate MMP7 through CRISPRa for different wildtype and engineered nucleases.
Our R packages are open-source and deployed through the Bioconductor project [Gentleman et al., 2004, Huber
et al., 2015]. This makes our tools fully interoperable with other packages, and facilitates long-term development
and maintenance of our ecosystem.
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2 Results

2.1 crisprBase as a core infrastructure package to represent CRISPR nucleases
and base editors

The crisprBase package implements a common framework for representing and manipulating nucleases and base
editors through a set of classes and CRISPR-specific genome arithmetic functions. The CrisprNuclease class
provides a general representation of a CRISPR nuclease, encoding all of the information necessary to perform
gRNA design and other analyses involving CRISPR technologies. This includes the PAM side with respect
to the protospacer sequence, recognized PAM sequences with optional tolerance weights, and the relative cut
site. Specific CrisprNuclease instances can be easily created to represent a diversity of wild-type and engineered
CRISPR nucleases (Figure 1). We also implement a BaseEditor subclass that provides additional base editing
information such as the editing strand and a matrix of editing probabilities for possible nucleotide substitutions.
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Figure 1. Examples of DNA- and RNA-targeting nucleases represented in crisprBase. gRNA
spacer sequences are shown in yellow. Target DNA/RNA protospacer sequences are shown in blue.
Protospacer adjacent motifs (PAMs) and protospacer flanking sequences (PFSs) are shown in orange.
Nuclease-specific cutting sites are represented by black triangles. For the C to T base editor BE4max,
on-target editing happens on the DNA strand containing the protospacer sequence. The editing window varies
by base editor. The first nucleotide of the PAM/PFS is used as the representative coordinate of a given target
sequence.

2.2 crisprDesign : a comprehensive tool to perform complex gRNA design

crisprDesign supports a comprehensive suite of methods to design and annotate gRNAs (Table 1). For users,
crisprDesign provides a centralized and streamlined end-to-end workflow for gRNA design, alleviating the
burden of using different tools at different stages of the design process. For developers, crisprDesign is built
on top of a modular package ecosystem that implements the gRNA design tasks (see Table S1), allowing the
same code to be easily re-used outside of CRISPR applications and gRNA design. In the following sections, we
describe each of the gRNA design components and functionalities that are available in crisprDesign.

2.3 Representation of gRNAs using the GuideSet container

The genomic coordinates of gRNA protospacer sequences in a target genome can be represented using genomic
ranges. The Bioconductor project [Gentleman et al., 2004, Huber et al., 2015] provides a robust and well-
developed core data structure, called GRanges [Lawrence et al., 2013, Aboyoun et al., 2012]), to efficiently
represent genomic intervals. We provide in crisprDesign an extension of the GRanges class to represent and
annotate gRNA sequences: the GuideSet container. Briefly, the container extends the GRanges object to store
additional project-specific metadata information, such as the CRISPR nuclease employed and target mRNA
or DNA sequences (if different from a reference genome), as well as rich gRNA-level annotation columns such

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.21.488824doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.488824
http://creativecommons.org/licenses/by-nc-nd/4.0/


multicrispr CRISPRseek crisprDesign Function in crisprDesign

Nuclease
SpCas9 X X X crisprBase::SpCas9

Any † X X crisprBase::CrisprNuclease

On-target search

Reference genome X X X findSpacers()

Custom sequences X X
Removal of repeats X

Off-target search

Exact string matching X X X addSpacerAlignments()

Bowtie †† X
Bwa X

Iterative alignments X
Custom sequence X X

Cross-reactivity X
Minor/major alleles X

On-target scoring

Rule Set 1 X X X addOnTargetScores()

Rule Set 2 / Azimuth X X X
CRISPRscan X X

Lindel X X
DeepCpf1 X X

DeepHF X
CRISPRai X

EnPAM+GB X
CasRx-RF X

PAM scoring X

Off-target scoring
MIT X X addOffTargetScores()

CFD X X
CasRx X

Library design

Restriction sites X X addRestrictionEnzymes()

PolyT signal X addSequenceFeatures()

GC content X
Hairpin loops X

SNP annotation X addSNPAnnotation()

Gene annotation

Off-target annotation † † † X addGeneAnnotation()

Isoform specification X
Reinitiation sites X

Pfam domains X
Distance to TSS X

Modalities

CRISPRko X X X
CRISPRbe X X addEditedAlleles()

CRISPRa X addTSSAnnotation()

CRISPRi X
RNA editing (Cas13) X

Optical pooled screening X
Prime editing X X *

Table 1. gRNA design functionalities for crisprDesign and two other Bioconductor packages
developed for gRNA design: multicrispr and CRISPRseek . Check marks indicate which
functionalities are present in each package at time of publication. † For multicrispr, only CRISPR nucleases
with PAM sequences on the 3′ side are accepted. †† For multicrispr, the actual off-target alignments are only
counted, and not available to the user † † † For CRISPRseek, gene annotation of the off-targets is limited to
whether or not they overlap exons and introns of known genes. *In progress.
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as on- and off-target alignments tables and gene context annotations. In Figure 2, we show an example of a
GuideSet storing information about gRNAs targeting the coding sequence of KRAS using SpCas9.

2.4 crisprScore implements state-of-the-art scoring methods

Predicting on-target binding and cutting efficiency of gRNAs is an extensive area of research. Many algorithms
have been developed to tackle this problem, basing their prediction on a variety of features: sequence composition
of the spacer sequence and flanking regions, including nucleotide content and melting temperature, cell type-
specific chromatin accessibility data, and distance to transcription starting site (TSS). Unfortunately, from
a user’s perspective, the heterogeneity in the algorithm implementations hinders the practical use of those
algorithms: some methods are implemented in Python 2 [Doench et al., 2016a, Kim et al., 2018], in Python
3 [Chen et al., 2019, Wang et al., 2019b, DeWeirdt et al., 2020], or in R [Doench et al., 2014, Wessels et al.,
2020, Moreno-Mateos et al., 2015]. In addition, the required inputs, data structures, and terminology are
not consistent across software and algorithms, increasing the likelihood of user error. Finally, several of the
algorithms are currently not bundled up into easy-to-use packages, limiting their accessibility, and therefore
their usage.

To resolve this, we created a general and harmonized framework for on-target and off-target prediction of gRNAs,
implemented in our R package crisprScore. The philosophy behind crisprScore is to abstract away from the
user the language, implementation, and complexity of the different algorithms used for prediction. It uses the
Bioconductor package basilisk [Lun, 2021] to seamlessly integrate and manage incompatible Python modules
in one user session. This enables crisprScore to centralize all Python-based scoring algorithms together with
R-based prediction algorithms, reporting all scores in a single data frame for convenient inspection.

We note that while the package provides a harmonized framework from a user perspective, it also allows each
scoring algorithm to be implemented with its own sets of parameters and inputs. We have included as many
methods as possible (Table 2), with the goal of democratizing the use of different scoring algorithms in an
unbiased manner. Developers can easily contribute new methods to the crisprScore package as they become
available. While this is beyond the scope of our work, our framework also facilitates methods comparison by
providing a harmonized user interface.

