Yokoyama et al.

```
1
 2
      Spt4 drives cellular senescence by activating non-coding RNA transcription in
 3
     ribosomal RNA gene clusters
 4
 5
     Masaaki Yokoyama<sup>1,2</sup>, Mariko Sasaki<sup>1,2,4</sup>, Takehiko Kobayashi<sup>1,2,3,4</sup>.
 6
 7
 8
9
      <sup>1</sup>Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The
      University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, JAPAN
10
11
      <sup>2</sup>Department of Biological Sciences, Graduate School of Science, University of Tokyo, 1-1-1
      Yayoi, Bunkyo-ku, Tokyo 113-0032, JAPAN
12
      <sup>3</sup>Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1
13
14
      Yayoi, Bunkyo-ku, Tokyo 113-0032, JAPAN
15
      <sup>4</sup>Correspondence to:
16
17
      sasakim@iqb.u-tokyo.ac.jp
      tako2015@iqb.u-tokyo.ac.jp (lead contact)
18
19
20
21
      Key words: ribosomal RNA gene (rDNA), lifespan, budding yeast, genome instability,
22
      senescence, noncoding RNA transcription, Spt4
23
```

2

Yokoyama et al.

24 SUMMARY

Genome instability can drive aging in many organisms. The ribosomal RNA gene (rDNA) cluster 25 is one of the most unstable regions in the genome. Replicative lifespan in budding yeast is 26 27 correlated to rDNA stability, suggesting that the rDNA locus produces an aging signal. To understand the underlying mechanism, we looked for yeast mutants with more stable rDNA and 28 longer lifespan than wild-type cells. We reveal that absence of a transcription elongation factor, 29 Spt4, resulted in an increased rDNA stability, a reduced activity of the regulatory E-pro promoter 30 in the rDNA, and extended replicative lifespan in a SIR2-dependent manner. Spt4-dependent 31 lifespan restriction was abolished in the absence of non-coding RNA transcription at the E-pro 32 locus. The amount of Spt4 increases and its function becomes more important as cells age. These 33 findings suggest that Spt4 is a promising aging factor that accelerates cellular senescence 34

through rDNA instability driven by non-coding RNA transcription.

3

Yokoyama et al.

36 Introduction

Aging is the decline of the biological functions, which occurs over time and involves 37 complex biological processes (López-Otín et al., 2013; McHugh and Gil, 2018; Di Micco et al., 38 2021). Aging is the critical risk factor that trigger the onset of many diseases such as cancer, 39 neurological diseases, and cardiovascular diseases. Therefore, understanding the molecular 40 41 mechanisms of aging is important for designing therapies to delay or prevent aging-related diseases. One of the causes of aging is cellular senescence (López-Otín et al., 2013; McHugh and 42 Gil, 2018; Di Micco et al., 2021). Budding yeast, Saccharomyces cerevisiae, where genetic 43 44 manipulation experiments can be easily done, has been used as a model organism to elucidate the molecular mechanisms underlying cellular senescence (Sinclair et al., 1998b; Longo et al., 2012; 45 46 He et al., 2018).

47 The rDNA encodes ribosomal RNA transcription unit(s) and is one of the highly abundant sequences that are organized into array(s) of tandem repeats at a single or several loci 48 in eukaryotic genomes (reviewed in (Kobayashi, 2011)). Due to this repetitive arrangement, the 49 50 rDNA can change in copy number. The budding yeast genome contains ~150 rDNA copies at a single locus on chr XII (Fig. 1A). Each copy contains 35S and 5S rRNA transcription units that 51 52 are separated by two intergenic spacers (IGSs). The IGS1 contains a replication fork barrier (RFB) site and an RNA polymerase (RNAP) II-dependent, bi-directional promoter, E-pro, that 53 synthesizes non-coding RNAs and the IGS2 contains an origin of DNA replication and cohesin-54 55 associated region (Fig. 1A). After DNA replication is initiated, the replication fork moving in the 56 direction opposite to the 35S rDNA is arrested at the RFB site bound by a Fob1 protein, leading to formation of DNA double-strand breaks (DSBs) (Brewer et al., 1992; Kobayashi et al., 1992; 57 58 Kobayashi and Horiuchi, 1996; Weitao et al., 2003; Burkhalter and Sogo, 2004; Kobayashi et al.,

Yokoyama et al.

4

59 2004).

60	Previous studies have identified two major processes that dictate the outcomes of the
61	DSB repair as to whether it results in rDNA copy number changes and thus rDNA instability.
62	First, end resection of DSBs, an initiating event for homologous recombination (HR), is normally
63	suppressed at the RFB (Sasaki and Kobayashi, 2017). Thus, removal of this suppression can lead
64	to HR-mediated repair (Fig. 1A) (Sasaki and Kobayashi, 2017). If DSB repair engages the rDNA
65	copy at an aligned position on the sister chromatid, it does not lead to a change in the rDNA copy
66	number (Kobayashi, 2011). However, if DSB repair involves a misaligned copy on the sister
67	chromatid or another copy on the same chromosome, expansion or contraction of the rDNA array
68	will be the outcome. Furthermore, such DSB repair can lead to the production of
69	extrachromosomal rDNA circles (ERCs). Second, transcription of non-coding RNA from E-pro
70	is normally repressed by a histone deacetylase Sir2, which results in stable association of cohesin
71	to the rDNA (Fig. 1A) (Kobayashi et al., 2004; Kobayashi and Ganley, 2005). This repression is
72	relieved by the absence of Sir2 or in a strain with a low number of rDNA units where SIR2
73	expression is reduced, leading to enhanced transcription from E-pro, disruption of cohesin
74	association and changes in rDNA copy number (Kobayashi et al., 2004; Kobayashi and Ganley,
75	2005; Iida and Kobayashi, 2019).

The budding yeast cells produce a finite number of daughter cells before death, which defines the replicative lifespan (Sinclair et al., 1998a). The replicative lifespan of cells lacking *SIR2* is shortened to half of that of the wild-type strain, while it is extended by over-production of this protein (Kaeberlein et al., 1999). The amount of this protein decreases in old cells (Fine et al., 2019). Therefore, Sir2 works as an anti-aging factor. On the contrary, in the *fob1* mutant, the rDNA is stable and the lifespan is extended by ~60% compared to the wild-type strain

Yokoyama et al.

5

(Kobayashi et al., 1998; Takeuchi et al., 2003). In addition, a strain in which the E-pro is
replaced with a galactose-inducible bi-directional *GAL1/10* promoter, hereafter referred to as the
Gal-pro strain, has stable rDNA and longer lifespan in glucose medium while the opposite is
observed when transcription is induced by the addition of galactose in the medium (Kobayashi
and Ganley, 2005; Saka et al., 2013). These findings demonstrate that rDNA stability can dictate
replicative lifespan.

To better understand how cellular senescence can be regulated via the rDNA locus, we aim to identify factors that are involved in the control of both processes. The presence of antiaging factors such as Sir2 inspired us to find proteins with the opposite function, which contribute to aging by destabilizing the rDNA cluster and would be present in increased amounts or activated in old cells. To identify such aging factors, we screened for long-lived yeast mutants with stable rDNA and found that cells lacking *SPT4* showed increased rDNA stability and extended lifespan.

The progression of the RNAP II transcription machineries can be paused by various 95 factors, including the nucleosomes that are intrinsic barriers to RNAP II progression (Ehara and 96 Sekine, 2018; Kujirai and Kurumizaka, 2020). To ensure efficient transcription, organisms have 97 evolved factors that enhance the processivity of RNAP II. Spt4 forms a heterodimer with Spt5, 98 known as the Spt4-Spt5 complex (and, in metazoans, as DSIF, the DRB sensitivity-inducing 99 factor - DRB is 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole). The Spt4-Spt5 complex 100 101 interacts with RNAP II and plays an important role in facilitating transcription by RNA 102 polymerase II in the context of chromatin structures (Hartzog and Fu, 2013; Ehara and Sekine, 2018; Kujirai and Kurumizaka, 2020; Decker, 2021). The Spt4-Spt5 complex also interacts with 103 104 RNAP I and localizes to the rDNA, while the influence of this complex on rRNA transcription

Yokoyama et al.

6

105	can be both positive and negative (Schneider et al., 2006; Anderson et al., 2011; Lepore and
106	Lafontaine, 2011; Viktorovskaya et al., 2011). In cells lacking Spt4, transcription of non-coding
107	RNA from E-pro was reduced, while rDNA stability and replicative lifespan increased in a
108	manner dependent on SIR2, FOB1, and E-pro activity. Moreover, in old cells, an increase in the
109	amount of Spt4 was observed, which possibly enhances the impact of the protein on facilitating
110	transcription from E-pro as cells age, accelerating cellular senescence. Our results suggest that
111	Spt4 is a promising aging factor that drives cellular senescence through destabilizing rDNA in
112	budding yeast.

113

114 **Results**

115 The Spt4-Spt5 complex enhances rDNA instability and shortens the replicative lifespan.

In this study, we sought to identify the putative factors that spread the aging signal and restrict 116 the replicative lifespan by destabilizing rDNA. Cells lacking such factors would display 117 118 increased lifespan and rDNA stability. A previous study has determined the replicative lifespan of 119 4,698 mutant strains that lack non-essential genes for viability and identified 238 mutant strains with increased lifespan (McCormick et al., 2015). Among them, 30 mutants lack a gene that has 120 121 an annotated function in DNA metabolism, such as recombination, replication, and repair. We examined the degree of rDNA stability in these mutants by measuring the amount of ERCs (Fig. 122 1A), which are often produced during rDNA copy number changes and can be used as an 123 indicator of rDNA instability (Sinclair and Guarente, 1997; Kaeberlein et al., 1999; Ganley et al., 124 2009). Measurements of ERCs identified 7 mutants with, compared to wild-type cells, a 125 statistically significant increase in ERCs and 12 mutants with decreased ERC levels, the latter of 126 which displayed the expected phenotype for cells that lack aging factors of our interest (Fig. 1B, 127

Yokoyama et al.

7

128 Fig. S1A–D).

129	Cells lacking Spt4 accumulated the least amount of ERCs among the mutants examined
130	(Fig. 1B). Spt4 forms a heterodimer with Spt5, known as the Spt4-Spt5 complex and functions as
131	a transcription elongation factor that facilitates transcription by RNA polymerase II (Hartzog and
132	Fu, 2013; Ehara and Sekine, 2018; Kujirai and Kurumizaka, 2020; Decker, 2021). Spt4 also
133	facilitates rRNA transcription by RNA polymerase I and is localized across the rDNA region
134	(Schneider et al., 2006; Anderson et al., 2011; Lepore and Lafontaine, 2011). Our study revealed
135	that Spt4 has a novel function destabilizing rDNA. We sought to understand how this protein
136	reduces rDNA stability and induces cellular senescence.
137	To determine whether Spt4 enhances rDNA instability alone or through the Spt4-Spt5
138	complex, we tested the involvement of Spt5 in the regulation of rDNA stability. As SPT5 is an
139	essential gene, two temperature sensitive alleles, spt5-S324P, E427K and spt5-C292R, were used
140	(Anderson et al. 2011). Serine 324, substituted in the first mutant, is located within the conserved
141	NusG-like domain of Spt5 and is required for binding to Spt4 (Guo et al., 2008). Thus, the spt5-
142	S324P, E427K mutant is deficient with the Spt4-Spt5 complex formation. A point mutation in the
143	second allele results in substitution of cysteine 292, which, however, does not lie on the interface
144	with Spt4 (Anderson et al. 2011). Because the spt5-C292R mutant shows a reduction in the
145	synthesis rate of rRNA, this allele compromises the function of Spt5 in the Spt4-Spt5 complex
146	(Anderson et al. 2011). These strains were grown at 27°C and analyzed for ERCs. The level of
147	ERCs in the <i>spt4</i> Δ mutant was ~10-fold lower than that in wild-type cells but this level was still
148	~5-fold higher than that in the mutant lacking FOB1 (Fig. 1C, 1D), which is responsible for
149	DNA replication fork arrest and ERC production (Kobayashi and Horiuchi, 1996; Defossez et al.,
150	1999). The two <i>spt5</i> mutants showed a statistically significant reduction in the level of ERCs,

Yokoyama et al.

8

compared to wild type (Fig. 1C, 1D). The ERC levels in the *spt5*-C292R and *spt5*-S324P, E427K
mutants were ~2-fold lower and ~2-fold higher than in the *spt4*△ mutant, respectively, but these
mutual differences were not statistically significant. Overall, these results demonstrate that Spt4
and Spt5 function as a complex when inducing rDNA instability.

