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Abstract

Principal component analysis (PCA) is a widely used dimensionality reduction technique in
machine learning and multivariate statistics. To improve the interpretability of PCA, various
approaches to obtain sparse principal direction loadings have been proposed, which are termed
Sparse Principal Component Analysis (SPCA). In this paper, we present ThreSPCA, a prov-
ably accurate algorithm based on thresholding the Singular Value Decomposition for the SPCA
problem, without imposing any restrictive assumptions on the input covariance matrix. Our
thresholding algorithm is conceptually simple; much faster than current state-of-the-art; and
performs well in practice. When applied to genotype data from the 1000 Genomes Project,
ThreSPCA is faster than previous benchmarks, at least as accurate, and leads to a set of inter-
pretable biomarkers, revealing genetic diversity across the world.

1 Introduction

Principal Component Analysis (PCA) and the related Singular Value Decomposition (SVD) are
fundamental data analysis and dimensionality reduction tools that are used across a wide range of
areas including machine learning, multivariate statistics, and many others. These tools return a
set of orthogonal vectors of decreasing importance that are often interpreted as fundamental latent
factors that underlie the observed data. Even though the vectors returned by PCA and SVD have
strong optimality properties, they are notoriously difficult to interpret in terms of the underlying
processes generating the data [1], since they are linear combinations of all available data points or all
available features. The concept of Sparse Principal Components Analysis (SPCA) was introduced
in the seminal work of [2], where sparsity constraints were enforced on the singular vectors in order
to improve interpretability; see for example, document analysis applications in [2, 1, 3].
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Formally, given a positive semidefinite (PSD) matrix A ∈ Rn×n, SPCA can be defined as the
constrained maximization problem:1

Z∗ = max
x∈Rn, ‖x‖2≤1

x>Ax, subject to ‖x‖0 ≤ k. (1)

In the above formulation, A is a covariance matrix representing, for example, all pairwise feature
or object similarities for an underlying data matrix. Therefore, SPCA can be applied to either
the object or feature space of the data matrix, while the parameter k controls the sparsity of the
resulting vector and is part of the input. Let x∗ denote a vector that achieves the optimal value Z∗
in the above formulation. Intuitively, the optimization problem of eqn. (1) seeks a sparse, unit norm
vector x∗ that maximizes the data variance. It is well-known that solving the above optimization
problem is NP-hard [4] and that its hardness is due to the sparsity constraint. Indeed, if the
sparsity constraint were removed, then the resulting optimization problem can be easily solved by
computing the top left or right singular vector of A and its maximal value Z∗ is equal to the top
singular value of A.

In this work, we explore the potential of SPCA in the analysis of genetics data leveraging a prov-
ably accurate thresholding algorithm for SPCA. In genetics, PCA is a tool of paramount importance
and is ubiquitously used to estimate population structure and extract ancestry information [5]. It is
well-known that genome-wide association studies (GWAS) that attempt to identify genetic markers
that are associated with complex traits in a typical case/control setting can be grossly confounded
by the underlying population structure, due to the presence of subgroups in the population that
belong to different ancestries in both the case and control groups [6]. To account for such popula-
tion stratification and to minimize the underlying spurious associations, researchers typically use
the top few principal components as covariates in the underlying model. However, the principal
components are linear combinations of all available genetic markers and, therefore, are not inter-
pretable. SPCA is an obvious remedy towards that end, since one can use it to identify Single
Nucleotide Polymorphisms (SNPs) or genetic markers carrying information about the underlying
genetic ancestry. See also [7, 8, 9] for prior work motivating and using SPCA in the context of
human genetics data analysis.

1.1 Our Contributions

Thresholding is a simple algorithmic concept, where each coordinate of, say, a vector is retained if
its value is sufficiently high; otherwise, it is set to zero. Thresholding naturally preserves entries
that have large magnitude while creating sparsity by eliminating small entries. Therefore, it seems
like a logical strategy for SPCA: after computing a dense vector that approximately solves a PCA
problem, perhaps with additional constraints, thresholding can be used to sparsify it.

We present a simple, provably accurate, thresholding algorithm (ThreSPCA, Section 2.1) for
SPCA that leverages the fact that the top singular vector is an optimal solution for the SPCA
problem without the sparsity constraint. Our algorithm actually uses a thresholding scheme that
leverages the top few singular vectors of the underlying covariance matrix; it is simple and intuitive,
yet offers tradeoffs in running time vs. accuracy, the first of its kind. Our algorithm returns a vector
that is provably sparse and, when applied to the input covariance matrix A, provably captures the
optimal solution Z∗ up to a small additive error. Indeed, our output vector has a sparsity that

1Recall that the p-th power of the `p norm of a vector x ∈ Rn is defined as ‖x‖pp =
∑n

i=1 |xi|p for 0 < p < ∞. For
p = 0, ‖x‖0 is a semi-norm denoting the number of non-zero entries of x.
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depends on k (the target sparsity of the original SPCA problem of eqn. (1)) and ε (an accuracy
parameter between zero and one). Our analysis provides unconditional guarantees for the accuracy
of the solution of the proposed thresholding scheme. To the best of our knowledge, no such analyses
have appeared in prior work (see Section 1.2 for details). We emphasize that our approach only
requires an approximate SVD and, as a result, ThreSPCA runs very quickly. In practice, ThreSPCA is
much faster than current state-of-the-art and at least as accurate in the analysis of human genetics
datasets. An additional contribution of our work is that, unlike prior work, our algorithm has a
clear trade-off between quality of approximation and output sparsity. Indeed, by increasing the
density of the final SPCA vector, one can improve the amount of variance that is captured by our
SPCA output. See Theorem 2.1 for details on this sparsity vs. accuracy trade-off for ThreSPCA.