2.5 crisprDesign enables fast characterization and annotation of off-targets

Off-targeting effects occur when a spacer sequence maps with perfect or imperfect complementarity to a genomic
locus other than the primary on-target. Given that nucleases can still bind and cut in the presence of nucleotide
mismatches between spacer sequences and target DNA sequences [Fu et al., 2013, Hsu et al., 2013b, Pattanayak
et al., 2013], it is paramount to obtain and characterize all putative mismatch-mediated off-targets.

The off-target functionalities in crisprDesign are divided into two parts: off-target search (alignment) and
off-target characterization (genomic context and scoring). For the off-target search, we offer three different
alignment methods: bowtie [Langmead et al., 2009], the BWA-backtrack algorithm in BWA [Li and Durbin,
2009] and the Aho-Corasick exact string matching method implemented in Biostrings [Aho and Corasick, 1975,
Pages et al., 2016]. We developed two independent R packages to implement the bowtie and BWA alignment
methods: crisprBowtie and crisprBwa. Notably, the packages were developed to work with any nucleases, and
for both DNA and RNA target spaces (reference genomes and transcriptomes). While the maximum number of
mismatches for bowtie is limited to 3, there is no limit for BWA.

Given the short nature of gRNA spacer sequences, both bowtie and BWA are ideal tools for off-target search
and provide ultrafast results. On the other hand, the alignment method based on the Bioconductor package
Biostrings does not need the creation of a genome index, and is particularly useful for off-target search in short
custom sequences. All methods can be invoked via the addSpacerAlignments function, which returns the on-
and off-target alignments as a GRanges object in the GuideSet metadata.

To add genomic context to the on- and off-targets, a TxDb object can be provided to the addSpacerAlignments
function. The TxDb object is a standard Bioconductor object to store information about a gene model, and
can easily be made from transcript annotations available as GFF3 or GTF files. Gene annotation columns are
added to the off-target table for different contexts: 5’ UTRs, 3’ UTRs, CDS, exons, and introns. Finally, users
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Nuclease Variant Method Type Reference

SpCas9

WT RuleSet1 On-target efficiency Doench et al. [2014]
WT Azimuth On-target efficiency Doench et al. [2016a]
WT CRISPRscan On-target efficiency Moreno-Mateos et al. [2015]
WT CRISPRai On-target efficiency Horlbeck et al. [2016]
WT DeepHF On-target efficiency Wang et al. [2019b]
HiFi DeepHF On-target efficiency Wang et al. [2019b]
WT Lindel On-target efficiency Chen et al. [2019]
WT MIT Off-target cutting Hsu et al. [2013a]
WT CFD Off-target cutting Doench et al. [2016b]

AsCas12a
WT DeepCpf1 On-target efficiency Kim et al. [2018]

Enhanced enPAM+GB On-target efficiency DeWeirdt et al. [2020]

RfxCas13d
WT CasRx-RF On-target efficiency Wessels et al. [2020]
WT CasRx-CFD Off-target cutting Fortin and Lun [2022]

Table 2. On-target and off-target scoring methods currently available in crisprScore.

can add the MIT and CDS off-target specificity scores [Hsu et al., 2013a, Doench et al., 2016a] implemented in
crisprScore to characterize the likelihood of nuclease cleavage at the off-targets.

Comparison of the off-target annotation methods

We compared the performance of the two short-read aligners implemented in crisprDesign. We note that the
bowtie alignment is used by the tools CHOPCHOP [Montague et al., 2014], CCTop [Stemmer et al., 2015], and
multicrispr [Bhagwat et al., 2020] and that the BWA method is used by CRISPOR [Concordet and Haeussler,
2018]. The Biostrings method is used by both CRISPRseek [Zhu et al., 2014] and multicrispr.

Bhagwat et al. [2020] reported that bowtie misses a large number of double-mismatch and triple-mismatch off-
targets in comparison to the gold-standard complete string matching algorithm. To investigate this, we repeated
the PAM-agnostic on- and off-target alignment of the 10 spacer sequences described in Bhagwat et al. [2020]
to the GRCh38 reference genome using all three alignment methods. In contrast to Bhagwat et al. [2020], all
three alignment methods implemented in crisprDesign return an identical list of off-targets (see Table S2). This
indicates that, contrary to previous reports, both BWA and bowtie provide a complete on- and off-target search.
It appears that the missing off-targets in Bhagwat et al. [2020] are located on unlocalized and unplaced GRCh38
sequences.

Next, we evaluated the run times of four configurations offered in crisprDesign for alignment: bowtie, BWA,
an iterative version of bowtie (bowtie-int) and an iterative version of BWA (bwa-int). We developed iterative
versions of the bowtie and BWA alignments to avoid situations where gRNAs are mapping to hundreds of loci
in the genome, considerably slowing down the off-target search when a higher number of mismatches is allowed.
The iterative strategy starts by aligning spacer sequences with no mismatches allowed. Then, it sequentially
performs the alignment with a higher number of mismatches only for sequences that have a low number of
off-targets at the previous step. We performed the evaluation on three sets of gRNAs targeting the human
genome, each with a different size (see Methods). For all three sets, the bowtie and BWA gRNA alignments
have comparable run times. (Figure S1). The iterative version of the index-based aligners shows substantial
gain in speed for the set of gRNAs targeting ZNF101, which contains several non-specific guides overlapping a
repeat element.

2.6 Accounting for human genetic variation by adding SNP annotation

Genetic variation, such as SNPs and small indels, can have a direct impact on gRNA binding productivity and
on-target specificity by altering complementarity between spacer sequences and the target DNA or RNA [Scott
and Zhang, 2017, Lessard et al., 2017, Canver et al., 2017, Wang et al., 2018]. In crisprDesign, users can apply
the function addSNPAnnotation to annotate gRNAs for which the target protospacer sequence overlaps a SNP.
This enables users to discard or flag undesirable gRNAs that are likely to have variable activity across different
human genomes.

Given that the current human reference genome was built using only a small number of individuals, the allele

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.21.488824doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.488824
http://creativecommons.org/licenses/by-nc-nd/4.0/