156 Spt4-mediated rDNA destabilization depends on SIR2.

157 We examined whether reduced ERC formation paralleled an increase in rDNA stability in the

158 $spt4\Delta$ mutant by assessing the degree of size heterogeneity of chr XII by pulsed-field gel

electrophoresis (PFGE). The band of chr XII in the *spt4* Δ mutant appeared as sharp as that in the

160 $fob I\Delta$ mutant defective in rDNA copy number changes and seemed sharper than that in wild-type

161 cells in the *SIR2* background (Fig. 2A). A previous study reported that the average rDNA copy

number is reduced in absence of Spt4 by ~3 fold, compared to wild-type cells (Schneider *et al.*,

163 2006). We observed some variablities in the size of chr XII among four independent *spt4* Δ clones

164 constructed for our study, but not matching a 3-fold change in the case of samples with increased

165 or decreased rDNA copy number (Fig. 2A, WT vs. $spt4\Delta$ in the SIR2 background).

166 To determine more precisely the effect of *SPT4* deletion on rDNA stability, we

167 overexpressed Fob1 by placing the *FOB1* ORF under the control of the constitutive *ADH1*

promoter, which led to ~8-fold increase in Fob1 protein level (Fig. 2B, 2C). Compared to the

169 wild type (Fig. 2A, lanes WT/SIR2), Fob1 overexpression resulted in smearing of the chr XII

band (Fig. 2D, lanes WT/ADH1p-FOB1). Upon deletion of SPT4 from the ADH1p-FOB1 strain,

the chr XII band became far less smeared (Fig. 2D). Therefore, *SPT4* induces copy number

172 changes in the chromosomal rDNA array, and thus rDNA instability.

173

The histone deacetylase Sir2 is a key player in the suppression of both rDNA instability

Yokoyama et al.

9

174	and cellular senescence (Kaeberlein et al., 1999; Kobayashi et al., 2004), thus with a role
175	opposite to that of Spt4. To gain insight into the relationship between SPT4 and SIR2 during
176	processes that affect rDNA stability, we constructed a double mutant of $spt4\Delta$ and $sir2\Delta$ and
177	examined rDNA stability (Fig. 2A, 2E, 2F). In the PFGE assay, the chr XII band of $sir2\Delta$ cells
178	was extremely smeared (Fig. 2A, lanes $WT/sir2\Delta$), consistent with a previous study (Kobayashi
179	<i>et al.</i> , 2004). The chr XII band in two of the four independent $sir2\Delta spt4\Delta$ clones examined, was
180	as smeared as that in the <i>sir2</i> Δ clones (Fig. 2A, lanes marked by 'normal' vs. WT/ <i>sir2</i> Δ), while
181	the other two clones showed sharper bands but carried a much shorter chr XII (Fig. 2A, lanes
182	marked by 'small'). It remains unclear whether the reduction in the rDNA cluster size is a direct
183	effect of constructing the SPT4 deletion in the $sir2\Delta$ strain background. It is known that
184	transformation procedures that are used for gene replacement can induce rDNA copy number
185	changes (Kwan et al., 2016). Thus, it is likely that these two clones have spontaneously lost
186	rDNA copies during strain construction. Because chr XII in these clones migrated much faster
187	than the $sir2\Delta$ and other two $sir2\Delta$ $spt4\Delta$ clones (Fig. 2A), it was difficult to compare the size
188	heterogeneity of chr XII band because resolution of DNA molecules is expected to be very
189	different between two regions. Thus, it appears that removal of Spt4 protein does not counteract
190	rDNA instability caused by SIR2 deletion.
191	Deletion of SPT4 from the WT (SIR2) cells resulted in a decrease in ERCs by ~5-fold

191 Deletion of *SPT4* from the WT (*SIR2*) cells resulted in a decrease in ERCs by ~5-fold 192 (Fig. 2E, 2F). However, the ERC level in the *spt4* Δ *sir2* Δ double mutant was similar or only 193 slightly reduced, compared to the *sir2* Δ single mutant (Fig. 2F, WT vs. *spt4* Δ in the *sir2* Δ 194 background), consistent with the outcome of the PFGE analysis (Fig. 2A). Taken together, these 195 findings indicate that Spt4-mediated enhancement of rDNA instability depends on *SIR2*. In other 196 words, Spt4 functions downstream of Sir2 in the regulation of rDNA stability.

Yokoyama et al.

10

197

198 Spt4 enhances transcription of non-coding RNA from E-pro.

Previous studies have identified several factors that impact rDNA stability. Fob1-dependent 199 replication fork arrest at the RFB site leads to formation of DSBs (Weitao et al., 2003; 200 Burkhalter and Sogo, 2004; Kobayashi et al., 2004) (Fig. 1A). When these DSBs are resected, 201 HR-dependent repair is taken place that can induce rDNA copy number changes (Sasaki and 202 Kobayashi, 2017). We first examined the frequency of replication fork arrest by two-dimensional 203 (2D) agarose gel electrophoresis. Genomic DNA was isolated from WT and spt4 Δ mutant cells 204 205 and digested with the restriction enzyme *Nhe* I (Fig. 3A). DNA fragments were separated by agarose gel electrophoresis according to molecular mass in the first dimension and then 206 according to molecular mass and shape in the second dimension, followed by Southern blotting. 207 208 The level of arrested forks in total replication intermediates was similar between WT and spt4 Δ strains, thereby indicating that RFB activity is not reduced in the *spt4* Δ mutant (Fig. 3B, 3C). 209 We also determined the DSB frequency at the RFB site by separating genomic DNA 210 211 digested with the restriction enzyme Bgl II by conventional agarose gel electrophoresis and subsequent Southern blotting. The DSB frequency was reduced in the *spt4* Δ mutant by ~30%, 212 compared to WT cells (Fig. 3D, 3E). Deletion of SPT4 also caused a reduction in DSB frequency 213 in the $sir2\Delta$ background but the difference was not statistically significant (Fig. 3D, 3E). We did 214 not use cells synchronized in S phase for DSB assays, which made assessing the frequency of 215 216 resected DSBs unreliable as resected DSB intermediates were mostly below the detection limit 217 of Southern blotting (Fig. 3D, lower panel). Thus, the reduction of DSBs and possible reduction of DSB end resection might be reflected in the increased rDNA stability in the *spt4* Δ mutant, 218 219 which needs to be determined in future studies.

Yokoyama et al.

11

220	Sir2 represses transcription of non-coding RNA from E-pro when the copy number is
221	normal (Kobayashi and Ganley, 2005; Iida and Kobayashi, 2019). Relief of this repression
222	activates transcription from E-pro, which induces disruption of cohesin binding and rDNA
223	instability during DSB repair (Fig. 1A) (Kobayashi et al., 2004; Kobayashi and Ganley, 2005;
224	Saka et al., 2013). Chromatin immunoprecipitation experiments indicate that Spt4 is localized
225	across the rDNA, being enriched around the middle of the 35S rDNA gene and IGS1 (Lepore
226	and Lafontaine, 2011). Spt5 is also localized across the rDNA but, interestingly, is mostly
227	enriched at the IGS1 near the RFB and E-pro (Lepore and Lafontaine, 2011). This raises the
228	possibility that Spt4, as part of the Spt4-Spt5 complex functions to destabilize the rDNA through
229	transcription regulation of non-coding RNA from E-pro. To test this possibility, we detected the
230	noncoding RNA transcripts by Northern blotting with strand-specific probes (Fig. 3A). There are
231	three major non-coding RNA species that are transcribed in intergenic spacer regions: IGS1-F
232	and IGS1-R are transcribed from E-pro toward the 5S rRNA gene and the RFB site, respectively
233	(Kobayashi and Ganley, 2005) ; IGS2-R is synthesized toward the RFB site from the promoter
234	near an origin of DNA replication (Houseley et al. 2007).
235	The IGS1-F transcripts that are synthesized from E-pro toward the 5S rRNA gene were
236	reduced by ~40% in the <i>spt4</i> Δ mutant (Fig. 3F, 3G), although this difference was not statistically
237	significant. The level of IGS1-R transcript was detected below detection limit of Northern
238	blotting, making it difficult to quantify signal intensities accurately. Transcription of IGS2-R,
239	although it was not synthesized from E-pro, was also suppressed by 40% in the <i>spt</i> 4 Δ strain,
240	compared to WT, but this difference was again not statistically significant (Fig. 3H, 3I).
241	As shown above, overexpression of FOB1 in the ADH1p-FOB1 strain induces smearing
242	of chr XII band to the degree similar to that seen in the $sir2\Delta$ mutant (Fig. 2D–2F). A previous

Yokoyama et al.

12

243	study shows that overexpression of FOB1 causes weakened silencing of a marker gene inserted
244	in the IGS1 and proposes that over-abundance of Fob1 causes inappropriate interactions of Fob1
245	with the RENT complex (Buck et al., 2016), which is composed of Sir2, Net1, and Cdc14, is
246	recruited to IGS1 and enhances gene silencing (Huang and Moazed, 2003). Consistent with the
247	previous finding, overexpression of FOB1 led to de-repression of transcription from E-pro, as the
248	ADH1p-FOB1 strain showed ~4-fold increase in the IGS1-F transcripts, compared to wild-type
249	cells (Fig. 3J, 3K, WT/FOB1 vs. WT/ADH1p-FOB1). As a cause of this phenotype, we identified
250	that the Sir2 protein level was reduced by ~85% in the ADH1p-FOB1 cells, compared to the WT
251	(FOB1) cells (Fig. 3L, 3M), indicating that Fob1 overexpression causes a reduction in the Sir2
252	protein level, enhancing transcription from E-pro. Deletion of SPT4 from the ADH1p-FOB1
253	strain did not alter the Sir2 protein level but caused a decrease in the level of the IGS1-F
254	transcripts by ~4-fold, compared to the ADH1p-FOB1 strain (Fig. 3J-3M). Taken together, these
255	findings indicate that Spt4 functions to enhance transcription from E-pro.
256	The IGS1-F and IGS2-R transcripts were increased by ~7- and 8-fold in the $sir2\Delta$
257	mutant, respectively, compared to wild-type cells (Fig. 3F-3I). Thus, Sir2 regulates transcription
258	of non-coding RNA not just from E-pro but also from the promoter in the IGS2. Deletion of
259	SPT4 from the $sir2\Delta$ mutant did not result in a decrease in transcription activity that was
260	significant or comparable to that observed in the SIR2 background (Fig. 3F–3I). The possibility
261	that Spt4 represses SIR2 expression would explain the similar phenotype for the $sir2\Delta$ spt4 Δ
262	double and sir2 single mutant. However, this possibility was excluded, because the level of Sir2
263	was not altered by deletion of SPT4 (Fig. 3L, 3M). Therefore, Spt4-mediated enhancement of
264	transcription of non-coding RNA from E-pro depends on SIR2. Furthermore, the finding that
265	only in SIR2 cells the absence of Spt4 affected non-coding RNA transcription from E-pro is

Yokoyama et al.

13

consistent with Spt4 dependence on *SIR2* for the regulation of rDNA stability.

267

268 Spt4-mediated shortening of the replicative lifespan depends on *SIR2* and *FOB1*.

The lifespan of the *spt4* Δ mutant is reported to be longer than that of the wild type, but the

270 mechanism causing this remains unknown (Smith et al., 2008; McCormick *et al.*, 2015). To

explore how lifespan is extended in the *spt4* Δ mutant, we performed epistasis analysis of *SPT4*

with known lifespan-modulating genes. Namely, we examined genetic interaction with FOB1

that shortens lifespan and promotes rDNA instability and SIR2 that extends lifespan and

promotes rDNA stability (Defossez *et al.*, 1999; Kaeberlein *et al.*, 1999). Consistent with

previous findings, the *sir2* Δ and *fob1* Δ mutants had shortened and extended lifespans,

respectively (Fig. 4A, 4B). Deletion of SPT4 led to an extension of lifespan in the wild-type

background, consistent with previous findings (Smith et al., 2008; McCormick et al., 2015). This

278 lifespan extension was comparable to that of cells lacking Fob1. However, deletion of SPT4 from

the *fob1* Δ background did not result in lifespan extension (Fig. 4A, 4B). Similarly, deletion of

280 SPT4 from the $sir2\Delta$ background did not lead to extension of lifespan (Fig. 4A, 4B). These

findings indicate that Spt4 acts in the same pathway as Sir2 and Fob1 during the regulation of

senescence.

283

Spt4 restricts replicative lifespan through stimulation of non-coding RNA transcription from E-pro.

