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Abstract 41 

The genomic landscape of advanced renal cell cancer (RCC) was characterized for 91 patients to 42 

identify actionable targets and signatures by combining whole-genome sequencing (WGS) with 43 

matched RNA sequencing (RNA-Seq). WGS data were analyzed for somatic small variants, copy-44 

number alterations (CNAs) and structural variants. Somatic aberrations were analyzed for driver 45 

genes, CNA drivers, mutational signatures, catastrophic events and fusion genes. For papillary 46 

and clear cell RCC, potential actionable drug targets were detected by WGS in 89% and 100% of 47 

the patients, respectively. RNA-Seq data of clear cell and papillary RCC were clustered according 48 

to a previously developed angio-immunogenic gene signature. WGS and RNA-Seq may improve 49 

therapeutic decision making for most patients with advanced RCC, including patients with non-50 

clear cell RCC for whom no standard treatment is available to date. Prospective clinical trials are 51 

needed to evaluate the impact of genomic and transcriptomic diagnostics on survival outcome 52 

for advanced RCC patients.   53 
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Introduction 54 

Renal cell carcinoma (RCC) consists of different histological subtypes 1,2. The most common 55 

histological subtype is clear cell RCC (ccRCC), accounting for approximately 75% of the RCC cases 56 

3. The vast majority of ccRCC is characterized by the loss of the short arm of chromosome 3 (3p)4, 57 

which harbors several tumor suppressor genes. The function of these genes - VHL, BAP1, PBRM1, 58 

and SETD2 - is frequently inactivated due to additional somatic mutations or epigenetic changes 59 

of these genes on the other allele 4,5. Although these genetic aberrations can be observed in most 60 

patients with ccRCC, the clinical behavior in individual patients differs significantly, from slowly 61 

progressive disease over years to rapidly progressive disease with fast clinical deterioration. 62 

Therefore, the management of advanced ccRCC varies from active surveillance to systemic 63 

therapy.  64 

In the past years, the therapeutic landscape for patients with advanced ccRCC has changed 65 

significantly. The introduction of tyrosine kinase inhibitors (TKIs) 6,7, immune checkpoint 66 

inhibitors (ICIs) 8,9, mammalian target of rapamycin (mTOR) inhibitors 10, and combinations of 67 

these anti-cancer therapies 11-13, has significantly improved the outcome for patients with 68 

advanced ccRCC. However, there are considerable interindividual differences in outcome, and 69 

only a minority of patients experience durable responses 14. For patients with advanced ccRCC, 70 

treatment decision making is nowadays guided by the International Metastatic RCC Database 71 

Consortium (IMDC) criteria 15-17. These criteria include only clinical patient characteristics (i.e. 72 

hemoglobin level, time from diagnosis to start of systemic therapy, Karnofsky performance state, 73 

calcium level and neutrophil and platelets count).  74 
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Moreover, RCC with non-clear cell histology is a heterogeneous group of different subtypes, such 75 

as papillary and chromophobe RCC 18. As holds true for advanced ccRCC, the course of non-clear 76 

cell RCC (nccRCC) differs significantly between patients 19,20. Since the different nccRCC subtypes 77 

are considered rare diseases, randomized phase three clinical trials are lacking for nccRCC 21. As 78 

a result, there is no clearly defined standard of care for patients with advanced nccRCC 20,22.  79 

The development of RCC, including its metastatic potential and response to treatment, could 80 

mainly be explained by the different genomics 2,4 and evolutionary pathways 5,23 of this disease. 81 

Previous studies have focused on the molecular characterization of primary RCC 2,4,24 and the 82 

genomic evolution of ccRCC 4,5,23. For example, RNA expression analysis in ccRCC has identified 83 

different immunogenic and angiogenic gene expression signatures 24,25, however, predictive 84 

value for treatment efficacy has not been validated. To improve the individualized treatment 85 

strategy and the survival outcomes for patients with ccRCC and nccRCC, more insight into the 86 

genomic make-up of advanced RCC is required. 87 

The objective of this study was to describe the genomic landscape of advanced RCC, by combining 88 

whole-genome sequencing (WGS) with matched RNA sequencing (RNA-Seq) data. First, WGS was 89 

applied to characterize the genomic make-up of RCC and to identify potential actionable targets 90 

for systemic treatment in individual patients with ccRCC and nccRCC. Next, both WGS and 91 

matched RNA-Seq data were combined for patients with ccRCC and papillary RCC (pRCC). The 92 

RNA-Seq data were applied to cluster RCC based on immunogenic and angiogenic gene 93 

expression patterns, aiming to identify those patients who could benefit from either treatment 94 

with anti-angiogenic drugs, immunogenic drugs or a combination of these therapies.   95 
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Results 96 

Patient selection     97 

In total, WGS data from 91 patients with histopathologically confirmed RCC were included in the 98 

analyses (Figure 1A). Additional RNA-Seq data were available for 28 patients (Figure 1A). Overall, 99 

72 patients were diagnosed with ccRCC, nine patients with pRCC, one with chromophobe RCC, 100 

one with tubulocystic RCC, and one with collecting duct carcinoma. For the remaining seven 101 

patients with RCC, the subtype could not be further defined. The main biopsy sites were the 102 

kidney (N = 24), bone (N = 15), and lymph nodes (N = 14) (Figure 1B). The median age of patients 103 

at the time of biopsy was 65 years (range 40-83), 79% of the patients were male, and 78% of the 104 

patients did not receive any systemic treatment before biopsy (Table 1). Most patients (84/91, 105 

