
Deceptive learning in histopathology

Sahar Shahamatdar1,2†, Daryoush Saeed-Vafa3†, Drew
Linsley4,5*†, Farah Khalil3, Katherine Lovinger6, Lester
Li7, Howard McLeod8,9, Sohini Ramachandran,∗1,2

and Thomas Serre,∗4,5

1Center for Computational Molecular Biology, Brown University,
Providence, RI, USA.

2Department of Ecology and Evolutionary Biology, Brown
University, Providence, RI, USA.

3Department of Anatomic Pathology, H. Lee Moffitt Cancer and
Research Institute, Tampa, FL, USA.

4Carney Institute for Brain Science, Brown University,
Providence, RI, USA.

5Department of Cognitive Linguistic & Psychological Sciences,
Brown University, Providence, RI, USA.

6Department of Molecular Biology, H. Lee Moffitt Cancer and
Research Institute, Tampa, FL, USA.

7University of Rochester, Rochester, NY, USA.
8Geriatric Oncology Consortium, Tampa, FL, USA.

9Taneja College of Pharmacy, University of South Florida,
Tampa, FL, USA.

*Corresponding author, E-mail: drew linsley@brown.edu;
†,∗These authors contributed equally to this work.

Abstract

Deep learning holds immense potential for histopathology, automat-
ing tasks that are simple for expert pathologists, and revealing novel
biology for tasks that were previously considered difficult or impos-
sible to solve by eye alone. However, the extent to which the visual
strategies learned by deep learning models in histopathological analy-
sis are trustworthy or not has yet to be systematically analyzed. In
this work, we address this problem and discover new limits on the
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2 Deceptive learning

histopathological tasks for which deep learning models learn trustwor-
thy versus deceptive solutions. While tasks that have been extensively
studied in the field like tumor detection are reliable and trustworthy,
recent advances demonstrating the ability to learn molecular profil-
ing from hematoxylin and eosin (H&E) stained slides do not hold up
to closer scrutiny. Our analysis framework represents a new approach
in understanding the capabilities of deep learning models, which
should be incorporated into the computational pathologists toolkit.

Keywords: Computational pathology, deep learning, molecular profiling,
explainable AI

1 Introduction

Histopathology image analysis is essential for diagnosing cancer and determin-
ing the course of treatment [1]. There is now growing evidence that deep neural
networks (DNNs) can at least partially automate this procedure. For instance,
DNNs rival expert pathologists in detecting malignant skin lesions [2, 3], diag-
nosing diabetic retinopathy [4–6], and detecting breast cancer [7, 8]. In each of
these cases, DNNs learned to solve straightforward but time-consuming tasks
that are already within the expert physician’s repertoire. However, there is now
a growing number of reports that DNNs are also capable of solving tasks that
are difficult or impossible for pathologists to solve by visual analysis alone.
These tasks include profiling the genome of a tumor [9–12] and identifying the
originating tissue for cancer of unknown primary [13, 14] (CUP) from tissue
morphology. Underlying these findings is the assumption that histopathol-
ogy images depict patterns of morphological features that are impossible for
experts to detect by eye, but which DNNs have the capacity to learn to identify.
This assumption has not been systematically tested, raising the possibility that
DNNs solve histopathological tasks by exploiting morphology that is indirectly
or spuriously related to disease.

The trustworthiness of DNNs is an open problem in computer vision
because DNNs often exploit idiosyncratic or spurious correlations between
images and labels to solve visual tasks [15, 16], a strategy which can lead to
high accuracy on a single benchmark dataset but fails to hold up under more
rigorous testing. Such a reliance on spurious features has caused many notable
errors in estimating the abilities of animals and machines. For example, the
notable case of “Clever Hans” [17], the horse who relied on nonverbal cues from
his trainer to solve simple arithmetic, has been evoked as an analogue for the
proposensity of the learned strategies of DNNs to be misaligned with humans
[16]. To avoid such errors when developing DNNs for clinical applications, it is
standard practice to validate models by visualizing the morphological features
that drive their decisions [9, 11, 12, 18–22]. If a model relies on similar morpho-
logical features as an expert pathologist for a single well-defined task, the visual

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2022. 

this version posted April 22,; https://doi.org/10.1101/2022.04.21.489110doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.21.489110


Deceptive learning 3

strategy it has learned for histopathological analysis is aligned with humans
and trustworthy. While this approach is effective for comparing the strategies
of humans and machines on established histopathological analysis tasks like
tumor detection, it is poorly suited for tasks that are difficult or impossible
for expert pathologists, which do not have established morphological criteria.
Indeed, for difficult tasks like molecular profiling from hematoxylin and eosin
(H&E) slides, the features DNNs use to render their decisions are often pre-
sented without any biological ground-truth for comparison [9, 11, 12, 18–22],
possibly because the appropriate biological data is impossible or very costly to
acquire. Here, we challenge this standard for assessing DNN visual strategies
in histopathological image analysis to identify tasks where they are trustwor-
thy or deceptive. If a DNN is trustworthy, its visual strategy will closely align
with expert pathologists on standard tasks, or reflect novel disease-relevant
features on tasks that are difficult or impossible for expert pathologists. On
the other hand, a deceptive DNN will rely on visual features that are unrelated
to the underlying biology and ultimately useless for the clinic or research.

We systematically test the trustworthiness of DNNs by measuring the
visual strategies they learn after being trained to solve multiple histopathol-
ogy analyses ranging in difficulty, from straightforward tumor detection to
tasks that are potentially impossible for expert pathologists: determining the
molecular profile and primary tissue of a tumor (CUP). Next, we develop a
standardized evaluation framework to distinguish between trustworthy and
deceptive visual strategies of DNNs trained to automate these analyses. Our
general approach is to infer the tissue morphology driving DNN decisions,
then compare this morphology to gold-standard diagnostic criteria for the
same task. For molecular profiling, where there is no such gold standard —
common wisdom is that expert pathologists cannot do this from tissue mor-
phology alone — we use laser capture microdisection (LCM [23]) to collect
ROI-based genomic labelings on adjacent WSIs to ones for which we have
full-slide genomic labels. For determining the primary tissue of a tumor, we
restrict our analysis to tumor subtypes that contain no tissue-specific features.
Our approach fills a void in the rapidly growing field of deep-learning-based
histopathological image analysis: revealing tasks that are vulnerable to decep-
tive learning and as of now unsuitable for automation with state-of-the-art
deep learning models and training routines.