E-pro activity induces rDNA instability and cellular senescence (Kobayashi and Ganley, 2005;

287 Saka et al., 2013). Indeed, enhanced transcription of non-coding RNA in the ADH1p-FOB1

strain was accompanied with shortening of replicative lifespan, compared to the wild-type strain

Yokoyama et al.

14

289	(Fig. 3J, 3K and Fig. 4). Furthermore, deletion of SPT4 from the ADH1p-FOB1 strain led to
290	reduced transcription of non-coding RNA and rDNA instability (Fig. 2D-2F, 3J, 3K). The
291	ADH1p-FOB1 spt4 Δ strain clearly showed extended lifespan on the survival curve, compared to
292	the ADH1-FOB1 strain (Fig. 4A). It should be noted that although the multiple comparisons tests
293	did not show statistical significance in the mean lifespan between ADH1p-FOB1 and ADH1p-
294	<i>FOB1 spt4</i> Δ strains (Fig. 4B), the difference was statistically significant ($P < 0.001$ in the Mann-
295	Whitney, nonparametric test). These results point to the possibility that reduced transcription
296	from E-pro may be a primary determinant of lifespan extension in the absence of Spt4. To test
297	this possibility, we used the Gal-pro strain (Fig. 5A), in which the E-pro is replaced by the
298	galactose-inducible bi-directional GAL1/10 promoter in all rDNA copies (Kobayashi and Ganley
299	2005). In the Gal-pro strain, transcription of noncoding RNA is repressed in glucose-containing
300	media but it is induced in medium with galactose as the carbon source (Kobayashi and Ganley,
301	2005) (Fig. 5B). In the Gal-pro strain, the rDNA is stabilized and lifespan is extended when cells
302	are grown in the presence of glucose, compared to cells cultured in galactose-containing media
303	(Kobayashi and Ganley, 2005; Saka et al., 2013).
304	In the presence of glucose, non-coding RNA transcription was kept at a level below the
305	detection limit of Northern blotting in both Gal-pro and Gal-pro $spt4\Delta$ strains (Fig. 5B).
306	Furthermore, the level of ERCs was extremely low in the Gal-pro strain, compared to the E-pro
307	strain, and this level did not alter in the absence of Spt4 (Figs. 5C, 5D, lanes Gal-pro $spt4\Delta$). The
308	lifespan of the Gal-pro strain was longer than that of the E-pro strain, as described previously
309	(Saka et al. 2013). Although deletion of SPT4 led to an extension of the replicative lifespan of E-

pro cells, this deletion did not further extend the replicative lifespan of Gal-pro cells (Fig. 5E,

5F). Therefore, transcription of non-coding RNA depending on the presence of Spt4 induces

Yokoyama et al.

15

shortening of the replicative lifespan, which is connected to rDNA stability.

313

314 Spt4 protein level increases in old cells.

A previous study demonstrated that the Sir2 protein level decreases by ~80% in cells that have 315 316 divided ~6 times, which is in line with its anti-aging function (Fine *et al.*, 2019). We also examined the alteration in protein levels by comparing 'old' cells grown for 7 to 8 divisions, to 317 'young' cells that had not divided or just once. To this end, we tagged the ORFs of SIR2 or SPT4 318 with a triple HA epitope and separated young from old cells using magnetic streptavidin beads 319 320 that only bound to cell-surface proteins of old cells after their initial exposure to a biotinylation reagent. Tagged protein levels were assessed by Western blotting. Using this approach, we also 321 detected a statistically significant reduction in Sir2 levels as cells age (Fig. 6A, 6B). Possibly due 322 to experimental differences, the $\sim 40\%$ reduction we observed was less than reported. 323

If Spt4 is an aging factor, it is feasible that its protein level increases as cells undergo 324 more cell divisions. In agreement with this hypothesis, we found that the level of HA-tagged 325 326 Spt4 protein was elevated in old cells by ~3-fold, when this was compared to the abundance of Spt4 in young cells (Fig. 6C, 6D). As reported previously (Pal et al., 2018), in old cells we found 327 that the levels of transcripts synthesized from E-pro increased by >6-fold in either direction (Fig. 328 6E–6H). Although transcript levels did not change in young cells after deletion of SPT4, they 329 were >3-fold lower in old *spt4* Δ cells, compared to old wild-type cells (Fig. 6F, 6H). Thus, the 330 331 function of Spt4 appears to become more important as cells age. We conclude that Spt4 is a strong candidate for an aging factor that restricts the lifespan of cells, in this case by elevated 332 activation of non-coding RNA transcription as cells undergo more cell-divisions. This drives 333 334 rDNA instability and senescence gets triggered.

Yokoyama et al.

Discussion

337	In the budding yeast, the rDNA locus is thought to be a source of a putative aging signal.
338	Thus, the maintenance of rDNA stability is quite important for enhanced longevity. We identified
339	that Spt4 is a key factor that accelerates rDNA instability and cellular senescence by enhancing
340	transcription of non-coding RNA from E-pro (Fig. 1-4). The amount of Spt4 was increased in
341	aging cells and its depletion extended the lifespan (Fig. 4, 6). By genetic analysis, Spt4 was
342	demonstrated to function downstream of Fob1, Sir2, and E-pro activity in the regulation of rDNA
343	stability and replicative lifespan (Fig. 2, 4, 5). These findings suggest that Spt4 works as an aging
344	factor in budding yeast.
345	Our analysis of the <i>spt4</i> Δ mutant revealed that the activity of Spt4 stimulates
346	transcription of non-coding RNA from E-pro and an upstream promoter in the IGS2,
347	destabilizing the rDNA and extending replicative lifespan (Fig. 1-4). These Spt4-dependent
348	phenotypes completely disappeared when cells lacked Sir2 and Fob1 (Fig. 2-4). When
349	transcription from E-pro is repressed in the Gal-pro strain, Spt4 activity had no effect on rDNA
350	stability or lifespan in this strain (Fig. 5). These results strongly suggest that the function of Spt4
351	to activate transcription from E-pro is a direct cause of accelerating cellular senescence through
352	rDNA instability.
353	Based on our findings and in view of the enzymatic activities of Sir2 and Spt4, we
354	developed a working hypothesis how Spt4 enhances E-pro transcription in a Sir2 dependent
355	manner (Fig. 7). Sir2 deacetylates the histones around E-pro in the wild-type strain ("+Sir2")
356	which results in compacti jon of the chromatin (Fritze et al., 1997; Huang and Moazed, 2003).
357	The nucleosome can become a barrier to progression of RNAP II (Ehara and Sekine, 2018;

Yokoyama et al.

17

358	Kujirai and Kurumizaka, 2020). Thus, closed chromatin structures formed by Sir2 causes
359	pausing of the RNAP II transcription machinery. The activity of the elongation factor Spt4-Spt5
360	reduces this pause or releases this paused RNAP II, increasing the elongation rate of RNAP II at
361	the usual rate ("+Spt4"). Production of non-coding RNA triggers rDNA instability (possibly by
362	displacement of cohesin), which restricts the lifespan. In the absence of Spt4 ("-Spt4"),
363	transcription elongation activity is reduced, resulting in a decrease of non-coding RNA synthesis
364	that contributes to rDNA stability and a lifespan extension. In a SIR2 defective background ("-
365	Sir2"), the histones remain acetylated and transcription by RNAP II can proceed normally
366	regardless of Spt4 activity ("±Spt4") with elevated rDNA instability and a shortened lifespan as
367	the outcome.
368	Sir2 is classified as an anti-aging factor, because its absence causes lifespan shortening,
369	its over-production leads to extension of lifespan, and its protein level is reduced during normal
370	aging (Kaeberlein et al., 1999; Fine et al., 2019). The activity of Spt4 seems to have an opposite
371	effect on aging. Deletion of SPT4 extended the lifespan by ~30% (Figs. 4, 5E, 5F), as previously
372	reported (Smith et al., 2008; McCormick et al., 2015). Furthermore, we observed that as cells
373	age, expression of Spt4 increased over 3-fold, which was accompanied with the significantly
374	elevated levels of E-pro-derived transcripts of over 10-fold when cells age (Fig. 6). An increase
375	in Spt4 levels, together with reduced Sir2 levels, may be instrumental in enhancing E-pro
376	transcription by stimulating RNAP II processivity. However, a change of Sir2 distribution with
377	an impact on lifespan has previously been described: Sir2 relocalizes to telomeres and the silent
378	mating-type loci in the absence of Rif1, a mutation that affects lifespan (Salvi et al., 2013).
379	Therefore, it is also feasible that although Spt4 does not influence the Sir2 protein level (Fig. 3L,
380	3M), it may be involved in Sir2 distribution in the genome. An increased abundance of Spt4 in

Yokoyama et al.

18

old cells may prevent localization of Sir2 to the IGS1. Then, non-coding RNA is transcribed
from E-pro in more rDNA copies as cells age, compared to the situation in young cells, leading
to enhanced transcript levels in old cells.

So far, experimental evidence is lacking that would explain how Spt4 protein level increases in aging cells. A possible mechanism is that Sir2 represses *SPT4* expression. If this is the case, Spt4 works downstream of Sir2 which fits the results of our genetic analysis on lifespan (Fig. 4), DSB formation and the regulation of expression and elongation of non-coding transcripts (Fig. 3), where Spt4 activity depended on that of Sir2. Whether 40% reduction in the levels of Sir2 we detected in aging cells would be sufficient to accomplish this, will have to be tested more specifically.

How do Spt4-dependent transcription activation in the rDNA IGSs induce cellular 391 senescence? First, previous studies propose that the accumulation of ERCs induces cellular 392 senescence by titrating factors that are important for transcription, genome maintenance, and cell 393 growth (Sinclair and Guarente, 1997; Kwan et al., 2013; Neurohr et al., 2018). In line with this 394 395 model, Spt4-mediated E-pro activation induces ERC formation, potentially driving cellular senescence (Fig. 1B-1D, 2E, 2F, 5C, 5D). The second model centers around the rDNA stability 396 induced by DNA damage in the rDNA (Ganley et al., 2009; Kobayashi, 2011; Ganley and 397 Kobayashi, 2014). The Spt4 activity promotes DSB formation at arrested forks, although its 398 impact on DSB end resection, an initiating event of rDNA copy number changes, could not be 399 400 assessed in our study (Fig. 3D, 3E). The Spt4-mediated transcription activation of E-pro may promote homologous recombination-mediated rDNA instability by promoting DSB formation 401 and its end resection, which needs to be clarified in future studies. Lastly, non-coding RNA 402 403 transcription may drive cellular senescence in as yet unidentified manners. The lifespan of the

Yokoyama et al.

404	Gal-pro strain in glucose was markedly longer than that of the wild-type strain (38.9 to 22.1
405	divisions, Figs. 5E, F), and even longer than that of the <i>fob1</i> mutant (26.5) that does not generate
406	DSBs at the RFB site (Fig. 4). Furthermore, a noticeable upregulation of pre-rRNA synthesis had
407	been observed as a concomitant of ERC accumulation preceding senescence (Morlot et al., 2019).
408	Therefore, these observations suggest that noncoding transcription itself could be part of a
409	pathway leading to senescence. The above models relating rDNA maintenance to aging do not
410	need to be mutually exclusive, as might be revealed by further research into the molecular
411	mechanisms controlling the events marked by DSB formation, the accumulation of ERCs and
412	non-coding RNA and how these contribute to senescence.
413	Compared to wild type, the replicative lifespan of Gal-pro strains (including the Gal-pro
414	<i>spt4</i> Δ mutant) was extended by ~ 80%, while the lifespan of the <i>spt4</i> Δ mutant with the native E-
415	pro was increased by ~30% (Figs. 4, 5E, 5F). These differences indicate that transcription from
416	E-pro is not the only factor that determines the onset of senescence via the rDNA. Other
417	candidates than Spt4, which we count as an E-pro-mediated aging factor, have been identified
418	(Fig. 1B). How the increase in rDNA stability observed in the absence of these putative aging
419	factors, extends replicative lifespan will be analyzed in our future studies. The proteins encoded
420	by SIR2 and SPT4 are conserved in mammalian cells. Therefore, the findings we reported here
421	will be relevant for understanding the molecular mechanisms that link genomic instability in the
422	rDNA to the initiation of senescence signals in human cells.
423	

Yokoyama et al.

424 AUTHOR CONTRIBUTIONS

- 425 M.Y., M.S. and T.K. designed the experiments, analyzed the data and wrote the paper. M.Y.
- 426 performed the experiments.