Importantly, we evaluate ThreSPCA on the genotype dataset from 1000 Genomes (1KG) Project [10]
and on simulated genotype data in order to practically assess its performance. ThreSPCA identifies
functionally relevant, interpretable SNPs from the 1KG data and, from an accuracy perspective,
it performs comparably to current state-of-the-art SPCA algorithms while being much faster than
its competitors.

1.2 Prior work

SPCA was formally introduced by [2]; however, previously studied PCA approaches based on
rotating [11] or thresholding [12] the top singular vector of the input matrix seemed to work well,
at least in practice, given sparsity constraints. Following [2], there has been an abundance of interest
in SPCA, with extensions based on LASSO (ScoTLASS) on an `1 relaxation of the problem [13] or a
non-convex regression-type approximation, penalized similar to LASSO [14]. Additional heuristics
based on LASSO [15] and non-convex `1 regularization [14, 16, 17, 18] have also been explored.
Other approaches such as random sampling based on non-convex `1 relaxations [19], branch-and-
bound heuristic motivated by greedy spectral ideas [20] have also been studied. Spectral approaches
based on iterative methods such as the power method have been extensively explored [21, 3, 22,
23] including a SPCA algorithm with early stopping for the power method, based on the target
sparsity [23]. Another line of work focused on using semidefinite programming (SDP) relaxations of
SPCA [2, 24, 25, 26]. Despite the variety of heuristic-based SPCA approaches, very few theoretical
guarantees have been provided; this is partially explained by a line of hardness-of-approximation
results. The sparse PCA problem is well-known to be NP-Hard [4]. [27] shows that if the input
matrix is not PSD, then even the sign of the optimal value cannot be determined in polynomial
time unless P = NP, ruling out any multiplicative approximation algorithm. In the case where
the input matrix is PSD, [28] shows that it is NP-hard to approximate the optimal value up to
multiplicative (1 + ε) error, ruling out any polynomial-time approximation scheme (PTAS).

Prior work that offers provable guarantees, typically given some assumptions about the input
matrix, includes [3], which analyzed a specific set of vectors in a low-dimensional eigenspace of the
input matrix and presented relative error guarantees for the optimal objective, given the assumption
that the input covariance matrix has a decaying spectrum. The time complexity of the algorithm
of [3] is given by O(nd+1 log n) (due to solving an exact SVD), where d is the low rank parameter
that affects the accuracy of the output. Even for d = 1, the theoretical time complexity boils down
to O(n2 log n) and it is not clear how to make use of an approximate SVD algorithm to improve
this running time without affecting its theoretical bound. Furthermore, for a high precision output,
one generally needs d to be larger than one, in which case the practical running time also increases
drastically. [29] gave a polynomial-time algorithm that solves sparse PCA exactly for input matrices
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of constant rank. [28] showed that sparse PCA can be approximated in polynomial time within a
factor of n−1/3 and also highlighted an additive PTAS of [30] based on the idea of finding multiple
disjoint components and solving bipartite maximum weight matching problems. This PTAS needs
time npoly(1/ε), whereas ThreSPCA has running time that depends on the sparsity of the input data.

SPCA has been applied in the context of human genetics before, in the form of sparse factor
analysis (SFA) [8] and with a penalty term in LASSO (L-PCA) or Adaptive LASSO (AL-PCA) [7].
However, there are a number of aspects that our work improves compared to prior studies. First,
unlike ThreSPCA, the SFA method used some prior assumptions on the genotype matrix and none
of these previous studies come with a theoretical guarantee showing a clear sparsity vs. accuracy
trade-off. Second, prior work has to tune the penalty parameter in [7] several times in order
to achieve a specific sparsity value in practice, which increases the running time of the method.
Third, the convergence of the SPCA algorithm proposed by [7] depends on an initial PC score,
which typically relies on the top right singular vector of the data and necessitates the computation
of an exact SVD, which is expensive. It is not clear whether replacing the exact SVD with a fast
approximate SVD would affect the results of [7].

2 Materials and Methods

2.1 The ThreSPCA algorithm

Notation. We use bold letters to denote matrices and vectors. For a matrix A ∈ Rn×n, we
denote its (i, j)-th entry by Ai,j ; its i-th row by Ai∗, and its j-th column by A∗j ; its 2-norm by
‖A‖2 = maxx∈Rn, ‖x‖2=1 ‖Ax‖2; and its (squared) Frobenius norm by ‖A‖2F =

∑
i,j A

2
i,j . We use

the notation A � 0 to denote that the matrix A is symmetric positive semidefinite (PSD) and
Tr(A) =

∑
iAi,i to denote its trace, which is also equal to the sum of its singular values. Given a

PSD matrix A ∈ Rn×n, its Singular Value Decomposition is given by A = UΣUT , where U is the
matrix of left/right singular vectors and Σ is the diagonal matrix of singular values.
Our approach: SPCA via SVD Thresholding. To achieve nearly input sparsity runtime, our
thresholding algorithm is based upon using the top ` right (or left) singular vectors of the PSD
matrix A. Given A and an accuracy parameter ε, our approach first computes Σ` ∈ R`×` (the
diagonal matrix of the top ` singular values of A) and U` ∈ Rn×` (the matrix of the top ` left
singular vectors of A), for ` = 1/ε. Then, it deterministically selects a subset of O

(
k/ε3

)
rows

of U` using a simple thresholding scheme based on their squared row norms (recall that k is the
sparsity parameter of the SPCA problem). In the last step, it returns the top right singular vector

of the matrix consisting of the columns of Σ
1/2
` U>` that correspond to the row indices of U` chosen

in the thresholding step. Notice that this right singular vector is an O
(
k/ε3

)
-dimensional vector,

which is finally expanded to a vector in Rn by appropriate padding with zeros. This sparse vector
is our approximate solution to the SPCA problem of eqn. (1).