2 Results

Overview

We investigated the trustworthiness of DNNs trained for histopathological
analysis by developing a standardized evaluation framework, which consists
of two steps. Step 1: models are tested within and outside of the training
distribution to identify trivial shortcut strategies by measuring generalization
performance. Step 2: the morphological features each model relies on for
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4 Deceptive learning

solving a task are inferred, validated for their importance to a model’s deci-
sions, then compared to the task’s gold-standard diagnostic criteria to detect
deceptive visual strategies.

We scrutinize four popular DNNs trained to solve multiple image analysis
tasks posed on a novel dataset of 221 histology WSIs. These WSIs depict H&E
stained formalin-fixed paraffin-embedded (FFPE) tissue from 182 patients
diagnosed with lung adenocarcinoma at the Moffitt Cancer Center (Methods).
We refer to this dataset as the Moffitt dataset. Our DNNs were 18, 34, and
50-layer versions of the ResNet V2 [24] and the ShuffleNet V2 [9, 11, 24].

Each of the DNNs was trained to solve three analysis tasks posed on lung
adenocarcinoma slides that range in difficulty for expert pathologists, from
potentially impossible to a standard histopathological analysis: (i) molecu-
lar profiling of KRAS versus EGFR mutated tumor (KRAS-mutation), (ii)
determining the primary tissue of a tumor (CUP), and (iii) classifying lung
adenocarcinoma versus benign tissue (tumor detection, task denoted as tumor-
normal). As detailed in the results, we utilized a combination of molecular and
expert pathologist annotations in order to pose these three distinct tasks on
the same slides. For each task, we analyzed the performance and interpretabil-
ity of the four DNN architectures on WSIs from our novel “Moffitt dataset,”
which was held out from training or model selection (Figure 1). To measure
out-of-distribution generalization, we tested models on the public TCGA slide
image dataset (173 total slides; https://www.cancer.gov/tcga), which includes
clinical, genomic, and histologic data for lung adenocarcinoma.

Each WSI in the Moffitt dataset and TCGA yielded, on average, about
2,000 non-overlapping 512-pixel × 512-pixel image patches. We partitioned
WSIs from the Moffitt dataset into separate cross-validation folds for training,
model selection (validation), and testing (each fold contained unique WSIs, see
Methods). Models were then trained and evaluated on image patches extracted
from these WSIs, as is standard practice in the field due to the computational
complexity of training directly on WSIs [9, 11, 12, 18–22].

Task 1: DNNs trained for molecular profiling are
vulnerable to deceptive learning

We began by analyzing the performance of DNNs trained to do molecular
profiling on H&E WSIs. Molecular profiling is an important step for deter-
mining the course of treatment for the disease which requires expensive and
time-consuming genomic panels. Recent work has shown that genomic muta-
tions can be reliably decoded from morphology by DNNs [9, 11, 12]. Are these
DNNs and their putative successes trustworthy or deceptive?

We modeled clinically significant genes to remain consistent with prior work
on the task [9, 11, 12], focusing specifically on whether or not DNNs could
discriminate mutations of genes that do not co-occur in the Moffitt dataset
or TCGA: KRAS and EGFR. We trained models for binary classification,
where KRAS mutations were the positive class, and EGFR mutations were the
negative class. All image patches for training and evaluation were taken from
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Deceptive learning 5

Fig. 1 Figure 1. Overview of classification tasks and deep learning framework.
(A) Schematic showing the three classification tasks. For the KRAS-mutation task data, we
divided our dataset into WSIs from tissue that had mutations in the KRAS gene (KRAS+)
and WSIs from tissue that did not have mutations in the KRAS gene (KRAS-). We collected
additional sequencing information using laser capture microdissection (LCM) to dissect and
sequence arbitrarily selected regions of interest (depicted by boxes 1-3) for mutations in
KRAS. For the primary-metastatic task data, we identified WSIs that were biopsied from
the lung (primary) or from other sites but with a known pulmonary origin (metastatic).
Only tissue inside the tumor annotated area was used in this task. Lastly, for the tumor-
normal task data, we identified tumor and normal tissue in all whole slide images (WSIs)
using pathologist tumor annotations. Tumor tissue is colored pink, and normal tissue is
colored blue. (B) All WSIs were tiled into non-overlapping 256 µm × 256 um tile images,
corresponding to 512-pixel × 512-pixel image patches at 20× magnification. Each image
patch was assigned a different ground-truth label for each task. The image patches were
divided into training, validation, and test folds; each patient’s image patches belonged to a
single fold. The image patches in the training and validation sets were used to train and select
hyperparameters, whereas image patches from the test fold were used for model evaluation.

inside tumor-annotated regions of WSIs. Models were evaluated by recording
area under the receiver operator characteristic curve (ROC-AUC) and class-
weighted accuracy.