427

428 ACKNOWLEDGEMENTS

- 429 We are grateful to David Schneider for yeast strains. This work was supported by JST CREST
- 430 (grant number JPMJCR19S3 to T.K.), JST FOREST Program (grant number JPMJFR214P to
- 431 M.S.), and Grant-in-Aid for Scientific Research (17H01443 and 21H04761 to T.K, and
- 432 20H05382 to M.S.).

Yokoyama et al.

433 **REFERENCES**

- 434 Anderson, S.J., Sikes, M.L., Zhang, Y., French, S.L., Salgia, S., Beyer, A.L., Nomura, M., and Schneider, D.A. (2011). The transcription elongation factor Spt5 influences transcription by RNA 435 436 polymerase Ι positively and negatively. J Biol Chem 286, 18816-18824. 10.1074/jbc.M110.202101. 437
- 438
- Brewer, B.J., Lockshon, D., and Fangman, W.L. (1992). The arrest of replication forks in the
 rDNA of yeast occurs independently of transcription. Cell *71*, 267-276. 10.1016/00928674(92)90355-g.
- 442
- Buck, S.W., Maqani, N., Matecic, M., Hontz, R.D., Fine, R.D., Li, M., and Smith, J.S. (2016).
 RNA Polymerase I and Fob1 contributions to transcriptional silencing at the yeast rDNA locus.
 Nucleic Acids Res 44, 6173-6184. 10.1093/nar/gkw212.
- 446
- Burkhalter, M.D., and Sogo, J.M. (2004). rDNA enhancer affects replication initiation and
 mitotic recombination: Fob1 mediates nucleolytic processing independently of replication.
 Molecular cell *15*, 409-421. 10.1016/j.molcel.2004.06.024.
- 450
- 451 Decker, T.M. (2021). Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5). J Mol
 452 Biol *433*, 166657. 10.1016/j.jmb.2020.09.016.
- 453

- 454 Defossez, P.-A., Prusty, R., Kaeberlein, M., Lin, S.-J., Ferrigno, P., Silver, P.A., Keil, R.L., and
 455 Guarente, L. (1999). Elimination of Replication Block Protein Fob1 Extends the Life Span of
 456 Yeast Mother Cells. Molecular cell *3*, 447-455. 10.1016/s1097-2765(00)80472-4.
- Di Micco, R., Krizhanovsky, V., Baker, D., and d'Adda di Fagagna, F. (2021). Cellular
 senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22,
 75-95. 10.1038/s41580-020-00314-w.
- 461
- Ehara, H., and Sekine, S.I. (2018). Architecture of the RNA polymerase II elongation complex:
 new insights into Spt4/5 and Elf1. Transcription *9*, 286-291. 10.1080/21541264.2018.1454817.
- 464
- Fine, R.D., Maqani, N., Li, M., Franck, E., and Smith, J.S. (2019). Depletion of Limiting rDNA
 Structural Complexes Triggers Chromosomal Instability and Replicative Aging of
 Saccharomyces cerevisiae. Genetics 212, 75-91. 10.1534/genetics.119.302047.
- 468
- Fritze, C.E., Verschueren, K., Strich, R., and Easton Esposito, R. (1997). Direct evidence for
 SIR2 modulation of chromatin structure in yeast rDNA. EMBO J 16, 6495-6509.
 10.1093/emboj/16.21.6495.
- 472
- Ganley, A.R., Ide, S., Saka, K., and Kobayashi, T. (2009). The effect of replication initiation on
 gene amplification in the rDNA and its relationship to aging. Molecular cell *35*, 683-693.
 10.1016/j.molcel.2009.07.012.
- 476
- Ganley, A.R., and Kobayashi, T. (2014). Ribosomal DNA and cellular senescence: new evidence
 supporting the connection between rDNA and aging. FEMS Yeast Res *14*, 49-59. 10.1111/1567-

Yokoyama et al.

479 1364.12133.

480

Goto, M., Sasaki, M., and Kobayashi, T. (2021). The S-Phase Cyclin Clb5 Promotes rRNA Gene
(rDNA) Stability by Maintaining Replication Initiation Efficiency in rDNA. Molecular and
cellular biology *41*. 10.1128/MCB.00324-20.

484

Guo, M., Xu, F., Yamada, J., Egelhofer, T., Gao, Y., Hartzog, G.A., Teng, M., and Niu, L. (2008).
Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription
elongation. Structure *16*, 1649-1658. 10.1016/j.str.2008.08.013.

488

494

498

Hartzog, G.A., and Fu, J. (2013). The Spt4-Spt5 complex: a multi-faceted regulator of
transcription elongation. Biochim Biophys Acta *1829*, 105-115. 10.1016/j.bbagrm.2012.08.007.

He, C., Zhou, C., and Kennedy, B.K. (2018). The yeast replicative aging model. Biochim
Biophys Acta Mol Basis Dis *1864*, 2690-2696. 10.1016/j.bbadis.2018.02.023.

Huang, J., and Moazed, D. (2003). Association of the RENT complex with nontranscribed and
coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in
rDNA silencing. Genes Dev *17*, 2162-2176. 10.1101/gad.1108403.

499 Iida, T., and Kobayashi, T. (2019). RNA Polymerase I Activators Count and Adjust Ribosomal

RNA Gene Copy Number. Molecular cell *73*, 645-654 e613. 10.1016/j.molcel.2018.11.029.

Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone
promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev *13*,
2570-2580. 10.1101/gad.13.19.2570.

505

Kennedy, B.K., Austriaco, N.R., Jr., and Guarente, L. (1994). Daughter cells of Saccharomyces
cerevisiae from old mothers display a reduced life span. J Cell Biol *127*, 1985-1993.
10.1083/jcb.127.6.1985.

509

510 Kobayashi, T. (2011). Regulation of ribosomal RNA gene copy number and its role in 511 modulating genome integrity and evolutionary adaptability in yeast. Cellular and molecular life

- 512 sciences : CMLS 68, 1395-1403. 10.1007/s00018-010-0613-2.
- 513

514 Kobayashi, T., and Ganley, A.R. (2005). Recombination regulation by transcription-induced 515 cohesin dissociation in rDNA repeats. Science *309*, 1581-1584. 10.1126/science.1116102.

516

Kobayashi, T., Heck, D.J., Nomura, M., and Horiuchi, T. (1998). Expansion and contraction of
ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking
(Fob1) protein and the role of RNA polymerase I. Genes & Development *12*, 3821-3830.
10.1101/gad.12.24.3821.

521

522 Kobayashi, T., Hidaka, M., Nishizawa, M., and Horiuchi, T. (1992). Identification of a site

required for DNA replication fork blocking activity in the rRNA gene cluster in Saccharomyces cerevisiae. Mol Gen Genet *233*, 355-362.

Yokoyama et al.

525

Kobayashi, T., and Horiuchi, T. (1996). A yeast gene product, Fob1 protein, required for both
replication fork blocking and recombinational hotspot activities. Genes to cells : devoted to
molecular & cellular mechanisms *1*, 465-474.

529

Kobayashi, T., Horiuchi, T., Tongaonkar, P., Vu, L., and Nomura, M. (2004). SIR2 regulates
recombination between different rDNA repeats, but not recombination within individual rRNA
genes in yeast. Cell *117*, 441-453.

533

Kujirai, T., and Kurumizaka, H. (2020). Transcription through the nucleosome. Curr Opin Struct
Biol *61*, 42-49. 10.1016/j.sbi.2019.10.007.

536

Kwan, E.X., Foss, E.J., Tsuchiyama, S., Alvino, G.M., Kruglyak, L., Kaeberlein, M.,
Raghuraman, M.K., Brewer, B.J., Kennedy, B.K., and Bedalov, A. (2013). A natural
polymorphism in rDNA replication origins links origin activation with calorie restriction and
lifespan. PLoS Genet *9*, e1003329. 10.1371/journal.pgen.1003329.

541

Kwan, E.X., Wang, X.S., Amemiya, H.M., Brewer, B.J., and Raghuraman, M.K. (2016). rDNA
Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion

544 Collections and de Novo Transformants. G3 (Bethesda) *6*, 2829-2838. 10.1534/g3.116.030296.

545

549

Lepore, N., and Lafontaine, D.L. (2011). A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast. PLoS One *6*, e24962. 10.1371/journal.pone.0024962.

Longo, V.D., Shadel, G.S., Kaeberlein, M., and Kennedy, B. (2012). Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab *16*, 18-31. 10.1016/j.cmet.2012.06.002.

553

López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The
Hallmarks of Aging. Cell *153*, 1194-1217. 10.1016/j.cell.2013.05.039.

556

McCormick, M.A., Delaney, J.R., Tsuchiya, M., Tsuchiyama, S., Shemorry, A., Sim, S., Chou,
A.C., Ahmed, U., Carr, D., Murakami, C.J., et al. (2015). A Comprehensive Analysis of
Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of
Aging. Cell Metab 22, 895-906. 10.1016/j.cmet.2015.09.008.

561

McHugh, D., and Gil, J. (2018). Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol *217*, 65-77. 10.1083/jcb.201708092.

564

Morlot, S., Song, J., Leger-Silvestre, I., Matifas, A., Gadal, O., and Charvin, G. (2019).
Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into
Senescence in Budding Yeast. Cell Rep 28, 408-422 e404. 10.1016/j.celrep.2019.06.032.

568

Neurohr, G.E., Terry, R.L., Sandikci, A., Zou, K., Li, H., and Amon, A. (2018). Deregulation of

570 the G1/S-phase transition is the proximal cause of mortality in old yeast mother cells. Genes Dev

Yokoyama et al.

571 *32*, 1075-1084. 10.1101/gad.312140.118.

572

Pal, S., Postnikoff, S.D., Chavez, M., and Tyler, J.K. (2018). Impaired cohesion and homologous
recombination during replicative aging in budding yeast. Sci Adv 4, eaaq0236.
10.1126/sciadv.aaq0236.

576

Saka, K., Ide, S., Ganley, A.R., and Kobayashi, T. (2013). Cellular senescence in yeast is
regulated by rDNA noncoding transcription. Curr Biol 23, 1794-1798.
10.1016/j.cub.2013.07.048.

580

Salvi, J.S., Chan, J.N., Pettigrew, C., Liu, T.T., Wu, J.D., and Mekhail, K. (2013). Enforcement
of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA
repeats by Rif1. Aging Cell *12*, 67-75. 10.1111/acel.12020.

584

Sasaki, M., and Kobayashi, T. (2017). Ctf4 Prevents Genome Rearrangements by Suppressing
DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.
Molecular cell *66*, 533-545 e535. 10.1016/j.molcel.2017.04.020.

588

Sasaki, M., and Kobayashi, T. (2021). Gel Electrophoresis Analysis of rDNA Instability in
Saccharomyces cerevisiae. Methods Mol Biol *2153*, 403-425. 10.1007/978-1-0716-0644-5_28.

Schneider, D.A., French, S.L., Osheim, Y.N., Bailey, A.O., Vu, L., Dodd, J., Yates, J.R., Beyer,
A.L., and Nomura, M. (2006). RNA polymerase II elongation factors Spt4p and Spt5p play roles
in transcription elongation by RNA polymerase I and rRNA processing. Proc Natl Acad Sci U S
A *103*, 12707-12712. 10.1073/pnas.0605686103.

Sinclair, D., Mills, K., and Guarente, L. (1998a). Aging in Saccharomyces cerevisiae. Annu Rev
Microbiol *52*, 533-560. 10.1146/annurev.micro.52.1.533.

599

602

596

Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA Circles— A Cause of Aging in
Yeast. Cell *91*, 1033-1042. 10.1016/s0092-8674(00)80493-6.

Sinclair, D.A., Mills, K., and Guarente, L. (1998b). Molecular mechanisms of yeast aging.
Trends in Biochemical Sciences 23, 131-134. 10.1016/s0968-0004(98)01188-8.

605606 Smith, E.D., Tsuchiya, M., Fox, L.A., Dang, N., Hu, D., Kerr, E.O., Johnston, E.D., Tchao, B.N.,

Binnin, E.D., Tsuemya, W., Tox, E.A., Dang, M., Hu, D., Kerr, E.O., Johnston, E.D., Tenao, B.R.,
Pak, D.N., Welton, K.L., et al. (2008). Quantitative evidence for conserved longevity pathways
between divergent eukaryotic species. Genome Res 18, 564-570. 10.1101/gr.074724.107.