IRanges

enzyme

Set-level
metadata

gRNA-level metadata

seqnames
chr12
chr12
chr12

…
chr12

ranges
25209843
25209896
25215438

…
25245365

strand
-
+
-
…
-

sgrna1
sgrna2
sgrna3

…
sgrna52

protospacer
AAAGAAAAGATGAGCAAAGA
TTCTCGAACTAATGTATAGA
AAATGCATTATAATGTAATC

…
AATGACTGAATATAAACTTG

pam
TGG
AGG
TGG
…

TGG

spacer
AAAGAAAAGATGAGCAAAGA
AAAGAAAAGATGAGCAAAGA
AAAGAAAAGATGAGCAAAGA

…

pam
TGG
TGG
AGG
…

protospacer
AAAGAAAAGATGAGCAAAGA 
AAATAAAAGATGAGCAAAGA
AAAGAAATGAGGAGCCAAGA 

…

mm1
NA
-17
-13
…

mm2
NA
NA
-10
…

mm3
NA
NA
-5
…

cds
KRAS

…

exon
KRAS

KRASP1
LARP1B

…

cfd
1.0
0.4
0.0
…

mit
1.0
0.6
0.0
…

seqnames
chr12
chr6
chr4

…

ranges
25209843
54771089
128123140 

…

strand
-
+
-
…

sequence 
information

genomic 
context

off-target 
scores

off-target 
coordinate

gene_symbol
KRAS
KRAS
KRAS

seqnames
chr12
chr12
chr12

anchor
25209846
25209846
25209846

strand
-
-
-

Ensembl gene and 
transcript info 

gene_id
ENSG00000133703
ENSG00000133703 
ENSG00000133703

tx_id
ENST00000256078 
ENST00000311936
ENST00000557334

cut_cds
FALSE
TRUE 
TRUE

%Cds
-

91.0
77.6

commonExon
FALSE
FALSE
FALSE

ATG
-
1
1

CDS and Tx  info

%Tx
15.3
13.3
35.6

aa
-

172
59

cut_3UTR
TRUE
FALSE 
FALSE

seqnames
chr12

pos
25209843

SNP identity

id
rs1137282

MAF_1000G
0.1755

MAF_TOPMED
0.1967

ref
A

alt
G

site_rel
0

Minor Allele 
frequencies

Position relative 
to PAM site

GuideSet

CRISPR
Nuclease

Genome
assembly

On- and off-target alignments for gRNA1

Gene annotation for gRNA1

Overlapping SNPs for gRNA1

sequence
features scores

SpCas9
with 20nt spacers 

hg38 Gene 
modelEnsembl 104

a

b

Chromosome 12
25.2 mb

25.21 mb

25.22 mb

25.23 mb

25.24 mb
5' 3'
3' 5'

K
R
A
S

ENST00000256078

ENST00000311936

ENST00000556131

ENST00000557334

c

KR
AS

gR
N
As gRNA1

gRNA2
gRNA3 gRNA52

mismatch 
information

SNP Alignments
Gene
And 
TSS

Annotations with one table per gRNAAnnotations with one table across all gRNAs

Figure 2. Example of a GuideSet container for gRNAs targeting KRAS using SpCas9. a The
blue box stores the genomic coordinates in GRCh38 to represent the target protospacer sequences using a
GRanges object. By convention, we use the first nucleotide of the PAM sequence (in the 5′ to 3′ direction) as
the representative genomic coordinate of protospacer sequences. The pink box stores sequence information of
the protospacers and PAMs. The yellow box represents global metadata used for creating the GuideSet,
including a formal CrisprNuclease object, the reference genome of the target protospacers, and gene model
used for annotation. The grey boxes are examples of optional gRNA-level metadata columns that store
information about enzyme restriction sites, spacer sequence features such as GC content, and on- and
off-target scores. The green boxes represent optional 3d-array annotations for SNP overlap, on- and off-target
alignments, and gene context; each annotation stores a detailed table (2 dimensions) for each gRNA (3rd
dimension). b Selected annotations for gRNA 1 corresponding to the row highlighted in the green boxes of a.
c The first genomic track represents the four annotated protein-coding isoforms of human gene KRAS in
GRCh38 coordinates. The second track shows the 4 gRNAs shown in the blue box of a.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.21.488824doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.488824
http://creativecommons.org/licenses/by-nc-nd/4.0/


represented in the human reference genome at a particular locus does not always correspond to the major allele
in a population of interest. Inspired by the major-allele reference genome indices provided by the bowtie team
(see https://github.com/BenLangmead/bowtie-majref), we created two new human genomes to be used
throughout our ecosystem that represent the major allele and the minor allele using dbSNP151 (see Methods).
Both genomes are available in Bioconductor as BSgenome packages. Both packages can be used in our ecosystem
to improve gRNA design by designing gRNAs against either the minor or major allele genome, and searching
for off-targets in both the major and minor allele genomes.

2.7 Comprehensive gene and TSS annotations

The genomic context of the on-target sites is paramount for optimally selecting gRNAs in most, if not all,
CRISPR applications. In our experience, very few existing tools provide detailed information about the gRNA
target sites beyond whether or not they target exons. To address this, crisprDesign includes the addGeneAnno-
tation and addTssAnnotation functions, which report comprehensive transcript- and promoter-specific context
for each gRNA target site, respectively. Users simply need to provide a standard Bioconductor TxDb object to
specify which gene model should be used to annotate on- and off-targets.

For CRISPRko applications, addGeneAnnotation annotates which isoforms of a given gene are targeted, and
adds spatial information about the relative cut site within the coding sequence of each isoform. Since translation
reinitiation can result in residual protein expression,[Smits et al., 2019], addGeneAnnotation reports whether
or not the gRNA cut site precedes any downstream in-frame ATG sequences, following the rules of Cohen et al.
[2019]. Additionally, to maximize gene knockout based on protein domains [He et al., 2019], we include Pfam
domain annotation [Bateman et al., 2004] via the biomarRt package [Durinck et al., 2005]. For CRISPRa and
CRISPRi applications, addTssAnnotation indicates which promoter regions are targeted by each gRNA, as well
as the location of the target cut site relative to the TSS. This allows the user to easily select guides in the
optimal targeting window.

To further put the gRNA targets into biological context, users can access thousands of genomic annotation
datasets through the Bioconductor AnnotationHub resource. The resource includes common sources such as
Ensembl, ENCODE, dbSNP and UCSC. Where appropriate, those annotations are in the GenomicRanges for-
mat, which make them directly compatible with the GuideSet object used to represent gRNAs in our ecosystem.
By leveraging overlap operations on GenomicRanges, users can identify which gRNAs are present or absent in a
given set of annotated features by using a few lines of code. For example, users can ask AnnotationHub whether
a gRNA is targeting repeat elements to avoid cutting-induced toxicity, or whether a gRNA targets the region
upstream of an annotated Cap Analysis of Gene Expression (CAGE) peak for CRISPRa applications.

2.8 Advanced functionalities for designing gRNA screening libraries

Efficient cleavage can be disrupted by certain features of the gRNA sequence, such as very low or high percent
GC content [Chen et al., 2018, Doench et al., 2014, Wang et al., 2014], homopolymers of four nucleotides or longer
[Gilbert et al., 2014, Veeneman et al., 2020], and self-complementarity conducive to hairpin formation [Thyme
et al., 2016, Labun et al., 2016]. When gRNAs are expressed from a U6 promoter, thymine homopolymers
(TTTT) are particularly undesirable as they signal transcription termination. The addSequenceFeatures function
flags all gRNAs that contain such undesirable sequence features. Another consideration in designing gRNA
libraries is to exclude spacer sequences that are not compatible with the oligonucleotide cloning strategy. gRNAs
that contain restriction sites of the enzymes used to clone the spacer sequences into a lentiviral vector should
be excluded. The addRestrictionEnzymes function flags all gRNAs that contain restriction enzyme recognition
motifs.

To complement gRNA annotation and assist in library design, we provide a pair of convenient and versatile
functions to filter and rank gRNAs within a GuideSet : filterSpacers and rankSpacers. Each function allows
users to define their own filtering and ranking criteria to meet their specific needs, respectively. A user could
first filter out gRNAs that contain a restriction enzyme recognition site or have more than one single-mismatch
off-target located in a CDS region, and then subsequently rank by on-target efficiency score and the distance
to the 5′ end for a given gene. These functions offer a fast and consistent method for flexible gRNA selection
using state-of-the-art design rules, automating the library design process in a user-friendly manner.
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Optical pooled screening (OPS) is a promising novel screening modality that combines image-based in situ
sequencing of gRNAs and optical phenotyping on the same physical wells [Feldman et al., 2019]. This enables
linking genomic perturbations with high-content imaging at large scale. In such experiments, gRNA spacer
sequences are partially sequenced. From a gRNA design perspective, this translates to additional gRNA design
constraints to ensure sufficient dissimilarity of the truncated spacer sequences. crisprDesign contains a suite
of design functions that take into account OPS constraints, while making sure that the final OPS library is
enriched for gRNAs with best predicted activity.