To evaluate DNNs on molecular profiling, we first measured their per-
formance within and outside of the training distribution. All DNNs were
significantly above chance at detecting KRAS mutations at the slide-level in
the Moffitt dataset (p < 0.05 over 1000 bootstrap replicates, where chance
= 0.5 for both weighted accuracy and ROC-AUC; Table 1). There were no
significant differences between the performance of the models, and they all
rendered similar decisions on the task, indicating that model architecture
differences did not translate into qualitatively different task strategies (all
model-to-model Pearson correlations exceeded ρ = 0.68, p < 0.001, SI Table
1). The models also performed significantly above chance when tested out-
of-distribution on the TCGA (SI Table 2). In other words, all of the DNNs
we tested learned similarly generalizable strategies for detecting KRAS at the
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6 Deceptive learning

Analysis Score ResNet-18 ResNet-34 ResNet-50 ShuffleNet

WSI (whole-slide level)
Weighted accuracy 0.59 [0.52 - 0.68]* 0.60 [0.53 - 0.68]* 0.60 [0.53 - 0.69]* 0.63 [0.54 - 0.71]*
ROC-AUC 0.69 [0.59 - 0.78]** 0.66 [0.55 - 0.76]* 0.70 [0.60 - 0.78]** 0.67 [0.57 - 0.77]**

LCM Patch
(localization)

Weighted accuracy 0.51 [0.45 - 0.57] 0.38 [0.33 - 0.44] 0.45 [0.40 - 0.50] 0.47 [0.41 - 0.53]
ROC-AUC 0.50 [0.43 - 0.57] 0.40 [0.33 - 0.47] 0.44 [0.37 - 0.50] 0.46 [0.39 - 0.53]

Table 1 DNNs successfully detect KRAS mutations at the whole-slide level, but fail to
localize KRAS mutations within a slide. Slide predictions are calculated from the median
of logit scores across all image patches in a WSI. LCM-captured image patches are
evaluated independently. For each metric, we report the 95% confidence interval using 1000
bootstrap replicates. Statistical testing against chance accuracy (0.5) is denoted by
asterisks: ** = p < 0.01, * = p < 0.05.

WSI level. These results are consistent with multiple other applications of
DNNs for molecular profiling10–12, which indicate that DNNs are significantly
above chance in profiling WSI genomes, while still far below the error rate of
standard molecular tests (most assays can detect somatic mutations at greater
than 95% sensitivity and specificity [25]).

The above-chance generalization performance of the DNNs means that it
is unlikely that they learned to detect KRAS through a trivial shortcut [15],
such as experimental batch effects or systematic variations in how the slides
of different patients were handled and prepared. However, it is still possible
that the DNNs learned to rely on a deceptive visual strategy, exploiting visual
features that are correlated to KRAS mutations but not related to the under-
lying biology. Because there are no gold-standard morphological phenotypes
for different mutations, it is difficult to detect such deceptive learning on this
task.

To investigate whether our DNNs learned deceptive visual strategies for
detecting KRAS mutations, we gathered additional sequencing data on 20
patient WSIs. We collected 10-20 1x1mm regions-of-interest (ROIs; n=216)
at positions distributed within the tumor of each of these WSIs using LCM.
Next, we sequenced each ROI for KRAS and EGFR mutations (see Methods),
providing us an estimate of the spatial distribution of these mutations in the
WSIs. There were 90 patches with KRAS mutations, 109 patches with EGFR
mutations, and 17 wild-type (WT) patches without mutations in either gene.
KRAS mutations were spatially heterogeneous, and four of the slides that were
labeled as KRAS mutation based on their whole-slide panel contained regions
of wild type (17 total patches).

No DNN exceeded chance-level on the LCM patches, and all performed
significantly worse than on WSIs (Table 1 and Figure 2). These results raised
the question: what morphology had the DNNs learned to rely on to perform
above chance at the level of WSIs?

A popular approach to interpret DNN decisions is to compute the gradi-
ent of a model’s output (z) with respect to the input image (x): ∂z

∂x . This
vector of gradients captures the importance, or “saliency” of every pixel in
the input image to the model’s decision for that image, where larger (abso-
lute) gradient values denote more importance [26–29]. Model saliency maps
are noisy estimates of feature importance, and subsequent advancements in
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Deceptive learning 7

Fig. 2 Figure 2. DNN KRAS mutation localization is inconsistent with LCM
sequencing. (Left and middle) H&E stained whole-slide images with tumor outlined in
black, and boxes representing locations of LCM, which are colored according to their molec-
ular labels. The left panel depicts the ground truth labels, and the middle the predictions
of the ShuffleNet model, which accurately classifies three LCM patches as KRAS negative
(green) and incorrectly classifies the rest of the seven patches as KRAS positive (blue). On
the right, the heatmap is colored according to the ShuffleNet model score; a model score of
0 (maroon squares) corresponds to no KRAS mutation detected and 1 (yellow squares) cor-
responds to KRAS mutation detected. Areas outside of the annotated tumor or where there
were no cells are white. Despite the heterogeneity of the model’s predictions at the LCM
level, the model’s whole slide decision correctly identifies this as a KRAS wild-type tumor.

explainable artificial intelligence have involved modifications of the gradient
to reduce noise in these maps. A particularly effective approach for biomedical
imaging [30] is Guided Gradient-weighted Class Activation Mapping (Grad-
CAM [31]), which we use here to identify morphological features that drove
DNN molecular profiling decisions. We specifically focus on interpreting Shuf-
flenet’s decision making, because it performed best of the models we tested at
detecting KRAS mutations on WSIs.

We applied GradCAM to the predictions of Shufflenet on WSIs in the Mof-
fitt test set. In order to identify the types of features the model relied on for its
decisions, we also passed these slides through HoVer-Net [32], a DNN trained
to segment nuclei in H&E images. Nuclear features in H&E slides are com-
monly used to assess a host of different diseases [33]. By measuring the overlap
between GradCAM maps for KRAS detection and nuclear features, we rea-
soned that it would be possible to measure the extent to which model decisions
relied on each type of feature. On average, only 14% of model GradCAM pix-
els for KRAS detection overlapped with tumor nuclei predictions (this metric
ranged from 11-15% for the three other models).
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8 Deceptive learning

We also explored the correlation between model decisions and histologi-
cal subtype, a morphological feature that is known to be weakly associated
with KRAS mutations [21]. Histological subtyping, unlike molecular profiling,
is straightforward for expert pathologists and is detectable by DNNs [34]. It
is possible that DNNs trained for KRAS detection could not find strong mor-
phological signals for KRAS, and instead learned to rely on weakly correlated
subtypes. If this is the case, the drop in DNN performance when tested on
WSIs versus LCMs could be explained by the correlation strength — or lack
thereof — between subtypes and mutations on WSIs versus LCMs. To test for
this possibility, we annotated the histological subtypes present in each LCM
patch image and the WSIs they came from. We found six total subtypes: aci-
nar, lepidic, solid, papillary, micropapillary, and mucinous. We next computed
the correlations between these subtypes and the presence of KRAS mutated
vs. KRAS wild-type in the LCMs and WSIs.