609

Takeuchi, Y., Horiuchi, T., and Kobayashi, T. (2003). Transcription-dependent recombination and

- the role of fork collision in yeast rDNA. Genes Dev 17, 1497-1506. 10.1101/gad.1085403.
- 612

613 Viktorovskaya, O.V., Appling, F.D., and Schneider, D.A. (2011). Yeast transcription elongation

factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. J Biol Chem 286,

615 18825-18833. 10.1074/jbc.M110.202119.

Yokoyama et al.

- 617 Weitao, T., Budd, M., Hoopes, L.L., and Campbell, J.L. (2003). Dna2 helicase/nuclease causes 618 replicative fork stalling and double-strand breaks in the ribosomal DNA of Saccharomyces
- 619 cerevisiae. The Journal of biological chemistry 278, 22513-22522. 10.1074/jbc.M301610200.
- 620

26

Yokoyama et al.

622 FIGURE LEGENDS

Figure 1. The Spt4-Spt5 complex enhances rDNA instability by promoting ERC production.

- 624 (A) DNA replication fork arrest, DSB formation and copy number changes in the budding yeast
- rDNA region. 35S, 35S precursor rRNA coding region; 5S, 5S rRNA coding region; rARS,
- autonomously replicating sequence in rDNA; RFB, replication fork barrier; DSB, DNA double-
- strand break; ERC, extrachromosomal rDNA circle. The black bar indicates the position of probe
- 628 1 used for ERC detection by Southern blotting.
- (B) The summary of the ERC analyses. See Figure S1 for the raw data. The level of ERCs for the
- 630 indicated strains was determined by calculating the ratio of ERCs relative to genomic rDNA and
- normalized to the average level of ERCs in wild-type clones (WT; bar shows mean \pm s.e.m; bars
- for mutant strains show the range between the ERC-levels for two independent clones). One-way
- 633 ANOVA was performed for multiple comparisons (asterisks indicate statistically significant
- 634 difference between wild type and mutants [p < 0.05]).
- 635 (C) ERC detection. DNA was isolated from three independent clones of the indicated strains and
- separated by agarose gel electrophoresis, followed by Southern blotting with probe 1 shown in
- 637 (A). Genomic rDNA, supercoiled and relaxed forms of monomeric and dimeric ERCs are

638 indicated. Sizes of lambda DNA-*Hind* III markers are indicated.

- 639 (**D**) Quantitation of ERC levels. ERCs in (C) were quantified, as described in (B). Bars show 640 mean \pm s.e.m. One-way ANOVA was performed for multiple comparisons (asterisks indicate 641 statistically significant difference between wild type and mutants [p < 0.05]; ns indicates no
- 642 significant difference (p > 0.05)).
- 643

Yokoyama et al.

27

Figure 2. Spt4-mediated enhancement of rDNA instability requires *SIR2***.**

645	(A, D) Size heterogeneity of chromosome XII. DNA was extracted from four (A) and three (D)
646	independent clones of the indicated strains and separated by PFGE. DNA was stained with
647	ethidium bromide (EtBr). The extent of variability in rDNA copy number determines the
648	appearance of the chr XII band; stable rDNA migrates together, while a diffused appearance of
649	the band (from little to extreme smearing) reflects (small to large) differences in rDNA copy
650	number in cell population. In (A), four independent clones of the $sir2\Delta$ spt4 Δ mutant were
651	marked by either 'small' or 'normal', depending on the size of chr XII. M indicates Hansenula
652	wingei chromosomal DNA markers.
653	(B) Overproduction of Fob1 protein. Fob1, C-terminally tagged with a triple HA epitope (Fob1-
654	3HA), was detected in protein extracts prepared from three independent clones of the indicated
655	strains that carry the FOB1 ORF under control of either its endogenous promoter (FOB1-3HA) or
656	the constitutive ADH1 promoter (ADH1p-FOB1-3HA). Proteins were separated by SDS-PAGE,
657	followed by Western blotting with antibodies against the HA tag and tubulin.
658	(C) Quantitation of Fob1 protein levels. The levels of Fob1-3HA in (B) were quantified relative
659	to tubulin, which was normalized to the average of <i>FOB1-3HA</i> clones (bars show mean \pm s.e.m).
660	(E) ERC detection. DNA isolated from the indicated strains was separated by agarose gel
661	electrophoresis, followed by Southern blotting with probe 1 (shown in Figs. 1A and 3A).
662	Genomic rDNA, supercoiled and relaxed forms of monomeric and dimeric ERCs are indicated.
663	Sizes of lambda DNA-Hind III markers are shown.
664	(F) Quantitation of ERC levels. Levels of ERCs in (E) were determined for the indicated strains
665	as the ratio of the sum of monomeric and dimeric ERCs relative to genomic rDNA (top panel),
666	which was normalized to the average of wild-type clones (bars show mean \pm s.e.m). Statistical

Yokoyama et al.

28

667	analyses were performed between wild type and <i>spt4</i> Δ and between <i>sir2</i> Δ and <i>sir2</i> Δ <i>spt4</i> Δ , by
668	two-sided Welch t test. A significant difference ($p < 0.05$) is marked by an asterisk; ns indicates
669	no significant difference ($p > 0.05$).
670	
671	Figure 3. Spt4 stimulates transcription of non-coding RNA from E-pro.
672	(A) Restriction map and the positions of the probes used in this study. N and Bg indicate
673	restriction sites recognized by Nhe I and Bgl II, respectively. The 35S (green) and 5S (gray)
674	rRNA genes (arrow bars), the origin of replication within the rDNA (rARS) and the regulatory,
675	bidirectional promoter E-pro are shown. Positions of probes used for 2D (Probe 1) and DSB
676	(probe 2) analyses in (B) and (D) are indicated, as well as the position of single-stranded probes
677	used for detection of non-coding RNA transcribed from E-pro in the direction toward the RFB
678	site (Probe 3) or the 5S gene (Probe 4).
679	(B) 2D agarose gel electrophoresis. Genomic DNA isolated from the indicated strains was
680	digested with Nhe I. DNA was separated by size in the first dimension and by size and shape in
681	the second dimension, followed by Southern blotting with probe 1, as indicated in (A). The
682	diagram on the left shows the expected migration pattern of different replication intermediates.
683	1N represents the bulk of unreplicated, linear DNA.
684	(C) Quantitation of fork arrest. The signals of arrested forks in (B) were quantified relative to the
685	total of replication-intermediate signals (that included bubble arcs, Y arcs, arrested forks, and
686	double Y spots). The levels of arrested forks in the <i>spt4</i> Δ mutant was normalized to the average

687 of wild-type clones.

(D) DSB assay. Genomic DNA isolated from the indicated strains was digested with *Bgl* II. DNA
was separated by single-dimension agarose gel electrophoresis, followed by Southern blotting

Yokoyama et al.

29

690	with probe 2 indicated in (A). Intermediates are indicated incl. terminal fragments containing the
691	telomere-proximal rDNA repeat (open circle) and non-specific background (asterisks). In the
692	absence of Fob1 ($fob1\Delta$), intermediates with replication forks that just entered the 35S rRNA
693	region are prevalent.
694	(E) Quantitation of DSBs. The DSB frequency was determined by quantifying the signal of
695	DSBs in (D) relative to that of arrested forks, which was normalized to the average of wild-type
696	clones (bars show mean \pm s.e.m). One-way ANOVA was performed for multiple comparisons.
697	An asterisk indicates a significant difference ($p < 0.05$); ns marks a difference that is not
698	statistically significant ($p > 0.05$).
699	(F, H, J) Detection of non-coding RNAs transcribed from E-pro. RNA isolated from the
700	indicated strains was separated by gel electrophoresis in formaldehyde-containing agarose gel,
701	followed by Northern blotting. IGS1-F transcribed from E-pro toward 5S rDNA was detected
702	with probe 4 (F, J). RNA transcribed toward the RFB from E-pro (IGS1-R) or from an upstream
703	promoter (IGS2-R) were detected with probe 3 (H). Membranes were reprobed for ACT1
704	transcripts as a control for loading (ACT1).
705	(G, I, K) Quantitation of non-coding RNA. Signals corresponding to IGS1-F (G, K) and IGS2-R
706	transcripts (I) were quantified relative to ACT1, which was normalized to the average of wild-
707	type clones. Bars show mean \pm s.e.m. in (G) and (I) and mean and the range from two
708	independent experiments in (K). Signals of IGS1-R transcripts were detected below detection
709	limit and were thus not quantified. One-way ANOVA was performed for multiple comparisons in
710	(G) and (I). An asterisk indicates a significant difference ($p < 0.05$); ns marks a difference that is
711	not statistically significant ($p > 0.05$).
712	(L) Detection of Sir2 that is C-terminally tagged with a triple HA epitope (Sir2-3HA). Protein

Yokoyama et al.

30

713	extracts isolated from four independent clones of the indicated strains were separated by SDS-
714	PAGE, followed by Western blotting with antibodies against HA tag and tubulin.
715	(M) Quantitation of Sir2 protein levels. The level of Sir2-3HA protein was quantified relative to
716	tubulin, which was normalized to the average of wild-type clones (bars show the range from two
717	independent experiments).
718	
719	Figure 4. Spt4-mediated shortening of replicative lifespan depends on <i>FOB1</i> and <i>SIR2</i> .
720	(A, B) Lifespans were determined by counting the number of daughter cells produced by a
721	mother cell. Survival curve (A) and the mean lifespans (B) of the indicated strains were
722	determined. The numbers of cells analyzed for lifespan measurements were n=101 (WT), 107
723	$(spt4\Delta)$, 33 $(sir2\Delta)$, 31 $(spt4\Delta sir2\Delta)$, 24 $(fob1\Delta)$, 27 $(spt4\Delta fob1\Delta)$, 26 $(ADH1p-FOB1)$, and 26
724	(ADH1p-FOB1 spt4 Δ). Statistical significance was determined by a Kruskal-Wallis non-
725	parametric test with Dunn's multiple comparisons tests. An asterisk indicates a significant
726	difference ($p < 0.001$); ns marks a difference that is not statistically significant. ns (*) between
727	ADH1p-FOB1 and ADH1p-FOB1 spt4 Δ strains indicates that the difference in the mean lifespan
728	between ADH1p-FOB1 and ADH1p-FOB1 spt4 Δ strains is not statistically significant by a
729	Kruskal-Wallis non-parametric test with Dunn's multiple comparisons tests but was found to be
730	significant by the Mann-Whitney, nonparametric test ($P < 0.001$).
731	
732	Figure 5. Spt4-mediated rDNA instability and shortening of replicative lifespan depends on

733 transcription activity from E-pro.

(A) Replacement of the E-pro with the bi-directional *GAL1/10* promoter in all the rDNA copies

in the Gal-pro strain. Probes 3 indicates the position of the single-stranded probe used for

31

Yokoyama et al.

736 detection of non-coding RNA in (B).

(B) Detection of non-coding RNAs transcribed from E-pro and Gal-pro. The indicated strains 737 were cultured in media with glucose, except for control cells that were grown in the presence of 738 739 galactose (+gal). RNA was isolated and separated in formaldehyde-containing agarose, followed by Northern blotting. Transcripts synthesized toward the RFB site were detected with probe 3 740 741 (see (A)). Membranes were reprobed with a probe hybridizing to ACT1 transcripts (ACT1). (C) ERC detection. DNA isolated from the indicated strains grown in glucose-containing media 742 was separated by agarose gel electrophoresis, followed by Southern blotting with probe 1 (see 743 744 Figs. 1A, 3A). Genomic rDNA and supercoiled and dimer forms of monomeric and dimeric ERCs are indicated. Sizes of lambda DNA-Hind III markers are indicated. 745 (D) Quantitation of ERC levels. Levels of ERCs in (C) were determined by the ratio of the sum 746 747 of monomeric and dimeric ERCs relative to genomic rDNA, which was normalized to the average of wild-type clones (bars show mean \pm s.e.m). One-way ANOVA was performed for 748 749 multiple comparisons (asterisks indicate statistically significant difference between wild type and 750 mutants [p < 0.05]; ns indicates no significant difference (p > 0.05)). (E, F) Lifespans were determined by counting the number of daughter cells produced by mother 751 cells growing on medium with glucose. Survival curve (E) and the mean life spans (F) of the 752 indicated strains are shown. The numbers of cells analyzed for lifespan measurements were n=28753 (E-pro), 29 (E-pro *spt4* Δ), 26 (Gal-pro), and 28 (Gal-pro *spt4* Δ). Statistical significance was 754 determined by a Kruskal-Wallis non-parametric test with Dunn's multiple comparisons tests. An 755 asterisk indicates a significant difference (p < 0.05); ns marks a difference that is not statistically 756 significant (p > 0.05). 757

758

Yokoyama et al.

