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Abstract5

Synapses in the brain are highly noisy, which leads to a large trial-by-trial variability. Given6

how costly synapses are in terms of energy consumption these high levels of noise are surprising.7

Here we propose that synapses use their noise to represent uncertainties about the activity of the8

post-synaptic neuron. To show this we utilize the free-energy principle (FEP), a well-established9

theoretical framework to describe the ability of organisms to self-organize and survive in uncertain10

environments. This principle provides insights on multiple scales, from high-level behavioral functions11

such as attention or foraging, to the dynamics of single microcircuits in the brain, suggesting that the12

FEP can be used to describe all levels of brain function. The synapse-centric account of the FEP that13

is pursued here, suggests that synapses form an internal model of the somatic membrane dynamics,14

being updated by a synaptic learning rule that resembles experimentally well-established LTP/LTD15

mechanisms. This approach entails that a synapse utilizes noisy processes like stochastic synaptic16

release to also encode its uncertainty about the state of the somatic potential. Although each synapse17

strives for predicting the somatic dynamics of its neuron, we show that the emergent dynamics of18

many synapses in a neuronal network resolve different learning problems such as pattern classification19

or closed-loop control in a dynamic environment. Hereby, synapses coordinate their noise processes20

to represent and utilize uncertainties on the network level in behaviorally ambiguous situations.21

Keywords22

Free energy principle ∣ Synaptic plasticity ∣ Synaptic transmission ∣ Uncertainty23

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.22.489175doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.22.489175
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction24

Synapses are inherently unreliable in transmitting their input to the post-synaptic neuron. For example,25

the probability of neurotransmitter release is typically around 50% [Katz, 1971, Oertner et al., 2002,26

Jensen et al., 2019] and can be as low as 20% in vivo [Borst, 2010]. In other words, up to 80% of27

synaptic transmissions fail due to release unreliability, providing one of the major sources of noise in28

the synapse. Pre- and post-synaptic noise sources result in a large trial-by-trial variability in the post-29

synaptic current (PSC) [Rusakov et al., 2020]. At the same time synapses are very demanding in30

terms of energy consumption [Pulido and Ryan, 2020], suggesting that a large portion of the body’s31

energy intake dissipates by the unreliability of synaptic transmission. Similar to biological synapses also32

neuromorphic technologies are exposed to noise culminating in unreliable synaptic transmission [Indiveri33

et al., 2013,van De Burgt et al., 2018,Grollier et al., 2020]. The functional implication of noisy synaptic34

transmission, whether it is a feature or bug in biological and artificial neuronal systems, is therefore highly35

debated [Maass, 2014, Aitchison et al., 2014, Neftci et al., 2016, Rusakov et al., 2020, Aitchison et al.,36

2021]. Here, we show that synapses can exploit noisy synaptic transmission to encode their uncertainty37

about the somatic membrane potential of the postsynaptic neuron. With each synapse doing this, we38

further show that this enables a neuronal network to encode and utilize uncertainties.39

To establish this result we rely on a widely used model framework to describe biological systems40

that act in uncertain environments: the free energy principle (FEP). The FEP is based on the idea41

that biological systems instantiate an internal model of their environment that allows them to make42

predictions, take actions and to minimize surprise [Friston, 2010]. A mathematical formulation of surprise43

can be closely related to the physical notion of free energy, from which the FEP inherits its name. In44

the FEP formalism an agent uses internal states to form a model of its environment based on perceived45

stimuli (Fig. 1Ai). In general, these stimuli map only parts of the environment’s true state, implying46

an unavoidable residual level of uncertainty. To reduce the uncertainty, the agent performs actions47

to test its predictions about the environment. These actions may lead to new stimuli that provide48

feedback about the environment’s true state, triggering an update of the internal model. The FEP49

successfully explains biological mechanisms on various spatial and temporal scales, e.g. dendritic self-50

organization [Kiebel and Friston, 2011], network-level learning mechanism [Isomura and Friston, 2018],51

human behavior [Ramstead et al., 2016], and even evolutionary processes [Ramstead et al., 2018].52

We apply the FEP to individual synapses, arguing that the dynamics of a synapse can be considered53

as an agent interacting with its cellular environment, and derive a synaptic learning rule by minimizing54

the free energy of individual synapses. This learning rule enables synapses to adapt their synaptic efficacy55

to best predict future postsynaptic spiking, which are registered by back-propagating action potentials56

(bAPs). In contrast to previous approaches (e.g. [Isomura et al., 2016]) that used the FEP to understand57

the influence of neuromodulatory signals such as Dopamine on synaptic plasticity, we focus here on58

unraveling the dynamics of a single synapse governed by only locally accessible quantities such as the pre-59

and postsynaptic-spike times and the current value of the synaptic efficacy. The derivation of the synaptic60
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dynamics relies on a small number of assumptions such that we could solve it in closed from. We call our61

new model the synaptic free energy principle (s-FEP). The emergent synaptic plasticity rule reproduces62

a number of experimentally observed effects of long-term potentiation (LTP) and depression (LTD)63

protocols and predicts precise forms for the influence of synaptic and neuron parameters. This result64

suggests that synapses probe their environment by sending stochastic synaptic currents and integrate the65

arriving feedback (bAPs) to update their internal state (synaptic efficacy) to better predict the somatic66

dynamics. Thus, every stochastic release event can be seen as a “small experiment”, that is based on67

previous experience and the outcome of which shapes subsequent future activity. In other words, as we68

show here, the task of a synapse to learn suitable synaptic responses can be considered as a problem69

of behaving in a partially unknown environment, where the synaptic noise is being used to properly70

represent the uncertainty of the synapse about the cellular, environmental state. On the network level,71

our computer simulations indicate that s-FEP allows several thousand synapses to exploit their synaptic72

noise to successfully master different learning paradigms despite ambiguous or uncertain inputs.73

2 Results74

After introducing the reasoning to link synaptic properties with the FEP and the fundamentals of the75

considered model (Section 2.1), we sketch the derivation of the resulting synaptic plasticity rule and76

compare it with experimental data (Section 2.2). We show that this plasticity rule coordinates the77

unreliability in synaptic transmission of a group of synapses to drive their joint postsynaptic neuron se-78

lectively in a deterministic or probabilistic way (Section 2.3). This successful coordination also functions79

in feedforward as well as recurrent neuronal networks allowing the system to decode reliably ambiguous80

stimuli (Section 2.4) or to behave in dynamic environments (Section 2.5).81

2.1 A synaptic account of the free energy principle82

The FEP provides a generic approach to model the behavior of an agent that interacts with its envi-83

ronment. The FEP’s main assumption is that the agent and the environment have physically separated84

states, that cannot directly influence another. Interaction between the agent’s (internal) and the envi-85

ronment’s (external) state only takes place through actions performed by the agent and sensory feedback86

provided by the environment (see Fig. 1Ai). The FEP suggests a specific method to solve the internal87

state → action → external state → feedback -loop by minimizing the surprise caused by the sensory88

feedback. This renders an optimization problem that can be solved by maintaining an internal model89

of the environment, allowing the agent to reason about the true external state and its own uncertainty.90

Sensory feedback is used to update the internal model and state of the agent such that future actions91

better help the agent to predict the dynamics of the environment.92

The FEP provides a mathematical formalism that can be applied to a wide range of systems of93

behaving agents and their environments. By employing the FEP on an individual synapse, we find that94

the interactions between agent and environment are very sparse such that sensory feedback and actions95
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Figure 1: The free energy principle for individual synapses. A: i) The FEP considers an agent
interacting with the environment through actions. Actions are determined by the agent’s internal state.
Sensory feedback from the environment to the agent is used to update the agent’s internal model of
the environment. ii) An additional, external trigger can be included into the framework from i) that
determines when actions are initialized. iii) The framework shown in ii) can be transferred to a synapse
that interacts with its postsynaptic soma. Relevant variables are the synaptic efficacy (internal state), the
postsynaptic current (action), the somatic membrane potential (environmental state) of the postsynaptic
neuron (environment), and the back-propagating action potential (feedback). B: A single trajectory of
the somatic membrane potential u(t) between two action potentials. C: The internal synaptic model
of the somatic membrane potential can be characterized by the stochastic bridge model providing the
probability distribution p (u ∣ z) about the value of u(t) between two postsynaptic spikes. Solid blue line
shows the mean, variance indicated by shaded area. D: Illustration of relevant dynamics. Pre-synaptic
input spikes (red) trigger synapses to release stochastic postsynaptic currents y (light green) with a mean
and variance of amplitudes dependent on the synaptic efficacy w (dark green). Postsynaptic spike timings
reach the synapse through bAPs z, constraining the internal model of the somatic membrane potential
to the firing threshold ϑ and then reset to ur immediately after every bAP (see panel C). Between
bAPs, the internal model estimates the probability density of the membrane potential according to the
stochastic process (µ(t), σ(t)).
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only happen at specific time points. This suggests an event-based view on the FEP where actions (and96

feedback) are only provided at certain triggering times (Fig. 1Aii). This view allows us to separate97

the ’what ’ and ’when’ information flow in the synapse model, which simplifies the analysis compared to98

previous applications of the FEP.99

The intuition behind our synapse-centric s-FEP model is illustrated in Fig. 1Aiii. We consider100

the synapse as an agent and the postsynaptic neuron as its environment. We consider here as state101

variable of the neuron the somatic membrane potential u, as it determines the neuron’s spiking behavior.102

However, as suggested by experimental findings [Cornejo et al., 2021], the actual value of the somatic103

membrane potential is hidden from the synapse and therefore the synapse has to infer the value of u104

from the sparse information that propagates back from the soma into the dendrites. We consider that105

this sparse feedback is implemented by bAP events z, given by the firing times t
post

1 , t
post

2 , . . . , t
post

n , . . . of106

the postsynaptic neuron, neglecting propagation delays between soma and synapse. Thus, in this model107

the synapse only receives binary information about the true value of the somatic membrane potential108

u. This information contains whether the somatic membrane potential has recently reached the firing109

threshold (if u(t = t
post

n ) = ϑ, then z(t = t
post

n ) = 1) or not (if u(t) < ϑ, then z(t) = 0). As introduced110

before, in the FEP formalism the feedback causes surprise that is being incorporated into the update of111

the internal model to better guide the agent’s actions. These interrelations imply in the s-FEP model112

that bAPs z can trigger an update of the synapse yielding new synaptic actions.113

The actions of a synapse to interact with the soma are given by the postsynaptic currents (PSCs)114

y (’what ’) that are released in response to pre-synaptic spikes (’when’). In other words, in the s-FEP115

the pre-synaptic spikes operate as a trigger for the synapse to initialize an action implemented by PSCs116