3 Case studies

3.1 Designing gRNAs targeting BRCA1 for the base editor BE4max

CRISPR base editors are deaminases fused to CRISPR nickases to introduce mutations at loci targeted by
the gRNAs without introducing double-stranded breaks (DSBs) Gaudelli et al. [2017], Komor et al. [2016]. A
recent study characterizing eight popular base editors showed high heterogeneity and complexity of the editing
outcomes across base editors, motivating the need of robust but flexible software to design gRNAs for base
editing applications [Arbab et al., 2020]. In particular, this includes functionalities for listing and characterizing
potential edited alleles introduced by gRNAs to inform the phenotypic readouts created by those gRNAs.

To illustrate the functionalities of our ecosystem for designing base editor gRNAs, we designed and characterized
all possible gRNAs targeting the coding sequence of BRCA1 for the cytidine base editor BE4max [Koblan et al.,
2018]. The design workflow is shown in Figure 3.

The first step consisted of designing all possible guides targeting BRCA1 using the findSpacers function in
crisprDesign. The BE4max BaseEditor object from crisprBase was used to store nucleotide- and position-
specific editing probabilities (see Figure 3a), which inform the editing window of interest for each of the gRNA
targets. Next, using the function getEditedAlleles, we generated and stored all possible editing events at each
gRNA (see Figure 3b). The function also adds a score for each edited allele that quantifies the likelihood of
editing to occur based on the editing probabilities stored in the BaseEditor object (see Methods). In addition,
each edited allele is annotated for its predicted functional consequence: silent, missense, or nonsense mutation.
In case several mutations occur in a given edited allele, the most consequential mutation is used to label the
allele (nonsense over missense, and missense over silent). For each gRNA, and for each mutation type, we then
generated a gRNA-level score by aggregating the likelihood scores across all possible alleles (see Methods). The
score represents the likelihood of a gRNA to induce a given mutation type (see Figure 3c, left plot).

To show how our gRNA annotations can be used to understand the phenotypic effects observed in screening
data, we obtained data from a negative selection pooled screen performed in MelJuSo using a base editing
library tiling the BRCA1 gene [Hanna et al., 2021]. Given that loss-of-function mutations in BRCA1 reduce
cell fitness [Findlay et al., 2018], gRNAs introducing nonsense mutations are expected to drop out, and can
therefore serve as positive controls. We created Receiver Operating Characteristic (ROC) curves to measure
how well gRNA dropout can separate positive controls from other gRNAs. We used log fold changes in gRNA
abundance between the later time point and the plasmid DNA (pDNA) library as a measure of gRNA dropout
(see Methods). We used several thresholds of the nonsense mutation score to label gRNAs as positive controls
or not. We observed that gRNA dropout in the screen can separate positive controls well from all other gRNAs,
and that performance is improved when using positive controls defined by higher nonsense mutation scores
(Figure 3c).

We also characterized gRNAs for off-targeting effects using crisprBowtie, added sequence features using crisprDe-
sign, and added on-target scores using crisprScore. We asked whether or not the magnitude of gRNA dropout
in the screen associates with predicted on-target activity for the SpCas9 nuclease. In Figure 3d, we show
gRNA dropout as a function of different predicted gRNA efficacy scores: Rule Set 1, Azimuth, and DeepHF.
gRNAs predicted to induce nonsense mutations are shown in red, and grey otherwise. Despite the fact that
each algorithm was trained on data using a SpCas9 nuclease with intact endonuclease activity, gRNA dropout
and predicted gRNA efficacy correlate for all methods (r = −0.30 for Rule Set 1, r = −0.20 for Azimuth, and
r = −0.17 for DeepHF). Overall, the different functionalities implemented in our ecosystem provides a set of
informative annotations for base editor gRNAs and facilitate the interpretation of experimental data obtained
from base editor screens.
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Figure 3. crisprDesign workflow to design gRNAs tiling BRCA1 using the base editor BE4max.
On the left: schematic showing the major steps involved in designing BE4max gRNAs targeting BRCA1. Two
inputs are required: DNA sequences of BRCA1 exons and a BaseEditor object from crisprBase. a Editing
weights for the BE4max base editor from crisprBase. b 10 top predicted edited alleles for one selected gRNA
as returned by crisprDesign. The wildtype allele and the protospacer sequence are positioned at the top of the
first column, with the PAM sequence highlighted in bold. Edited nucleotides are highlighted in red (C to T)
and blue (C to G). Editing scores, variant annotations, and protein product of the edited alleles are also
shown. c On the left, gRNA-level nonsense mutation score as calculated by crisprDesign. Colors represent
variant classification: nonsense in red, missense in blue, silent in grey. The size of the dot is proportional to the
on-target efficiency DeepHF score. On the right, ROC curves for classifying gRNA mutation type (nonsense or
not) based on gRNA dropout from the BRCA1 BE4max dataset (see Methods). Different thresholds of the
nonsense score were used to label a gRNA as nonsense or not. d Relationships between gRNA dropout from
the BRCA1 BE4max dataset and several on-target activity scores. gRNAs that are not predicted to induce a
nonsense mutation are colored in grey, and the size of the dots is proportional to the magnitude of the
mutation score. The horizontal dotted lines at -0.5 represent a cutoff to classify a gRNA as active or not. For
each method, a score cutoff was determined to classify active versus non-active gRNAs (vertical dotted line).
Red and blue dots correspond to gRNAs that are correctly and incorrectly classified, respectively.
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3.2 Annotating and scoring gRNAs for gene knockdown using CasRx

One of the challenges in designing gRNAs specific to RNA-targeting nucleases is to enable on-target and off-
target characterization to be performed in a transcriptome space, as opposed to a reference genome. This requires
strand-specific functionalities, transcriptome-specific alignment indexes, as well as additional gene annotation
functionalities to capture isoform-specific targeting.

Here, we describe a workflow for designing gRNAs targeting CD46 and CD55 using the RNA-targeting nuclease
CasRx (RfxCas13d) [Konermann et al., 2018] (Figure 4). The workflow takes into consideration the aforemen-
tioned issues. To validate our design process, we obtained CasRx pooled screening data performed in HEK 293
cells with gRNA libraries tiling the human genes CD46 and CD55 from Wessels et al. [2020]. Since both genes
encode for cell-surface proteins, the authors used fluorescence-activated cell sorting (FACS) to sort cells with
high and low expression. Their data can be used to investigate gRNA knockdown efficacy based on the change
in relative abundance of high- and low-expressing cells for each targeted gene (see Methods).

We first extracted mRNA sequences of both genes using the function getMrnaSequence from crisprDesign. The
mRNA sequences, together with the CrisprNuclease object CasRx from crisprBase, served as inputs to create
a Guideset. Next, we predicted on-target activity of the gRNAs using our implementation of the CasRx-RF
method [Wessels et al., 2020] available in crisprScore (see Methods). The normalized log-fold changes in the
screen correlate well with the CasRx-RF score (Figure 4a). We then added a transcript annotation to each
gRNA using an Ensembl TxDb object as input. This adds a list of targeted isoforms to each gRNA, as well as
transcript context (CDS, 5′UTR, or 3′UTR). We observed in the screen that gRNAs targeting a higher number
of isoforms, and gRNAs located in CDS, lead to higher activity (Figure 4b, and Figure S2).