92%) were treated with systemic therapy after biopsy was collected. This treatment consisted 106 

mostly of TKIs (61/84, 73%) or ICIs (19/84, 23%), whereas the remaining patients received 107 

combination treatment (4/84, 5%). For 68 out of 84 (81%) patients, the first tumor response 108 

(RECIST v1.1 26) to treatment (post tumor biopsy) could be established. Most patients had stable 109 

disease (SD) (46%), followed by progressive disease (PD) (14%) and partial response (PR) (14%).   110 

 111 

 112 

  113 
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Whole-genome sequencing analyses  114 

Somatic small variants, copy-number alterations (CNAs) and structural variants (SVs) were 115 

identified as described previously 27. The median tumor mutational burden (TMB) of patients 116 

with ccRCC was 2.8 [interquartile range (IQR) 1.1] (Figure 2A). Only two patients (one with ccRCC 117 

and one with undefined subtype of RCC) had a TMB > 10 28. In both these samples with high TMB, 118 

mutational signatures were related to defective DNA mismatch repair, covering more than 25% 119 

of their single-nucleotide variants (SNVs) (Figure 2A/E). Interestingly, the lowest TMB (i.e. 0.16) 120 

was found in a patient with tubulocystic RCC (N = 1) who had very little genomic aberrations in 121 

general, and only two detectable SVs (Figure 2C/D; tandem duplication and break-end). In the 122 

total cohort, SBS40 (unknown etiology) was the dominant mutational signature, with a mean 123 

relative contribution of 74%. To assess the reliability of the SBS40 calling, the mutational 124 

signature calling was bootstrapped, which revealed a very high variance (median difference in 125 

assignment of 37%) in the relative contribution of SBS40 (Supplementary figure 1).  126 

The frequency of genomic SNVs, multi-nucleotide variants (MNVs), InDels, and the collective 127 

coding mutations showed a similar pattern across the different RCC subtypes (Supplementary 128 

figure 2, supplementary data file). In total, 713,077 somatically acquired SNVs, 173,579 InDels 129 

and 9,964 MNVs were detected in the RCC genomes. Transversions were more frequently found 130 

than transitions in ccRCC, pRCC and undefined subtypes (Supplementary figure 2B and 2E). 131 

Missense variants were the most dominant protein variant type and accounted for > 60% of the 132 

small variants in all subtypes (Supplementary figure 2G). The genome ploidy was mostly diploid, 133 

and genome duplications were more frequent in ccRCC than in other subtypes (Supplementary 134 

figure 2D). For 57% of ccRCC, the genome-wide ploidy was 2, while 32% had a genome doubling 135 
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with a ploidy of 3 or higher. Differences in DNA ploidy have been associated with tumor 136 

differentiation and diploidy has been related to well-differentiated RCC 29. Considering SVs, a 137 

total of 3,121 deletions, 941 translocations, 2,196 tandem duplications, 4 insertions, 2,714 138 

inversions and 641 break-ends were detected (Supplementary Fig 2F). When comparing the 139 

mutational frequencies of ccRCC in our cohort to those in the TRACERx WGS cohort, a multicenter 140 

prospective study analyzing the evolutionary features of ccRCC 5, the number of substitutions 141 

was similar in both cohorts (7,224, Q1–Q3: [5648-8581] vs. 7,050, Q1–Q3: [6434-9504], p-value 142 

= 0.45). The number of patients with events considered as chromothripsis was limited and 143 

present in only five patients with ccRCC, two patients with pRCC and absent in the other subtypes. 144 

Furthermore, these chromothriptic events mostly did not involve the classic t(3;5) event. Only 145 

one of the samples with chromothripsis did have a t(3;5) translocation (Supplementary figure 3), 146 

while these specific translocations were more frequently detected in the cohort of patients 147 

without chromothriptic events (29.7%, Supplementary figure 4). 148 

Next, the WGS data were analyzed on driver genes of the ccRCC samples using the dN/dS 149 

algorithm and on CNAs by GISTIC 2.0. These driver gene analyses revealed that most driver genes 150 

in ccRCC encompassed variations in the chromosome 3p region: SETD2 (88.9%), VHL (73.6%), 151 

PBRM1 (61.1%), and BAP1 (16.7%) together with mutations in tumor suppressor genes on other 152 

chromosomes, such as CDKN2A (68.1%) and PTEN (16.7%) (Figure 3, supplementary data file). In 153 

addition, a substantial number of patients with ccRCC had focal deletions in genes described as 154 

possible tumor suppressor genes, e.g. PTPRD (59.7%) and NEGR1 (36.1%) 4,30. Deletions of PTPRD 155 

have been described as a possible risk factor for the development of ccRCC 30,31. Moreover, 156 

amplifications were present in genes associated with cell proliferation and angiogenesis, such as 157 
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CDK6 (55.6%) and CCNE1 (19.4%) 32,33. In total, pathogenic germline mutations related to cancer 158 

or Von Hippel-Lindau syndrome were found in nine patients in different RCC subtypes and 159 

included ATM, FLCN, CHEK2, FH, SDHA and MITF (Figure 3).  160 

In addition, genes which were previously described as frequently mutated somatically (q-value < 161 

0.05) in (cc)RCC by Braun et al. 34 and in pRCC by Turajlic et al. 35, that were not statistically 162 

significant in our driver gene analysis, were included to extend our analysis. Nevertheless, many 163 

of these added genes showed a low mutational frequency in our cohort, similarly for genes 164 

associated with poor prognosis ccRCC 4, such as the Krebs cycle genes (e.g. SDHA, FH).  165 