(Fig. 1Aii and Aiii, red arrow). For simplicity we consider the PSC generation as a process of the whole117

synapse including pre- and postsynaptic mechanisms.Although individual synaptic mechanisms can have118

specific noise properties [Gontier and Pfister, 2020,Katz, 1971], we integrate pre- and postsynaptic noise119

sources into one Gaussian noise source that influences the amplitude of PSCs. Thus, at pre-synaptic120

spike times t = t
pre

PSCs are drawn from a general normal distribution with mean and variance being121

scaled by the synaptic efficacy w, in accordance with experimental findings [Meyer et al., 2001].122

y(t) ∼ q (y(t) ∣w) with q (y(t) ∣w) = N (y(t) ∣ r0w, s0w) , (1)

where r0 > 0 and s0 > 0 are constants that scale the mean and variance of synaptic currents. At all other123

times the PSC equals zero (see Fig. 1D). q (y ∣w) determines the distribution over PSC amplitudes for124

a given synaptic internal state w.125

To describe the relationship between the feedback and the true external state, the FEP suggests126

that the agent maintains an internal model of the environment. As the feedback is sparse in time and127

information (see above), the internal model makes use of a probability distribution over the likelihood of128

environmental states. This implies that the agent keeps track of its uncertainty about the true external129

state. In the FEP framework, in general, the environment is too complex to directly infer the external130

state given the feedback in terms of a posterior probability distribution [Buckley et al., 2017]. However,131
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Figure 2: The s-FEP learning rule resembles regulated triplet STDP. A: Illustration of the
main steps of the s-FEP synaptic learning model. B,C: The triplet STDP windows WLTP (A) and
WLTD (B) that emerge from s-FEP as a function of the spike timing differences ∆t1 and ∆t2. D: The
effective synaptic efficacy changes that result from the LTP and LTD windows. E: Mean synaptic
efficacy changes (gray line) and individual trials (black dots) for an STDP pairing protocol. Shaded
area indicates variance over trials. F: synaptic efficacy changes as a function of pre- and post- rate. G:
Weight dependence of the s-FEP learning rule for a fixed ∆t2=200 ms plotted as STDP curve as in (E).
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we find that for the s-FEP we can express this distribution p (u ∣ z) directly in closed form by considering132

the so-called stochastic bridge model [Corlay, 2013] to approximate the somatic membrane dynamics u(t)133

(see Supplementary Text A.2 for more details).134

To do so, we have to remind ourselves of the fact that a bAP at time t = t
post

1 conveys the information135

to a synapse that the postsynaptic, somatic membrane potential has just reached the firing threshold136

u(t = t
post

1 ) = ϑ. To describe the membrane dynamics between any two bAPs at t
post

1 and t
post

2 , we can137

utilize that the synaptic uncertainty about the true membrane potential is minimal close to the spike138

times and maximal between both spikes at
t
post
2 −t

post
1

2
. Such an event-based time course of the uncertainty139

is captured by the stochastic bridge model that determines the distribution of u(t) given z through time-140

varying mean and variance functions µ(t) and σ
2(t), respectively. Importantly, the shape of µ(t) and141

σ
2(t) between any pair of postsynaptic spikes depends only on the interspike interval t

post

2 − tpost

1 . Fig. 1C142

shows the solution of the stochastic bridge model for t
post

2 − tpost

1 =100 ms that sufficiently captures real143

membrane dynamics (see Fig. 1B for one example). In other words, we can use the stochastic bridge144

model to describe the internal representation that the synapse maintains about the somatic membrane145

dynamics. In the next section we will show that the stochastic bridge model can also be used to infer146

biologically plausible synaptic plasticity rules to adapt the synaptic efficacies w, implying an update of147

the internal model of the synapse.148

2.2 Synaptic plasticity as free energy minimization149

Learning in the s-FEP means to adapt the synaptic efficacy w to minimize the ”surprise” caused by150

bAPs z, where surprise is measured with respect to the synapse’s internal model of the soma p (u ∣ z).151

In other words, the feedback z triggers an update of the internal state of the synapse w. This update152

changes the actions of the synapse, namely the PSC amplitudes y. The changed actions in turn adapt153

the dynamics of the somatic membrane potential and, thus, the firing of the postsynaptic neuron that154

is fed back to the synapse by bAPs z. To better understand this loop, we split the effect of the synaptic155

efficacy into (1) an immediate and (2) a delayed response that are triggered by pre- and post-synaptic156

firing. Using the event-based view of the s-FEP (Fig. 1Aii), each of these responses can be divided into157

a ’when’ and a ’what ’ part. Both responses together determine the adaptation of the synaptic efficacy.158

The complete process of the synaptic efficacy update ∆w is illustrated in Fig. 2A.159

The immediate response (1) determines the action y of the synapse. At the time of pre-synaptic firing160

t
pre

(’when’) a PSC amplitude is generated by drawing a value for y from the distribution q (y ∣w) given in161

Eq. (1) (’what ’). The synaptic efficacy w determines both, the mean and variance of y. The mathematical162

formulation could be extended comprising two parameters that determine mean and variance separately,163

but is not investigated here. The immediate response y, in other words, constitutes an ad-hoc guess164

about the firing behavior of the postsynaptic neuron, based on past experience encoded in w, before165

more information is provided by further bAPs (z).166

The actual update of the synaptic efficacy happens during the delayed response (2). After a further167

bAP has arrived, the internal model p (u ∣ z) is used to update w such that the distribution q (y ∣w)168
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Figure 3: Synapse-level probability matching. A: µ(t) and σ(t) of the somatic membrane potential
given the stochastic bridge model for a neuron that is brought to fire with a spike interval of 300 ms.
Pre-synaptic neurons were brought to fire at fixed time offsets relative to the post-synaptic spikes. B:
Synapses learn to inject the optimal current that matches the bridge model in (A). Individual current
pulses are shown for multiple trials for synapses with different time offsets. C: The combined effect of all
synapses shown by the summed input current for a single trial. D: Synaptic efficacies after learning and
weight means and variances predicted by the theory. E: Synaptic efficacies after learning are correlated
with the euclidean norm of the the theoretically derived µ

∗
and σ

∗
(see panel D). F: The mean free

energy over all synapses declines throughout learning. G: Firing behavior of the neuron after learning
when allowed to fire freely in response to input spikes. 10 individual spike times are shown together
with histograms over 1000 trials. Insets show membrane dynamics during the 10 trial runs. Orange
arrow indicates spike time during learning. H: As in (G) but here the output spike times where given
by Gaussian distributions of different spreads. Orange arrow indicates here the mean.
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(immediate response) better reflects (or predicts) the postsynaptic firing behavior. The ’when’ part of169

this update is determined by pre- and post-synaptic firing times. Hereby, the internal model p (u ∣ z)170

is used to align the relative timing of pre- and post-synaptic firing. This information is then used to171

estimate the distribution over values of u (’what ’) from which the weight update is inferred. The delayed172

response thus constitutes a post-hoc correction of the PSC probability distribution q (y ∣w).173

To understand the actual weight update mathematically we have to divide the delayed response174

(2) into two sub-problems: (2a) We have to invert the internal model p (u ∣ z) to obtain a posterior175

distribution p (y ∣ z) over synaptic currents y that most likely lead to a desired spiking behavior (measured176

by z). (2b) Then we have to reduce the distance between the inferred posterior distribution p (y ∣ z) and177

the actual distribution over PSCs q (y ∣w) used in the immediate response (1) to update the synaptic178

efficacy w.179

To solve the first sub-problem (2a) we make use of the internal model p (u ∣ z) to directly infer PSCs180

that are compatible with a given spiking behavior z. In Supplementary Text A.3 we show that p (y ∣ z)181

can be analytically expressed using the stochastic bridge model to describe p (u ∣ z). The resulting182

solution of the posterior distribution is given by a Gaussian distribution with time-varying mean and183

variance function m and v, respectively. At any time t = t
pre

the posterior over y(t) can thus be written184

as185

p (y(t) ∣ z) = N (y(t) ∣m (∆t1,∆t2) , v (∆t1,∆t2)) , (2)

where ∆t1 = t
post

2 − t
pre

and ∆t2 = t
post

2 − t
post

1 are the relative firing times. This distribution has the186

property, that it generates PSCs y that will, with high probability, result in a spiking behavior z when187

injected into the post-synaptic neuron. Importantly, the functions m and v only depend on ∆t1, ∆t2.188

To solve sub-problem (2b), we can use Eqs. (1) and (2), to directly minimize the distance D(q∣p)189

between q (y ∣w) and p (y ∣ z). To do so it is sufficient to consider the relative firing times ∆t1 = t
post

2 −tpre
190

and ∆t2 = t
post

2 − tpost

1 (see Fig. 2A-D). Hereby, ∆t1 and ∆t2 can be linked to learning windows of spike-191

timing-dependent plasticity (STDP, Fig. 2B,C). These learning windows implicitly encode the relevant192

dynamics of the stochastic bridge model, and thus the internal model does not have to be encoded explicit193

in every synapse. The synaptic efficacy updates can then be expressed in the form (see Supplementary194

Text A.4 for a detailed derivation)195

∆w = −
∂

∂w
D(q∣p) = WLTP (∆t1,∆t2) − (1

2
+ w)WLTD (∆t1,∆t2) +

1

2w
(3)

where WLTP(∆t1,∆t2) ≥ 0 and WLTD(∆t1,∆t2) ≥ 0 are triplet STDP learning windows that depend only196

on the relative timing ∆t1 and ∆t2 of pre- and post-synaptic firing, and where w denotes the current197

value of the synaptic efficacy.198

In summary we find the main required steps to compute the synaptic weight updates according to199

the s-FEP model (Fig. 2A). The arrival of a pre-synaptic spike at time t
pre

leads to an ad-hoc response200

by generating a postsynaptic current y according to the internal model q (y ∣w). When the next bAP201

arrives at the synapse a post-hoc update of the synaptic efficacy w is triggered according to Eq. (3). The202
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probabilistic model Eq. (2) does not have to be explicitly represented in the synapse but is implicit in203

the shape of the learning windows WLTP(∆t1,∆t2) and WLTD(∆t1,∆t2). Note that the synaptic weight204

updates strictly follow the separation of the ’what ’ and ’when’ information flow of event-based FEP205

(Fig. 1Aii).206

The functional form of the two triplet STDP windows is determined by the neuron dynamics (Fig. 1C),207

and depend on ∆t1 and ∆t2 in a nonlinear manner [Pfister and Gerstner, 2006a]. Using Eq. (2) the208

STDP windows can be expressed as209

WLTP (∆t1,∆t2) = r0
m (∆t1,∆t2)
v (∆t1,∆t2)

and WLTD (∆t1,∆t2) = r
2
0

1

v (∆t1,∆t2)
. (4)

The PSC variance (v) has a divisive contribution to both STDP windows. Thus, the learning windows210

have large values where the uncertainty about y is lowest (small values for v). In Fig. 2B-D we plot the211

learning windows for different values of ∆t1 and ∆t2. WLTP has a potentiating effect which is maximal212

close to ∆t1 = 0 (Fig. 2B). This is a manifestation of Hebbian-type learning where close correlations of213

pre- before post- firing leads to potentiation. WLTD is a depression term (Fig. 2C). Both STDP windows214

show also a strong rate dependence (∆t2) as higher firing rates result in less uncertainty about u(t).215

Fig. 2D shows the combined effect of the LTP and LTD.216

In Fig. 2E we study an STDP pairing protocol where single pre-/post spike pairs with different time217

lags ∆t were presented to a model synapse [Pfister and Gerstner, 2006a]. The resulting synaptic changes218

with respect to ∆t = t
post − tpre

closely match experimentally measured STDP windows [Dan and Poo,219

2004,Caporale and Dan, 2008]. In Fig. 2F we further study the rate dependence of the s-FEP learning220

rule. Random pre- and post-synaptic Poisson spike trains were generated with different rates. The221

learning rule Eq. (3) shows a strong dependence on the post-synaptic firing rate. For low pre- or post-222

synaptic rates synaptic efficacy changes were zero, moderate post-synaptic rates lead to LTD, whereas223

high post-synaptic rates manifested in pronounced LTP. This rates-weight-change relation is consistent224

with previous models of calcium-based plasticity [Graupner and Brunel, 2012].225

The learning rule Eq. (3) also includes a dependence on the current synaptic efficacy to regulate226

the synaptic strength to not grow out of bounds (cf. [Van Rossum et al., 2000,Yger and Gilson, 2015]).227