We performed an off-target search using crisprBowtie to the human transcriptome by providing a bowtie index
built on mRNA sequences. We extended the CFD off-target scoring algorithm implemented in crisprScore
to work with CasRx by estimating mismatch tolerance weights on the GFP tiling screen data from Wessels
et al. [2020] (see Methods). The off-target CFD-CasRx score performs well at predicting gRNA activity of
single-mismatch and double-mismatch gRNAs in the CD55 screen (Figure 4c, and see Methods).

Finally, we added sequence features, and ranked gRNAs for targeting CD55 and CD46 based on (1) high on-
target score, (2) low number of off-targets, and (3) high number of targeted isoforms. If we select gRNAs that
target a common exon and that have high on-target score, we enrich for highly active gRNAs in the screening
data (Figure 4d).

3.3 Designing optimal gRNAs to activate MMP7 using CRISPRa using different
nucleases

Designing gRNAs for either CRISPRa and CRISPRi applications requires additional considerations. This
includes choosing an optimal target region based on chromatin accessibility data and TSS data, and selecting
gRNAs based on their positioning with respect to the TSS.

To demonstrate the utility of our ecosystem functionalities for CRISPRa and CRISPRi, we designed gRNAs for
CRISPRa using the human gene MMP7 as an example target (Figure 5). CRISPRi is discussed at the end of
this section. One CRISPRa-specific design consideration is the limited number of candidate gRNAs available
for a given gene due to the narrow window of optimal activation. Engineered nucleases with less constrained
PAM sequences can improve CRISPRa applicability by expanding the set of candidate gRNAs. To investigate
this, we designed gRNAs for the promoter region of MMP7 using four nucleases in parallel: SpCas9, AsCas12a,
and the more PAM-flexible versions SpGCas9 [Walton et al., 2020] and enAsCas12a [DeWeirdt et al., 2020].

The first step of the gRNA design was to specify the target region for MMP7. We used AnnotationHub to find
CAGE peaks in the promoter region of MMP7 to specify the TSS position. We used the CAGE data to identify
TSSs instead of RefSeq or Ensembl as the former provides more accurate annotations for designing CRISPRi
and CRISPRa gRNAs [Radzisheuskaya et al., 2016]. The 5′ end of the CAGE peak was used as the TSS to
define the coordinates of the optimal window of activation (75 and 150 nucleotides upstream of the TSS, as
recommended by Sanson et al. [2018]).

Next, we designed all possible gRNAs for the four nucleases using the findSpacers function in crisprDesign,
and stored the gRNAs in four separate GuideSet containers. All four nucleases are available in crisprBase. We
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Figure 4. crisprDesign workflow to design gRNAs tiling CD55 and CD46 using CasRx. On the
left: schematic showing the major steps involved in designing CasRx gRNAs targeting CD55 and CD46. Two
inputs are required: mRNA sequences of CD55 and CD46 and a CrisprNuclease object from crisprBase. a
Relationship between on-target CasRx-RF score calculated in crisprScore and log-fold changes from the
pooled FACS tiling CasRx screening data (see Methods). A higher log-fold change indicates higher gRNA
activity. b Relationship between log-fold changes from the CasRx screening data and gRNA context for CD46
and CD55 : gRNAs targeting 5′ UTR and 3′ UTR for the canonical transcript, and guides targeting a low and
high number of isoforms for each of the genes. gRNAs targeting more isoforms show higher enrichment in the
screening data. The full isoform annotation is stored in the GuideSet objects. c Left: relationship between
observed log-fold changes of on-target gRNAs in the CD55 screen and predicted log-fold changes of
single-mismatch gRNAs using the off-target CFD-CasRx score implemented in crisprScore (see Methods).
Right: same as left, but for double-mismatch gRNAs. d gRNAs selected in the CD46 screen for high on-target
activity (CasRx-RF score) and targeting a common exon across all protein-coding isoforms enrich for high
gRNA activity.
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annotated each GuideSet for overlap with DNase I hypersensitivity sites (DHS) from consolidated epigenomes
from the Roadmap Epigenomics Project [Kundaje et al., 2015] using AnnotationHub. Open-chromatin regions
are favorable for the binding of the catalytically inactive Cas9 (dCas9) used in both CRISPRa and CRISPRi
[Kuscu et al., 2014, Wu et al., 2014]. We then added sequence features using crisprDesign, on-target scores
using crisprScore, and off-target sites using crisprBowtie for each nuclease. Finally, we added overlapping SNPs
information using the addSNPAnnotation function and using dbSNP151. The end-to-end workflow is presented
in Figure 5a.

The designed gRNAs are presented in Figure 5b. With crisprDesign, it is straightforward to select candidate
gRNAs in the most promising genomic regions - in this case, lying inside both the annotated DHS and the
optimal activation window for MMP7. One can immediately appreciate that both nuclease variants (SpGCas9
and enAsCas12a) yield substantially more available gRNAs in the optimal window activation. In particular,
enAsCas12a offers several gRNAs with high predicted on-target activity, making it a better candidate for gene
activation of MMP7. One SNP was also found in the region of interest, and overlapping a gRNA for enAsCas12a,
telling users to avoid using that gRNA. Altogether, our ecosystem provides an easy and comprehensive workflow
to enable users to design optimal gRNAs for CRISPRa across nucleases.

Designing gRNAs for CRISPRi applications using crisprDesign is nearly identical, with the exception that the
preferred target region for interference is located downstream of the TSS. The CRISPRai scoring algorithm
from Horlbeck et al. [2016], available through crisprScore, can be used to select optimal gRNAs for each TSS
separately, taking into account both gRNA positioning and sequence content to maximize on-target inhibition.
For both CRISPRa and CRISPRi, our gRNA design workflow is also applicable to non-coding regulatory
elements, for instance long non-coding RNAs (lncRNAs) as it was done in Liu et al. [2017]. Overall, crisprDesign
provides end-to-end functionalities that are well-suited for a large array CRISPRa and CRISPRi applications.

4 Discussion

In this work, we introduced a new suite of R packages to perform comprehensive end-to-end gRNA design for a
multitude of CRISPR technologies and applications. Our ecosystem enables users to perform gRNA design for
diverse nucleases such as PAM-free nucleases and RNA-targeting nucleases, and for several applications beyond
CRISPRko such as RNA and DNA base editing and CRISPRa/i. All design functionalities are available from a
single package, crisprDesign. This eliminates the need to use multiple tools to obtain the necessary information
for selecting optimal gRNAs, which is both time consuming and error prone. We demonstrated the diversity
of our framework by applying it in three case studies involving different CRISPR technologies with their own
specific design considerations.

We were able to show that creating rich gRNA annotations can help investigate gRNA variability and biases
observed in experimental data generated from newer CRISPR technologies. To do so, we obtained public pooled
screening data from two published studies, a tiling base editor screen of BRCA1, and a tiling CasRx screen of
CD46 and CD55, and show how some of the gRNA features derived from crisprDesign can explain some of the
variability in gRNA activity observed in both screens.