Furthermore, previously validated fusion events 36 were detected, with CLTC-VMP1 and SFPQ-166 

TFE3 both occurring once in the ccRCC group, along with a fusion event of ASPSCR1-TFE3 in one 167 

patient with pRCC. For both patients with a detected TFE3 fusion, the histopathological diagnosis 168 

had to be reconsidered. As a result, these patients were re-allocated in a different subcategory 169 

of RCC, i.e. MiT family translocation renal cell carcinomas 1. The previously described TERT 170 

promoter hotspot variant (C228T) 5 was found in both ccRCC (N = 10) and pRCC (N = 2). Overall, 171 

characteristic clear cell driver gene events — such as somatic VHL mutations/deletions — were 172 

absent in nccRCC, except for CDKN2A deletions in pRCC.  173 

In patients with ccRCC, both previously described and novel amplifications and deletions were 174 

detected. Statistically significant CNA peaks and arm-level copy-number alterations in ccRCC are 175 

presented in Supplementary figure 5. Previously described arm-level CNAs 37 included 176 

amplifications of 1q, 5q, 7q, 8q, 12p and 20q, and deletions in 3p, 9p and 14q. Furthermore, in 177 

the current cohort, amplifications of 5p, 7p, 12q, 16p and 20p, and deletions of 4p, 6p, 9q, 14p, 178 
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18p and 18q were also statistically significant. Next, we investigated if the tumors contained 179 

targetable variants (Figure 4), which showed that most patients with RCC had one or more 180 

variants indicated as potential targets or biomarkers for treatment. For example, for target-181 

specific variants encoded by CDK4/6 or EGFR, specific drugs have been developed for other 182 

cancer types 38-40. This may result in off-label availability of these drugs for patients with similar 183 

aberrations in RCC, e.g. in context of a clinical trial 41. Furthermore, somatic aberrations in cancer 184 

genes, e.g. TP53, are also considered biomarkers for targeted treatments 42. Lastly, some variants 185 

leading to specific mechanisms were also considered as targetable for treatment. For instance, 186 

TKIs targeting VEGF signaling are known to be effective in patients with VHL mutations and are 187 

on-label available for patients with RCC 43. Overall, for the majority (96%) of patients in this cohort 188 

actionable targets were detected, even for patients with nccRCC for whom no standard 189 

treatment is available to date.  190 

Transcriptome analyses of advanced RCC  191 

Differential Expression Analysis (DEA) was performed on RNA-Seq data to discriminate the two 192 

most frequently diagnosed histological subtypes, ccRCC (N = 24) and pRCC (N = 4). Next to the t-193 

distributed stochastic neighbor embedding (t-SNE), which showed a clear separation between 194 

the two subtypes (Supplementary figure 6), the DEA resulted in 1,546 significantly (adjusted p-195 

value < 0.05) differentially expressed genes. The hundred genes with the smallest adjusted p-196 

value are shown in Figure 5A. In this top hundred list, several genes are known to be associated 197 

with the development or course of RCC. For instance, LOX 44 and MAPKAPK3 45 correlate with 198 

poor survival in RCC. In addition, various other genes were differentially expressed and have been 199 

described in other malignancies, such as TUSC2 46, CAPN1 47, PCSK6 48, and CD2 49. The differential 200 
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expression of these genes confirmed a clear distinction of pRCC and ccRCC at the transcriptomic 201 

level.  202 

Second, the pathway analysis (Figure 5B) of the significant differentially expressed genes 203 

revealed cancer hallmarks such as oxidative phosphorylation and epithelial-mesenchymal 204 

transition (EMT), among others 50. Significant Reactome pathways 51 of differentially expressed 205 

genes in ccRCC compared to pRCC samples, mainly showed pathways related to VEGF and 206 

collagen formation. Pathways related to poor prognosis 4, such as the AMPK complex, the Krebs 207 

cycle genes, the pentose phosphate pathway and fatty acid synthesis, were not found to be 208 

differentially expressed between ccRCC and pRCC. A heatmap of the top differentially expressed 209 

genes between ccRCC and pRCC and a t-SNE plot show that RCC samples of undefined subtype 210 

cluster with either ccRCC or pRCC samples based on the differential gene expression of these 211 

subtypes (Supplementary figure 7).  212 

The 66 gene-signature has been based on previous data from the IMmotion150 trial 25. High 213 

expression of ‘angiogenic’ genes and certain ‘invasion’ genes is applied to sub-classify RCC as 214 

‘angiogenic’, which would be predictive for response to TKIs targeting VEGF signaling. In case of 215 

high expression in ‘Ca2+-Flux’, ‘T-Effector’, and other ‘invasion’ genes, RCC is sub-classified as 216 

‘immunogenic’, indicating a response to ICIs is likely. According to this gene signature, ccRCC 217 

cases in the current cohort could be classified as either immunogenic or angiogenic (Figure 5C). 218 

Moreover, all patients with pRCC had low expression of these genes, except for one individual 219 

patient with expression in EDNRB 52.  220 

  221 
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Discussion 222 

In this study, the genomic and transcriptomic landscape of advanced RCC was characterized for 223 