32

759 Figure 6. The function of Spt4 becomes more important as cells age.

760	(A, C) Detection of Sir2 and Spt4 protein levels. Strains were constructed expressing Sir2 or
761	Spt4 protein with a triple HA epitope at the C-terminus. Protein extracts isolated from three
762	independent clones of the indicated strains were separated by SDS-PAGE, followed by Western
763	blotting with antibodies against HA to detect Sir2-3HA (A) or Spt4-3HA (C), and against tubulin.
764	(B , D) Quantitation of Sir2 and Spt4 expression. The level of Sir2-3HA (B) and Spt4-3HA (D)
765	protein was quantified relative to tubulin, which was normalized to the average of their levels in
766	young cells (bars show mean \pm s.e.m).
767	(E, G) Synthesis of non-coding RNA in young and old cells. In each of the three independent
768	cultures, young cells were split from old cells for the indicated strains. The control $sir2\Delta$ cells
769	were collected from one exponentially growing culture. RNA was isolated and separated by gel
770	electrophoresis over formaldehyde-containing agarose, followed by Northern blotting.
771	Transcripts synthesized toward the 5S (IGS1-F) and RFB sides (IGS2-R) were detected with
772	probes 4 and 3 (see Fig. 3A), respectively. Membranes were reprobed with the ACT1 probe.
773	RNA from the $sir2\Delta$ strain was isolated from unsorted young cells.
774	(F, H) Quantitation of non-coding RNA levels. The signals of non-coding RNA transcripts (E, G)
775	were quantified relative to ACT1, which was normalized to the average of wild-type clones (bars
776	show mean \pm s.e.m). One-way ANOVA was performed for multiple comparisons for samples,
777	except for $sir2\Delta$ (asterisks indicate statistically significant difference between wild type and
778	mutants [$p < 0.05$]; ns indicates no significant difference ($p > 0.05$)).
779	

Yokoyama et al.

33

780 Figure 7. Spt4 promotes transcription of non-coding RNA from E-pro in a manner

781 dependent on Sir2.

In wild-type cells (+Sir2, +Spt4), due to the histone deacetylase activity of Sir2, histones lose

- their acetyl modifications (Ac) and closed chromatin structures are formed around E-pro. Such
- chromatin structures block progression of RNA polymerase II (RNAP II). The Spt4-Spt5
- complex is a transcription elongation factor that facilitates progression of RNAP II, leading to
- transcription of non-coding RNA at a normal rate when histones are deacetylated. Thus, in cells

carrying Sir2 but not Spt4 (or defective Spt5) (+Sir2, –Spt4), RNAP II cannot progress normally

and non-coding RNAs are transcribed at a reduced rate, which leads to an increase in rDNA

stability, generating less aging signal and slows down cellular senescence. In the absence of Sir2,

chromatin structures are kept open, stimulating transcription of non-coding RNA by RNAP II,

regardless of the presence or absence of Spt4-Spt5 activity (+Sir2, ±Spt4). The increased

transcription activity triggers rDNA instability, accelerating cellular senescence. As cells age, the

⁷⁹³ protein level of Spt4 increases, elevating transcription from E-pro, rDNA instability and cellular

senescence. In old cells lacking Spt4, the elongation activity is reduced and the transcription is

decreased from E-pro (-Spt4), leading to rDNA stability and extension of lifespan.

34

Yokoyama et al.

796 MATERIALS AND METHODS

797 Yeast Strains and Culture Methods

Yeast strains used in this study are derivatives of W303 (MATa ade2-1 ura3-1 his3-11, 15 trp1-1 798 leu2-3,112 can1-100). The spt5-C292R and spt5-S324P, E427K strains used in Fig. 1D were 799 previously constructed and a kind gift from David Schneider (Anderson et al., 2011). Gene 800 tagging or deletion was performed by standard one-step gene replacement methods and the 801 mutant strains were confirmed by PCR-based genotyping. Prior to use, strains were streaked 802 from a glycerol stock onto YPD plates (1% w/v yeast extract, 2% w/v peptone, 2% w/v glucose, 803 and 2% w/v agar). Yeast cells were grown at 30°C, except for the experiment in Fig. 1C where 804 cells were grown at 27°C. For each DNA, RNA or protein preparation, 5 ml of YPD was 805 inoculated with a single colony and incubated overnight. For PFGE and ERC analyses, overnight 806 cultures were collected (5 \times 10⁷ cells/plug) and washed twice with 50 mM EDTA pH 7.5. For 807 two-dimensional (2D) agarose gel electrophoresis and DSB analyses, overnight cultures were 808 diluted into 50 mL of YPD medium to $OD_{600} = 0.1$ and grown until $OD_{600} = 0.4$. The cultures 809 were immediately treated with 1/1,000 vol of 10% sodium azide, collected (5 \times 10⁷ cells/plug) 810 by centrifugation for 2 min at 2,400 \times g at 4°C and washed twice with 50 mM EDTA pH 7.5. To 811 prepare RNA, overnight cultures were diluted into 15 mL of YPDA medium (YPD containing 40 812 μ g/mL adenine sulfate) to an OD₆₀₀ = 0.1 and collected when the cultures reached an OD₆₀₀ of 0.8. 813 Protein extracts were prepared from 3×10^7 cells grown in 50 mL of YPD medium to OD₆₀₀ = 814 0.4 after dilution of overnight cultures to $OD_{600} = 0.1$. 815

816

817 Genomic DNA Preparation

818 For PFGE, ERC, DSB, and 2D gel analyses, genomic DNA was prepared in low melting

Yokoyama et al.

35

819	temperature agarose plugs as described previously (Sasaki and Kobayashi, 2017; 2021). Briefly,
820	collected cells were resuspended in 50 mM EDTA pH 7.5 (33 μL cell per 5×10^7 cells and
821	incubated at 42°C. For each plug, 33 μ L cell suspension was mixed with 66 μ L solution 1 (0.83%)
822	low-melting-point agarose SeaPlaque GTG (Lonza), 170 mM sorbitol, 17 mM sodium citrate, 10
823	mM EDTA pH 7.5, 0.85% β -mercaptoethanol, and 0.17 mg/mL Zymolyase 100 T (Nacalai)),
824	poured into a plug mold (Bio-RAD) and placed at 4°C for the agarose to be solidified. Plugs
825	were transferred to a 2 mL-tube containing solution 2 (450 mM EDTA pH 7.5, 10 mM Tris-HCl
826	pH 7.5, 7.5% β -mercaptoethanol and 10 μ g/mL RNaseA (Macherey-Nagel)), and incubated for 1
827	h at 37°C. Plugs were then incubated overnight at 50°C in solution 3 (250 mM EDTA pH 7.5, 10
828	mM Tris-HCl pH 7.5, 1% sodium dodecyl sulfate (SDS) and 1 mg/mL Proteinase K (Nacalai)).
829	Plugs were washed four times with 50 mM EDTA pH 7.5 and stored at 4°C in 50 mM EDTA pH
830	7.5.
831	

832 Southern blotting

833 Agarose gel electrophoresis

ERC assay. ERC assay was performed as described previously (Goto et al., 2021; Sasaki 834 and Kobayashi, 2021). Half an agarose plug was placed on a tooth of the comb. After the comb 835 was set in the gel tray (15×25 cm), 300 ml of 0.4% agarose (SeaKem LE Agarose, Lonza) in 1x 836 TAE (40 mM Tris base, 20 mM acetic acid, and 1 mM EDTA pH 8.0) was poured into the tray 837 and allowed to set, after which 500 ng of lambda Hind III DNA marker was applied to an empty 838 lane. The electrophoresis was run on a Sub-cell GT electrophoresis system (Bio-Rad) in 1.5 L of 839 1x TAE at 1.0 V/cm for \sim 48 h at 4°C with buffer circulation. The buffer was changed every \sim 24 840 841 h. DNA was stained with 0.5 µg/mL EtBr for 30 min and then photographed.

Yokoyama et al.

36

842	2D gel electrophoresis. 2D gel electrophoresis was performed as described previously
843	with slight modifications (Goto et al., 2021). One-half of an agarose plug was placed in a 2-mL
844	tube. The plug was equilibrated twice in 1 mL of 1x M buffer (TaKaRa) by rotating the tube for
845	30 min at room temperature. After discarding the buffer, the plug was incubated in 160 μ L of 1x
846	M buffer containing 160 units of <i>Nhe</i> I (TaKaRa) overnight at 37°C. The plug was placed on a
847	tooth of the comb. The comb was set in the gel tray (15×25 cm), 0.4 % agarose solution in 1x
848	TBE was poured and the gel was allowed to solidify. 600 ng of lambda Hind III DNA markers
849	were applied to the empty lane. The electrophoresis was performed on a Sub-cell GT
850	electrophoresis system (Bio-Rad) in 1.5 L of 1x TBE at 1.32 V/cm for 14 h at room temperature
851	with buffer circulation.
852	After electrophoresis completed, DNA was stained with 0.3 μ g/mL EtBr for 30 min and
853	then photographed. Gel slices containing DNA ranging from 4.7 to 9.4 kb were excised, rotated
854	90° , and placed onto the gel tray used for the second agarose gel electrophoresis for which 1.2 %
855	agarose solution in 1x TBE containing 0.3 μ g/mL of EtBr was poured into the tray. The second-
856	dimension electrophoresis was run on a Sub-cell GT electrophoresis system (Bio-Rad) in 1.5 L
857	of 1x TBE containing 0.3 μ g/mL of EtBr at 6.0 V/cm for 6 h at 4°C with buffer circulation. After
858	electrophoresis, the DNA was photographed.
859	DSB assay. The DSB assay was performed as described previously (Sasaki and
860	Kobayashi, 2017; 2021). One-third of an agarose plug was cut and placed in a 2-mL tube. The
861	plug was equilibrated four times in 1 mL of 1x TE (10 mM Tris base pH 7.5 and 1 mM EDTA
862	pH 8.0) by rotating the tube for 15 min at room temperature. The plug was equilibrated twice in
863	1 mL of 1x NEBuffer 3.1 (New England Biolabs) by rotating the tube for 30 min at room

temperature. After discarding the buffer, the plug was incubated in 160 μ L of 1× NEBuffer 3.1

Yokoyama et al.

37

865	buffer containing 160 units of Bgl II (New England Biolabs) overnight at 37°C. The plug was
866	placed on a tooth of the comb which was set into the gel tray (15 \times 25 cm), into which 0.7 %
867	agarose solution in 1x TBE was poured; after setting of the gel 600 ng of lambda $Bst E \square$ DNA
868	markers were applied to an empty lane. The electrophoresis was run on a Sub-cell GT
869	electrophoresis system (Bio-Rad) in 1.5 L of 1x TBE at 2.0 V/cm for 22 h at room temperature
870	with buffer circulation. After electrophoresis, the DNA was stained with 0.5 μ g/mL EtBr for 30
871	min and then photographed.
872	DNA transfer
873	After agarose gel electrophoresis, the gel was incubated by gentle mixing in 500 mL of 0.25 N
874	HCl for 30 min, 500 mL of denaturation solution (0.5 N NaOH, 1.5 M NaCl) for 30 min, and in
875	500 mL of transfer buffer (0.25 N NaOH, 1.5 M NaCl) for 30 min. DNA was transferred to
876	Hybond-XL (GE Healthcare) by the standard capillary transfer method with transfer buffer. DNA
877	was fixed to the membrane by soaking the membrane in 300 mL freshly prepared 0.4 N NaOH
878	for 10 min with gentle shaking, followed by rinsing the membrane with 2x SSC for 10 min. The
879	membrane was dried and stored at 4°C.
880	Probe preparation
881	Probes were prepared as described previously (Sasaki and Kobayashi, 2017; 2021). Double-
882	stranded DNA fragments were amplified by PCR. Probe 1 used for ERC and 2D analyses was
883	amplified with the primers 5'-CATTTCCTATAGTTAACAGGACATGCC and 5'-
884	AATTCGCACTATCCAGCTGCACTC; and probe 2 used for DSB analysis was amplified with
885	the primers 5'-ACGAACGACAAGCCTACTCG and 5'-AAAAGGTGCGGAAATGGCTG. A
886	portion of PCR products was gel-purified and seeded for a second round of PCR with the same
887	primers. PCR products were gel-purified and 50 ng was used for random priming reactions in the

Yokoyama et al.