The modular architecture of crisprDesign enables nucleases, base editors, scoring methods and annotations to
be combined depending on the needs of the user. As a result, our design framework can easily adapt to new
CRISPR technologies by swapping out the necessary components. For instance, a recent study has shown that
the resolution of base editor screens can be greatly increased by combining existing base editors with PAM-
extended Cas9 variants [Sangree et al., 2021], while another study shows that RNA-targeting Cas13 nucleases
can be combined with deaminases to form RNA base editors [Cox et al., 2017]. Both applications can be readily
supported by our ecosystem without the need for further development.

Our ecosystem is completely implemented within the Bioconductor project, which provides robust and feature-
rich data structures, high-quality documentation and workflows, and seamless interoperability between packages.
Data structures defined in crisprBase can be reused to facilitate the analysis of CRISPR-based editing events
in other packages, such as ampliCan [Labun et al., 2019], GUIDEseq [Zhu et al., 2017] and CrisprRVariants
[Lindsay et al., 2016], and GuideSet gRNA containers can be integrated with packages that provide analysis
workflows for pooled screening data [Wang et al., 2019a, Imkeller et al., 2020, Bainer et al., 2021] to investigate
biases and filter out undesirable gRNAs. Finally, the crisprBowtie and crisprBwa packages provide general
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Figure 5. Design of CRISPRa gRNAs for human gene MMP7 for different CRISPR nucleases.
a Schematic showing the steps involved in designing CRISPRa gRNAs targeting the promoter region of
MMP7. A gene model and a list of CAGE peaks are used to define the optimal window for gene activation. A
GuideSet is created separately for each CRISPR nuclease. DNase I hypersensitive site (DHS) information is
obtained from AnnotationHub and added to the gRNA annotation. b The top track shows the promoter region
of human gene MMP7 on chromosome 11, including part of the 5′ UTR of MMP7 (yellow). The DHS and
CAGE peak grey boxes were obtained using AnnotationHub (see Methods). The light pink region corresponds
to the optimal region of activation based on Sanson et al. [2018], corresponding to a region [75,150]bp upstream
of the 5′ end of the CAGE peak. For each of the four selected nucleases, all canonical PAM sites located
within the optimal region are shown. PAM sites are colored by their on-target score: DeepHF for SpCas9,
DeepCpf1 for AsCas12a, and enPAM+GB for enAsCas12a. No on-target scoring algorithm was available at
time of publication for SpGCas9. The last track corresponds to common SNPs obtained from dbSNP151.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.21.488824doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.488824
http://creativecommons.org/licenses/by-nc-nd/4.0/


functions that can be used to map any short sequences, including small-hairpin RNAs (shRNAs) and short-
interfering RNAs (siRNAs).

We are continuously extending our suite of tools to make available the latest developments for gRNA design.
We are currently extending our work to include design for prime editing [Anzalone et al., 2019]. Prime editing
requires the design of template sequences in addition to the usual gRNA spacer sequences. Prime editing tools
are rapidly evolving, and our infrastructure provides a robust framework to facilitate the complex design of a
variety of prime editing constructs. In addition, we will implement more convenience functions to streamline
the design of complex gRNA libraries, such as multiplexing libraries that combine multiple gRNA sequences
within one construct. Such libraries can be used to increase on-target efficiency [Replogle et al., 2020], or to
simultaneously target pairs of loci in the genome [Han et al., 2017]. We are also committed in making available
new scoring algorithms by implemented them in crisprScore as they become available. Finally, to make access
to our rich ecosystem accessible to all users, we are working on developing an interactive graphical user interface
(GUI) using Shiny [Chang et al., 2015]. The Shiny application will combine user-friendly characteristics of
existing web-based tools with the advanced capabilities of our R-based ecosystem.

5 Methods

Reference genomes, gene models, and genome indexes

The FASTA file for the human reference genome (GRCh38.p13 assembly) was obtained from UCSC to build
bowtie and BWA indexes via the Rbowtie [Hahne et al., 2012] and Rbwa R packages, respectively. The gene model
used throughout the manuscript was obtained from Ensembl (release 104) using the R package GenomicFeatures.
Common SNPs were obtained from NCBI dbSNP build 151 (https://ftp.ncbi.nlm.nih.gov/snp/).

CAGE peak and DNAse I hypersensitivity data

RIKEN/ENCODE CAGE peaks were obtained from AnnotationHub using accession number AH5084 [Djebali
et al., 2012]. Genomic coordinates were lifted over from hg19 to hg38 using the R package rtracklayer. DNAse
I hypersensitive sites were obtained from AnnotationHub using accession number AH30743. The narrow DNase
peaks were obtained using MACS2 on consolidated epigenomes from the Roadmap Epigenomics Project (E116-
DNase.macs2.narrowPeak.gz) [Kundaje et al., 2015]. Genomic coordinates were lifted over from hg19 to hg38
using the R package rtracklayer.

On-target scoring

We implemented several commonly-used algorithms for Cas9, Cas12 and Cas13 nucleases in crisprScore. For
predicting on-target activity of the wildtype SpCas9 nuclease, we implemented the popular Rule Set 1 [Doench
et al., 2014] and Azimuth algorithms [Doench et al., 2016a] (iteration of the popular Rule Set 2 algorithm by
the same authors). The package also provides the deep learning-based algorithms DeepWT and DeepHF, de-
veloped to predict cutting efficiency of the wildtype SpCas9 and SpCas9-High Fidelity (SpCas9-HF1) nucleases,
respectively [Wang et al., 2019b]. We also included the CRISPRscan algorithm [Moreno-Mateos et al., 2015]
for predicting on-target activity of SpCas9 gRNAs expressed from a T7 promoter. For the wildtype AsCas12a,
crisprScore offers the deep-learning based prediction method DeepCpf1 [Kim et al., 2018]. For the enhanced
AsCas12a (enAsCas12a), crisprScore offers the enPAM+GB algorithm [DeWeirdt et al., 2020]. For CasRx
(RfxCas13d), we adapted the code from the random forest model developed in Wessels et al. [2020]; we referred
to the method as CasRx-RF.

For predicting gRNA activity for CRISPRa and CRISPRi, we implemented the prediction method used to
design the commonly-used Weissman CRISPRa and CRISPRi v2 genome-wide libraries for human and mouse
[Horlbeck et al., 2016]. This method predicts CRISPRa (or CRISPRi) gRNA activity based on the distance to
the transcription starting site (TSS), spacer sequence-derived features, as well as chromatin accessibility data
and nucleosome positioning using DNase-Seq, MNase-Seq, and FAIRE-Seq data.
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On-target prediction of frameshift-causing indels using Lindel

In crisprScore, we implemented Lindel [Chen et al., 2019], a logistic regression model that was trained to use
local sequence context to predict the distribution of mutational outcomes for CRISPR/Cas9. The Lindel final
score reported in crisprScore is the proportion of “frameshifting” indels, that is the frequency of indels predicted
to introduce frameshift mutations. By chance, assuming a random distribution of indel lengths, gRNAs should
have a frameshifting proportion of 0.66. A Lindel score higher than 0.66 indicates that a given gRNA is more
likely to cause a frameshift mutation than by chance.