This simple algorithm is somewhat reminiscent of prior thresholding approaches for SPCA.
However, to the best of our knowledge, no provable a priori bounds were known for such algo-
rithms without strong assumptions on the input matrix. This might be due to the fact that prior
approaches focused on thresholding only the top right singular vector of A, whereas our approach
thresholds the top ` = 1/ε right singular vectors of A. This slight relaxation allows us to present
provable bounds for the proposed algorithm.

In more detail, let the SVD of A be A = UΣUT . Let Σ` ∈ R`×` be the diagonal matrix of the
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top ` singular values and let U` ∈ Rn×` be the matrix of the top ` right (or left) singular vectors.
Let R = {i1, . . . , i|R|} be the set of indices of rows of U` that have squared norm at least ε2/k and
let R̄ be its complement. Here |R| denotes the cardinality of the set R and R∪ R̄ = {1, . . . , n}. Let
R ∈ Rn×|R| be a sampling matrix that selects2 the rows of U` whose indices are in the set R. Given
this notation, we are now ready to state Algorithm 1. Notice that Ry satisfies ‖Ry‖2 = ‖y‖2 = 1

Algorithm 1 ThreSPCA: fast thresholding SPCA via SVD

Input: A ∈ Rn×n, sparsity k, error parameter ε > 0.
Output: y ∈ Rn such that ‖y‖2 = 1 and ‖y‖0 = k/ε2.

1: `← 1/ε;
2: Compute U` ∈ Rn×` (top ` left singular vectors of A) and Σ` ∈ R`×` (the top ` singular values

of A);
3: Let R = {i1, . . . , i|R|} be the set of rows of U` with squared norm at least ε2/k and let R ∈

Rn×|R| be the associated sampling matrix (see text for details);

4: y ∈ R|R| ← argmax‖x‖2=1

∥∥∥Σ1/2
` U>` Rx

∥∥∥2
2
;

5: return z = Ry ∈ Rn;

(since R has orthogonal columns) and ‖Ry‖0 = |R|. Since R is the set of rows of U` with squared
norm at least ε2/k and ‖U`‖2F = ` = 1/ε, it follows that |R| ≤ k/ε3. Thus, the vector returned
by Algorithm 1 has k/ε3 sparsity and unit norm. (See the Appendix for more details.)

Theorem 2.1 Let k be the sparsity parameter and ε ∈ (0, 1] be the accuracy parameter. Then, the
vector z ∈ Rn (the output of Algorithm 1) has sparsity k/ε3, unit norm, and satisfies

z>Az ≥ Z∗ − 3εTr(A).

The optimality gap of Theorem 2.1 depends on Tr(A), which is the sum of the eigenvalues of
A and can also be viewed as the total variance of the data. Therefore, if we divide both sides of
the bound in Theorem 2.1 by Tr(A), the resulting bound is given by (prop∗ − p̃rop) ≤ 3ε, where
for a given k, p̃rop is the proportion of the total variance explained by the output of ThreSPCA and
prop∗ is the proportion of the total variance explained by the optimal Sparse PC. Now, trivially, we
have (prop∗ − p̃rop) ≥ 0, since prop∗ is the maximum variance explained by Sparse PC for a given
sparsity value. Thus, combining these two yields 0 ≤ (prop∗− p̃rop) ≤ 3ε, which can be interpreted
as the quality-of-approximation in terms of the proportion of total variance explained by ThreSPCA.

The proof of Theorem 2.1 is deferred to the appendix. See Section A for the proof of Theorem 2.1
as well as an intermediate result (Lemma A.1) that leads to the final bound in Theorem 2.1. The
running time of Algorithm 1 is dominated by the computation of the top ` singular vectors and
singular values of the matrix A. One could always use the SVD of the full matrix A (O

(
n3
)

time)
to compute the top ` singular vectors and singular values of A. In practice, any iterative method,
such as subspace iteration using a random initial subspace or the Krylov subspace of the matrix,
can be used towards this end. We now address the inevitable approximation error incurred by such
approximate SVD methods below.
Using approximate SVD algorithms. Although the guarantees of Theorem 2.1 in Algorithm 1
use an exact SVD computation, which could take time O

(
n3
)
, we can further improve the running

2Each column of R has a single non-zero entry (set to one), corresponding to one of the |R| selected columns.
Formally, Rit,t = 1 for t = 1, . . . , |R|; all other entries of R are set to zero.
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time by using an approximate SVD algorithm such as the randomized block Krylov method of [31],

which runs in nearly input sparsity running time. Our analysis uses the relationships ‖Σ1/2
`,⊥‖

2
2 ≤

Tr(A)/` and σ1(Σ`) ≤ Tr(A). The randomized block Krylov method of [31] recovers these guarantees
up to a multiplicative (1+ε) factor, in O (logn/ε1/2 · nnz(A)) time. Here nnz(A) denotes the number
of non-zero entries of the matrix A, which is O

(
n2
)

for dense matrices.
Extracting additional sparse PCs. To get multiple sparse PCs using Algorithm 1, we remove
the top principal component from the data and run ThreSPCA on the residual dataset. In other
words, let X ∈ Rm×n be the mean-centered data matrix corresponding to A, i.e., A = X>X. Let
v ∈ Rn be the top right singular vector of X; then, in order to get the second sparse PC, we run
ThreSPCA on the covariance matrix A1 = X>1 X1, where X1 = X−Xvv>.