We used logistic models to regress the presence or absence of a KRAS
mutation in each WSI onto its annotated histological subtypes. Consistent
with prior work [21], we found a significant (one-tailed) association between
the micropapillary subtype and KRAS wild-type (z = −1.675, p = 0.044),
and a significant correlation between the solid subtype and KRAS mutations
(z = 2.026, p = 0.026). However, after repeating this analysis on the LCM
patch images, we found no significant correlations between histological sub-
type and KRAS mutated or KRAS wild-type. This means that a model which
has learned to detect KRAS mutations by focusing on subtype at the whole
slide level should fail to generalize to LCM patches, where these correlations
are absent. We verified that the Shufflenet adopted this strategy by fitting a
linear model to regress the WSI histological subtypes onto its KRAS mutation
predictions (in logits). The model’s predictions were significantly correlated
with the solid subtype (z = 1.814, p = 0.035) despite being trained to detect
KRAS mutations, validating our hypothesis that these models tend to rely on
histological subtype to detect mutations.

DNNs are significantly above chance at detecting mutations from histology
in WSIs because they learn to classify histological subtypes that are correlated
with those mutations. Subtypes are straightforward to classify by eye for expert
pathologists and are only weakly associated with genetic mutations. As we
demonstrate, these correlations exist at the whole-slide level but disappear at
granular levels of analysis. That DNNs learn to rely on subtypes as a shortcut
for molecular profiling means that their predictions of morphology related to
genetic mutation are deceptive. This is especially an issue when models are
asked to render decisions at a different level of analysis than they were trained,
such as predicting mutations for particular cells after being trained on whole
slides.
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Fig. 3 Figure 3. Deep learning models use nuclear and non-nuclear features
to identify the primary tissue of a tumor. The first row shows three representative
tile images from (A) metastatic and (B) primary tile images (WSIs). Guided GradCAM
maps from ResNet34 for each tile image are shown in the second row. The last row depicts
GradCAM maps with segmented nuclei outlined in red..

Task 2: DNNs can reliably identify the primary tissue of
a tumor

Are there other tasks that are difficult or impossible for expert pathologists
that DNNs can learn to reliably solve? To address this question, we next asked
how effectively DNNs can classify the primary tissue of a tumor. Cancer of
unknown primary (CUP) describes tumors for which the primary anatomical
site cannot be determined. Because this information is critical for modern
therapeutics, clinicians often turn to expensive and time-consuming genetic or
transcriptomics analyses. However, it has recently been suggested that DNNs
can diagnose the origin of the primary tumor from morphology alone [13] even
though expert pathologists are incapable of doing this task by eye.

We tested whether the ability of DNNs to detect the primary tumor origin
is trustworthy or not by posing a version of the task on the same lung adenocar-
cinoma slides we used to investigate molecular profiling. We first split up the
slides into primary and metastatic lung adenocarcinoma. Next, we restricted
our set of slides for model training to only contain those which had tumors
composed of the solid histological subtype, which controls against the presence
of trivial features for detecting tissue type. We extracted image patches from
tumors in these slides for model training. Finally, we developed an additional
test set of slides containing image patches only from sheets of tumor cells in
the solid subtype tumor, which is the strictest possible criterion for controlling
tissue-specific shortcuts for solving the task.

As with the molecular profiling task, we first measured the generalization
performance of DNNs trained to solve this task. All of the DNNs performed
significantly above chance in differentiating primary and metastatic lung ade-
nocarcinoma in the Moffitt dataset, reaching between 60% and 72% accuracy
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10 Deceptive learning

Analysis Score ResNet18 ResNet34 ResNet50 ShuffleNet

Tile
Weighted accuracy 0.60 [0.60-0.61]** 0.72 [0.71-0.72]** 0.69 [0.68-0.69]** 0.71 [0.71-0.72]**
ROC-AUC 0.62 [0.61-0.62]** 0.82 [0.81-0.82]** 0.74 [0.73-0.74]** 0.73 [0.72-0.73]**

Table 2 All four DNNs can differentiate primary lung adenocarcinoma images from
metastatic adenocarcinoma images. For each metric, we report the 95% confidence interval
using 1000 bootstrap replicates. Statistical testing against chance accuracy (0.5) is denoted
by asterisks: ** = p < 0.01.

(Table 2), and rendering similar decisions to each other: the Pearson corre-
lation coefficient between all models’ decisions ranged between 0.74 and 0.77
(p < 0.001 for all model pairs according to randomization tests [35]).

We next evaluated out-of-distribution generalization of these DNNs on the
TCGA dataset. All subtypes were included as we did not have histological
subtype annotations for many of the WSIs in the TCGA dataset. In addition,
since the TCGA only contains primary lung adenocarcinoma, we measured
performance by recording true positive rates. All models maintained true pos-
itive rates that were significantly greater than chance in this generalization
task (p < 0.05), with tile true positive rates ranging from 70% to 84%.

We focus our analyses here on the best performing ResNet34 (see SI for the
other models) and adopted the same evaluation strategy from the molecular
profiling task to identify and analyze morphological features that the DNNs
use for differentiating primary from metastatic lung adenocarcinoma. However,
while it is apparent that the model learned to target tumor cells, the differences
between the features selected in its GradCAMmaps for primary and metastatic
tissue was small, with less fibrotic tissue in the metastatic versus primary
images (Figure 3).

In the absence of obvious morphological criteria, we next tested whether
nuclear features were driving model decisions. We found that model perfor-
mance was significantly reduced when we masked DNN activities correspond-
ing to the locations of nuclei segmented by HoVer-Net (unmasked weighted
accuracy 71.3% vs. nuclei masked weighted accuracy 63.9%, p < 0.05) but the
performance remained significantly above chance. These results suggest that
the model learned a visual strategy for classifying the primary tissue of a tumor
which relied on both nuclear and non-nuclear features.