The last term becomes effective when synaptic efficacys shrink to values close to zero and prevents228

the synaptic efficacy from becoming negative (negative weights have no meaning in our model as they229

also encode variances). The weight dependence of the LTD learning window increases the influence of230

depression for larger synaptic efficacies. In Fig. 2G we further analyze the weight dependence of the231

learning rule. STDP protocols for synapses with different initial synaptic efficacies were applied. Small232

synaptic efficacies (w=1 pA) lead to learning windows that are positive for all lags ∆t (LTP only). Large233

synaptic efficacies w=12 pA lead to pronounced LTD.234

In summary, the s-FEP learning rule contains features of Hebbian learning, STDP and rate-dependent235

synaptic plasticity to update the synaptic actions (PSC amplitudes) to better predict the somatic mem-236

brane dynamics. The learning rule can be best described by a post-pre-post triplet STDP rule [Pfister237
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and Gerstner, 2006a,Pfister and Gerstner, 2006b,Gjorgjieva et al., 2011]. The strength of LTD increases238

with the synaptic efficacy w, which gives rise to a homeostatic effect that prevents synapses from growing239

out of bounds.240

2.3 Synapse-level probability matching of firing times241

Figure 4: s-FEP learning rule for supervised and unsupervised learning scenarios. A: Illustra-
tion of the network structure with synapses shown in green being adapted by s-FEP. Five independent
spike patterns (□,☆,△,◇,◯) are presented to the network via the input neurons. Output neurons are
either clamped to pattern-specific activity during learning (supervised) or allowed to run freely (unsu-
pervised). B: Learning result using the s-FEP rule for the supervised scenario. Typical spiking activity
of the network after learning for 60 s. Black ticks show output spike times. C: Output activity after
learning for the unsupervised scenario. Traces of membrane potentials are shown for selected output
neurons (matching color-coded arrows indicate neuron identities). D: Classification performance for su-
pervised and unsupervised learning scenario. Classification performance plateaus at near optimal value
after about 20 s of learning time for both supervised and unsupervised scenario. E: Spike patterns of
two input symbols (□, ☆) where mixed with different mixing rates (example pattern shows mixing rate
1/2). Uncertainty is reflected in output decoding (left) if inputs are ambiguous (around mixing rate of
1/2). If synapse noise is disabled uncertainty is not represented in the output (right).
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Next, we show how the learned behavior of synapses influences the firing dynamics of the post-242

synaptic neuron. After the synapse has formed a model of the environment, it can be used to reproduce243

state trajectories that match the learned behavior. For the s-FEP, this means that synapses install a244

particular firing pattern z through synaptic adaptation. To demonstrate this behavior, we consider here a245

simple example where a single postsynaptic and many pre-synaptic neurons are repeatedly brought to fire246

at different fixed offset times (five example pre-synaptic neurons illustrated in Fig. 3A, top). According247

to the stochastic bridge model, the membrane potential of the postsynaptic neuron evolves according248

the mean and variance functions illustrated in Fig. 3A, bottom. We forced all neurons to repeatedly fire249

according to the fixed pattern while the learning rule (3) was active. s-FEP learning installs behavior250

in the synapses that supports (or predicts) the neuron dynamics (Fig. 3B-D). Individual PSCs after251

learning are shown for five example synapses in Fig. 3B. The injected currents show high trial-by-trial252

variability and the amplitude strongly depends on the relative pre- and post-synaptic firing. Despite these253

variabilities, the summed effect of all PSCs show a clear increasing trend towards the postsynaptic spike254

(single trial shown in Fig. 3C). In this example, the optimal solutions of synaptic efficacies according to255

the FEP can be solved analytically. Figure 3D shows the theoretical and simulation results after learning.256

The synaptic efficacies learn single parameter distributions that encode the theoretically derived µ
∗

and257

σ
∗
. This is further studied in Fig. 3E, where we plot the synaptic efficacies after learning against the258

euclidean norm ∥ (µ∗, σ∗) ∥ =

√
(µ∗)2 + (σ∗)2. The synaptic efficacies and ∥ (µ∗, σ∗) ∥ are strongly259

correlated (see Supplementary Text A.4 for a theoretical analysis). Fig. 3E shows the estimated mean260

free energy throughout learning. The free energy steadily declines with learning time.261

Fig. 3F shows the spiking behavior after learning when the post-synaptic neuron was allowed to fire262

freely in response to the same input spikes that were used during learning. The firing was strongly aligned263

with the target activity (trial-based variance of firing times was 0.1 ms). Despite their highly stochastic264

nature (Fig. 3B) synapses have learned to drive the post-synaptic neuron to fire reliably. The synaptic265

variability can also be exploited to reflect uncertainty in neural firing. We let the postsynaptic neuron266

learn to fire according to Gaussian distributions of firing times with different spreads σout (Fig. 3G,267

σout=5 ms and σout=10 ms). The variability in firing times is reflected in the neuron spiking after268

learning. During the phase of stochastic firing we observe a high trial-to-trial variability in the dynamics269

of the membrane potential (insets in Fig. 3G). Note that the pre-synaptic spike times and the LIF270

neuron model are deterministic here, so the required trial-by-trial variability is generated exclusively271

by the synapses. Hence, synapses have learned to utilize their intrinsic variability or noise to drive the272

deterministic neuron to fire according to a defined probability.273

2.4 Network-level learning using the FEP-derived learning rule274

The s-FEP learning rule lends itself to solve supervised and unsupervised learning scenarios on the level275

of neuronal networks (see Supplementary Text A.5 for a theoretical treatment). To demonstrate this276

we consider a pattern classification task (Fig. 4A). The network consists of input neurons that project277

to a set of output neurons. We generated five spike patterns of 200 ms duration (denoted in Fig. 4 by278

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.22.489175doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.22.489175
http://creativecommons.org/licenses/by-nc-nd/4.0/


□,☆,△,◇ and ◯) which were used to control the activity of the input neurons.279

Figure 5: The s-FEP for learning a closed-loop behavior in a recurrent network. A: Illustration
of the behavior level FEP for an agent that interacts with a dynamic environment. B: A spiking neural
network interacting with an environment using s-FEP to learn a control policy. The activity of action
neurons controls the movement of an agent in a 3-dimensional environment. Feedback about the position
of the agent is provided through feedback neurons. The policy to navigate the agent is learned through s-
FEP between feedback and action neurons. Training trajectory (dark blue) and 8 spontaneous movement
trajectories generated by the network after learning (light blue) are shown. C: Spike train generated
spontaneously by the network after learning corresponding to one movement trajectory in (B).

Fig. 4B shows the typical network activity after learning for the supervised scenario. The output280

neurons reliably responded to their preferred pattern. The output neurons had also learned a sparse281

representation of the input patterns in the unsupervised case (Fig. 4C). Most neurons (46/50) were282

active during exactly one of the input patterns (e.g. the △-selective neuron in the top row of Fig. 4C).283

The remaining neurons showed mixed selectivity and thus got activated by multiple stimulus patterns284

(see bottom rows of Fig. 4C).285

Fig. 4D shows the evolution of the classification performance throughout learning. We used a linear286

classifier on the network output to recover pattern identities. After learning for 60 s the pattern identity287

could be recovered by a linear classifier with 100% and 98.8% reliability for the supervised and unsu-288

pervised case, respectively (see Fig. 4D). These results demonstrate that the s-FEP learning rule can be289

applied to supervised learning scenarios and also leads to self-organization of meaningful representations290

in an unsupervised learning scenario.291

To demonstrate the role of noise in the pattern classification task we created ambiguous patterns292

by mixing the spikes of two patterns (□ and ☆) with different mixing rates (Fig. 4E). Mixing rates293

of 0 (1) corresponds to a pattern that is identical to □ (☆). This can be encoded by a network with294
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unreliable (left, noisy synapses) and with reliable synaptic transmission (right, without noise). However,295

intermediate values of the mixing rate result to high levels of ambiguity that are represented in the296

neural output of the network with unreliable synaptic transmission, but not with noise-free synapses.297

2.5 Behavioral-level learning using the s-FEP learning in a closed-loop setup298

To further investigate the network effects of the s-FEP learning rule, we implemented a closed loop setup299

where a recurrent spiking neural network controls a behaving agent. So far we have treated the pre-300

synaptic firing times that trigger the synaptic PSC release as externally given, resulting in the reduced301

model where synapses only control post-synaptic firing. By considering a recurrent network, the synapse302

also indirectly gains control over pre-synaptic firing times (see Supplementary Text A.5). The behavioral303

setup is illustrated in Figure 5A. A fixed goal position xgoal has to be reached starting from xstart in304

a 3-dimensional task space. The network that was used to learn this task is shown in Fig. 5B. A set305

of input neurons encoded representations of the current position of the agent’s end effector, which are306

connected to a the recurrent network of internal state neurons. A set of action neurons were selected from307

the recurrent network to encode movement directions that are applied to update the agents position.308

All excitatory synapses in the network were trained using the s-FEP learning rule (3). During training309

actions are given externally to provide a supervisor signal. The training trajectory (Fig. 5B) had a310

duration of 1 s. 8 movement trajectories after learning for 220 seconds are shown. Fig. 5C shows311

corresponding network activity for a single trajectory after learning. The network has learned internal312

representations to reliably control the agent’s end effector in a closed loop setting.313

3 Discussion314

The FEP has been praised for its ability to describe biological phenomena on different spatial and315

temporal scales [Friston, 2010,Friston, 2012]. Here we started from the lower end of the spatial hierarchy:316

individual synapses that learn to interact with their postsynaptic neuron. To the best of our knowledge,317

this is the first time that the FEP is applied to the subcellular level to derive local learning rules,318

proposing a new role of pre-synaptic noise. Previous models suggest that pre-synaptic noise increases319

the energy and information transmission efficiency of synapses [Neftci et al., 2016,Schug et al., 2021,Levy320

and Baxter, 1996,Levy and Baxter, 2002,Harris et al., 2012]. We show that pre-synaptic noise can also be321

utilized to encode uncertainty about the somatic membrane potential, providing a theory on the role of322

noise on the postsynaptic side. We also demonstrate a first step investigating the functional implication323

of s-FEP on the network and behavioral level. This complements previous results to derive detailed324

properties of neural networks based on the FEP [Palacios et al., 2019, Isomura and Friston, 2020].325

3.1 Prior related work326

The FEP and the related theory of predictive coding have been very successful in explaining animal327

behavior and brain function [Rao and Ballard, 1999,Friston, 2005,Friston, 2010,Chalk et al., 2018]. On328
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the neuron and network level, previous models utilized the FEP to derive learning rules for reward-based329

learning and models of the dopaminergic system [Friston et al., 2014]. [Isomura et al., 2016] used the FEP330

to derive synaptic weight updates with third factor modulation using dopamine-like signals. A number331

of previous studies have approached the problem of deriving learning rules from related variational332