2.2 Data

1000 Genome Data. In order to evaluate the speed and accuracy of ThreSPCA as well as to inter-
pret its output, we first analyzed data from the 1000 Genome Project (1KG) [10], which contained
genotype data from 2, 503 individuals with 39,517,397 SNPs sampled from 26 different populations
across all continents. After performing Quality Control (QC) with minor allele frequency below
5% and, subsequently, pruning related genotypes for Linkage Disequilibrium (LD) using a window
size of 50 kb and r2 >0.2, we finally retained 360, 498 variants.
Simulated Data. We generated simulated data emulating real-world populations to evaluate
whether ThreSPCA can correctly identify markers which contribute to the genetic differences between
and within the populations. Based on previous work [32], we simulated two datasets varying
m = {5000, 10000} SNPs genotyped across n = {500, 1000} individuals based on the Pritchard-
Stephens-Donelly (PSD) model [33] with the mixing parameter between populations, α = 0.01. The
allele frequencies were simulated based on real-world data from three divergent populations, namely
CEU (Utah residents with Northern and Western European ancestry), ASW (African ancestry in
Southwestern US), and MXL (Mexican ancestry in California) from the HapMap Phase 3 data [34].
We selected a threshold t and varied it across the range t = {100, 250, 500}, representing the number
of SNPs which contribute to population structure between the populations (true positives); the
remaining m − t genotypes were simulated such as they had minimal genetic differences between
populations (false positives). We simulated 200 data sets (100 each for values of m and n) and
applied ThreSPCA, L-PCA and AL-PCA for comparative analyses to evaluate their efficacy.

2.3 Experiments

We performed QC on the 1KG data, including LD pruning using PLINK2.0 [35]. PCA was per-
formed using TeraPCA [36]. Annotation of ThreSPCA derived variants were performed in Ensembl
Variant Effect Predictor (VEP) [37]. We performed Gene Ontology (GO) pathway analyses using
clusterProfiler [38] in R. We ran ThreSPCA, with the threshold parameter `, fixed to one.

3 Results

3.1 ThreSPCA reveals genetic diversity across the world

We applied ThreSPCA with a sparsity threshold of k=500 on the 1KG data after quality control
and pruning for correlated SNPs. We obtained sets of informative markers of cardinality k from
each of the PCs. We restricted our analysis to the top three PCs, resulting in a total of 1,500
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SNPs, which explained approximately 83% of the variance. Thus, we performed PCA on a reduced
1KG data with 2,503 individuals and 1,500 SNPs. We observed that both the PCA plot and
the allele frequency bar plot, grouped by populations across the world, are almost identical. The
squared Pearson correlation coefficient (r2) between the top two PCs from the original 1KG data
and ThreSPCA informed variants are very high, equal to 0.98, 0.97 and 0.94 for PCs 1, 2 and 3
respectively. Thus, the PCA plot of the informative markers clearly preserves the clusters of each
subgroup (Figure 1) and reveals fine-scale population structure among the groups.

Fig. 1: Population structure of world populations from: A. pruned 1KG data with 360,498 SNPs,
and B. 1KG data with 1,500 ThreSPCA derived variants corresponding to the top three PCs, cap-
tured by (i) PCA plot and (ii) mean allele frequency bar plots colored by continental populations
arranged in order from Africa (AFR), Americas (AMR), East Asia (EAS), Europe (EUR) and
South Asia (SAS).

Examining each of the three PCs closely shows that the mean allele frequency distribution
from PC1 is skewed towards the African populations (Appendix Figure 2) and also from the mixed
ancestry populations of ASW (Africans in Southwestern US) and ACB (African Caribbeans from
Barbados). SNPs obtained from PC2 were almost equally distributed across the continental pop-
ulations with a slightly higher frequencies in East Asians. PC3 shows a skewness towards South
Asian populations (Appendix Figures 3 and 4). To make an informed choice of the sparsity thresh-
old k, we computed the PC scores from the top two PCs by projecting the sparse vectors obtained
from ThreSPCA on the original pruned 1KG data for a range of values of k (Appendix Figure 11).
We computed r2 between the PC scores obtained from each PC for each value of k and the orig-
inal PC obtained from the pruned 1KG data. We observe high correlation values for the top two
PCs, cumulatively reaching their peak when the sparsity parameter k is set to approximately 500
(Appendix Figure 6).
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3.2 Interpretability of ThreSPCA informed variants

Annotating the selected variants. To understand whether the variants derived from ThreSPCA

for each PC are functionally relevant and biologically interpretable, we annotated them using
VEP [37]. We also explored whether these variants were mapping to a trait or disease in the
GWAS catalog [39]. Most of the variants were introns with some intergenic and small number
of Transcription Factor binding sites, upstream and downstream gene variants, etc. Interestingly,
among the coding consequences, 58 variants were missense and likely disease causing. SIFT [40]
and PolyPhen [41] statistics revealed that there are seven variants which are deleterious and nine
probably or possibly damaging variants (Figure 2). We also performed GO pathway analyses on

Fig. 2: Pie charts showing the percentage of variants from A. (i) most severe consequences and (ii)
coding consequences obtained from VEP. B. Deleterious and probably damaging from (i) SIFT and
(ii) PolyPhen.