To summarize, we found that DNNs can identify a tumor’s primary tissue
by leveraging a strategy that is at least partially trustworthy. When tested
on sheets of solid subtype tumor cells, models were surprisingly significantly
above chance, utilizing a combination of nuclear and non-nuclear features to
achieve this performance. Our findings on this task indicate a more bullish
outlook for DNNs trained to identify a tumor’s primary tissue than those
trained for molecular profiling (Task 1). Our models predict that there are
reliable morphological features for identifying a tumor’s primary tissue even
though the task is exceedingly difficult or impossible for expert pathologists.
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Fig. 4 Figure 4: Prediction heatmaps for ResNet18 trained to detect lung ade-
nocarcinoma. Two whole slide images (WSIs) of lung adenocarcinoma are annotated for
tumor regions in blue. The heatmaps in the right column are colored according to the
ResNet18 model score. A model score of 0 corresponds to benign tissue and 1 corresponds
to tumor tissue.

Task 3: DNNs learn a robust strategy to detect tumors

Finally, we turned to a well-studied task in computational pathology: detecting
lung adenocarcinoma in WSIs. This task is routine for expert pathologists,
and DNNs trained to solve it have rivaled the performance of experts [9, 36–
38]. To test whether or not DNNs adopt deceptive visual strategies to solve
tumor detection, we posed the task on the same datasets we used for molecular
profiling and classifying primary tissue.

We trained and evaluated models on image patches extracted fromWSIs, as
was done in prior work [9, 36–38]. After training and evaluating on the Moffit
dataset, we found that the ShuffleNet and all three ResNets performed simi-
larly to the state of the art [9, 36–38], reaching approximately 88% weighted
accuracy and 0.95 AUROC (Table S4). We focused subsequent analyses on the
best-performing model, the ResNet18.

When evaluated out-of-distribution on lung adenocarcinoma WSIs in
TCGA, the ResNet18 once again performed well, reaching nearly 82% accu-
racy and 0.90 AUROC (Table S4). This decrease in performance is relatively
small but statistically significant (95% confidence intervals do not overlap,
p < 0.05), and likely reflects experimental measurement differences between
the two datasets, such as their use of different staining protocols [39]. Notably,
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12 Deceptive learning

Fig. 5 Figure 5: Deep learning models use nuclei to differentiate between tumor
and benign tile images. A. Representative tile images inside the tumor-annotated area
with high model scores (higher model score = more tumor-like). All model scores are greater
than 0.999. B. Tumor class GradCAM maps for each of the tile images in panel A. The
GradCAM signals often overlap with cell nuclei, and more specifically tumor cell nuclei. C.
Representative tile images outside the tumor-annotated area with low model scores (lower
model score = more benign-like). All model scores are less than 1e-3. D. Benign class
GradCAM maps for each of the tile images in panel C. The GradCAM signals often overlap
with cell nuclei and outline alveolar septal tissue.

however, the model’s out-of-distribution generalization is still significantly bet-
ter than chance (p < 0.001). As in the other two tasks, all models trained for
tumor detection rendered similar decisions to each other on the Moffitt dataset
and out-of-distribution generalization on the TCGA dataset. The Pearson cor-
relation coefficient between models’ decisions on every WSI was between 0.79
and 0.89 for both datasets (p < 0.001 for every pair).

The ResNet18 accurately localized tumor tissue in Moffitt and TCGAWSIs
(Figure 4). Image patches from the Moffitt dataset, for which ResNet18 is
most confident contain tumor tissue, also have morphological features asso-
ciated with lung adenocarcinoma39, such as irregular and enlarged nuclei,
prominent nucleoli, and high nuclear to cytoplasmic ratio (Figure 5A). Mof-
fitt image patches which ResNet18 is most confident are benign, depict benign
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alveolar septa (the tissue that separates the alveoli, or air sacs) with empty
air space and maintained structure, lined by benign type I (flat cells) and
type II (cuboid) epithelium (Figure 5C). Overall, the distinguishing features
in the tile images with high and low model scores correspond to features that
pathologists use to distinguish between malignant and benign tissue [38].

To establish whether nuclear features were driving model decisions, we
again masked DNN activities corresponding to the locations of nuclei in image
patches. Ablating all tumor nuclei significantly reduced weighted accuracy
from 88.3% to 72.4%. We repeated this experiment by permuting the tumor
nuclei masks; the accuracy dropped to 85.7%. Ablating all nuclei reduced
weighted accuracy to chance-level at 49.8%, while randomly permuting the
masks reduced accuracy to 59.2%.

Lung adenocarcinoma classification with DNNs is trustworthy. All DNNs
we tested perform well both within and outside of the training distribution,
and render similar decisions (model-to-model correlations are all between 0.79
and 0.89, p ¡ 0.001). These decisions are driven by, and depend on, nuclear
morphology that is consistent with textbook and gold-standard criteria for
detecting lung adenocarcinoma in histopathology. One possible explanation
for the consistent and strong performance of DNNs on lung adenocarcinoma
classification is that annotations are at the pixel level, rather than at the
whole-slide level like in molecular profiling or classifying the primary tissue of
a tumor. This level of granularity in annotations on training data has been
found to drive DNNs towards consistent and generalizable visual strategies in
object classification tasks29 and may be necessary to avoid deceptive learning.

3 Discussion

There is growing consensus that DNNs can automate tasks on biomedical
imaging data, achieving performance that matches or exceeds human experts
[30, 40]. It is also becoming clear that these DNN achievements are due to
visual strategies that are not necessarily aligned with those used by human
experts [26, 28, 30]. When humans and machines use different strategies to
solve tasks it can be a positive development, with the chance to reveal new
insights into biology, and generate testable hypotheses for understanding the
development of disease31. But there is no guarantee that the visual features
that machines but not humans use to solve tasks are meaningful. There has
been extensive work demonstrating that DNNs are in fact vulnerable to learn-
ing shortcuts in standard computer vision tasks posed on natural images, like
object recognition [15, 41]. These shortcuts represent visual strategies that
achieve high performance by focusing on biases that are unique to the train-
ing and testing data — from low-level cues like lightness, contrast, or color to
object-centric cues like their size in pixels or common appearance in a specific
context. However, little is known about DNN shortcut learning in the context
of biomedical imaging, and specifically, histopathological analysis. Through
our experiments, we have begun to address this critical question of shortcut
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learning in histopathological analysis, and demonstrated the steps needed to
avoid it. In contrast to proposals from computer vision that shortcut learn-
ing can be avoided by simply testing model generalization out-of-distribution
[15], we find that it is also essential to analyze the morphological features used
by models to solve tasks to ensure that their performance is not exploiting a
biologically trivial and ultimately deceptive visual strategy.