Bayesian inference theory [Deneve, 2008,Brea et al., 2013,Rezende and Gerstner, 2014,Jimenez Rezende333

et al., 2011, Rezende et al., 2014] and information-theoretic measures [Toyoizumi et al., 2005, Buesing334

and Maass, 2008, Buesing and Maass, 2010, Linsker, 1988]. In [Urbanczik and Senn, 2014] a model for335

dendritic prediction of somatic spiking was proposed. Different to the s-FEP approach, the uncertainty336

about the somatic membrane potential was not represented in these models.337

Recently it was shown that the FEP may also provide an interesting alternative to the error back-338

propagation algorithm for learning in deep neural networks [Whittington and Bogacz, 2017, Millidge339

et al., 2020]. The s-FEP complements these results with a bottom-up approach for spiking networks. An340

important property of the s-FEP learning rule is that synaptic updates only depend on the timing of pre-341

and post-synaptic spikes, which makes the model well suited for event-based neural simulation [Pecevski342

et al., 2014,Peyser et al., 2017] and new brain-inspired hardware [Mayr et al., 2019,Davies et al., 2018].343

Therefore, s-FEP learning is a promising candidate to control unreliable signal transmission in diverse344

neuromorphic technologies [Indiveri et al., 2013,van De Burgt et al., 2018,Grollier et al., 2020] and even345

to exploit the unreliability for learning.346

3.2 Testable experimental predictions347

Direct experimental evidence for the FEP in cultured neurons was provided by [Isomura et al., 2015]. In348

[Isomura and Friston, 2018] a FEP-based encoding model was formulated and could account for observed349

electrophysiological responses in vitro. Evidence for predictive coding is also abundantly available in in350

vivo recordings of neural activity and brain anatomy [Bastos et al., 2012, Kanai et al., 2015, Barascud351

et al., 2016,Driscoll et al., 2017,Kostadinov et al., 2019]. However, the FEP has been often criticized for352

being too general to make any falsifiable experimental predictions [Friston et al., 2012]. In contrast, the353

s-FEP proposed here makes very precise predictions about the interplay of synaptic and neural dynamics.354

Our model directly predicts that synapses should be stochastic to effectively encode uncertainties about355

the somatic membrane potential. Furthermore, the s-FEP makes precise predictions about the synaptic356

plasticity changes in post-pre-post spike pairing protocols and the dependence on the synaptic weight357

(Fig. 2).358

3.3 Conclusion359

In summary, we have presented a synapse-centric account of the FEP that views synapses as agents360

that interact with their post-synaptic neuron much like an organism interacts with its environment.361

The emerging s-FEP learning rule matches experimentally observed synaptic mechanisms at a high level362

of detail. Our results complement previous applications of the FEP on the system and network level363
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and demonstrates that manifestations of the FEP can be identified even on the smallest scales of brain364

function. In contrast to this prior work our model synapses use only local information and yields triplet365

STDP dynamics which can be directly tested against experiments. The emergent learning algorithm is366

fully event-based, i.e. computation only takes place when pre- and post-synaptic spikes arrive at the367

synapses. The model is therefore very well suited for event-based neural simulation and brain-inspired368

hardware.369

Methods370

Neuron model371

We used the leaky integrate and fire (LIF) neuron model [Gerstner et al., 2014] in all experiments, where372

the somatic membrane potential u(t) at time t > 0 follows the dynamics373

τm
d u

d t
= − (u(t) − u0) + Ry(t) , (5)

where τm is the membrane time constant, u0 is the resting potential and R the membrane resistance.374

y(t) is the external input current into the neuron and denotes the effect of afferent synaptic input at375

time t. When the membrane potential reaches the threshold ϑ, the neuron emits an action potential,376

such that the spike times tf are defined as the time points for which the criterion377

tf ∶ u (tf) = ϑ , (6)

applies. Immediately after each spike the membrane potential is reset to the reset potential ur [Gerstner378

et al., 2014]379

lim
δ→0

u (tf + δ) = ur , (7)

and we define the initial state of the neuron u(0) = ur.380

In Fig. 4C and Fig. 5 we used a simple threshold adaptation mechanism to control the output rate of381

the neurons. Individual firing thresholds ϑ where used for every neuron. Thresholds were decreased by382

a value of 10
−5

mV in every millisecond and increased by 10
−3

mV after every output spike. Thresholds383

values were clipped from below at the resting potential u0.384

Synapse model and Learning rule385

A detailed derivation of the synapse model can be found in the Supplementary Text. In Supplementary386

Text A.1 we summarize the main features and assumptions underlying the s-FEP. In Supplementary Text387

A.2 we derive the internal model p (u ∣ z). In Supplementary Text A.3 we define the PSC distribution388

q (y ∣w). In Supplementary Text A.4 we derive the synaptic efficacy updates (3). In Supplementary389

Text A.5 we develop the network-level s-FEP model.390
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We use a stochastic synapse model of input-dependent PSCs, where the variability is proportional391

to the synaptic efficacy w [Yang and Xu-Friedman, 2013]. The parameter s0 of the stochastic PSC392

model (1) was chosen to be the Gaussian approximation of the Binomial distribution, with s0 = r0 (1 −393

r0). On a pre-synaptic spike a current pulse with amplitude y drawn from a Gaussian distribution394

N (y ∣ r0w, r0 (1 − r0)w), with scaling constant r0, is injected into the post-synaptic neuron. Otherwise395

the synaptic inputs y(t) were 0.396

If not stated otherwise the synaptic efficacies w were updated using the learning rule Eq. (3), where

WLTP (∆t1,∆t2) and WLTD (∆t1,∆t2) are the triplet STDP windows as depicted in Fig. 2. In Supple-

mentary Text A.4 we show in detail that the synaptic efficacy updates (3) minimize the free energy

F(z, w) of the back-propagating action potentials z with respect to the synaptic efficacy w. We further

show that the triplet STDP windows can be defined analytically using the stochastic bridge model with

time varying mean and variance functions µ (∆t1,∆t2) and σ
2 (∆t1,∆t2), respectively

µ (∆t1,∆t2) = u0 + (ur − u0)
e

∆t1
τm − e−

∆t1
τm

e
∆t2
τm − e−

∆t2
τm

+ (ϑ − u0)
e

∆t2−∆t1
τm − e

∆t1−∆t2
τm

e
∆t2
τm − e−

∆t2
τm

, (8)

and397

σ
2 (∆t1,∆t2) = σ

2
0

1

1 + γ (e
∆t1−∆t2

τm + e−
∆t1
τm )

, (9)

(see Supplementary Text A.2 for a derivation), where σ0 and γ are synaptic constants that scales the398

noise contribution to u.399

The posterior PSC distribution m (∆t1,∆t2) and v (∆t1,∆t2) in Eq. (2) were computed for the LIF400

neuron model (Section 3.3), given by401

m (∆t1,∆t2) = µ
′(∆t1,∆t2) +

1
τm

(µ(∆t1,∆t2) − u0) ,

v (∆t1,∆t2) = (σ2(∆t1,∆t2))
′
+

2
τm
σ
2(∆t1,∆t2) ,

(10)

where f
′(t) = d

dt
f(t) denotes the time derivative (see Supplementary Text A.3 for a detailed derivation).402

Numerical simulations403

All simulations were performed in Python (3.8.5) using the Euler method to approximate the solution404

of the stochastic differential equations with a fixed time step of 1 ms. Post-Synaptic currents were405

created as described in (A.13) where Dirac delta pulses were approximated by 1 ms rectangular pulses406

and truncated at zero to avoid negative currents. If not stated otherwise we used a synaptic release407

parameter r0 =
1
2
. In Eq. (5) the membrane time constant τm was 30 ms, the resting potential u0 was408

-70 mV and the membrane resistance R was 10 MΩ. The firing threshold ϑ was -55 mV, ur was -75 mV409

and the learning rate η was 10
−5

. In Eq. (9) we used σ
2
0 = 16 and γ = 50. Weights where drawn randomly410
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and independently from a Gaussian distribution with mean and standard deviation of 10 and clipped at411

0 before learning.412

In Fig. 2 we used a single s-FEP synapses, applied different pre/post spike pairing protocols and413

recorded the resulting weight changes. In Fig. 2D STDP spike protocols were repeated 50 times with a414

time delay of 500 ms between two pairings. In Fig. 2E independent Poisson spike trains were presented415

to the synapses for 100 s. Fig. 2F the STDP protocol from Fig. 2D was repeated with different initial416

weights.417

In Fig. 3 we used single neurons that received input from 300 afferent input neurons. Input neurons418

fired a dense syn-fire chain where every neuron was emitting a spike in exactly 1 ms during a 300 ms time419

window. The post-synaptic neuron was brought to fire at the end of this pattern. In Fig. 3F and G the420

output firing was determined by the intrinsic neuron dynamics after learning. In Fig. 3G output spike421

times were drawn from a Gaussian distribution with different standard deviations during learning.422

In Fig. 4 spike patterns were generated by randomly drawing values from a beta distribution (α = 0.2,423

β = 0.8) for each input channel and multiplying these values with the maximum rate of 20 Hz. From424

these rate patterns individual Poisson spike trains were drawn for every pattern. During the learning425

phase the output neurons were clamped to fire 50 Hz Poisson spike trains during presentation of the426

preferred stimulus pattern and remain silent otherwise. Pattern presentations were interleaved with427

phases of 200 ms of zero spiking on all input channels. In the supervised scenario, for every output428

neuron one of the five patterns was selected as preferred stimulus. During training the activity of the429

output neurons was clamped to fire during the presentation of the preferred stimulus pattern.430

In the unsupervised scenario, the network was augmented with fixed lateral inhibition to stabilize431

the firing behavior during learning. All excitatory neurons were connected to the inhibitory neuron with432

a synaptic efficacy of 1. The inhibitory unit projected back to all excitatory neurons with a synaptic433

efficacy of -5. During learning output neurons were allowed to run freely according to their intrinsic434

dynamics. The s-FEP learning rule was used at all synapses between input and output neurons in both435

scenarios. In Fig. 4E we set the synaptic release parameter r0 to 1 to disable synaptic noise (’without436

noise’ condition).437

In Fig. 5 we used a recurrent network with 400 feedback neurons and 400 internal state neurons438

from which we selected 200 action neurons. Preferred positions of the feedback neurons where scattered439

uniformly over the action space and firing rates were scaled by the euclidean distance between agent po-440

sition and preferred position. Action neurons were randomly assigned to preferred movement directions.441

Internal state neurons received lateral inhibitory feedback and rate adaptation as in Fig. 4. During442

spontaneous movement the agent’s end effector was set to xstart at trial onset, and then the position was443

updated every 50 ms by adding the decoded position offset provided by the action neurons (light blue444

traces in Fig. 5). During training the activity of action neurons was clamped to a pre-defined training445

trajectory (dark blue in Fig. 5).446

18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.22.489175doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.22.489175
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements447

Written under partial support by the European Commission, Horizon 2020 Framework Programme for448

Research and Innovation, Grant Agreement No. 899265 (ADOPD). The authors would like to thank449

Anand Subramoney for valuable comments to the manuscript.450

Author contribution and correspondence451

DK derived the theory and conducted the experiments. DK and CT conceived the model and experi-452

ments. DK and CT wrote the paper. To whom correspondence should be addressed: david.kappel@uni-453

goettingen.de454

Competing interests455

The authors declare no competing interests.456

References457

Aitchison et al., 2021. Aitchison, L., Jegminat, J., Menendez, J. A., Pfister, J.-P., Pouget, A., and458

Latham, P. E. (2021). Synaptic plasticity as bayesian inference. Nature Neuroscience, 24(4):565–459

571.460

Aitchison et al., 2014. Aitchison, L., Pouget, A., and Latham, P. E. (2014). Probabilistic synapses.461

arXiv preprint arXiv:1410.1029.462

Barascud et al., 2016. Barascud, N., Pearce, M. T., Griffiths, T. D., Friston, K. J., and Chait, M.463