91 individual patients. First, genomic data showed that, next to VHL mutations (73.6%), most 224 

common driver gene mutations in ccRCC included alterations in tumor suppressor genes of 225 

different pathways such as SETD2 (88.9%) and PTEN (16.7%). While TMB was comparable 226 

amongst the different subtypes of RCC, the driver gene analyses showed a distinctive pattern 227 

between patients with ccRCC and nccRCC. Furthermore, WGS revealed potential actionable 228 

targets for 87 out of 91 patients and WGS might therefore contribute to a more individualized 229 

treatment strategy for patients with advanced RCC.   230 

  For a subgroup of patients (N = 28), transcriptomic data were also available. RNA-Seq 231 

could be applied to distinguish ccRCC, pRCC and histologically undefined RCC based on the 232 

differential gene expression. The application of the 66-gene signature 25 on the RNA-Seq data, 233 

made it possible to sub-categorize ccRCC into immunogenic or angiogenic signatures, whereas 234 

classification in pRCC using these signatures was not feasible.   235 

 236 

At genomic level, the findings for ccRCC corresponded mostly with previous findings 4,5,53. The 237 

massive contribution of SBS40 to the mutational landscape of nearly all RCC subtypes in this 238 

cohort is remarkable. However, bootstrapping showed that SBS40 was the least robust signature, 239 

indicating that this signature could act as a sink for mutations that are difficult to fit. Since CPCT-240 

02 cohorts with other tumor types did not show the high contribution of SBS40 54,55, this is most 241 

certainly not a result of a bias in the sequencing or in our workflows. In contrast to other studies, 242 

the number of chromothriptic events was limited in this study and occurred in only five patients 243 
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with ccRCC. In previous studies, chromothripsis was defined as the combination of a 244 

chromothriptic event together with a translocation event with concurrent 3p loss and 5q gain, 245 

which were called “t(3;5) chromothripsis events” 5. Although both chromothriptic and 246 

translocation (t(3;5)) events occurred in our cohort, for most of the cases these events were 247 

independent of each other (Supplementary figure 3 and 4).   248 

  At transcriptomic level, assigning ccRCC biopsies into either immunogenic or angiogenic 249 

signatures may indicate which treatment could be most beneficial for individual patients. The 250 

introduction of ICIs has significantly changed the therapeutic landscape for patients with 251 

advanced ccRCC 56,57, resulting in a clinical need to select patients who will benefit either from 252 

angiogenic or immunogenic treatment 17. These data could assist clinical decision making when 253 

choosing the optimal treatment strategy for the individual patient with advanced ccRCC. For 254 

patients with high expression of genes annotated as immunogenic, first–line treatment with ICIs 255 

should be considered, whereas for patients with high expression in angiogenic genes treatment 256 

with a TKI should be taken into consideration. For those patients with low expression throughout 257 

all these genes, combination treatment with TKI/ICI may be considered, although treatment 258 

based on actionable targets identified by WGS could be the most effective option. Treatment 259 

selection based on gene expression has already shown promising results for patients with RCC 260 

12,58, however, further research in a prospective setting is still warranted 59.  261 

 262 

The distinctive mutational gene pattern between ccRCC and nccRCC clearly showed that these 263 

tumors are different entities, while differences within the nccRCC subtypes were also evident. 264 

For example, none of the patients with nccRCC had somatic VHL mutations and also other ccRCC 265 
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driver genes hardly showed mutations in nccRCC. This is of great importance, as the development 266 

of targeted drugs is based on driver mutations or consequences downstream. For instance, the 267 

frequently mutated VHL gene in ccRCC has been the basis for the development of angiogenesis 268 

inhibitors for this disease. The mutations in this tumor-suppressor gene result in the 269 

accumulation of HIF1α/2α, eventually leading to overexpression of VEGF/PDGF, AXL, and MET, 270 

among others 43,60. Several TKIs that have been approved for the treatment of advanced ccRCC 271 

6,7,43,61 interfere at different levels in this cascade 43,60. More recently, Hypoxia Inducible Factor 272 

(HIF) inhibition has also shown proven efficacy in patients with VHL mutations 62. However, as 273 

patients with nccRCC in our cohort showed no mutations in VHL or other related pathways, it is 274 

questionable whether treatment directed against the VHL pathway would be the most effective 275 

therapy for this particular group of patients.  276 

 277 

In clinical practice, RCC is usually defined histopathologically. As a result, there is a large 278 

dependency on experienced pathologists. However, discrepancies among these experts remain 279 

63,64. In our cohort, nearly 8% of RCC cases could not be sub-classified through histopathological 280 

assessment. Thereby, for two patients a fusion gene was detected by WGS which led to revision 281 

of the original histological diagnosis and allocation to a different subgroup, i.e. MiT family 282 

translocation renal cell carcinoma 1. As the histopathological classification defines the treatment 283 

strategy, this could have significant clinical impact. Since different subtypes and growth patterns 284 

of RCC are driven by gene expression 65, a next generation sequencing-based classifier could be 285 

feasible. Here, we showed that analyses of driver mutations (VHL, PBRM1, SETD2) and RNA-Seq 286 

data reveal clear differences among the different RCC subtypes. As shown in Supplementary 287 
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Figures 6 and 7, clustering of the undefined RCC subtypes is feasible and could be useful to clarify 288 

the histological subtype in clinical practice.   289 

 290 

This study has some important limitations. First, the collected clinical data within the CPCT-02 291 

study were limited. For instance, only the first tumor response (according to RECIST v1.1.) after 292 

biopsy was available and the response rates in this cohort were relatively low when compared to 293 

the clinical trials. On one hand, these lower tumor response rates could be due to the 294 

unavailability of ICIs, as patients were included between 2016 and 2019, when ICIs were not yet 295 

available in first-line setting for RCC in the Netherlands. In addition, patients within the CPCT-02 296 

study were treated in a real-world setting, which is known for its lower response rates compared 297 

to response rates of clinical trials. In addition, due to the limited clinical data collection, it was 298 

not possible to reliably correlate genomic and transcriptomic findings to clinical data. A 299 

correlation with clinical data could have confirmed whether patients with certain gene signatures 300 

indeed had benefit from a specific treatment. Therefore, validation in a prospective trial is 301 

needed prior to clinical implementation.            302 

  Second, the limited number of patients with nccRCC made it challenging to run separate 303 

analyses for this group. Since the subgroup of patients with nccRCC consists of different less 304 

common and heterogeneous subtypes, and very little is known about the genomics of nccRCC. 305 