ThreSPCA informed variants and found significantly enriched pathways common to humans across
the world, such as pathways related to synapses and potassium, cation and ion channels, transporter
complex, among others (Appendix Figure 7a). We found the calcium signaling pathway from KEGG
(Kyoto Encyclopedia of Genes and Genomes) to be significantly enriched (Appendix Figure 7b).
Mapping the selected variants to traits. Mapping these variants in GWAS catalog, we found
that variants from PC1 mapped to skin pigment measurement (Appendix Table 1), justifying our
observation from the PCA plot and mean allele frequency distribution (Figure 2).This is concordant
with our observation that ThreSPCA observed variants from PC1 were skewed towards populations
of African ancestry (Figure 2), who are darker skinned than the rest of the world. PC2 and PC3 on
the other hand mapped to various traits which are commonly found to be varying in populations
across the world such as body height, BMI, hip and waist circumference, circadian rhythm, gut
microbiome, smoking status, cardiovascular diseases (coronary artery disease, myocardial infarc-
tion, etc.), calcium channel blocker use (concordant with calcium signaling pathway found in GO
analyses), blood measurements (platelet count, hemoglobin, leukocyte count, etc.), among others.
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3.3 Comparing ThreSPCA to state-of-the-art

Simulation studies. We designed a simulation study to evaluate the correctness of ThreSPCA and
compared with the state-of-the-art SPCA methods in genetics, namely, L-PCA and AL-PCA from [7].
The population structure of the simulation shows three distinct clusters for each population with
signs of admixture between them (Appendix Figure 1). Applying ThreSPCA on the simulated

(a) True positives (b) False positives

Fig. 3: Box and whisker plots comparing between ThreSPCA, L-PCA and AL-PCA for true and false
positives obtained from the simulated dataset of m = 10, 000 and n = 1, 000 and varying values of
t, i.e., the number of SNPs which contribute to population structure.

dataset with 10,000 markers and 1,000 individuals, we observed that ThreSPCA identified similar
numbers (mean) of true positives, i.e., markers contributing to the genetic diversity between and
within the populations when compared to its counterparts L-PCA and AL-PCA, while identifying a
significantly smaller number of false positives, i.e., noisy markers which have no difference in allele
frequencies between populations (Figure 3b).
Real Data. We apply both ThreSPCA and AL-PCA3 on the 1KG data with k = 500 and compare the
PC1 scores vs. PC2 scores generated from the outputs of the aforementioned methods. ThreSPCA

(Appendix Figure 10a) and AL-PCA are almost identical to the corresponding standard PC plot
(Appendix Figures 10b and 11a), clearly preserving the clusters of each subgroup. We also plot
the PC scores computed from ThreSPCA and AL-PCA against the traditional PC scores (Appendix
Figure 9) and observed a near-linear relationship between the two SPCA algorithms for both PCs
with r2 = 0.9808 and 0.9426 for PC1 & PC2, respectively. This validates that ThreSPCA and
AL-PCA are qualitatively very similar to each other in inferring genetic structure.
Running Time. ThreSPCA clearly outperforms AL-PCA. In particular, for any given k, while
ThreSPCA takes less than two minutes in 1KG data, AL-PCA takes about 15 minutes to do the same
for a given penalty parameter λ > 0, since it needs a full SVD. Moreover, as already mentioned in
Section 1.2, λ is a hyper-parameter which needs to be tuned with many cross-nested runs of the
data in order to achieve a desired sparsity value. In our case, for the sparsity parameter set to 500,
it took at least six runs for each PC. Therefore, the resulting speed-up achieved by ThreSPCA is
more than 45x for real data set and around 80x for simulated data.

3Results from L-PCA are qualitatively very similar to AL-PCA and we only report results for the latter.
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4 Discussion

We present ThreSPCA, a simple and intuitive approximation algorithm for SPCA, based on a deter-
ministic thresholding scheme, without imposing any restrictive assumption on the input covariance
matrix. ThreSPCA comes with a provable accuracy guarantee and provides a clear sparsity vs. ac-
curacy trade-off. In practice, it is much faster than the other state-of-the-art SPCA methods and
indeed, can be implemented in nearly input sparsity time.

Applying ThreSPCA on the 1KG data, we observed that the set of derived SNPs accurately
approximates the genetic diversity across world populations. For each PC, the derived set of
k SNPs (we used k = 500 throughout the analyses) captured genetic structure within different
continental populations. Together, the top three PCs which explain most of the variance in the
1KG data, we observed that ThreSPCA selected 1500 meaningful, ancestry information preserving
SNPs which leads to similar inference of population structure across the world as the original
1KG data with 360,498 SNPs. Annotating ThreSPCA derived variants further showed that they
are interpretable and mostly missense in nature, thus likely disease causing. To interpret this, we
mapped these variants to various traits in GWAS catalog and found that indeed these variants
were mapped to different common traits such as body height, BMI, etc. which vary within and
between populations across the world, sometimes leading to spurious associations due to population
structure among populations [42]. These variants also mapped to various diseases, which vary
across populations such as cardiovascular diseases [43]. Although the scale of the data used in this
analysis is small when compared to large-scale genomic data, we observe that ThreSPCA is designed
to handle biobank-scale datasets since it only need to run a randomized SVD/PCA analysis, which
can be implemented efficiently in out-of-core settings [36]. ThreSPCA can also be used in GWAS as
a population stratification correction step by identifying informative markers which highlight the
ancestry stratification of cases/controls.

In summary, ThreSPCA provides a fast and provably accurate approximate method for com-
puting SPCA. It provides a method to find interpretable markers in population genetics, which
can immensely help understand population stratification, a major cause of spurious associations in
GWAS. Also, it highlights the genetic sub-structure among different populations and the ThreSPCA

derived variants are likely disease causing, often mapped to potential diseases and traits.
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Code Availability. See Appendix B for the ThreSPCA Python code availability.
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Appendices

Appendix A SPCA via thresholding: Discussions and Proofs

The intuition behind Theorem 2.1 is that we can decompose the value of the optimal solution into
the value contributed by the coordinates in R, the value contributed by the coordinates outside of
R, and a cross term. The first term we can upper bound by the output of the algorithm, which
maximizes with respect to the coordinates in R. For the latter two terms, we can upper bound the
contribution due to the upper bound on the squared row norms of indices outside of R and due to
the largest singular value of U being at most the trace of A.