(2016). Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns.464

Proceedings of the National Academy of Sciences, 113(5):E616–E625.465

Bastos et al., 2012. Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., and Friston,466

K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4):695–711.467

Borst, 2010. Borst, J. G. G. (2010). The low synaptic release probability in vivo. Trends in neuro-468

sciences, 33(6):259–266.469

Brea et al., 2013. Brea, J., Senn, W., and Pfister, J.-P. (2013). Matching recall and storage in sequence470

learning with spiking neural networks. The Journal of Neuroscience, 33(23):9565–9575.471

Buckley et al., 2017. Buckley, C. L., Kim, C. S., McGregor, S., and Seth, A. K. (2017). The free energy472

principle for action and perception: A mathematical review. Journal of Mathematical Psychology,473

81:55–79.474

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.22.489175doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.22.489175
http://creativecommons.org/licenses/by-nc-nd/4.0/


Buesing and Maass, 2008. Buesing, L. and Maass, W. (2008). Simplified rules and theoretical anal-475

ysis for information bottleneck optimization and pca with spiking neurons. In Advances in Neural476

Information Processing Systems, pages 193–200.477

Buesing and Maass, 2010. Buesing, L. and Maass, W. (2010). A spiking neuron as information bot-478

tleneck. Neural computation, 22(8):1961–1992.479

Caporale and Dan, 2008. Caporale, N. and Dan, Y. (2008). Spike timing–dependent plasticity: a480

hebbian learning rule. Annu. Rev. Neurosci., 31:25–46.481
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A Supplementary information628

In this Supplementary Text we provide the details to the derivation and implementation of the s-FEP629

model. This document is organized as follows: In Supplementary Text A.1 we review the main idea630

behind the FEP and how it is utilized here on the level of single synapses. In Supplementary Text631

A.2 we define the generative density that is used by the synapse to estimate the state of the somatic632

membrane potential. In Supplementary Text A.3 we define the recognition density that determines the633

dynamics of the stochastic synapse model. In Supplementary Text A.4 we develop our main theoretical634

result to show that the synaptic efficacy updates (3) of the main text, minimize the free energy F(z, w)635

of the synaptic efficacy w with respect to the back-propagating action potentials z. In Supplementary636

Text A.5 we show that the same learning rules also emerge if the s-FEP is applied to a learning scenario637

for recurrent neural networks with arbitrary numbers of neurons and synapses.638

A.1 Synapse-level free energy minimization639

Here we provide a brief overview over the main aspects of the FEP that are needed for our treatment640

of single synapses. Since we focus here on a relatively simple physical system – individual synapses that641

interacts with their post-synaptic neuron – we only need a subset of the theoretical framework that is642

provided by the FEP. An excellent comprehensive review on this topic can be found in [Buckley et al.,643

2017].644

The FEP is a generic theoretical framework to describe the interaction of a behaving agent with its645

environment. Its main assumption is that the agent and the environment have physically separated states,646

the internal (w) and external (u) states, respectively, that cannot directly influence another. Interaction647

only takes place through specific actions (y), performed by the agent and feedback (z) provided by the648

environment. The FEP suggests that the agent should adapt its behavior to minimize the surprise caused649

by the feedback z, measured by the negative log likelihood, surprise(z) = − log p (z).650

The FEP proposes a specific method to approaching a state of minimum surprise. This method rests651

on the idea that a biological organism maintains an internal model of its environment, that allows it to652

reason about the external states u. The internal model is composed of two parts, (1) the recognition653

density q (u ∣w), that describes how the external state u interacts with the internal state w, and (2)654

the generative density p (u, z), that describes the dependency between external states u and feedback655

z [Buckley et al., 2017]. To simplify the notation we employ here the commonly used shortcut qw (u)656

for q (u ∣w). The recognition density is parameterized by the internal state w. The generative density657

depends here on the set of somatic parameters that comprise the firing threshold ϑ, reset- and resting658

potential, ur and u0, and the membrane time constant τm. We assume that these parameters are constant659

and encoded a-priori into the dynamics of the synapses such that the dynamics of the soma and the660

synapse match (e.g. through evolutionary processes or adaptation that is significantly slower than the661

learning dynamics). Plasticity mechanisms to fine-tune the synaptic behavior to track changes in somatic662

parameters could be derived from the s-FEP framework as well, but are not the focus of this study.663
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Using this internal model the complexity of the surprise minimization problem can be approached664

by replacing the goal to minimize surprise directly by a variational upper bound, that allows us to split665

the problem into two parts. The theory stems from the observation that an upper bound on the surprise666

can be reached indirectly by employing the recognition density q to guess external states u, and the667

generative density p evaluates how well the feedback z agrees with the guessed external states u. The668

problem to minimize surprise is then augmented with a divergence term to also minimizing the mismatch669

between q and p.670

We adopted this idea and suggested to minimize an upper bound on the surprise in every synapse,671

given by the variational free energy F , which is defined as672

F(z, w) = surprise(z) + divergence(q∣p) = − log p (z) + DKL(q ∥ p) ≥ surprise(z) , (A.1)

where DKL(q ∥ p) is the Kullback-Leibler (KL)-divergence between qw (u) and p (u ∣ z). The inequality in

(A.1) follows from DKL(q ∥ p) ≥ 0 for any two probability distributions q and p. Inserting the definition

of the KL-divergence we get

F (z, w) = − log p (z) +DKL(q ∥ p) (A.2)

= − log p (z) + ⟨ log
qw (u)
p (u ∣ z) ⟩

qw(u)
= ⟨ log

qw (u)
p (u, z) ⟩

qw(u)
, (A.3)

where ⟨ f(u) ⟩
qw(u) denotes the expectation of some function f(u) with respect to the probability density673

qw (u). By rearranging the terms of this last form, we can establish a link to the Helmholtz free energy674

that measures the useful energy potential in closed thermodynamic systems, from which the FEP inherits675

its name [Buckley et al., 2017,Neal and Hinton, 1998], by interpreting ε(u, z) = − log p (u, z) as the energy676

of state (u, z), to get677

F (z, w)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Variational free energy

= ⟨ ε(u, z) ⟩
qw(u)Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Expected internal energy with respect to qw

− H (qw)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Entropy of qw

. (A.4)

Using these definitions, we identify the relevant variables in our synapse model that are required678

by the FEP: (1.) the internal states, (2.) the actions, (3.) the external states, and (4.) the feedback679

(see [Friston, 2008] and Fig. 1 for an illustration).680

1. The internal states summarizes all relevant internal variables that determine the behavior of the681

synapse. Since we focus here on long-term synaptic plasticity the internal state is given by the682

synaptic efficacy w. The internal states can be augmented with additional variables to also include683

other mechanisms, e.g. short term plasticity, but we neglect these here for the sake of simplicity.684

2. The actions are utilized by the synapses to interact with the environment (the efferent neuron).685

In our model this is done through stochastic synaptic currents y, where the mean and variance of686
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y is governed by the synaptic efficacy w. In our model, y denotes a sequence of synaptic currents687

y = (y(t) ∣ t ≥ 0).688

3. The external states. From the perspective of a synapse, the environment, it can immediately689

interact with, is the post-synaptic neuron. Here, we model the external states as the somatic690

membrane potential u(t) of a leaky integrate and fire (LIF) neuron with firing threshold ϑ and691

resting potential u0. We denote the whole sequence of the somatic membrane potential by u =692

(u(t) ∣ t ≥ 0).693

4. The feedback. In our model, a synapse only receives the back-propagating action potential of694

the post-synaptic neuron z as feedback to be informed about the somatic membrane potential.695

Formally, the spike train z is denoted by the set of firing times t
post

n , t
post

n+1, . . . of the post-synaptic696

neuron. This feedback information about the external state u(t) is used by the synapse to update697

the internal model of the environment p (u, z).698

Learning is realized in the FEP by minimizing F (z, w) with respect to w, which can be done by

gradient decent

∆w = −
∂

∂w
F (z, w) , (A.5)

In the following sections we will derive the learning rule that solves this optimization problem for the699

case of our synapse model step by step. We consider the general form of the weight changes ∆w to700

show that the learning problem (A.5) can be solved by applying weight updates that only depend on701

the pre- and post-synaptic firing times, the current value of the synaptic efficacy and constants that are702

independent of learning, given by703

∆w = W3 (∆t1,∆t2, w) = WLTP (∆t1,∆t2) − (1 − r0
2 r0

+ w)WLTD (∆t1,∆t2) +
1

2w
, (A.6)

with ∆t1 = t
post

2 − tpre and ∆t2 = t
post

2 − tpost

1 . (A.6) is the general case for an arbitrary synaptic parameter704

r0. Eq. (3) shows the special case for r0 =
1
2

which was used throughout the paper (except Fig.4E). In705

our simulations we performed synaptic efficacy updates wnew = wold+η∆w for every post-pre-post spike706

triplet, with t
post

1 < t
pre

< t
post

2 , where t
post

1 and t
post

2 are the spike times of two neighboring post-synaptic707

spikes, and t
pre

is a pre-synaptic spike time. η is a small positive constant learning rate η = 10
−5

. Weight708

updates were applied immediately at the arrival of the bAP events t
post

2 (no batching or buffering).709

A.2 The generative density710

In this section we formally define the generative density p (u, z) which describes the joint dynamics of the711

membrane potential u, and the observed post-synaptic spike train z back-propagating to the synapse, in712

Eq. A.3. To arrive at this result it is convenient to think of the somatic membrane dynamics in terms of713

a deterministic function g, with u(t) = g(y, t), that maps a given sequence of synaptic input currents,714
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y, to the current value of the membrane potential at time t. g is a piece-wise continuous function that715

obeys the membrane dynamics (5)-(7). The probability density of a membrane potential trace u, then716

reduces to a point density where u equals g at all times, i.e.717

p (u ∣ y) = δ (∫
∞

0
∣u(t) − g(y, t)∣ dt) (A.7)

where δ is the Dirac delta function. We will further use the notation u = g(y) to denote the sequence of718

membrane potential values u(t) = g(y, t), for a given y.719

Equation (A.7) can be used to assign a membrane potential trace u to a sequence of PSCs y with720

absolute certainty. However, a synapse does not have access to the true value of y (or u) since it may721

include input from other synapses that cannot be directly observed (and possibly further unobserved722

processes other than synaptic input). To reflect this uncertainty about u we assume for the definition of723

the generative density, that y is given by a stochastic process. Using this we can rewrite the dynamics724

of the membrane potential u(t), (5) in terms of a stochastic differential equation, by replacing the input725

current y(t), to get726

d u =
1
τm

(u0 − u(t)) dt + σ0 dW(t) , (A.8)

with resting membrane potential u0 and where σ0 scales the contribution of the total stochastic input727

and dW(t) are the increments of the Wiener process.728

(A.8) is an Ornstein-Uhlenbeck (OU)-process that describes the dynamics of the LIF neuron model729

with stochastic inputs [Gerstner et al., 2014]. This model is convenient because it compactly captures730

the uncertainty of a synapse that is not able to directly observe u(t) and all inputs to the post-synaptic731

neuron. The OU process can be solved analytically using stochastic calculus, e.g. if the process (A.8) is732

fixed to u0 at time 0 it evolves according to733

u(t) = u0 + σ0 ∫
t

0
e
− t−s
τm dW(s) . (A.9)

For long observation times the OU process converges to a stationary distribution, given by a Gaussian734

with mean u0 and variance σ
2
0, i.e. for t→∞, u(t) ∼ N (u(t) »»»»»u0, σ

2
0).735

The OU process (A.8) dynamics can be used to define the generative density p (u, z) for a LIF neuron.736