Therefore, we decided to include all patients with nccRCC, even subgroups containing only a 306 

single patient. Finally, the collected data were heterogeneous. For instance, not only biopsies of 307 

metastases, but also biopsies from the kidney (including primary tumors) were included for the 308 

analyses. However, it is not conceivable that this has significantly impacted the analysis, since 309 
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previous studies have shown clear consistencies between primary tumors and their metastasis 5. 310 

In addition, the heterogeneity in this cohort reflects daily clinical practice of patients who present 311 

with advanced RCC, including primary metastatic disease. Despite this clinical heterogeneity, a 312 

clear genomic and transcriptomic signal could be extracted, indicating that the genomic and 313 

transcriptomic analyses are feasible for clinical implementation.   314 

 315 

In conclusion, there are evident genomic and transcriptomic differences between RCC subtypes. 316 

The analysis of driver mutations, in combination with clustering of RNA-Seq data, could assist the 317 

histopathological subtyping of RCCs in clinical practice. In addition, RNA-Seq data could identify 318 

patients with ccRCC who may benefit more from treatment with either ICIs, TKIs or a combination 319 

of these drugs. Genomic and transcriptomic analyses are promising to identify actionable targets 320 

and to individualize treatment strategies in the majority of patients with RCC, even for patients 321 

with nccRCC. Although these results are promising, prospective clinical trials are still needed to 322 

evaluate whether genomic and transcriptomic diagnostics indeed contribute to improved 323 

survival outcomes in individual patients with advanced RCC.  324 

  325 
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Materials and Methods 326 

Center for Personalized Medicine: Patient cohort, study procedures, sample collection, clinical 327 

data  328 

In accordance with the Declaration of Helsinki, all patients within this study provided written 329 

informed consent for participation in the Center for Personalized Cancer Treatment (CPCT-02) 330 

study (NCT01855477) before study procedures started. The CPCT-02 study was approved by the 331 

medical ethical committee of the University Medical Center Utrecht, as well as the Netherlands 332 

Cancer Institute and local approval was provided for each participating site. Details regarding 333 

inclusion criteria, the study protocol, sampling, and sequencing have been previously described 334 

27. In summary, core needle biopsies from the tumor lesion, peripheral whole blood samples and 335 

clinical data were collected across hospitals in the Netherlands. The response to treatment was 336 

determined according to RECIST v1.1 26. WGS data from 103 biopsies of 101 patients with 337 

advanced RCC were made available. Only one sample per patient was selected for the genomic 338 

analyses. When multiple biopsies of one patient were available, the sample covering the most 339 

clinical information and/or the sample with the highest estimated tumor cell percentage was 340 

selected. The selection resulted in 91 WGS samples (51 previously described by Priestley et al. 27) 341 

and 35 RNA samples.  342 

Pathological diagnosis   343 

To confirm the histopathological diagnosis of RCC, pathology reports were requested via PALGA, 344 

the nationwide network and registry of histo- and cytopathology in the Netherlands 66. Slides and 345 

tissue blocks were not available for pathological revision. Alternatively, the pathology reports 346 

were reviewed by a genito-urinary pathologist (GvL) to determine whether the microscopic 347 
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description and immunohistochemistry were compatible with the original diagnosis. The 348 

following subtypes were annotated: clear cell, papillary, chromophobe, tubulocystic, and 349 

collecting duct carcinoma. Histopathologically confirmed RCC of which the subtype remained 350 

unclear was categorized as undefined subtype.  351 

Whole genome sequencing and preprocessing  352 

Between the 8th of August 2016 and the 3rd of October 2019, tumor and whole-blood pairs were 353 

whole-genome sequenced at the Hartwig Medical Foundation (HMF) central sequencing center. 354 

A HiSeqX system was applied and 2 × 150 base read pairs were generated using standard settings 355 

(Illumina, San Diego, CA, USA). Preprocessing was performed as described by Priestley et al 27. 356 

Briefly, read pair mapping was performed using BWA-mem 67 to the reference genome GRCh37 357 

(human) with subsequent systematic variant calling and several quality control and/or correction 358 

steps. The Genome Rearrangement IDentification Software Suite (GRIDSS) 68 was used for 359 

structural variant (SV) calling and LINX (v1.11) 68 for gene fusion event calling. Computational 360 

ploidy estimation and copy-number (CN) assessment was performed using the PURPLE (PURity & 361 

PLoidy Estimator) pipeline 68, estimating tumor purity and CN profile by combining B-allele 362 

frequency (BAF), read depth, and SVs. 363 

Somatic variant annotation and filtering  364 

Somatic variants were determined using Strelka and provided by the HMF as part of the data 365 

request. Variant Call Format (VCF) files with somatic variants were annotated based on GRCh37 366 

with HUGO gene symbols, HGVS notations, gnomAD 69 frequencies using VEP 70 (database release 367 