38

888	presence of radio-labeled nucleotide, $[\alpha$ - ³² P]-dCTP (3,000 Ci/mmol, 10 mCi/ml, Perkin Elmer),
889	using Random Primer DNA Labeling Kit (TaKaRa), according to the manufacturer's instructions.
890	Unincorporated nucleotides were removed using ProbeQuant G-50 Micro Columns (GE
891	Healthcare). The radio-labeled probes were heat-denatured for 5 min at 100°C, immediately prior
892	to hybridization to the membrane.
893	Hybridization
894	Southern hybridization was performed as described previously (Sasaki and Kobayashi, 2017;
895	2021). The membrane was pre-wetted with 0.5 M phosphate buffer pH 7.2 and pre-hybridized
896	for 1 h at 65°C with 25 mL of hybridization buffer (1% bovine serum albumin, 0.5 M phosphate
897	buffer pH 7.2, 7% SDS, 1 mM EDTA pH 8.0). After buffer was discarded, the membrane was
898	hybridized with 25 mL of hybridization buffer and heat-denatured probe overnight at 65°C. The
899	membrane was washed four times for 15 min at 65°C with wash buffer (40 mM phosphate buffer
900	pH 7.2, 1 % SDS, 1 mM EDTA pH 8.0) and exposed to a phosphor screen.
901	Image analysis
902	Membranes were exposed to a phosphor screen for several days to achieve a high signal to noise
903	ratio for DNA molecules that are low in abundance such as ERCs, replication intermediates in
904	2D assays, and arrested forks and DSBs. The radioactive signal was detected using a Typhoon
905	FLA 7000 (GE Healthcare). In ERC assays, genomic rDNA signal was used for normalization of
906	ERC signals. Thus, the membranes were re-exposed to the phosphor screen for a short time
907	before this signal reached saturation. ERC bands and genomic rDNA were quantified using
908	FUJIFILM Multi Gauge version 2.0 software (Fujifilm) and scans from long and short exposures,
909	respectively. The levels of ERCs were calculated by dividing the sum of signal intensities of
910	ERCs with those of genomic rDNA. When the levels of ERCs were compared between samples

Yokoyama et al.

39

911	loaded on different gels, pieces of the plug excised from a specific DNA sample were loaded on
912	different gels, blotted and hybridized. Signal of these plugs was used for normalization of
913	samples on different gels. In 2D analyses, bubbles, Y arcs, RFB spots, and double Y spots were
914	quantified using ImageJ (NIH). The RFB activity was calculated as the ratio between the signal
915	for the spot with arrested forks and the sum of signals encompassing the total of DNA replication
916	intermediates. Signals of DSBs and arrested forks were quantified using FUJIFILM Multi Gauge
917	version 2.0 software (Fujifilm). The DSB frequency was calculated by normalizing the DSB
918	signal to that of the arrested forks.
919	
920	PFGE
921	PFGE was performed as described previously (Sasaki and Kobayashi, 2017; 2021). Briefly, one-
922	third of a plug was placed on a tooth of the comb, including a piece with Hansenula wingei
923	chromosomal DNA markers (Bio-Rad). The comb was set into the gel tray, and 1.0% agarose
924	solution was poured (Pulsed Field Certified Agarose, Bio-Rad) in 0.5x TBE (44.5 mM Tris base,
925	44.5 mM boric acid and 1 mM EDTA pH 8.0). PFGE was run on a Bio-Rad CHEF DR-III
926	system in 2.2 L of 0.5x TBE under the following conditions: 3.0 V/cm for 68 h at 14°C, 120°
927	included angle, initial switch time of 300 s, and final switch time of 900 s. After electrophoresis,
928	DNA was stained with 0.5 μ g/mL ethidium bromide (EtBr) for 30 min, washed with dH ₂ O for 30
929	min, and then photographed.
930	
931	Preparation of protein extracts
932	Protein extracts were prepared from yeast cells, as described previously with a slight

933 modification (Iida and Kobayashi, 2019). Cells were re-suspended in 500 μL of ice-cold dH₂O

Yokoyama et al.

40

934	and 75 μ L of Alkali-2ME solution (1.295N NaOH and 7.5% v/v 2-mercaptoethanol) by
935	vortexing and incubated on ice for 10 min. Cell suspensions were mixed with 75 μL of 50% w/v
936	Trichloroacetic Acid by vortexing and incubated on ice for 10 min. After centrifugation at 10,000
937	\times g for 5 min at 4°C, the supernatant was completely removed and the pellets were resuspended
938	in 50 μL of buffer (800 μl of 200 mM Tris-HCl pH 8.8 and 200 μl of 5x SDS-loading buffer (250
939	mM Tris-HCl, pH 6.8, 8% SDS, 0.1% bromophenol blue, 40% glycerol, 100 mM Dithiothreitol)).
940	Protein concentration was quantified using a Bradford assay (Bio-Rad). Protein samples were
941	stored at -20°C.
942	
943	Western blotting
944	Protein samples were prepared by mixing 20–25 μ g of total protein extracts with 1x SDS-loading
945	buffer to an end volume of 10 μ L. Protein samples were boiled for 5 min at 65°C, and
946	centrifugated at 20,000 × g for 5 min at 4°C. Supernatants were loaded and separated on 7.5% or
947	5–20% pre-made polyacrylamide gel (Atto) in 400 mL of 1x SDS-PAGE running buffer (25 mM
948	Tris, 192 mM Glycine, 0.1% SDS). Proteins were transferred to Immobilon-P PVDF membrane
949	(Merck-Millipore) in 1x transfer buffer (25 mM Tris, 192 mM glycine, 10% methanol) for 60
950	min at 100 V at 4°C using a Mini Trans-Blot cell (Bio-Rad). After transfer, the membrane was
951	blocked in 5% Skim Milk (Wako) in PBS-T (1x PBS, 0.05% Tween20) at room temperature for 1
952	h. The membrane was incubated with HRP-conjugated antibodies overnight at 4°C: anti-3HA-
953	HRP (F-7) (Santa Cruz [sc-7392], 1:5,000 in blocking buffer with 1% skim milk) and anti-
954	tubulin-HRP (YL1/2) (BIO-RAD [MCA77P], 1/5000 dilution in blocking buffer with 5% Skim
955	Milk Powder). After the membranes were washed three times for 5 min with PBS-T, the
956	membranes were incubated with the chemiluminescent substrate, Immobilon Western

Yokoyama et al.

41

957 Chemiluminescent HRP Substrate (Merck-Millipore, WBKLS0100), according to the

manufacturer's instruction. Protein signals were detected with a Fusion imaging system (Vilber

- 959 Lourmat). Protein signals were quantified using ImageJ (NIH).
- 960

961 Yeast RNA preparation

962 RNA was prepared as described previously (Iida and Kobayashi, 2019), with a slight

modification. Collected cells were resuspended in 400 μ L of TES (10 mM Tris-HCl pH 7.5, 10

mM EDTA pH 7.5, 0.5% SDS) and 400 μ l of acidic phenol by vortexing for about 10 s. Cells

were incubated at 65°C for 1 h with occasional vortexing every 15 min. Cell suspensions were

incubated for 5 min on ice, and centrifuged at $20,000 \times g$ for 10 min at 4°C. The aqueous phase

967 was transferred to a new tube, and mixed with an equal volume of acidic phenol by vortexing for

10 s. Samples were incubated for 5 min on ice and centrifuged at $20,000 \times g$ for 10 min at 4°C.

⁹⁶⁹ The aqueous phase was transferred to a new tube. Then, 1/10 vol. of 3M sodium acetate (pH 5.3)

and 2.5 vol. of 100% ethanol were added and RNA was precipitated overnight at -20°C. After

971 centrifugation at $20,000 \times g$ for 10 min at 4°C, RNA was washed with 70% ethanol. RNA pellets

were resuspended in 30 μ L of dH₂O treated with 0.1% diethylpyrocarbonate (DEPC). The

973 concentration of RNA was quantified using a NanoDrop ND-1000 spectrophotometer (Thermo

974 Fisher Scientific). RNA samples were stored at -80°C.

975

976 Northern blotting

977 18~30 μ g of total RNA was brought up to 7 μ L with DEPC-treated dH₂O and mixed with 17 μ L

of RNA sample buffer (396 μL deionized formamide, 120 μL 10 x MOPS buffer [0.2 M MOPS,

50 mM sodium acetate pH 5.2, 10 mM EDTA pH 7.5 in DEPC-treated dH₂O], 162 μ L 37%

Yokoyama et al.

980	formaldehyde). Samples were heated at 65°C for 20 min, followed by a rapid chill on ice. 6 μ L
981	of 6x Gel Loading Dye (B7025S, New England Biolabs) and 1.5 μL of 2.5 mg/ml EtBr were
982	added to each sample. The 1% agarose gel was made by dissolving 1 g of agarose powder in 73
983	mL DEPC-treated dH ₂ O and, after cooling to 60° C, addition of 17 mL 37% formaldehyde and 10
984	mL 10x MOPS buffer. The solution was poured into a gel tray (13 \times 12 cm) and allowed to set;
985	10 μ g of total RNA (10 μ L) and 1.8 μ g of DynaMarker RNA High markers were applied.
986	Agarose gel electrophoresis on a Mupid EX system (Takara) was in 400 mL of 1x MOPS buffer
987	at 20V for 20 min and then at 100V until the bromophenol blue dye migrated about $2/3$ of the gel.
988	After electrophoresis, the gel was photographed and RNA was transferred to Hybond-N+ (GE
989	Healthcare) by standard capillary transfer.
990	Strand-specific probes were prepared from double-stranded DNA fragments, amplified by
991	PCR and gel-purified. PCR primers for probe 3 (against IGS1-F) were 5'-
992	AGGGAAATGGAGGGAAGAGA and 5'-TCTTGGCTTCCTATGCTAAATCC; for probe 4
993	(against IGS1-R, IGS2-R), 5'-TCGCCAACCATTCCATATCT and 5'-
994	CGATGAGGATGATAGTGTGTAAGA and for detecting ACT1, 5'-
995	CGAATTGAGAGTTGCCCCAG and 5'-CAAGGACAAAACGGCTTGGA. Strand-specific
996	probes were then prepared by linear PCR in a final volume of 20 μ L containing 0.2 mM dATP,
997	0.2 mM dTTP, 0.2 mM dGTP, 50 μ L [α - ³² P]-dCTP (3,000 Ci/mmol, 10 mCi/ml, Perkin Elmer),
998	1.25 u ExTaq (TaKaRa), 1x ExTaq buffer, 50 ng PCR product as a template, and 10 μ M primer
999	(5'-AGTTCCAGAGAGGCAGCGTA for probe 3, 5'-CATTATGCTCATTGGGTTGC for probe
1000	4). PCR was initiated by a denaturation step at 94°C for 3 min, followed by 35 cycles of
1001	amplification (96°C for 20 s, 51°C for 20 s, and 72°C for 30 s), and a final step at 72°C for 3 min.
1002	Unincorporated nucleotides were removed using ProbeQuant G-50 Micro Columns (GE

Yokoyama et al.

43

Healthcare). The radio-labeled probes were heat-denatured by incubating for 5 min at 100°C,
immediately prior to hybridization to the membrane.

1005	The membrane was incubated with 10 mL of ULTRAhyb Ultrasensitive Hybridization
1006	Buffer (Thermo Fisher) at 42°C for 1 h. The heat-denatured probe was incubated with the
1007	membrane overnight at 42°C. The membrane was rinsed twice with 2x SSC, washed for 15 min
1008	at 42°C twice with wash buffer 1 (2x SSC, 0.1% SDS), and washed for 15 min at 42°C twice
1009	with wash buffer 2 (0.1x SSC, 0.1% SDS). The membrane was exposed to phosphor screens for
1010	several days and radioactive signals were detected using Typhoon FLA 7000 (GE Healthcare).
1011	Probes were stripped by incubating the membrane with boiled 0.1% SDS by shaking for \sim 30 min,
1012	rinsed with 2x SSC, and re-hybridized with the ACT1 probe that was prepared as described
1013	above. Signals of IGS-F, IGS1-R, IGS2-R, and ACT1 were quantified using FUJIFILM Multi
1014	Gauge version 2.0 software (Fujifilm). The levels of IGS-transcripts were normalized to the
1015	ACT-1 signal.

1016

1017 **Replicative lifespan analysis**

Replicative lifespan was measured as previously described (Kennedy et al., 1994). In brief, 1018 strains were streaked out on a YPD plate at a low density and incubated at 30°C. Cells that 1019 1020 emerged as a small bud were placed to other areas of the plate using a Singer micromanipulator system, and the plate was incubated at 30°C. When these cells produced buds, the budded 1021 daughter cells were removed using a micromanipulator until the mother cell stopped producing 1022 1023 more buds. The number of budded daughter cells was counted and designated as the replicative 1024 lifespan of each mother cell. Using replicative lifespan, the survival curve and average life span 1025 were determined. Statistical significance was determined by t-test.