There is now evidence that DNNs can solve histopathological tasks that
expert pathologists cannot. One foundational example of this trend was the
recent demonstration that DNNs can automatically learn molecular profil-
ing from morphology [9, 11, 12]. These models could potentially revolutionize
oncology, providing rapid accurate prognoses that replace the expensive and
time-consuming molecular panels that are standard in the field, and opening
up new vistas for studying cell-cell interactions in the development of cancers.
However, upon further examination of these findings, we see evidence that
DNNs learn molecular profiling by focusing on a shortcut rather than a pre-
viously unknown morphological pattern. DNNs render molecular decisions by
categorizing the morphological subtype of tumors, which has a weak associa-
tion with genomic mutations that has been known for at least a decade [21].
DNNs learn to rely on this shortcut because they are trained to associate all
of the potentially genetically heterogeneous image patches from a single WSI
with a single sequence taken from the entire WSI. When mutation predictions
from these models are tested at a more granular level than the WSI, such as
the LCM image patches we introduce in this work, the correlation between
subtype and mutation is weakened which causes model performance to drop to
chance. DNNs learning to focus on subtype rather than a stronger morphologi-
cal signal for molecular profiling is not necessarily a shortcut — subtype is not
completely spurious — but understanding this visual strategy puts a low ceil-
ing on the utility of DNNs for molecular subtyping using existing datasets and
training routines. For this reason, we refer to this DNN strategy as deceptive,
and significant work is needed to develop trustworthy DNNs for extracting
genomic insights from morphology. We release all the images, labels, and LCMs
from our Moffitt Dataset to support this goal.

Not all tasks that are difficult or impossible for expert pathologists are
vulnerable to shortcut learning in DNNs. When training DNNs to identify
the originating tissue for cancer of unknown primary [13, 14] (CUP) on the
same WSIs we used for molecular profiling, we found that models learned a
robust visual strategy that did not exploit shortcuts. The models learned a
novel combination of nuclear and non-nuclear features to solve the task, which
generalized effectively, and which will need additional experimental study to
understand their relationship to the development of lung adenocarcinoma.
Overall, these findings indicate that recent findings on the ability of DNNs to
learn to identify the originating tissue of CUP [13, 14] are trustworthy and an
important line of future computational research.

Our success on tumor detection, while not novel, points to a general strat-
egy for ensuring that DNNs are trustworthy in histopathological analysis. In
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that task, unlike molecular profiling or CUP, annotations are provided at the
level of pixels in WSIs. Such a “per-pixel” labeling strategy has proven suc-
cessful in training DNNs for segmentation tasks on natural images, and can
promote visual strategies that align with human perception [28, 42]. When
this level of extensive model supervision is not available, because such data
is expensive or difficult to gather, the explainability framework we laid out in
this paper is necessary for distinguishing between trustworthy and deceptive
DNN visual strategies.

Our work shows the utility and dangers of applying deep learning models
to histopathology tasks. When training DNNs for histopathological analysis,
practitioners should have access to high-quality labeled data as well as explain-
able artificial intelligence methods to build robust and clinically useful models.
Our mixed findings on the trustworthiness of recent efforts in histopathologi-
cal analysis underscores this message, and indicates that the field needs a far
greater emphasis on model interpretability to create automated systems that
can aid biomedical research and increase the efficiency of expert pathologists
in the clinic.

4 Methods

Patient cohorts

Moffitt cohort. The Moffitt cohort includes patients at Moffitt Cancer Cen-
ter (MCC) diagnosed with adenocarcinoma of pulmonary origin that also have
associated molecular profile data from 01/01/2011 to 06/09/202044. Partic-
ipants were included if they satisfied the following criteria. (i) The patient
must have a pathologic diagnosis of adenocarcinoma with a pulmonary ori-
gin. The adenocarcinoma may involve any organ as long as pathology reports
it as primary lung adenocarcinoma (e.g., a brain tumor that is pathologi-
cally confirmed as metastatic lung adenocarcinoma). (ii) The aforementioned
adenocarcinoma must have had any sort of molecular profiling demonstrating
either the presence or absence of KRAS mutations or EGFR mutations. (iii) A
tissue glass slide associated with the formalin-fixed paraffin-embedded (FFPE)
tissue block sent for molecular testing must readily be available through the
MCC Pathology Department. Participants were excluded from the cohort if
they satisfied any of the following criteria: (i) they had a concurrent patho-
logic diagnosis of another cancer, (ii) no associated molecular data, (iii) or
mutations in HRAS and NRAS genes.

Slides that passed the inclusion/exclusion criteria were reviewed for quality
and scanned at 20× via the Aperio AT2 high-volume digital whole slide scan-
ner. This digitization process produced a digital SVS file per slide scanned.
These SVS files are referred to as whole slide images (WSIs). The WSIs were
annotated for tumor regions of interest areas using a virtual pen via the Ape-
rio ImageScope pathology slide viewing software. The final annotations were
stored in XML files.
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TCGA cohort. Diagnostic slides for all TCGA lung adenocarcinoma
patients were downloaded from the GDC (https://gdc.cancer.gov) in SVS
format. Seven patients were excluded secondary to an unacceptable prior
treatment, an item not meeting the study protocol. Nine SVS files without
magnification data were excluded. Ten SVS files with extensive pen marks
were excluded.