In the derivation of the s-FEP we make use of the fact, that also the posterior density p (u ∣ z) can be737

solved explicitly. The information about the spike times z deflects the distribution of likely values of738

the membrane potential from its resting state, which is expressed in the posterior density p (u ∣ z). We739

can express the dynamics of u(t) given the information that the membrane potential is at the firing740

threshold ϑ at the firing times t
post

, i.e. the constraint u(tpost

1 ) = ur and u(tpost

2 ) = ϑ through a stochastic741

process with time varying mean µ(t) and variance σ
2(t). Hence, we use a Gaussian process model of742

the external state, such that the posterior density is given by743

p (u(t) ∣ z) = N (u(t) »»»»»µ(t), σ
2(t)) . (A.10)
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Using the FEP theory we can in principle assume any function µ(t) and σ
2(t) and develop learning744

rules that will strive to best approximate its dynamics. However, a reasonable choice will obey the745

constraints imposed by the neuron and synapse dynamics, e.g. the membrane time constant and the746

firing mechanism and resetting behavior of the neuron.747

For LIF neuron model (A.8) the resulting constraint stochastic process has to fulfill the following748

requirements749

1. The mean µ(t) obeys µ(tpost

1 ) = ur and µ(tpost

2 ) = ϑ.750

2. For t
post

1 < t < t
post

2 , µ(t) approaches the resting potential u0 asymptotically.751

3. The variance σ
2(t) obeys σ

2(t) ≥ − τm
2

(σ2(t))′ for t
post

1 < t < t
post

2 , and approaches its minimum752

when close to the firing times t
post

1 and t
post

2 .753

4. For t
post

1 < t ≤ t
post

2 , σ
2(t) approaches the variance σ

2
0 of the stationary distribution asymptotically.754

5. The functions µ(t) and σ
2(t) are smooth and follow the LIF dynamics with time constant τm.755

Constraint 3. incorporates that in the LIF dynamics, the variance can only shrink at a maximum speed756

proportional to the membrane time constant τm. (σ2(t))′ = d
dt
σ
2(t) denotes the time derivative.757

The LIF neuron implies OU process dynamics of the membrane potential. Given the information that

the membrane potential is at the firing threshold ϑ at the firing times t
post

, i.e. the constraint u(tpost

1 ) = ur
and u(tpost

2 ) = ϑ, the OU process can be solved explicitly. The solution to this double constraint stochastic

process is the OU-bridge process [Corlay, 2013, Szavits-Nossan and Evans, 2015]. For any neighboring

postsynaptic spike pair (tpost

1 , t
post

2 ) and time point t with t
post

1 < t ≤ t
post

2 we can describe the dynamics

of u(t) using its mean µ(t) and variance σ
2(t). Using this result, for any neighboring postsynaptic spike

pair (tpost

1 , t
post

2 ) and time point t with t
post

1 < t ≤ t
post

2 we describe the dynamics of u(t) using the mean

µ(t) and variance function σ
2(t), given by

µ(t) = ⟨u(t) ⟩ = µ (∆t1,∆t2) = u0 + (ur − u0)
e

∆t1
τm − e−

∆t1
τm

e
∆t2
τm − e−

∆t2
τm

+ (ϑ − u0)
e

∆t2−∆t1
τm − e

∆t1−∆t2
τm

e
∆t2
τm − e−

∆t2
τm

(A.11)

and758

σ
2(t) = ⟨u2(t) ⟩ − ⟨u(t) ⟩ = σ

2 (∆t1,∆t2) = σ
2
0

1

1 + γ (e
∆t1−∆t2

τm + e−
∆t1
τm )

, (A.12)

where ∆t1 = t
post

2 − t, ∆t2 = t
post

2 − tpost

1 and γ is a constant that scales the slope of the variance function.759

In other words, the dynamics of the membrane potential subject to the constraint u(tpost

1 ) = ur and760

u(tpost

2 ) = ϑ are described by a stochastic process with mean µ(t) and variance σ
2(t). The membrane761

potential mean and variance functions (A.11) and (A.12) are piece-wise defined for all postsynaptic spike762

intervals (tpostn , t
post
n+1). The membrane dynamics during each interval are statistically independent of each763

other due to the resetting behavior of the neuron model. In all simulations we used γ = 50 and σ
2
0 = 16.764
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The mean function µ(t) in (A.11) is identical to the OU-bridge process model [Corlay, 2013,Szavits-765

Nossan and Evans, 2015]. This function describes the asymptotic approach to the resting potential u0766

and the slope towards the firing threshold ϑ. The variance function σ
2(t) in (A.12) is flatter than the767

direct solution of the OU-bridge process model to incorporate the additional constraint 3.768

Using the definition (A.11) and (A.12), we find that the posterior of the generative density can be769

evaluated at any time point t, as p (u(t) ∣ z) = N (u(t) »»»»»µ(t), σ
2(t)). Furthermore, since the mean (A.11)770

and variance (A.12) functions only depend on the relative spike timing ∆t1 and ∆t2 we find that these771

quantities can be expressed in the form µ (∆t1,∆t2) and σ
2 (∆t1,∆t2).772

A.3 The recognition density773

Here we define the recognition density qw (u) for our synapse model. A synapse injects brief stochastic774

current pulses of amplitude proportional to the current value of the synaptic efficacy into the post-775

sypantic neuron when a pre-synaptic input arrives. For the derivation that follows we will use here776

the simplifying assumption that y(t) is given by the PSCs of a single synapse to keep the notation777

uncluttered. In Supplementary Text A.5 we will show that the same learning model also arises when the778

s-FEP is applied to a network of neurons with an arbitrary number of synapses.779

Let the spike train of the pre-synaptic neuron be denoted by zpre(t), given by Dirac delta pulses780

centred at the pre-synaptic firing times. The post-synaptic input current y(t) is then given by781

y(t) = zpre(t) (w r0 +
√
w s0 ε(t)) , (A.13)

where w ≥ 0 is the synaptic efficacy, zpre is a spike train given by Dirac delta pulses centered at pre-782

synaptic spike times, and ε(t) is a source of independent unit variance zero mean Gaussian noise. The783

constant r0 and s0 scale the mean and variance of the synaptic current. We used r0 =
1
2

and s0 = r0 (1−r0)784

if not stated otherwise in accordance with previous models [Katz, 1971].785

The stochastic synapse model (A.13) suggests that at the time points of pre-synaptic firing t = t
pre

786

the amplitudes of synaptic currents follow a Gaussian distribution. To make this explicit we rewrite787

(A.13) to get788

y(t) = ∑
m

δ (tpre

m − t) ym , qw (ym) = N (ym ∣ r0w, s0w) and qw (y) = ∏
m

qw (ym) , (A.14)

where the sum runs over all pre-synaptic firing times. This Gaussian model, (A.14), is an approximation789

to previous models of stochastic synaptic release [Katz, 1971].790

At this point it is instructive to note that the generative density, that was introduced in Supplemen-791

tary Text A.2, can be solved directly for y. More precisely, we will show that p (y ∣ z) can be expressed792

as a Gaussian distribution with time-varying mean and variance functions m(t) and v(t), such that793

ym ∼ N (ym ∣m(tm), v(tm)). Therefore, the generative density can be inverted, yielding a time varying794

distribution over PSCs y(t) that, when injected into the post-synaptic neuron, will give the desired795
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distribution for the membrane potential dynamics. This result can be obtained by stochastic integra-796

tion, but to keep this paper self-contained we provide a proof here. We start by considering a general797

drift-diffusion process and then show the special case of the LIF neuron dynamics step by step.798

In general, the evolution of the probability density function p(u, t) of a stochastic process u at time799

t, with drift A(u, t) and diffusion B(u, t), can be described by the Fokker-Planck equation800

∂

∂t
p(u, t) = −

∂

∂u
(A(u, t) ⋅ p(u, t)) + 1

2

∂
2

∂u2
(B(u, t) ⋅ p(u, t)) . (A.15)

Note that u denotes here an instantaneous value rather than whole sequences. To describe the dynamics

of our model neuron we treat here the case that p(u, t) is a Gaussian distribution with time-varying

mean µ(t) and variance σ
2(t) functions, i.e. u(t) ∼ N (u(t) »»»»»µ(t), σ

2(t)) at any time point t, to get for

the left side of (A.15)

∂

∂t
p(u, t) = p(u, t) (µ′(t)u − µ(t)

σ2(t) +
1

2
(σ2(t))′ ((u − µ(t))

2

σ4(t) −
1

σ2(t))) ,

where µ
′(t) = d

dt
µ(t) and (σ2(t))′ = d

dt
σ
2(t) denote the time derivatives. Furthermore we can expand

the right side of (A.15) to get

∂

∂u
(A(u, t) ⋅ p(u, t)) = p(u, t) ( ∂

∂u
A(u, t) − A(u, t)u − µ(t)

σ2(t)
)

and

∂
2

∂u2
(B(u, t) ⋅ p(u, t)) =

p(u, t) ( ∂
2

∂u2
B(u, t) − 2

∂

∂u
B(u, t)u − µ(t)

σ2(t) + B(u, t) ((u − µ(t))
2

σ4(t) −
1

σ2(t))) .

Therefore, by plugging these results back into the Fokker-Planck equation (A.15), we find the condition801

that has to be satisfied for functions A(u, t) and B(u, t) to be given by802

µ
′(t)u − µ(t)

σ2(t) +
1

2
(σ2(t))′ ((u − µ(t))

2

σ4(t) −
1

σ2(t))
!
= (A.16)

A(u, t)u − µ(t)
σ2(t) −

∂

∂u
A(u, t) + 1

2

∂
2

∂u2
B(u, t) −

∂

∂u
B(u, t)u − µ(t)

σ2(t) +
1

2
B(u, t) ((u − µ(t))

2

σ4(t) −
1

σ2(t)) .

Clearly, the choice A(u, t) = µ
′(t), B(u, t) = (σ2(t))′ satisfies this condition for any differentiable803
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functions µ(t) and σ
2(t).804

This last results holds in general. To arrive at the final result we replace the general drift-diffusion805

dynamics with the special case of a leaky integrator with finite integration time constant τm using the806

ansatz A(u, t) = 1
τm

(u0 − u) + m(t) and B(u, t) = v(t). In this case, we can make condition (A.16)807

satisfied if µ
′(t) = 1

τm
(u0 − µ(t))+m(t) and (σ2(t))′ = v(t)− 2

τm
σ
2(t). This can be verified by plugging808

this result back into (A.16)809

( 1
τm

(u0 − µ(t)) +m(t)) u − µ(t)
σ2(t) +

1

2
(v(t) − 2

τm
σ
2(t)) ((u − µ(t))

2

σ4(t) −
1

σ2(t))
!
=

( 1
τm

(u0 − u) +m(t)) u − µ(t)
σ2(t) +

1
τm

+
1

2
v(t) ((u − µ(t))

2

σ4(t) −
1

σ2(t)) ,

from which the equality follows810

↔
1
τm

(u0 − µ(t))
u − µ(t)
σ2(t) −

1
τm

((u − µ(t))
2

σ2(t) − 1) !
=

1
τm

(u0 − u)
u − µ(t)
σ2(t) +

1
τm

↔ (u0 − µ(t))
u − µ(t)
σ2(t) −

(u − µ(t))2

σ2(t)
!
= (u0 − u)

u − µ(t)
σ2(t)

↔ (u0 − u)
u − µ(t)
σ2(t)

!
= (u0 − u)

u − µ(t)
σ2(t) ✓

This proofs that a stochastic process u with p(u, t) = N (u(t) »»»»»µ(t), σ
2(t)), µ

′(t) = 1
τm

(u0 − µ(t))+m(t)811

and (σ2(t))′ = v(t)− 2
τm
σ
2(t) is realized by a drift A(u, t) = 1

τm
(u0 − u)+m(t) and diffusion B(u, t) =812

v(t). Equivalently, any process u with mean µ(t) and variance σ
2(t) can be realized if813

m(t) = µ
′(t) + 1

τm
(µ(t) − u0) ,

v(t) = (σ2(t))′ + 2
τm
σ
2(t) ,

(A.17)

and v(t) ≥ 0 can be satisfied for all t. This last result is used in Supplementary Text A.4 to derive the814

learning rule (A.6).815

Furthermore, by integration of this last result we find that any integrable functions m(t) and v(t) > 0816

yield the following dynamics for the stochastic process u817

µ(t) = u0 + e
− t
τm ∫

t

0
e
s
τm a(s) d s

σ
2(t) = e

− 2t
τm ∫

t

0
e

2s
τm b(s) d s .