We highlight that, as an intermediate step in the proof of Theorem 2.1, we need to prove the
following Lemma A.1, which is very much at the heart of our proof of Theorem 2.1 and, unlike
prior work, allows us to provide provably accurate bounds for the thresholding Algorithm 1. At a
high level, the proof of Lemma A.1 first decomposes a basis for the columns spanned by U into
those spanned by the top ` singular vectors and the remaining n − ` singular vectors. We then
lower bound the contribution of the top ` singular vectors by upper bounding the contribution of
the remaining n − ` singular vectors after noting that the largest remaining singular value is at
most a 1/`-fraction of the trace. We look at the detailed proof of Lemma A.1 below where we use
the notation of Section 2.1. For notational convenience, let σ1, . . . , σn be the diagonal entries of
the matrix Σ ∈ Rn×n, i.e., the singular values of A.

Lemma A.1 Let A ∈ Rn×n be a PSD matrix and Σ ∈ Rn×n (respectively, Σ` ∈ R`×`) be the
diagonal matrix of all (respectively, top `) singular values and let U ∈ Rn×n (respectively, U` ∈
Rn×`) be the matrix of all (respectively, top `) singular vectors. Then, for all unit vectors x ∈ Rn,∥∥∥Σ1/2

` U>` x
∥∥∥2
2
≥
∥∥∥Σ1/2U>x

∥∥∥2
2
− εTr(A).

Proof : Let U`,⊥ ∈ Rn×(n−`) be a matrix whose columns form a basis for the subspace per-
pendicular to the subspace spanned by the columns of U`. Similarly, let Σ`,⊥ ∈ R(n−`)×(n−`) be
the diagonal matrix of the bottom n − ` singular values of A. Notice that U = [U` U`,⊥] and
Σ = [Σ` 0; 0 Σ`,⊥]; thus,

UΣ1/2U> = U`Σ
1/2
` U>` + U`,⊥Σ

1/2
`,⊥U>`,⊥.

By the Pythagorean theorem,∥∥∥UΣ1/2U>x
∥∥∥2
2

=
∥∥∥U`Σ

1/2
` U>` x

∥∥∥2
2

+
∥∥∥U`,⊥Σ

1/2
`,⊥U>`,⊥x

∥∥∥2
2
.

Using invariance properties of the vector two-norm and sub-multiplicativity, we get∥∥∥Σ1/2
` U>` x

∥∥∥2
2
≥
∥∥∥Σ1/2U>x

∥∥∥2
2
−
∥∥∥Σ1/2

`,⊥

∥∥∥2
2

∥∥∥U>`,⊥x
∥∥∥2
2
.

We conclude the proof by noting that
∥∥Σ1/2U>x

∥∥2
2

= x>UΣU>x = x>Ax and∥∥∥Σ1/2
`,⊥

∥∥∥2
2

= σ`+1 ≤
1

`

n∑
i=1

σi =
Tr(A)

`
.

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.21.489052doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.489052
http://creativecommons.org/licenses/by/4.0/


The inequality above follows since σ1 ≥ σ2 ≥ . . . σ` ≥ σ`+1 ≥ . . . ≥ σn. We conclude the proof by
setting ` = 1/ε. 2

Theorem 2.1 Let k be the sparsity parameter and ε ∈ (0, 1] be the accuracy parameter. Then, the
vector z ∈ Rn (the output of Algorithm 1) has sparsity k/ε3, unit norm, and satisfies

z>Az ≥ Z∗ − 3εTr(A).

Proof : Let R = {i1, . . . , i|R|} be the set of indices of rows of U` (columns of U>` ) that have
squared norm at least ε2/k and let R̄ be its complement. Here |R| denotes the cardinality of the
set R and R ∪ R̄ = {1, . . . , n}. Let R ∈ Rn×|R| be the sampling matrix that selects the columns
of U` whose indices are in the set R and let R⊥ ∈ Rn×(n−|R|) be the sampling matrix that selects
the columns of U` whose indices are in the set R̄. Thus, each column of R (respectively R⊥) has
a single non-zero entry, equal to one, corresponding to one of the |R| (respectively |R̄|) selected
columns. Formally, Rit,t = 1 for all t = 1, . . . , |R|, while all other entries of R (respectively
R⊥) are set to zero; R⊥ can be defined analogously. The following properties are easy to prove:
RR> + R⊥R>⊥ = In; R>R = I; R>⊥R⊥ = I; R>⊥R = 0. Recall that x∗ is the optimal solution to
the SPCA problem from eqn. (1). We proceed as follows:

∥∥∥Σ1/2
` U>` x∗

∥∥∥2
2

=
∥∥∥Σ1/2

` U>` (RR> + R⊥R>⊥)x∗
∥∥∥2
2

≤
∥∥∥Σ1/2

` U>` RR>x∗
∥∥∥2
2

+
∥∥∥Σ1/2

` U>` R⊥R>⊥x∗
∥∥∥2
2

+ 2
∥∥∥Σ1/2

` U>` RR>x∗
∥∥∥
2

∥∥∥Σ1/2
` U>` R⊥R>⊥x∗

∥∥∥
2

≤
∥∥∥Σ1/2

` U>` RR>x∗
∥∥∥2
2

+ σ1

∥∥∥U>` R⊥R>⊥x∗
∥∥∥2
2

+ 2σ1

∥∥∥U>` RR>x∗
∥∥∥
2

∥∥∥U>` R⊥R>⊥x∗
∥∥∥
2
. (2)