95, merged cache), with setting “--per_gene”. Exclusively somatic single-nucleotide variants 368 
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(SNVs), small InDels, multi-nucleotide variants (MNVs) with ≥ 3 alternative read observations and 369 

passing variant caller quality control were included in the analyses. Furthermore, population 370 

variants were removed to prevent germline leakage, based on the gnomAD database (v2.0.2) 69: 371 

gnomAD exome (ALL) allele frequency ≥ 0.001; and gnomAD genome (ALL) ≥ 0.005. Variants 372 

specific for the Dutch CPCT cohort were removed based on a panel-of-normals from 1,762 373 

representative normal blood HMF samples. The most deleterious mutation was used to annotate 374 

the overlapping gene for each sample.  375 

Tumor Mutational Burden calculation  376 

The number of mutations per megabase pair was calculated as the amount of somatic genome-377 

wide SNVs, MNVs, and InDels divided by the number of callable nucleotides in the human 378 

reference genome (GRCh37) FASTA file: 379 

𝑇𝑀𝐵 =
(𝑆𝑁𝑉𝑠𝑔 +𝑀𝑁𝑉𝑠𝑔 + 𝐼𝑛𝐷𝑒𝑙𝑠𝑔)

(
2858674662

106
)

 380 

Ploidy and copy-number analysis  381 

Broad and focal somatic CN alterations in ccRCC were identified by GISTIC2.0 71 (v2.0.23), using 382 

the following parameters: genegistic 1, gcm extreme, maxseg 4000, broad 1, brlen 0.98, conf 383 

0.95, rx 0, cap 3, saveseg 0, armpeel 1, smallmem 0, res 0.01, ta 0.1, td 0.1, savedata 0, savegene 384 

1, qvt 0.1. Distinction between shallow and deep CN events per region was based on thresholding 385 

performed by GISTIC2.0. The alterations were assigned a score taking both the amplitude and 386 

the frequency of its occurrence across samples into account (G-score). Thresholding was divided 387 

into five CN categories; two for deletions (-2 = deep, possibly homozygous loss, -1 = shallow, 388 
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possibly heterozygous loss), one for diploid (0 = diploid) and two for amplifications (1 = few 389 

additional copies, often broad gain, 2 = more copies, often focal gain). Annotation of GISTIC2.0 390 

peaks was performed as follows: A) Wide peaks were annotated with all overlapping canonical 391 

UCSC genes within the genomic limits of said peak. B) Focal peaks were annotated based on 392 

overlapping genomic coordinates, using custom R scripts and UCSC gene annotations.  393 

Structural variant analysis  394 

SVs affecting genes were imported using custom R scripts, overlapping genes on at least one 395 

breakpoint, using GRCh37 genomic coordinates. SVs with an upstream or downstream Tumor 396 

Allele frequency (TAF) below 0.1 as determined by PURPLE and GRIDSS 68 were discarded along 397 

with SVs that affected all exons of a gene. In the case of both (multiple) mutations and/or SVs in 398 

the same gene, these were annotated as ‘multiple mutations’. 399 

Fusion gene analysis  400 

WGS-based LINX TSV files were imported using R and overlapped with the three pillars of 401 

ChimerDB 36; deep sequencing data (ChimerSeq), text mining of PubMed publications 402 

(ChimerPub), with extensive manual annotations (ChimerKB). Events that were not present in 403 

any pillar of ChimerDB and intra-gene fusions were filtered out. RNA-Seq based fusion genes 404 

detected with Isofox (https://github.com/hartwigmedical/hmftools/tree/master/isofox) were 405 

imported using R and overlapped with the fusion events detected in the DNA sequencing. 406 

Somatic Driver Genes Analysis  407 

We utilized the dN/dS model (192 Poisson rate parameters; under the full trinucleotide model) 408 

to identify genes undergoing mutational selection in the ccRCC patients with the R package 409 
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dndscv 72 (v0.0.1.0). Both the substitution model and InDel model were used and were corrected 410 

for sequence composition, gene length and mutational signatures. These models test the ratio 411 

between nonsynonymous (missense, nonsense and essential splice site) and background 412 

(synonymous) mutations. To identify genes that drive selection, a q-value < 0.05 (both including 413 

and excluding the InDel model) was used. 414 

Mutational signatures analysis  415 

Mutational signatures analysis was performed using the MutationalPatterns R package (v3.2.0)73. 416 

The mutational signatures based on single base substitutions (N = 90 v3 signatures) were 417 

downloaded from COSMIC 74. SNVs were categorized according to their respective trinucleotide 418 

context (GRCh37) into a mutational spectrum matrix Mij (where i represents 1:96 trinucleotide 419 

contexts and j represents the number of 1:91 samples) and subsequently, a constrained linear 420 

combination of the ninety mutational signatures was constructed per sample using non-negative 421 

least squares regression implemented in the R package pracma (v2.2.9). Mutational signatures 422 

were bootstrapped (N = 100) with MutationalPatterns and argument ‘method’ set to “strict” to 423 

assess calling stability. Signature contribution for each sample was determined per 100 424 

samplings, per signature. 425 

Chromothripsis 426 

Chromothripsis (CT), also known as chromosomal shattering, followed by seemingly random re-427 

ligation, was detected using Shatterseek 75 (v0.4) with default settings. The following definition 428 

of CT was employed: (1) ≥25 intrachromosomal SVs involved in the event; (2) ≥7 oscillating CN 429 

segments (2 CN states) or ≥14 oscillating CN segments (3 CN states); (3) CT event involving ≥20 430 
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Mb; (4) satisfying the test of equal distribution of SV types (p-value > 0.05); and (5) satisfying the 431 

test of nonrandom SV distribution within the cluster region or chromosome (p-value ≤ 0.05). 432 