Molecular labels

Moffitt cohort. The associated molecular profiling for each WSI was
obtained for each patient through requests made to Moffitt’s Collaborative
Data Services (CDS). The data came from four different sequencing strategies:
FoundationOne CDx assay (Foundation Medicine, Cambridge, MA, USA),
Moffitt STAR, TruSight Tumor 15 (Illumina, USA), and in-house pyrosequenc-
ing [43]. Only mutations that were labeled as clinically significant by each
respective kit were included in the final dataset.

TCGA cohort. TCGA molecular alteration labels were derived from the
public mutation annotation file prepared by [44]. All intronic and silent muta-
tions were excluded. Patients with mutations in EGFR as well as in a RAS
family gene (KRAS, NRAS, HRAS) were excluded. To match our Moffitt
cohort, we excluded patients without clinically significant mutations in either
EGFR or KRAS (as determined by COSMIC annotations).

Laser capture microdissection

Twenty-one slides with minimal histological artifacts and abundant tissue were
chosen (11 with KRAS mutations and 10 EGFR mutations). For each slide,
10 to 20 1mm × 1mm regions of interest (ROI) in the tumor-annotated area
were further annotated. The ROIs were spatially distributed throughout each
slide at randomly selected locations within the tumor.

Unstained FFPE tissue sections, prepared on polyethylene napthalate
membrane slides, were depariffinized and dehydrated by dipping in 100%
xylene for two minutes. Slides were allowed to air dry for five minutes. Selected
regions of interest (ROIs) were micro-dissected from the tissue using an
Acturus XT Laser Capture Microdissection (LCM) system (Life Technologies
Corp., Carlsbad, California) with UV laser cut only. The UV laser precisely
cut the PEN membrane around the ROI and the micro-dissected tissue was
transferred to a 0.5ml microfuge tube. All ROIs micro-dissected in the study
were 1 mm2 in size and matched to ROIs annotated by the study patholo-
gist on WSIs representing a sequential section of the tissue. Each ROI was
sequenced for KRAS and EGFR mutations using pyrosequencing.
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Image pre-processing

For the Moffitt cohort, H&E FFPE tissue slides were scanned using the Aperio
AT2 high-volume digital whole slide scanner at 20×magnification, correspond-
ing to a resolution of 0.5 mu-m pixel-1. For the TCGA cohort, the H&E
FFPE tissue slides were downloaded in SVS format from the GDC. Each whole
slide image (WSI) was divided into 512-pixel × 512-pixel tiles with no over-
lap between adjacent tiles. Tiles with more than 50% background pixels were
removed (background pixel is defined as a pixel with a gray-scale pixel value
greater than 220). Macenko stain normalization [45] was applied to each tile
image using a reference WSI to correct for differences in the staining process.
Tile images with low contrast or empty tissue masks were removed. For each
whole slide image (WSI), the tumor area was annotated by our pathologist
(DSV) at a 2× to 4× magnification using the Aperio ImageScope pathology
slide viewing software. The tile images were assigned a ”tumor” or ”benign”
label if the entire image was inside or outside the tumor-annotated area, respec-
tively. The “tumor” tile images were assigned a “primary” or “metastatic”
label if the WSI tissue was derived from the lung or another tissue, respectively.

Model training and hyperparameter tuning

We trained and tested four different deep convolutional neural networks
(CNNs) on tile images for the three histopathological analysis tasks described
in Results using PyTorch. The four different architectures – ResNet18,
ResNet34, ResNet50 [24], and Shufflenet-V2 [46] – were chosen because of their
widespread use in computer vision and their recent applications to histopathol-
ogy data. All models were pre-trained on the ImageNet dataset [47]. The last
classification layer in each model was replaced with a fully connected linear
layer with one output node, and the weights for this linear layer were initialized
randomly.

The training data was augmented using random horizontal and vertical
flips. Training tile images were sampled inversely proportional to the frequency
of their labels to control for imbalance labels in individual tasks. Models were
trained with batches of 64 tile images (ResNet50 runs had a mini-batch size
of 32 tile images due to memory constraints). Model weights were optimized
using binary cross-entropy, the Adam optimizer [48], and a learning rate of 1
× 10e-4, which was the best-performing learning rate on pilot experiments on
the molecular profiling task.

For the tumor-normal and primary-met classification tasks, each neural
network was trained for three epochs and tested on validation tile images every
200 mini-batches (400 for ResNet50). The final weights for each model were
chosen based on the training step that yielded the lowest validation loss. For
the molecular classification task, the final weights for each model were chosen
based on the training step that yielded the highest slide-level area under the
receiver operating curve (AUROC), as was done in prior work on this task [9].
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Cross-validation

To ensure the robustness of model results, cross-validation data folds were cre-
ated for each classification task. Each model was trained, tuned, and weights
were selected using the training and validation data only. All results are
reported on the test data averaged across the cross-validation folds.

For the molecular profiling task, we discarded three slides with no tile
images inside the tumor-annotated area. We then removed any WSI from a
patient that has LCM data; 182 WSIs remain. All WSIs from patients with
multiple WSIs (46) or metastatic WSIs (72) were added permanently to the
training set. The remaining 85 WSIs consisted of 33 EGFR WSIs and 52
KRAS WSIs. Nineteen KRAS mutated WSIs were chosen randomly and added
permanently to the training set in order to balance the dataset. The rest of the
WSIs were divided into six different splits of 138 training WSIs, 22 validation
WSIs, and 22 test WSIs. The validation and test sets contain an equal number
of KRAS mutated and KRAS wild-type WSIs.

To test localization accuracy of models trained for molecular profiling, we
augmented the training and test sets of folds 1-5 with 21 WSIs with LCM data
(11 with KRAS mutations and 10 without). One of these WSI with a KRAS
mutation was randomly chosen and permanently added to the training set.
The 20 remaining WSIs were split into five balanced sets, each containing 16
training WSIs and four test WSIs, that were added to folds one through five.
All 21 WSIs were added to the training set for fold six.