The above inequalities follow from the Pythagorean theorem and sub-multiplicativity. We now
bound the second term in the right-hand side of the above inequality.∥∥∥U>` R⊥R>⊥x∗

∥∥∥
2

= ‖
n∑

i=1

(U>` R⊥)∗i(R
>
⊥x∗)i‖2

≤
n∑

i=1

‖(U>` R⊥)∗i‖2 · |(R>⊥x∗)i| ≤
√
ε2

k

n∑
i=1

|(R>⊥x∗)i|

≤
√
ε2

k
‖R>⊥x∗‖1 ≤

√
ε

k

√
k = ε. (3)

In the above derivations we use standard properties of norms and the fact that the columns of U>`
that have indices in the set R̄ have squared norm at most ε2/k. The last inequality follows from
‖R>⊥x∗‖1 ≤ ‖x∗‖1 ≤

√
k, since x∗ has at most k non-zero entries and Euclidean norm at most one.

Recall that the vector y of Algorithm 1 maximizes ‖Σ1/2
` U>` Rx‖2 over all vectors x of appro-

priate dimensions (including Rx∗) and thus

‖Σ1/2
` U>` Ry‖2 ≥

∥∥∥Σ1/2
` U>` RR>x∗

∥∥∥
2
. (4)
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Combining eqns. (2), (3), and (4), we get that for sufficiently small ε,∥∥∥Σ1/2
` U>` x∗

∥∥∥2
2
≤ ‖Σ1/2

` U>` z‖22 + 2εTr(A). (5)

In the above we used z = Ry (as in Algorithm 1) and σ1 ≤ Tr(A). Notice that

U`Σ
1/2
` U>` z + U`,⊥Σ

1/2
`,⊥U>`,⊥z = UΣ1/2U>z,

and using the Pythagorean theorem we get

‖U`Σ
1/2
` U>` z‖22 + ‖U`,⊥Σ

1/2
`,⊥U>`,⊥z|22 = ‖UΣ1/2U>z‖22.

Using the unitary invariance of the two norm and dropping a non-negative term, we get the bound

‖Σ1/2
` U>` z‖22 ≤ ‖Σ1/2U>z‖22. (6)

Combining eqns. (5) and (6), we conclude∥∥∥Σ1/2
` U>` x∗

∥∥∥2
2
≤ ‖Σ1/2U>z‖22 + 2εTr(A). (7)

We now apply Lemma A.1 to the optimal vector x∗ to get∥∥∥Σ1/2U>x∗
∥∥∥2
2
− εTr(A) ≤

∥∥∥Σ1/2
` U>` x∗

∥∥∥2
2
.

Combining with eqn. (7) we get
z>Az ≥ Z∗ − 3εTr(A).

In the above we used ‖Σ1/2U>z‖22 = z>Az and
∥∥Σ1/2U>x∗

∥∥2
2

= (x∗)>Ax∗ = Z∗. The result then
follows from rescaling ε. 2
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Appendix B Code

A Python implementation of ThreSPCA can be found at:
https://www.dropbox.com/s/czbvz5m5g42ey0n/ThreSPCA.py?dl=0.

Appendix C Additional Experiments

C.1 Simulated Studies

The genotype matrix X ∈ Rm×n consisting of the simulated allele frequencies was generated using
the algorithms of [33]. More specifically, we set F = TS, where T ∈ Rm×d and S ∈ Rd×n, where
d ≤ n is the number of population groups. S is the indicator matrix that encapsulates structure
with n individuals and contained in d populations. On the other hand, T characterizes how the
structure is manifested in the allele frequencies of each SNP. Finally, projecting S onto the column
space of T, we obtain the allele frequency matrix F. We sample X as a special case of F for
the Pritchard-Stephens-Donelly (PSD) model. The allele frequency matrix was drawn from a beta
distribution with the allele frequency, Fst distances and number of populations as parameters. We
simulate S using i.i.d draws from the Dirichlet distribution with varying values of α, which denotes
the parameter influencing the relatedness between the individuals. We show results for α = 0.01. α
is directly proportional to the admixture of populations. Appendix Figure 1 shows the population
structure observed in this simulated data.

Fig. 1: PCA plot of the simulated data with three distinct populations simulated from the PSD
model with an α of 0.01, n = 1, 000, m = 10, 000 and t = 100

As it is difficult to establish notions of statistical significance in ThreSPCA capturing the ances-
try informative markers from the original data, we simulated two different data set with varying
numbers of individuals (n) and SNPs (m) and allowed t true SNPs which contribute to genetic
ancestry. We varied m, n and t from {5000, 10000}, {500, 1000} and {100, 250, 500}, respectively.
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For the random markers which do not contribute to the genetic differentiation we sampled the
Fst distances between the individuals from a uniform distribution in the range {0, 0.005} which
indicates minimum difference in populations. Thus, with this step we achieve the “true” markers
contributing to genetic difference are the t SNPs and the remaining m− t SNPs, we conclude, are
noise.

C.2 Experiments on 1KG data

Population structure captured by PCA plots. We filtered the original 1KG data for the
ThreSPCA derived k = 500 SNPs for each of the first three PCs and in the PCA plots we observe
the population structure and the allele frequency distribution captured by each of the PCs. We
clearly see that the SNPs from PC1 loadings are most frequent in the African populations or mixed
populations of African ancestry (Appendix Figure 2). The PC2 SNPs are most frequent in East
Asians but more or less commonly found in other populations as well (Appendix Figure 3) and the
third PC SNPs are most frequent in South Asian populations (Appendix Figure 3). These shows
that the SNP loadings from the top three PCs accurately captures the population structure across
the world and merging them together to form a data set of 2503 individuals and 1500 SNPs, we
not only capture the entire population structure in the PCA plot but also find some fine-grain
substructure of populations (Figure 1).