Actionable targets  433 

iClusion (https://iclusion.com) data, which connects specific or gene-level aberrations to clinical 434 

cancer studies, were provided by HMF. This integrates clinical interpretations from Precision 435 

Oncology Knowledge Base (OncoKB) 76, Clinical Interpretation of Variants in Cancer (CIViC) 77 and 436 

Cancer Genome Interpreter (CGI) 78. All targets and biomarkers were overlapped with filtered 437 

molecular data to verify presence. Targets marked as “gene-level” were generalized for other 438 

variation in those genes, not listed in the iClusion data. The identified targets were assessed and 439 

manually categorized in the following three categories: on-label drugs for RCC, off-label available, 440 

investigational drugs. Drugs were considered on-label when approval was given for any subtype 441 

of RCC in the Netherlands. Whether drugs were on- or off-label available in the Netherlands is 442 

defined by the Dutch Medicines Evaluation Board (“College ter Beoordeling van 443 

Geneesmiddelen”) 79. This evaluation board takes previous approvals by the U.S. Food and Drug 444 

Administration (FDA) and/or European Medicines Agency (EMA) in consideration.  445 

Germline analysis  446 

Known pathogenic germline variants (GRCh37) related to cancer and/or Von Hippel-Lindau 447 

syndrome were retrieved from ClinVar 80 that were less than 51 bp long, with a review status of 448 

“practice guideline”, “expert panel”, “multiple submitters” or “at least one star”. These ClinVar 449 

variants were used as filter for the import of germline variants from VCF files of our cohort. 450 

Variants with at least 2 reads and passing variant caller quality control were included. 451 
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Furthermore, variants that were annotated with “high” impact, in genes with known germline 452 

variation in RCC (FH, SDHA, SDHB, SDHC, SDHD, TCEB1, FLCN, CHEK2) were included. 453 

RNA sequencing  454 

RNA was isolated from biopsy using the QIAsymphony RNA Kit (Qiagen, Hilden, Germany) for 455 

tissue and quantified on the Qubit. Between 50 and 100 ng of RNA was used as input for the 456 

KAPA RNA HyperPrep Kit with RiboErase (Human/Mouse/Rat) library preparation (Roche) on an 457 

automated liquid handling platform (Beckman Coulter). RNA was fragmented (high temperature 458 

in the presence of magnesium) to a target length of 300 bp. Barcoded libraries were sequenced 459 

as pools on either a NextSeq 500 (V2.5 reagents) generating 2 x 75 base read pairs or on a 460 

NovaSeq 6000 generating 2 x 150 base read pairs using standard settings (Illumina, San Diego, 461 

CA, USA). BCL output from the sequencing platform was converted to FASTQ using Illumina’s 462 

bcl2fastq tool (versions 2.17 to 2.20) using default parameters. RNA-Seq data was aligned using 463 

STAR 81 to GRCh37 resulting in unsorted BAMs including chimeric reads as output. Gene and 464 

transcript counts were generated and used for subsequent fusion detection using Isofox 465 

(https://github.com/hartwigmedical/hmftools/tree/master/isofox). 466 

RNA sequencing analyses  467 

Raw read counts were imported in R and filtered on protein coding genes based on Ensembl GTF 468 

file 82 (Homo sapiens GRCh37, version 87). t-distributed stochastic neighbor embedding (t-SNE) 469 

was performed on variance stabilized read counts (generated by DESeq2 470 

varianceStabilizingTransformation) of all protein coding genes. Differential expression analysis 471 

between ccRCC and pRCC was performed on raw read counts using DESeq2 83 and the Wald-test. 472 
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Statistical significant results with Benjamini-Hochberg adjusted p-value < 0.05 were further 473 

filtered to base mean > 100 counts and absolute log2 fold change ≥ 1. The heatmap with the top 474 

most significantly differentially expressed genes (based on lowest adjusted p-value) was made 475 

using variance stabilized read counts and euclidean distances on scaled data. Gene signature 476 

heatmap was produced with centered Z-Scores with Euclidean distances. Gene set enrichment 477 

analyses were performed using fgsea 84 (Monte Carlo approach with Adaptive Multilevel Splitting) 478 

with MSigDB 85 Hallmarks and Reactome pathways 51 as gene sets. Reproduction of the D’Costa 479 

et al. gene signature 25 was done using 65 of 66 original genes, since PECAM1 was on a genome 480 

patch not included in the RNA-Seq mapping supplied by HMF. Heatmaps were produced using 481 

pheatmap with Ward.D clustering. 482 

Data and material availability  483 

Data was provided by HMF, which were used under data request number DR-088 for the current 484 

study. Both WGS, RNA-Seq and clinical data are freely available for academic use from the HMF 485 

through standardized procedures and request forms can be found at 486 

https://www.hartwigmedicalfoundation.nl. All tools and scripts used for processing of the WGS 487 

data are available at https://github.com/hartwigmedical/ and/or can be provided by authors 488 

upon request.   489 

  490 
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Tables  491 

 492 

Table 1. Overview of patients’ characteristics 493 

 494 

  495 

  Frequency Percentage 

  Sex     

     Male 72 79% 

     Female 19 21% 

  Median age 65 years [range 40-83] --------- --------- 

  Histological subtype      

   Clear cell RCC (ccRCC) 72 79% 

   Non-clear cell RCC (nccRCC) 12 13% 

          Papillary RCC (pRCC) 9 75% 

           Chromophobe RCC (chRCC) 1 8% 

           Collecting duct carcinoma (CDC) 1 8% 

           Tubulocystic RCC (tRCC) 1 8% 

   Undefined subtype 7 8% 

  Prior treatment (n=number of lines)     