Off-target scoring of individual off-targets

The exact formula that we use to calculate the CFD score in crisprScore is

CFD =
∏
p∈M

wp(xRNA, xDNA)

where M is the set of positions for which there is a mismatch between the gRNA spacer sequence and the
off-target sequence. wp(xRNA, xDNA) is an experimentally-derived mismatch tolerance weight at position p
depending on the RNA nucleotide xRNA and the DNA nucleotide xDNA (see Doench et al. [2016b] for more
details).

The exact formula that we use to calculate the MIT score in crisprScore was obtained from the MIT design
website (crispr.mit.edu):

MIT =

(∏
p∈M

wp

)
× 1

19−d
19 × 4 + 1

× 1

m2

where M is the set of positions for which there is a mismatch between the gRNA spacer sequence and the
off-target sequence, wp is an experimentally-derived mismatch tolerance weight at position p, d is the average
distance between mismatches, and m is the total number of mismatches. As the number of mismatches increases,
the cutting likelihood decreases.

Composite off-target score for gRNA specificity

To create a gRNA-level composite specificity score, individual off-target cutting scores are aggregated using the
following inverse summation formula:

Specificity =
1

1 +
∑n

i=1 Ci

where Ci is the cutting likelihood score (either using the MIT or the CFD method) for the ith putative off-target.
A higher composite score indicates higher specificity, which decreases with more off-targets and/or a greater
likelihood of cleavage at each off-target. A gRNA with no putative off-targets have a composite score of 1. A
gRNA with 2 on-targets, that is a gRNA targeting two genomic loci with perfect complementarity, will have a
composite score of 0.5.

Base editing scoring

The behavior of a base editor can be quantified in a 3-dimensional array of editing probabilities. Let p be
the genomic position relative to the PAM site; let nucu be the original nucleotide; and let nuce be the edited
nucleotide. Denote w(p, nucu, nuce) as the probability that nucu is edited to nuce at position p. Experimental
editing weights can be used, possibly after some adequate transformation, to obtain those probabilities.

To score the likelihood of each edited allele, we assume independence of editing events with respect to nucleotide
position. Specifically, consider a wildtype allele U = (up1

, up2
, ..., upn

) and an edited allele V = (vp1
, vp2

, ..., vpn
),

where upi
and vpi

are the nucleotides at position pi relative to the PAM site for the wildtype and edited allele,
respectively. The parameter n is chosen by the user, and should be large enough so that all nucleotides within

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.21.488824doi: bioRxiv preprint 

crispr.mit.edu
https://doi.org/10.1101/2022.04.21.488824
http://creativecommons.org/licenses/by-nc-nd/4.0/


the editing window of the chosen base editor are represented. We calculate the editing score for the edited allele
V (with respect to the wildtype allele U) as follows:

S(U, V ) =
n∏

i=1

w(pi, upi , vpj ) (1)

For a given edited allele V , we classify the functional consequence of editing as either a silent, missense, or
nonsense mutation. We use f(V ) to label the mutation. In case an edited allele results in more than one
mutation, we choose the most consequential mutation as the label (nonsense over missense, and missense over
silent). For a given gRNA targeting the wildtype allele U , and the set of all possible edited alleles Vj , we
calculate an aggregated score for each mutation type by summing the editing scores across alleles for each
mutation type. For instance, the aggregated score for silent mutations is calculated as follows:

Ssilent(U) =
N∑
j=1

S(U, Vj)1(f(Vj) = silent) (2)

where N is the total number of possible edited alleles Vj .

Creation of major and minor allele human genomes

We built major and minor allele genomes for the hg38 build using common SNPs from the dbSNP151 RefSNP
database. The “common” category is based on germline origin and a minor allele frequency (MAF) of >= 0.01
in at least one major population, with at least two unrelated individuals having the minor allele. See the dbSNP
website https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/ for more information. We
excluded indels, and only considered SNPs that have MAF greater than 1% in the 1000 Genomes Project
population. We then injected major alleles and minor alleles into the reference genome hg38 sequence to create
“major allele” and “minor allele” genomes, respectively. Both resulting genomes are provided as standard
FASTA files. We generated bowtie and BWA indexes for the two genomes. The two allele genomes are available
from Bioconductor via their respective packages:

• BSgenome.Hsapiens.UCSC.hg38.dbSNP151.major [Fortin, 2021a]

• BSgenome.Hsapiens.UCSC.hg38.dbSNP151.minor [Fortin, 2021b]

Base editing pooled screen data analysis

Dropout screen data in the MelJuSo cell line using a gRNA library tiling BRCA1 were obtained from the
supplementary material of Hanna et al. [2021]. We normalized the raw counts by scaling by the total number
of reads, and log2-transformed the data. We filtered out low-abundance gRNAs that were further than 3
standard deviations below the mean in the plasmid (pDNA) sample. From the later timepoint samples, we
subtracted from the pDNA sample log counts to obtain log2 fold changes, and averaged the log2 fold changes
across replicates. We filtered out gRNAs targeting multiple loci, and gRNAs with off-targets (with up to 2
mismatches) located in genes other than BRCA1.

CasRx pooled screen data analysis

CasRx FACS pooled screening data tiling CD55, CD46 and GFP were obtained from Wessels et al. [2020],
including processed and normalized log-fold changes for each gRNA https://gitlab.com/sanjanalab/cas13.
We redesigned all possible gRNAs targeting any of the isoforms of CD55 and CD46 using crisprDesign, and
considered only gRNAs also present in the pooled screening data for downstream analyses. We annotated all
gRNAs with gene information (Ensembl release 104) and obtained off-targets with up to 3 mismatches for all
gRNAs using crisprBowtie. We obtained CasRx-RF on-target activity scores using crisprScore. The transcripts
annotated as canonical by Ensembl (ENST00000367042 for CD46, and ENST00000367064 for CD55 ) were used
to visualize log-fold changes.
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Component Link In Bioc
crisprDesign https://github.com/Jfortin1/crisprDesign Yes

crisprDesignData https://github.com/Jfortin1/crisprDesignData No
crisprBase https://github.com/Jfortin1/crisprBase Yes

crisprBowtie https://github.com/Jfortin1/crisprBowtie Yes
crisprBwa https://github.com/Jfortin1/crisprBwa Yes

crisprScore https://github.com/Jfortin1/crisprScore Yes
crisprScoreData https://github.com/Jfortin1/crisprScoreData Yes

Rbwa https://github.com/Jfortin1/Rbwa Yes
Analysis code https://github.com/Jfortin1/crisprDesignPaper No

Table 3. GitHub repositories

For each gRNA, we quantified the abundance of its target gene by summing transcript per million (TPM) counts
in HEK-293 cells for all transcripts targeted by the gRNA. Transcript-level RNA quantification for HEK-293
cells was obtained from the Protein Atlas web portal https://www.proteinatlas.org, on March 5 2022. Data
are based on The Human Protein Atlas version 21.0 and Ensembl version 103 . We averaged TPM counts across
the two replicates.

We used the single-mismatch (SM) gRNA constructs from the GFP tiling screen to estimate position-dependent
probabilities of mismatch tolerance by the CasRx nuclease. To do so, we first calculated differences in log2
fold change (∆LFC) between SM gRNAs and their corresponding perfect-match (PM) gRNAs. We then fitted
a LOESS curve with respect to the nucleotide position to obtain an average ∆LFC at each spacer position
(Figure S3a). We transformed the LOESS fitted values to a scale between 0 and 1 to represent them as
percentages of activity with respect to the median activity of the PM gRNAs tiling GFP (Figure S3b). We note
that given the sparsity of the data, specifying a nucleotide-specific weight at each position was not considered.
We adapted in crisprScore the CFD off-targeting scoring method to CasRx by using those probabilities as
scoring weights. The corresponding scoring algorithm is named CFD-CasRx.