Fig. 2: ThreSPCA with k = 500 obtained from PC1

Tuning input sparsity k. We tried a range of k’s varying it from 50 to 1500 and observed the
r2 between the PCs derived from the original 1KG data and the 1500 SNPs derived from ThreSPCA.
We observed that for the top two PCs the r2 is high from 0.96 to 0.99 wit the peak for both the
PCs reaching around k = 500. PC1 continues to increase by two decimal points before saturing
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Fig. 3: ThreSPCA with k = 500 obtained from PC2

Fig. 4: ThreSPCA with k = 500 obtained from PC3

Fig. 5: PCA plots of ThreSPCA filtered 1KG data for each PC with 500 SNPs.
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at k = 1000. Thus, we selected k = 500 for all the experiments as both the PCs reached their
respective peaks.

Fig. 6: Line plot between the r2 between the PC scores of each PC obtained from ThreSPCA and
the original PC from 1KG data with varying values of sparsity, k.

(a) Significant pathways from GO (b) Significant pathways from KEGG

Fig. 7: GO pathway analyses of the ThreSPCA informed variants, colored by p-values.
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PCs SNP CHR POS MAPPED
GENE

MAPPED TRAITS

PC1 rs35399673 5 104529307 RAB9BP1 skin pigmentation measurement

PC2 rs11556924 7 129663496 ZC3HC1 coronary artery disease, basophil count, diastolic blood
pressure, systolic blood pressure, myocardial infarction,
platelet count, platelet crit, parental longevity, sex hormone-
binding globulin measurement, testosterone measurement,
Agents acting on the renin-angiotensin system use measure-
ment, Calcium channel blocker use measurement, hema-
tocrit, hemoglobin measurement, eosinophil count, neu-
trophil count, myeloid white cell count, body height, red
blood cell distribution width, leukocyte count, cardiovascu-
lar disease age at menarche

rs12525051 6 151913710 CCDC170 heel bone mineral density

rs1938679 11 69272096 MYEOV -
LINC02747

body height

rs196052 6 22057200 CASC15 Corneal astigmatism

rs2069235 22 39747780 SYNGR1 primary biliary cirrhosis rheumatoid arthritis

rs4714599 6 42285815 TRERF1 eosinophil percentage of granulocytes, neutrophil percentage
of granulocytes eosinophil count, eosinophil percentage of
leukocytes

rs5747035 22 17718606 ADA2 word list delayed recall measurement, memory performance

rs7714191 5 131341541 ACSL6-AS1,
ACSL6

cortical surface area measurement

rs7901883 10 103186838 BTRC smoking behavior smoking status measurement

rs7976816 12 124315343 DNAH10 BMI-adjusted waist circumference waist circumference

rs8002164 13 58248732 PCDH17 upper aerodigestive tract neoplasm

rs847888 12 112151742 ACAD10 diastolic blood pressure

rs907183 8 8729761 MFHAS1,
MFHAS1

Calcium channel blocker use measurement

PC3 rs10164546 2 106141004 FHL2 pursuit maintenance gain measurement

rs1020410 2 176784138 EXTL2P1 -
LNPK

physical activity

rs10896109 11 66080023 TMEM151A -
CD248

circadian rhythm

rs1264423 6 30571471 PPP1R10 mean corpuscular volume

rs12679528 8 15566164 TUSC3 body mass index

rs16942383 15 89405052 ACAN BMI-adjusted hip circumference

rs2988114 13 80870878 SPRY2 gut microbiome measurement

rs34672598 20 7884260 HAO1 QT interval

rs3828919 6 31466057 MICB platelet count

rs41492548 9 130607359 ENG monocyte count

rs4679760 3 155855418 KCNAB1 birth weight, parental genotype effect measurement

rs744680 10 131741695 EBF3 visual perception measurement

rs76496105 2 110447667 BMS1P19 -
SRSF3P6

platelet count platelet crit

Table 1: Traits and genes mapped in GWAS catalog from ThreSPCA informed variants.
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C.3 Comparing ThreSPCA with the state-of-the-art.

C.3.1 Simulated data.

We observed that increasing the threshold of true positives (markers which contribute to genetic
structure) t led to an increase of the number of true positives observed in ThreSPCA. It found l

(a) True positives (b) False positives

Fig. 8: Box and whisker plots comparing between ThreSPCA, L-PCA and AL-PCA for true and false
positives obtained from the simulated dataset of m = 5, 000 SNPs and n = 500 individuals and
varying t.

C.3.2 Real data.

On 1KG data we found perfect correlation with ThreSPCA and AL-PCA for PC1 and PC2 with
r2 = 0.97 and 0.94 respectively.

Fig. 9: Relationship between the PC scores for PC1 and PC2 between ThreSPCA and AL-PCA
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(a) ThreSPCA with k = 500 (b) AL-PCA of [7] with k = 500

Fig. 10: PCA plots of 1KG data with PC scores
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(a) Standard PC Scores (b) Sparse PC Scores with k = 500

(c) Sparse PC Scores with k = 1000 (d) Sparse PC Scores with k = 5000

Fig. 11: Scatterplots of the first two PC scores. Scatterplots of the first two PC scores from standard
PCA (top left) and our ThreSPCA algorithm with k = 500 (top right), k = 1000 (bottom left) and
k = 5000 (bottom right). Combination of different marker-shapes and marker-colors denote various
population subgroups.
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