Yokoyama et al.

44

1026

1027 Sorting of old cells

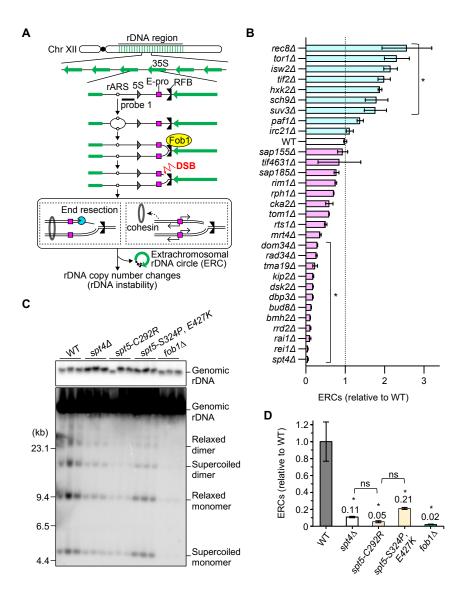
1028	Old cells were sorted as described previously (Sinclair and Guarente, 1997) with modifications.
1029	A single colony was inoculated into 5 mL YPD and grown overnight at 30°C. The overnight
1030	YPD culture was diluted in 12 mL YPD to an $OD_{600} = 0.2$ and grown to an $OD_{600} = \sim 0.7 - 1.0$.
1031	Then, 5.0×10^7 cells were collected by centrifugation for 2 min at $1,800 \times g$ at room temperature
1032	and washed twice in phosphate-buffered saline (PBS). The cells were resuspended in 200 μ L
1033	PBS and, after addition of 3.75 mg of sulfo-NHS-LC-biotin (Thermo Fisher Scientific) in 125 μ L
1034	of PBS, incubated at room temperature with gentle shaking for 15 min. Cells were collected,
1035	washed three times in 500 μ L PBS, resuspended in 1 ml YPD and split into 500 μ L cell
1036	suspensions that were used to inoculate two 1L flasks with 250 mL YPD medium. Cells were
1037	grown for 12 h at 30°C with shaking, allowing cells to divide ~8 times. Before OD_{600} exceeded
1038	1.0, cells were collected by centrifugation and resuspended in cold PBS. 100 μ L of PBS-washed
1039	streptavidin-coated magnetic beads (PerSeptive Biosystems, MA) were added to the cells,
1040	followed by incubation at room temperature for 15 min with occasional swirling. Tubes were
1041	placed on a magnetic sorter for 5 min at 4°C. The supernatant containing cells unattached to the
1042	magnet, was transferred to a new tube and centrifuged. The cell pellet was stored as young cells.
1043	The cells attached to the magnet were eluted in cold PBS and washed five times. This cell pellet
1044	was stored as old cells. Bud scars were stained with Calcofluor (Sigma), visualized by
1045	fluorescent microscopy, and counted (50 cells per sample).
1046	

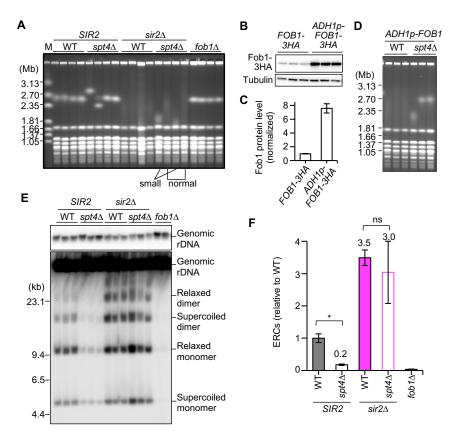
45

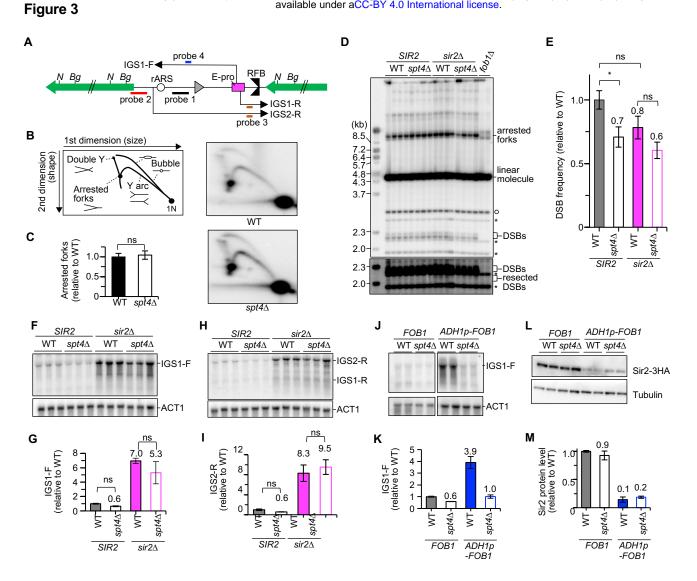
Yokoyama et al.

1047 Supplemental Information

1048

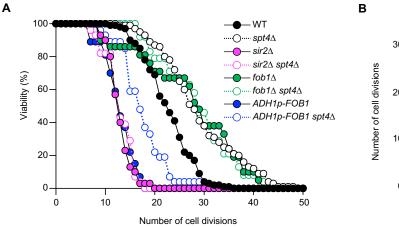

1049 Supplemental Figure legend

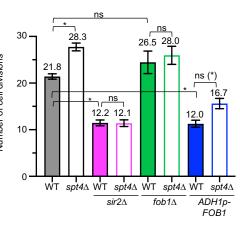

1050 Figure S1. ERC detection.

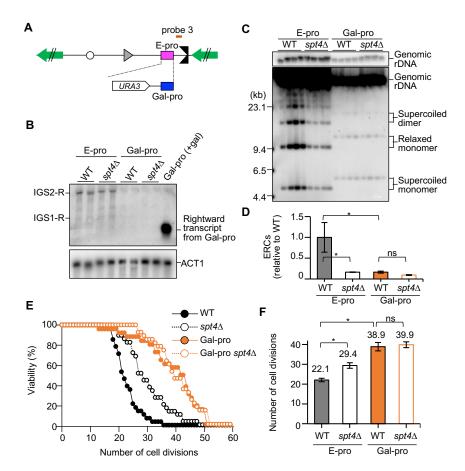

- 1051 DNA isolated from the indicated mutant strains was separated by agarose gel electrophoresis,
- 1052 followed by Southern blotting with probe 1 (see Fig. 1A). The quantified signal intensities are
- shown in Fig. 1B. Genomic rDNA, supercoiled and relaxed forms of monomeric and dimeric
- 1054 ERCs are indicated. Sizes of lambda DNA-Hind III markers are indicated.

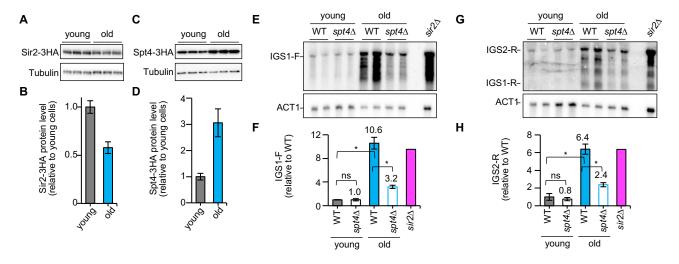
1055

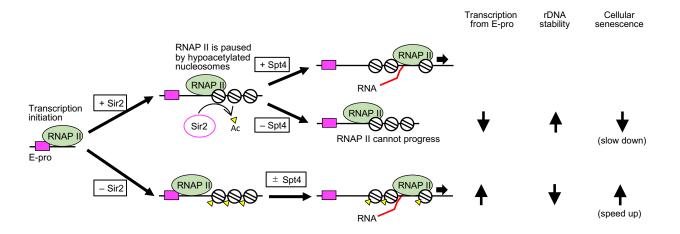
1056 **Supplementary Table 1.** *Saccharomyces cerevisiae* strains used in this study








was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Figure 4

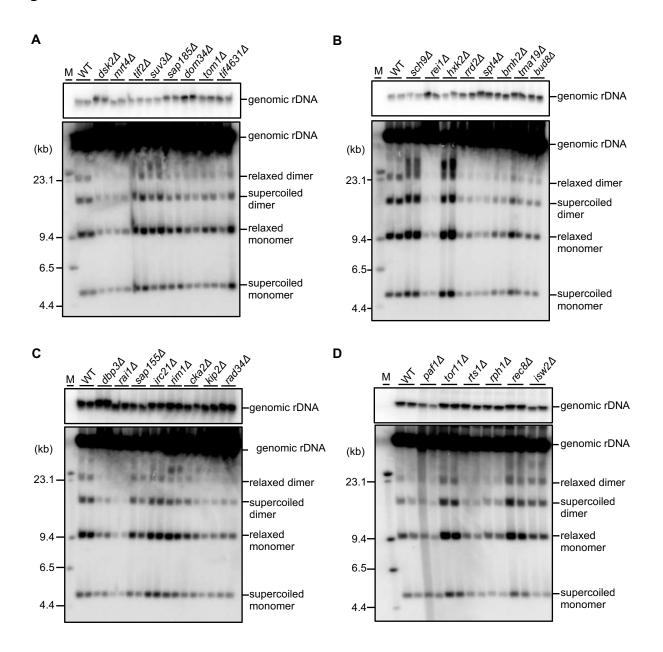


Figure S1

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.22.488906; this version posted April 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made Supplementary Table 1. Saccharomyces cerevisiae straines used in this study

	Genotype
YYM1	MATa
YYM78	MATa, dsk2Δ::kanMX
YYM80	MATa, mrt4Δ::kanMX
YYM82	MATa, tif2Δ::kanMX
YYM84	MATa, suv3Δ::kanMX
YYM86	MATa, sap185Δ::kanMX
YYM88	MATa, dom34Δ::kanMX
YYM90	MATa, tom1Δ::kanMX
YYM92	MATa, paf1Δ::kanMX
YYM94	MATa, tif4631Δ::kanMX
YYM96	MATa, sch9Δ::kanMX
YYM98	MATa, rei1Δ::kanMX
YYM100	MATa, hxk2Δ::kanMX
YYM102	MATa, rrd2Δ::kanMX
YYM104	MATa, spt4Δ::kanMX
YYM151	MATa, bmh2Δ::kanMX
YYM152	MATa, tma19Δ::kanMX
YYM153	MATa, bud8Δ::kanMX
YYM154	MATa, dbp3Δ::kanMX
YYM155	MATa, rai1Δ::kanMX
YYM156	MATa, sap155Δ::kanMX
YYM157	MATa, irc21Δ::kanMX
YYM158	MATa, rim1Δ::kanMX
YYM161	MATa, cka2Δ::kanMX
YYM162	MATa, kip2Δ::kanMX
YYM164	MATa, rad34Δ::kanMX
YYM166	MATa, tor1∆::kanMX
YYM167	MATa, rts1Δ::kanMX
YYM168	MATa, rph1Δ::kanMX
YYM169	MATa, rec8Δ::kanMX
YYM170	MATa, isw2Δ::kanMX
YYM111	MATa, fob1::hphMX
YYM172	MATa, sir2::hphMX
YYM173	MATa, spt4Δ::kanMX, fob1::hphMX
YYM174	MATa, spt4Δ::kanMX, sir2::hphMX
YYM5	MATa, NatNT2-ADH1p-FOB1
YYM105	MATa, NatNT2-ADH1p-FOB1, spt4Δ::kanMX
YYM20	MATa, FOB1-3HA-TRP1

YYM137	available under aCC-BY 4.0 International li MATa, E-proΔ::GAL1/10-URA3, spt4Δ::kanMX
--------	---

YYM142	MATa, SPT4-3HA-TRP1
YYM163	MATa, SIR2-3HA-TRP1
YYM179	MATa, SIR2-3HA-TRP1, spt4∆::kanMX
TAK204	MATa, E-pro∆::GAL1/10-URA3
DAS540	MATa, spt5-C292R
DAS541	MATa, spt5-S324P, E427K

All strains are derivatives of W303, which is *ade2-1, ura3-1, his3-11, 15, trp1-1, leu2-3, 112, can1-100.* TAK204 is used in a previous study (Kobayashi and Ganley, 2005). DAS540 and DAS541 are a kind gift of David Schneider (Anderson et al., 2011).