     No 71 78% 

     Yes (1) 10 11% 

     Yes (≥2) 10 11% 

 Treatment after biopsy (N = 84)     

    Tyrosine kinase inhibitors (TKIs) 61 73% 

          Pazopanib 36 59% 

          Sunitinib 23 38% 

          Cabozantinib 1 1.6% 

          Lenvatinib 1 1.6% 

     Immune checkpoint inhibitors (ICIs) 19 23% 

          Nivolumab monotherapy 13 68% 

          Nivolumab + ipilimumab 6 32% 

     Combination treatment 4 5% 

          Avelumab + axitinib 4 100% 
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Figure legends 496 

Figure 1 Overview of sample selection and biopsy sites   497 

1A illustrates the selection of samples for both the WGS (N = 91) and matched RNA-Seq (N = 28) 498 

analyses. In 1B, the main biopsy sites are shown. Next to the illustrated biopsy sites, other biopsy 499 

sites (N = 20) include for instance biopsies from subcutaneous tissue. 1B was created with 500 

biorender. 501 

Figure 2 Overview of genomic characteristics of whole-genome sequenced advanced RCC 502 

cohort (N = 91)  503 

Track A shows the tumor mutational burden (mutations per Mb; yellow for low (0-5), orange for 504 

medium (5-10) and red for high (> 10)). Track B shows the mean genome-wide ploidy, with white 505 

representing diploidy. Tracks C and D illustrate the abundance of structural variants and the 506 

relative frequency of the types of these variants. Tracks E and F show the relative mutational 507 

signature contribution (COSMIC signatures v3) and the relative frequency of mutational changes 508 

at base level. Track G shows the presence of chromothripsis. Track H shows whether patients 509 

were treatment naive at time of biopsy. Tracks I and J indicate the first treatment given after 510 

biopsy (if any) and the first tumor response according to RECIST v1.1, respectively. On the x-axis 511 

the figure is arranged in descending order by tumor mutational burden per RCC subtype. ccRCC 512 

= clear cell renal cell carcinoma. pRCC = papillary renal cell carcinoma. Undefined subtype = renal 513 

cell carcinoma, with undefined subtype. chRCC = chromophobe renal cell carcinoma. CDC = 514 

collecting duct carcinoma. tRCC = tubulocystic renal cell carcinoma. NA = not available.  515 

Figure 3 Overview of coding mutations and copy-number alterations in driver genes in whole-516 

genome sequenced advanced renal cell carcinoma cohort (N = 91)  517 

The oncoplot in track A shows mutations (filled center) and copy-number alterations (grid cell 518 

background) of driver genes determined by dN/dS and GISTIC2.0. Track B also shows an oncoplot, 519 

but on selected genes, not passing any statistical threshold. Germline pathogenic mutations are 520 

indicated with a capital letter ‘G’ (and red border), utilizing the same color coding as the somatic 521 

mutations. Consequential fusion genes are indicated in yellow, with a red border. Track C shows 522 

the tumor mutational burden (mutations per Mb; yellow for low (0-5), orange for medium (5-10) 523 
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and red for high (> 10)). Tracks D, E and F show whether patients were treatment naive at time of 524 

biopsy, if systemic treatment was given after time of biopsy, and the first tumor response after 525 

systemic treatment according to RECIST v1.1, respectively. Bold sample names with asterisks 526 

indicate MiT family translocation RCC. Figure is arranged in descending order by tumor mutational 527 

burden per RCC subtype on the x-axis. 528 

Figure 4 Overview of DNA-based biomarkers and potential treatment options in the whole-529 

genome sequenced advanced renal cell carcinoma cohort (N = 91)  530 

Track A Percentage of potential available treatment options based on genomic characteristics. 531 

Treatment options are categorized according to the highest level of drug availability in clinical 532 

practice (on label available – off label available – investigational drugs). Track B Potentially 533 

actionable alterations at gene-level with each column representing a sample, ordered 534 

descendingly by tumor mutational burden per subtype on the x-axis. Detailed description of 535 

actionable targets can be found in Supplementary Data file 1. 536 

Figure 5 RNA sequencing cohort and differential expression analysis between clear cell renal 537 

cell carcinoma (ccRCC) and papillary RCC (pRCC) with classification according to gene 538 

signatures25  539 

Track A shows a heatmap of Z-scores of variance stabilized values with unsupervised clustering of 540 

the top 100 transcripts based on smallest adjusted p-value and colored according to Z-scores. 541 

Tracks B shows gene set enrichments based on sets (y-axis) from the molecular signatures 542 

database hallmarks and Reactome pathways, with the normalized enrichment score (NES) on the 543 

x-axis. Bar charts are visualized with ccRCC taken as reference (N = 24) (positive NES equals 544 

expression up in ccRCC and down in pRCC (N = 4)). Track C shows unsupervised clustering on the 545 

rows (patients) with color coding indicating the RCC subtype (purple for ccRCC and pink for pRCC) 546 

and colored according to Z-scores. The x-axis has been cut into several gene groups related to 547 

angiogenesis, invasion, Ca2+-flux and T-effector cells, as defined by D’Costa et al. 25 and by their 548 

stated order. 549 

 550 

  551 
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