To evaluate the performance of the CFD-CasRx score on an independent dataset, we calculated CFD-CasRx
off-target scores on all SM and double-mismatch (DM) gRNAs included in the CD55 tiling screen. To predict log
fold changes of the DM gRNAs, we multiplied their respective PM gRNA log fold changes with the CFD-CasRx
on-target scores.

Off-target search comparison

For comparing runtimes of the off-target alignment methods, the following sets of gRNAs were chosen: (1)
gRNAs targeting the coding sequence of KRAS, for a total of 52 gRNAs; (2) gRNAs targeting the coding
sequence of EGFR, for a total of 645 gRNAs, and (3) gRNAs targeting the coding sequence of ZNF101, for
a total of 152 gRNAs. The KRAS and EGFR cases represent small- and medium-sized sets of gRNAs. For
ZNF101, a few gRNAs overlap a repeat element, and therefore have a high number of on- and off-targets.
Alignment was performed to the GRCh38.p13 genome. The bowtie and Biostrings alignment methods were
evaluated using 0 to 3 mismatches, and the BWA alignment methods were evaluated using 0 to 5 mismatches.
Run times were collected on a Macbook Pro with an Intel Core i7 CPU (2.6GHz, 6 cores, 16 GB memory).

Software and code availability

All of our R packages are open-source and available on GitHub (Table 3). Reproducible code of all analyses can
be found at https://github.com/Jfortin1/crisprDesignPaper.

Abbreviations

• ABE: adenine base editor

• BWA: Burrows-Wheeler Aligner
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• CAGE: Cap Analysis of Gene Expression

• CBE: cytosine base editor

• CCLE: cancer cell line encyclopedia

• CDS: coding DNA sequence

• CFD: cutting frequency determination

• CRISPR: clustered regularly interspaced short palindromic repeats

• CRISPRa: CRISPR activation

• CRISPRbe: CRISPR base editing

• CRISPRi: CRISPR interference

• DHS: DNAse I hypersensitive site

• DSB: DNA double-strand break

• FACS: fluorescence-activated cell sorting

• lncRNAs: long non-coding RNAs

• MAF: minor allele frequency

• OPS: optical pooled screening

• PAM: protospacer adjacent motif

• PE: prime editing

• pegRNA: prime editing guide RNA

• PFS: protospacer flanking sequence

• RNAi: RNA interference

• gRNA: single-guide RNA

• shRNA: short-hairpin RNA

• siRNA: small-interfering RNA

• SNP: single-nucleotide polymorphism

• TSS: transcription starting site
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Supplementary Tables and Figures

Name Type Description
crisprDesign Software Comprehensive one-stop shop for gRNA design
crisprBase Software Nuclease specification and gRNA arithmetics
crisprBowtie Software gRNA spacer alignment with bowtie
crisprBwa Software gRNA spacer alignment with BWA
crisprScore Software On- and off-target scoring algorithms for gRNAs
crisprScoreData Data Pre-trained machine learning models for crisprScore
Rbwa Software R wrapper for BWA aligner

Supplementary Table S1. Table of R packages available in our gRNA design ecosystem.

Target Spacer specification Number of mismatches

Gene Coordinate Spacer PAM
0 1 2 3

AC BO BW AC BO BW AC BO BW AC BO BW

CFTR
chr7:117559595 ATTAAAGAAAATATCATCTT TGG 1 1 1 7 7 7 145 145 145 2,314 2,314 2,314
chr7:117559605 TCTGTATCTATATTCATCAT AGG 1 1 1 7 7 7 125 125 125 1,704 1,704 1,704

HBB
chr11:5227002 CATGGTGCATCTGACTCCTG AGG 2 2 2 0 0 0 14 14 14 210 210 210
chr11:5227004 GTAACGGCAGACTTCTCCTC AGG 1 1 1 0 0 0 7 7 7 83 83 83

HEXA
chr15:72346571 TGTAGAAATCCTTCCAGTCA GGG 1 1 1 0 0 0 25 25 25 298 298 298
chr15:72346578 ATCCTTCCAGTCAGGGCCAT AGG 1 1 1 0 0 0 6 6 6 203 203 203

PRNP

chr20:4699588 AGCAGCTGGGGCAGTGGTGG GGG 1 1 1 2 2 2 96 96 96 909 909 909
chr20:4699589 GCAGCTGGGGCAGTGGTGGG GGG 1 1 1 12 12 12 100 100 100 1,052 1,052 1,052
chr20:4699595 GGGGCAGTGGTGGGGGGCCT TGG 1 1 1 2 2 2 56 56 56 860 860 860
chr20:4699598 GCAGTGGTGGGGGGCCTTGG CGG 1 1 1 0 0 0 32 32 32 421 421 421

Supplementary Table S2. Table of on- and off-target alignments in the GRCh38.p13 for the 10 spacer
sequences reported in Bhagwat et al. [2020] using a PAM-agnostic approach. Number of mismatches between
0 and 3 were considered for 3 different aligners: Aho-Corasick exact string matching as implemented in
Biostrings (AC), bowtie aligner via the crisprBowtie package (BO), and BWA aligner via the crisprBwa
package (BW). All 3 alignment methods agree.
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Supplementary Figure S1. Comparison of the off-target annotation methods implemented in
crisprDesign We compare the four different annotation methods available via the addSpacerAligmments
function in crisprDesign: bowtie, via the crisprBowtie package (bowtie), BWA, via the crisprBwa package
(bwa), and an iterative version of both algorithms to diminish the impact of highly non-specific gRNAs
(bowtie-iter and bwa-iter).
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Supplementary Figure S2. CasRx tiling screens of CD55 and CD46. Pooled FACS tiling screening
data of genes CD55 and CD46 performed in HEK 294 cells using CasRx (RfxCas13d). Processed and
normalized log2 fold changes were obtained from Wessels et al. [2020]. Both screens are represented using the
canonical Ensembl isoforms. We remapped and reannotated all gRNA sequences using crisprDesign; isoform
annotation, on-target activity score using CasRx-RF as implemented in crisprScore, and off-target alignments
were added to each gRNA. The color of the dots indicates the number of isoforms targeted by each gRNA.
The size of the dots is proportional to the on-target activity score. The coding sequence (CDS) is highlighted
in grey. LOESS regression curves are shown as solid lines. For both genes, transcript per million (TPM)
counts in HEK 293 cells summed across all isoforms overlapping a given nucleotide position are shown below
the log-fold change panels.
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Supplementary Figure S3. Probability weights used for off-target scoring of CasRx gRNAs a
Boxplots of the differences in log2 fold change (∆LFC) between single-mismatch (SM) gRNAs and their
corresponding perfect-match (PM) gRNAs in the GFP tiling screen. X-axis represents the mismatch position
within the spacer sequence, with 1 being the position next to the direct repeat. The smooth curve was
obtained using LOESS regression. The dotted line represents the average log-fold change of all PM gRNAs
after multiplying by -1. b CasRx mismatch tolerance probabilities estimated from (a) and used in the CFD
scoring method in crisprScore.
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