(A.18)
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For m(t) = 0 and v(t) = b (constant) we recover the Ornstein-Uhlenbeck process dynamics.818

Therefore, we define the posterior density p (y ∣ z) as the distribution over y where any instantaneous819

value ym at time tm obeys820

p (ym ∣ tm, z) = N (ym ∣m(tm), v(tm)) , (A.19)

where m(t) and v(t) are as defined in (A.17) with µ(t) and σ
2(t) given by the solution to p (u ∣ z) as821

defined in (A.11) and (A.12), respectively. Clearly we can recover p (u ∣ z) using (A.7) by marginalizing822

over y823

p (u ∣ z) = ⟨ p (u ∣ y) p (y ∣ z) ⟩
y
. (A.20)

A.4 Derivation of the learning rule824

Next we make use of the result from Supplementary Text A.2 and Supplementary Text A.3 to develop825

the learning rules that minimize the variational free energy (A.3). The approach that is taken here826

is very similar to [Kingma and Welling, 2013] and makes extensive use of the fact that the generative827

density p (u, z) can be expressed analytically and Bayesian posteriors can be solved in closed form. We828

also assume that the neuron parameters, that determine the generative density, are constant and known829

a priori, and hence do not need to be learned by the synapses (however learning rules to infer these830

parameters could be easily derived from the model, but are not the focus of this study). Also, other than831

previous applications of the FEP (e.g. [Isomura et al., 2016]), we assume that the generative density832

p (u, z) is independent of w. While this assumption is mathematically sound and commonly made in833

applications of variational Bayesian methods (e.g. [Mnih and Gregor, 2014]) it is unusual in the FEP834

literature. In Supplementary Text A.5 we provide an additional justification of this choice for the s-FEP.835

Using the assumptions and definitions outlined above, (A.5) becomes

∆w = −
∂

∂w
F (z, w) =

∂

∂w
⟨ log

p (u, z)
qw (u) ⟩

qw(u)
(A.21)

=
∂

∂w
⟨ log

p (u ∣ z)
qw (u) ⟩

qw(u)
+

∂

∂w
⟨ log p (u, z) ⟩

u
(A.22)

=
∂

∂w
⟨ log

p (u ∣ z)
qw (u) ⟩

qw(u)
. (A.23)

The first equality follows from Bayes rule and the second follows since ⟨ log p (u, z) ⟩
u

is constant in w836

by construction. Next, we exploit here that the OU process model (A.8) suggests a one-to-one relation837

between PSC traces y and somatic membrane potentials u, that is, for a given y we can determine u838

through a deterministic function. For the deterministic function u = g(y), we can replace the marginal839

over qw (u) in (A.23) with a marginal over qw (y), i.e. ⟨ f(u) ⟩
qw(u) = ⟨ f(g(y)) ⟩

qw(y). This is a variant840

of the reparameterization trick [Kingma and Welling, 2013] that reflects here the fact that at the post-841

synaptic spike times t
post

, p (u, z) collapses to a point mass density.842
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Using this result we get

∆w = −
∂

∂w
F (z, w) =

∂

∂w
⟨ log

p (u ∣ z)
qw (u) ⟩

qw(u)
=

∂

∂w
⟨ log

p (g(y) ∣ z)
qw (g(y)) ⟩

qw(y)
(A.24)

=
∂

∂w
⟨ log

⟨ p (g(y) »»»»» y
′) p (y′ »»»»» z) ⟩y′

⟨ p (g(y) ∣ y′) qw (y′) ⟩
y′

⟩
qw(y)

=
∂

∂w
⟨ log

p (y ∣ z)
qw (y) ⟩

qw(y)
,

(A.25)

where in the last equality we used Eq. A.7. Thus, the minimization of the variational free energy (A.1)

with respect to the synaptic efficacy w of a synapse that interacts with its post-synaptic neuron, can

be reduced to a gradient on the mismatch between the posterior synaptic current y given z and the

recognition density qw (y). Finally, we use that the PSC pulses in y are independent and thus the

marginal in (A.25) can be replaced by a sum over pre-synaptic firing times t
pre

m

∆w = −
∂

∂w
F (z, w) = ∑

m

∂

∂w
⟨ log

p (ym ∣ tpre

m , z)
qw (ym) ⟩

qw(ym)
. (A.26)

Also note, that it is sufficient here to consider only the two post-synaptic spikes in z, that are directly843

neighboring t
pre

m , to evaluate p (ym ∣ tpre

m , z), since the somatic membrane dynamics are independent after844

the reset to ur.845

This result is useful, because the generative model established in Supplementary Text A.2 allows us846

to express the posterior distribution p (ym ∣ tm, z) in closed form. In Supplementary Text A.3 we show847

in detail that a synaptic current ym ∼ N (ym ∣m(tm), v(tm)) enables a synapse to realize a somatic848

membrane potential u(t) that obeys the stochastic processes with mean µ(t) and variance σ
2(t), if849

m(t) = µ
′(t) + 1

τ (µ(t) − u0) ,

v(t) = (σ2(t))′ + 2
τ σ

2(t) ,
(A.27)

where µ(t) and σ
2(t) are as defined in (A.11) and (A.12).850

To construct the term ∂
∂w

⟨ log
p(ym ∣ tm,z)
qw(ym) ⟩

qw(y)
of (A.26) we use the result from Supplementary
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Text A.2 and assume a general Gaussian form ym ∼ N (ym
»»»»»µw, σ

2
w) to get

∂

∂w
⟨ log

p (ym ∣ tm, z)
qw (ym) ⟩

qw(ym)

=
∂

∂w
⟨ − 1

2
log (2π v(tm)) − (ym −m(tm))2

2v(tm) ⟩
qw(ym)

+
1

2

∂

∂w
log (2π e σ

2
w)

=
∂

∂w
⟨ 2 ymm(tm) − y

2
m

2 v(tm) ⟩
qw(ym)

+
1

2

1

σ2w(tm)
∂

∂w
σ
2
w

= (m(tm)
v(tm) ) ∂

∂w
⟨ ym ⟩

qw(ym) −
1

2
( 1

v(tm))
∂

∂w
⟨ y2m ⟩

qw(ym) +
1

2

1

σ2w

∂

∂w
σ
2
w . (A.28)

By plugging in (A.11) and (A.12) we recover the LTP and LTD term in (A.6).851

Using ⟨ ym ⟩
qw(ym) = µw and ⟨ y2m ⟩

qw(ym) = µ
2
w + σ

2
w, we get

∂

∂w
⟨ log

p (ym ∣ tm, z)
qw (ym) ⟩

qw(ym)
= (m(tm) − µw

v(tm) ) ∂

∂w
µw −

1

2
( 1

v(tm) −
1

σ2w
) ∂

∂w
σ
2
w . (A.29)

Finally, using (A.13) we identify µw and σ
2
w to get the result for any tm at the pre-synaptic firing times

∂

∂w
⟨ log

p (ym ∣ tm, z)
qw (ym) ⟩

qw(ym)
= (m(tm) − r0w

v(tm) ) r0 −
1

2
( 1

v(tm) −
1

w r0 (1 − r0)
) r0 (1 − r0) (A.30)

= r0
m(tm)
v(tm) − r0

1

v(tm) (1 − r0
2

+ r0w) +
1

2w
, (A.31)

which is identical to the result in (A.6) with WLTP(∆t1,∆t2) = r0 m(tm)
v(tm) and WLTD(∆t1,∆t2) = r20 1

v(tm) .852

Using this we identify the triplet STDP windows, given by

WLTP(∆t1,∆t2) = r0
µ
′ (∆t1,∆t2) + 1

τ
(µ (∆t1,∆t2) − u0)

(σ2 (∆t1,∆t2))′ + 2
τ
σ2 (∆t1,∆t2)

, (A.32)

and853

WLTD(∆t1,∆t2) = r
2
0

1

(σ2 (∆t1,∆t2))′ + 2
τ
σ2 (∆t1,∆t2)

, (A.33)

where µ (∆t1,∆t2) and σ
2 (∆t1,∆t2), respectively, are the estimated mean and variance of the membrane854

potential based on the back-propagating action potentials ((A.11) and (A.12)), and µ
′(t) = d

dt
µ(t) and855

(σ2(t))′ = d
dt
σ
2(t) denote the time derivatives.856

The rational underlying the learning model is illustrated in Fig. 2A. For any pre-synaptic firing time857

tm a random PSC is generated using the recognition density qw (ym). In addition post-pre-post spike858

triplets are formed by considering the neighbouring post-synaptic spikes back-propagating to the synapse.859

Based on these spike triplets, the posterior density p (ym ∣ tm, z) is constructed and the mismatch with860
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the recognition density triggers a weight update. The internal model does not need to be represented861

explicitly but is implicit in the shape of the triplet STDP learning window.862

The proposed s-FEP learning rules installs a single parameter distribution qw (y) that minimizes863

the distance to the two-parameter posterior density y ∼ N (y ∣m(t), v(t)). In Fig. 3E we showed that864

the synaptic efficacies are correlated with the euclidean norm of the posterior µ
∗

and σ
∗
. Using the865

result (A.31) we can make a more careful analysis, by keeping the PSC posterior fixed, m(t) = µ∗ and866

v(t) = (σ∗)2, and then analyzing the roots of the learning rule (A.31). Using this we find that the867

weights converge to w
∗
=

1
2
(µ∗ − 1

2
) + 1

2

√
(µ∗ − 1

2
)2 + (2σ∗)2 , (with r0 =

1
2

as in our simulations).868

Hence, weights encode both the target mean and variances, i.e. for small σ
∗

and large µ
∗

we have869

w
∗
≈ µ

∗
and for large σ

∗
and small µ

∗
we have w

∗
≈ σ

∗
.870

A.5 Network level FEP emerges from the s-FEP871

In the previous sections we have derived the s-FEP for a single synapse for the sake of illustration.872

Clearly this is a very limiting case and in general we are interested in a FEP that concerns arbitrarily873

large recurrent neural networks. In this section we thus turn to a network-level treatment of the s-FEP.874