For the task in which models were trained to identify the primary tissue
of a tumor, three WSIs without any tile images inside the tumor-annotated
were discarded. Out of the remaining 281 WSIs, 72 WSIs from patients with
multiple WSIs were added permanently to the training set. One metastatic
WSI and 45 primary lung WSIs were chosen randomly and added permanently
to the training set. The remaining 100 WSIs (50 primary and 50 metastatic)
were divided into five different splits of 80 training WSIs, 20 validation WSIs,
and 20 test WSIs. The validation and test partitions each contain 10 WSIs
from primary lung tissue and 10 WSIs from metastatic sites to ensure balanced
datasets for evaluation. Like the tumor-normal folds, each of the 100 WSIs was
in a validation split and a test split exactly once.

Lastly, for the task in which models were trained to detect tumor, 148
WSIs from primary lung tissue were considered. Any patient with multiple
WSIs or at least one WSI with tile images only inside or outside the tumor-
annotated area was added permanently to the training set. Of the remaining
93 WSIs, three were randomly chosen to be permanently in the training set.
The 90 remaining WSIs were divided into five different splits of 54 training
WSIs, 18 validation WSIs, and 18 test WSIs. Each of the 90 WSIs was used
in a validation split and a test split exactly once.
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Performance metrics

For each task we calculated weighted accuracy and AUROC, as is standard in
recent work in automating histopathological analysis [9]. Weighted accuracy
is defined as the average of the true positive rate and true negative rate; a
model score of 0.5 is used as the boundary between negative and positive. For
the primary-metastatic task and KRAS-mutation task, we also calculated the
performance metrics at the slide level. Each WSI is assigned a score based on
the median of all the tile-level model scores. All reported performance metrics
were computed using the WSIs in the held-out test set. The model scores are
concatenated across all cross-validation test folds. If a tile image has multiple
model scores because it appears in more than one fold, the median model score
is assigned as the final model score.

Confidence intervals for each metric are calculated by bootstrapping (1000
iterations). For an experiment with N exemplars in the test set, we sampled
N exemplars with replacement. We performed this sampling scheme for 1000
iterations and calculated weighted accuracy and AUROC for each iteration.
The distribution of bootstrapped weighted accuracy and AUROC metrics was
used to identify the 95% confidence intervals.

Grad-CAM maps

For each trained model, we visualized the learned analysis strategies using gen-
erated guided Grad-CAM [31]. This method generates a feature importance
map of the same size as an input image, which indicates the pixels that con-
tributed to the model’s decision for that image. The final convolutional layer
in each model (“conv5” for ShuffleNet and “layer4” for the ResNet models)
was used to generate the Grad-CAM mask, which ignores noisy locations in
the feature importance map. We generated these maps for all tile images in
test sets using code from: https://github.com/kazuto1011/grad-cam-pytorch.

Given an input tile image of size 512 × 512 × 3 (three color channels: red,
green, blue), the output Grad-CAM map has the same dimensions of 512 ×
512 × 3. We processed each Grad-CAM map using the following sequence: (i)
each value in the map was set to its absolute value, (ii) the mean value across
feature channels at every location was stored, yielding a 512 × 512 × 1 map,
(iii) outlier values that were more than three standard deviations away from
the mean pixel value in the map were clamped to three standard deviations,
and finally (iv) the map was normalized to [0, 1] for visualization.

Nuclei segmentation

We used the PyTorch implementation of HoVer-Net to segment and type nuclei
in WSIs. The model was trained on the PanNuke dataset [49]. All tile images
in the tumor annotated regions of WSIs and all LCM patches were processed
using HoVer-Net. The model labels each segmented nuclei as belonging to one
of the following categories: unknown, neoplastic, inflammatory, connective,
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ResNet-34 ResNet-50 ShuffleNet

ResNet-18
0.68 0.90 0.88
- 0.74 0.81

ResNet-50 - - 0.92

Table 3 Model decisions are correlated for the KRAS detection task. Pearson’s
r correlation coefficients are reported for every model pair tested. All correlation
coefficients are statistically significant (p < 0.001).

dead, or non-neoplastic epithelial. We combined the “dead” category with the
“inflammatory” category based on observations by expert pathologists that
the model was misclassifying lymphocytes as “dead”.

Nuclei-gradient score calculation

The nuclei-gradient score is based on the intersection over union (IoU) metric
that is used to assess object segmentation accuracy in computer vision [50]. For
a tile image, we used its Grad-CAM map and the nuclei segmentation results
to calculate a nuclei-gradient score for each type of nuclei. Given a threshold
value between zero and one, all pixels with Grad-CAM map values greater
than or equal to the threshold value were identified. The threshold value was
set at 0.5 for results reported in the main text. To compute the IoU, we first
counted the suprathreshold Grad-CAM map values. This count was used as
the denominator in the IoU. Next, we counted the suprathreshold Grad-CAM
map values that also fell within a segmented nucleus, which was used as the
numerator in the IoU.

Supplementary information

Model misclassifications on tumor detection indicate a
reliable visual strategy

We examined 50 image patches in the Moffitt dataset that were misclassified
in the tumor detection task. Upon closer examination by expert patholo-
gists, model predictions were in fact correct, and the misclassification reflected
imprecise tumor boundaries in the annotations. Indeed, the ground-truth labels
on this task did not have cell-level precision. However, the fact that the models
could overcome such label noise suggests that the task promotes robust visual
strategies.
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Fig. 6 Figure S1: Summary of performance at the slide and patch level for
detecting KRAS mutations in lung adenocarcinoma. Point plots showing the per-
formance metrics of four deep learning models at the slide-level and LCM patch-level. The
level of the performance metrics is shown on the x-axis, and the value of the metric is on
the y-axis. Each point is colored according to the model. The error bars represent the 95%
confidence intervals using bootstrapping.

The results published here are in part based upon data generated by the
TCGA Research Network: https://www.cancer.gov/tcga.
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Jäger, D., Trautwein, C., Pearson, A.T., Luedde, T.: Pan-cancer image-
based detection of clinically actionable genetic alterations. Nat Cancer
1(8), 789–799 (2020)

[12] Fu, Y., Jung, A.W., Torne, R.V., Gonzalez, S., Vöhringer, H., Shmatko,
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