We show that the same learning rules (A.23) also applies to a class of learning problems and networks of875

neurons with an arbitrary number of neurons and synapses. To show this we use here vectorized forms876

z = (z1, . . . , zK), u = (u1, . . . , uK), y = (y1, . . . , yK) and w = (w11, . . . , wKK) to denote ordered sets of877

network spikes, membrane potentials, PSCs and the synaptic efficacies, respectively, for networks of K878

neurons. wki denotes the synaptic efficacy from neuron i to neuron k.879

In addition we assume that there is an additional external feedback x that may influence the activity880

of an arbitrary subset of network neurons. This feedback is assumed to be a sensory experience of881

some form that is directly perceptible by a subset of the neurons. The feedback may take the role of882

a teacher signal as in our example in Fig. 5, but it can also be a more abstract signal that indicates883

e.g. goal reaching or aversive stimuli. Subsequently we will take the free energy minimization problem884

to the network level by considering the network spikes z as part of the state space and minimizing the885

augmented variational free energy886

F (x,w) = ⟨ log
qw (u, z)
p (u,x, z) ⟩

qw(u,z)
. (A.34)

The network-level generative density. The corresponding generative density p (u,x, z) now cap-887

tures the dependence between states (u, z) and feedback x. x can in principle be an arbitrary vector-888

valued function of time, but as in the single synapse case we focus here on models where the posterior889

density can be solved and results in conditional independence between individual membrane potentials890

uk891

p (u ∣x, z) = ∏
k

p (uk ∣x, z) . (A.35)
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The following derivations will be valid for scenarios where this posterior density can be evaluated. x892

can for example be given by strong external inputs that impose a certain firing pattern on a subset of893

network neurons or a bias potential that offsets the resting potential of some neurons. Scenarios where894

the independence (A.35) does not hold lead to more complex learning rules that are not further studies895

here (see the discussion at the end of this section).896

As in the single synapse case we can make use of another conditional independence that is imposed897

by the neuron’s resetting behavior at post-synaptic firing times. This implies conditional independence898

between any two post-synaptic spike times t
post

k,n−1, t
post

k,n . To make this explicit we denote by uk,n =899

uk (tpost

k,n−1 . . . t
post

k,n ) and zk,n = z (tpost

k,n−1 . . . t
post

k,n ) subsets of the sequences uk and z, respectively, over the900

time interval t
post

k,n−1 ≤ t < t
post

k,n . Using this we can write for (A.35)901

p (u ∣x, z) = ∏
k,n

p (uk,n ∣x, zk,n) . (A.36)

The network-level recognition density. For the single synapse model we assumed the pre-synaptic

spikes to be given, which considerably simplified the derivations. This is not possible anymore for the

network-level model, which also has to reflect the recurrent input from network spikes z from other

neurons. To account for this additional dynamics we consider the network-level PSCs, yk(t) of neuron k

yk(t) = ∑
i\k
yki(t) = ∑

i\k,m
δ (tpre

i,m − t) yki,m , with qwki (yki,m) = N (yki,m ∣ r0wki, s0wki) , (A.37)

and qw (yk,n ∣ zk,n) = ∏
i\k

∏
m∶ t

post
k,n−1≤t

pre
i,m<t

post
k,n

qwki (yki,m) (A.38)

where the sum over i runs over all network neurons excluding k (fully recurrent network without au-902

tapses). yki,m denotes the PSC amplitude of the m-th PSC event under synapse ki, and yk,n denotes903

the whole PSC sequence of neuron k in the time interval t
post

k,n−1 ≤ t
pre

i,m < t
post

k,n . The pre-synaptic firing904

times t
pre

i,m = t
post

i,m + Ts, denote the recurrent network activity with some small time delay Ts. Eq. (A.38)905

includes the implicit assumption that no pre-synaptic spikes arrive at neuron k at the exact same time906

t
pre

i,m such that the conditional independence holds (further discussed at the end of this section).907

The network-level recognition density determines the response of the network to the PSCs (A.38).

To define the network-level recognition density, we can make use of the fact that the neuron model is

Markovian, which allows us to define qw (u, z) in terms of a distribution over individual network spike

times t
post

k,n

qw (u, z) = ∏
k,n

qw (uk,n, tpost

k,n
»»»»» zk,n) = ∏

k,n

⟨ p (uk,n
»»»»» y

′
k,n) p (tpost

k,n
»»»»» y

′
k,n) qw (y′k,n

»»»»» zk,n) ⟩y′k,n ,

and equivalently qw (y, z) = ∏
k,n

p (tpost

k,n
»»»»» yk,n) qw (yk,n ∣ zk,n) , (A.39)

where p (tpost

k,n
»»»»» yk,n) is the probability density over firing time t

post

k,n in response to given PSCs yk,n, given908
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by a point density similar to (A.7), where the membrane potential reaches the firing threshold exactly909

at time t
post

k,n .910

Using this result we get for the network level synaptic efficacy updates

−
∂

∂wli
F (x,w) =

∂

∂wli
⟨ log

p (u,x, z)
qw (u, z) ⟩

qw(u,z)
=

∂

∂wli
⟨ log

p (u, z ∣x)
qw (u, z) ⟩

qw(u,z)
(A.40)

=
∂

∂wli
⟨ ∑
k,n

log
p (uk,n, tpost

k,n
»»»»»x, zk,n)

qw (uk,n, tpost

k,n
»»»»» zk,n)

⟩
qw(u,z)

, (A.41)

where in (A.40) we used that the derivative of ⟨ p (u,x, z) ⟩
u,z

with respect to wli is zero by construction.

Again by exploiting the properties of (A.39) we can use reparameterization to replace the marginal over

u with one over y. For (A.41) we get

−
∂

∂wli
F (x,w) =

∂

∂wli
⟨ ∑
k,n

log
p (uk,n, tpost

k,n
»»»»»x, zk,n)

qw (uk,n, tpost

k,n
»»»»» zk,n)

⟩
qw(u,z)

=

∂

∂wli
⟨ ∑
k,n

log

⟨ p (g (yk,n)
»»»»» y

′
k,n) p (tpost

k,n
»»»»» y

′
k,n) p (y′k,n

»»»»»x, zk,n) ⟩y′k,n
⟨ p (g (yk,n)

»»»»» y
′
k,n) p (t

post

k,n
»»»»» y

′
k,n) qw (y′k,n

»»»»» zk,n) ⟩y′k,n
⟩
qw(y,z)

=

∂

∂wli
⟨ ∑
k,n

log
p (yk,n ∣x, zk,n)
qw (yk,n ∣ zk,n)

⟩
qw(y,z)

. (A.42)

Note that the information about z is redundantly encoded in u and therefore this dependence vanishes

under the expectation. Finally, using this result and (A.38), we identify the synaptic efficacy updates

for wli

∆wli = −
∂

∂wli
F (x,w) =

∂

∂wli
⟨ ∑
k,n

log
p (yk,n ∣x, zk,n)
qw (yk,n ∣ zn)

⟩
qw(y,z)

=

∂

∂wli
⟨ ∑

n

log
p (yl,n ∣x, zl,n)
qw (yl,n ∣ zn)

⟩
qw(y,z)

=

∂

∂wli
⟨ ∑

n

∑
m∶ t

post
l,n−1<t

pre
i,m≤t

post
l,n

log
p (yli,m

»»»»» t
pre

i,m, x, zl,n)
qwli (yli,m)

⟩
qw(y,z)

, (A.43)

where p (yli,m
»»»»» t

pre

i,m, x, zl,n) is the posterior density over PSCs evaluated at time t
pre

i,m.911

A sampling-based approximation of (A.44) can be realized by first, sampling y, z ∼ qw (y, z) by

letting the network evolve according to its intrinsic dynamics. Then, update the synaptic efficacies for

38

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.22.489175doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.22.489175
http://creativecommons.org/licenses/by-nc-nd/4.0/


every post-pre-post spike according to

∆wli =
∂

∂wli
⟨ log

p (yli,m
»»»»» t

pre

i,m, x, zl,n)
qwli (yli,m)

⟩
qwli(yli,m)

. (A.44)

In summary we find that network-level learning can be established in the from (A.44) if the following912

assumptions hold913

• Network spikes never arrive simultaneously so that the conditional independence in (A.38) applies.914

• The posterior of the generative density p (yli,m
»»»»» t

pre

i,m, x, zl,n) can be computed in the synapses915

(realized through the learning rules).916

The first assumption is easy to fulfill for a general recurrent network since the theoretical framework917

leaves enough room to de-correlate input spikes. Note, that the probability that any two neurons spike918

exactly at the same time already approaches zero in continuous time if spikes are generated indepen-919

dently in every neuron. More complex cases like multiple input synapses from the same neuron can920

be treated by including a small independent jitter on the synaptic delays. In our simulations we found921

that simultaneous arrival of input spikes does not seem to be problematic in practice and no additional922

measures where taken to prevent them.923

The second assumption is clearly only true for special cases where the implied conditional indepen-924

dence holds. In Fig. 4 and 5 we chose the most basic example for this to be true. There, we used a simple925

model where x provided external input to drive a subset of neurons to fire at externally defined time926

points (e.g. through external sensory inputs that provide strong inputs to some neurons). In this simple927

example p (yli,m
»»»»» t

pre

i,m, x, zl,n) in (A.44) can be expressed analogously to Eq. (A.19) and the resulting928

learning rules are identical to (3) with the only difference that spike times are generated by the intrinsic929

dynamics qw (y, z) for neurons that are not driven externally by x. In more complex scenarios the930

posterior can be realized through additional learning mechanism, e.g. through neuromodulatory signals,931

as previously studied in [Isomura et al., 2016].932

Reasons against a weight-dependent generative density for the s-FEP. Our derivations rely933

on the assumption that the generative density is independent of the synaptic efficacies w. This implies934

that the generative- and the recognition density have separate parameter spaces. While this assumption935

is mathematically sound and has been used in many previous applications of variational Bayes (e.g. [Mnih936

and Gregor, 2014]) it is less common in the FEP literature. However, we argue here that in the context937

of the s-FEP, a weight-dependent generative density pw (u,x, z) would not be beneficial computationally938

and also would not improve biological realism.939

On the computational side, we find the main difference that the term ∂
∂wli

⟨ log pw (u,x, z) ⟩
u

would940

not vanish in (A.41) and therefore this gradient has to be estimated in every synapse. It is well known that941

this kind of gradients is notoriously hard to compute and suffers from adverse signal-to-noise properties942
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[Mnih and Gregor, 2014]. For the case of the s-FEP the situation is even worse because the learning943

signal has to be estimated based on the sparse bAPs that arrive at the synapse. The effect of a single944

synapse onto the somatic membrane potential is so minuscule that detecting this effect using a sampling-945

based estimator would require an unreasonable number of samples before it converges to a meaningful946

estimate of the gradient. An explicit dependence between the s-FEP generative density of the somatic947

membrane potential and all synaptic efficacies does not seem to be biologically feasible either, because948

it would require every synapse in a neuron to have knowledge about the PSCs of all other synapses.949

For these reasons we decided to pursue a model-based, bottom-up approach to estimate the s-FEP950

gradient by splitting the parameter space of the recognition- and the generative density. Therefore,951

synapses maintain only a minimal model of the soma that reflects the high uncertainty of the synapse952

due to the sparse feedback. This has the advantage that the solution of the s-FEP can be expressed953

directly in closed form and manifests in learning rules that only require variables that are locally available954

at the synapse. Our derivation does not require further approximations such as linearizations to develop955

this result. Despite the simplicity of the generative model that is locally maintained in every synapse, we956

show in simulations (Fig. 4 and 5) and theory (Supplementary Text A.5) that the s-FEP can be scaled957

up to the level of recurrent networks.958
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