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Abstract:  

The engineering of living cells able to learn algorithms by themselves, such as playing board 15 
games —a classic challenge for artificial intelligence— will allow complex ecosystems and 
tissues to be chemically reprogrammed to learn complex decisions. However, current engineered 
gene circuits encoding decision-making algorithms have failed to implement self-
programmability and they require supervised tuning. We show a strategy for engineering gene 
circuits to rewire themselves by reinforcement learning. We created a scalable general-purpose 20 
library of Escherichia coli strains encoding elementary adaptive genetic systems capable of 
persistently adjusting their relative levels of expression according to their previous behavior. Our 
strains can learn the mastery of 3x3 board games such as tic-tac-toe, even when starting from a 
completely ignorant state. We provide a general genetic mechanism for the autonomous learning 
of decisions in changeable environments. 25 

 

One-Sentence Summary:  
We propose a scalable strategy to engineer gene circuits capable of autonomously learning 
decision-making in complex environments.  
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Animal brains are powerful decision-making devices able to learn by themselves using 
reinforcement learning. Computational design methods have been used to experimentally 
implement biological adaptive behaviors(1-7), but not advanced decision making, which was 
achieved artificially using physical and chemical systems by engineering memory units with 
neural network computational capabilities(8-14). Engineered gene circuits could endow living 5 
cells with decision making capabilities, although their reprogramming has focused on modifying 
the encoding DNA, such as mutating and recombining regulatory regions(5, 15). This adaptation 
requires the directed rewiring(16, 17) of gene circuits, demanding the precise adjustment of 
every interaction, as when an experimenter computes a steepest descent method(13) to infer the 
needed experimental adjustments. This hampers the engineering of large systems where the 10 
individual adjustment of parameters would be impractical.  
To dramatically simplify the capability to train a gene network towards a complex behavior, 
irrespective of its size, the computation and implementation of the required adaptation should be 
encoded in the gene network itself. We therefore propose a genetic strategy where gene circuits 
autonomously rewire themselves towards a targeted behavior by shifting plasmid heteroplasmy. 15 
We test the capability for learning complex decision-making in living bacteria through the 
gameplaying of board games, a common decision-making benchmark in artificial 
intelligence(18). 

Inducible antibiotic resistance markers allow the adaptation of co-encoded genes via 
shifting plasmid ratios 20 

We created a library of plasmids carrying 9 possible inducible promoter systems (Fig. 1A), 
which we transformed into the Escherichia coli DH10B Marionette strain (providing 12 
chemically-driven promoters with minimal cross-talk activation) after we cured it of its former 
chloramphenicol resistance(19).  

We co-transformed the cells with a mixture of two almost identical multi-copy plasmids, P1 and 25 
P2, both maintained by an ampicillin resistance gene (AmpR). We designed the P1 and P2 
plasmids to stabilize their copy number ratios within a cell, by having the same length(20) 
(including the length of the fluorescent markers), a common promoter and a translational 
insulator sequence, as well as the same medium copy replicon. P1 and P2 encoded inducible 
operons for fluorescent proteins followed polycistronically by fusions of antibiotic resistance 30 
proteins (KanR/CmR for kanamycin/chloramphenicol resistance) or corresponding non-functional 
"dead" forms (dKanR/dCmR) (Fig. 1A). The CmR and KanR genes allow cellular antibiotic 
selection for higher P1 or P2 DNA-copy number (denoted by a and b, respectively) (as 
confirmed by flow cytometry experiments, Fig. S1). CmR or KanR selection thus shifts the P1:P2 
plasmid ratios because the total plasmid copy number (a+b) is conserved.  35 

We define the fraction of the P1 plasmid in cells co-transformed with both P1 and P2 plasmids 
(a/(a+b)) as weight (Fig. 1A), analogously to artificial neural networks (ANN). The 
distinguishable fluorescent proteins in P1 and P2 allow the convenient utilization of their ratio 
for an accurate estimation of the weight from fluorescence alone (confirmed via qPCR, R2=0.94, 
and mixed-read Sanger sequencing(21), R2=0.99, Fig. S2). We have therefore chosen 40 
fluorescence measurements to measure weight and referred to the corresponding values as F-
weight.  

The strains co-transformed with the plasmids P1 and P2 realize a minimal gene circuit, which we 
call memregulon (contraction for memory regulon, analogous to the memristor element used in 
electronic circuits with neuromorphic behavior(22)), able to adjust its DNA levels according to 45 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 25, 2022. ; https://doi.org/10.1101/2022.04.22.489191doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.22.489191


 

3 
 

its promoter activation and antibiotic. A memregulon’s red fluorescence agrees with its weight 
multiplied by the corresponding P1-only cells’ red fluorescence (Fig. 1B and Fig. S16A). For 
instance, the mCherry expression of cells co-transformed with a 0.5 memregulon weight is 
expected to have 50% of the red fluorescence per cell than cells only transformed with the 
plasmid P1. Usually this would require reengineering the mCherry promoter with suitable 5 
mutations. Fig. 1B shows that the 0.5 weight cells have indeed a red fluorescence per cell 
significantly identical to half of the induced and non-induced values of cells transformed only 
with the P1 plasmid (p<0.01), which contrasts with the inability of transcription regulation to 
lower the non-induced values.  
In the following, we grow and maintain bacterial cultures in agar plates. We can measure the 10 
weights in a memregulon culture using fluorescence or DNA sequencing, where we always copy 
the cultures with a replica plating to preserve the original plate (Fig. 1C). We show that the 
weight remains constant at the population level for many days and consecutive replica plating 
procedures (Fig. 1D), effectively functioning as a genetic memory system(20).  

Memregulons produce gene circuits able to adapt their expression levels by self-modifying 15 
their DNA copies 

Memregulon weight can be altered by culturing cells with specific antibiotics and promoter 
inducers. For example, kanamycin or chloramphenicol respectively decreases or increases the 
weight, corresponding to reduction or increment of mCherry fluorescence levels. In agar plates, 
we produce a new parental plate through a replica plating where the destination plate will contain 20 
selection antibiotic, ampicillin and the cognate inducers (Fig. 1E). We stop the antibiotic 
selection after a calibrated time with a subsequent replica plating using only ampicillin. We 
consider the memregulon as activated when its promoter has been fully induced by the cognate 
inducer; only in this state can the memregulon show fluorescence and change its weight 
significantly (p<0.01, Fig. S3).  25 

As the promoters might have had small crosstalks with noncognate inducers, we measured the 
change in weight in the presence of cognate and non-cognate inducers, which showed significant 
variation in weight (p< 0.01) only for the cognate inducer (Fig. 1F, S4 and S5). This allows 
culturing different memregulons together, where each memregulon can independently adjust its 
weight. Instead of manually modifying the mCherry expression levels through external 30 
manipulations of the plasmid DNA copy number, we allow the mCherry operon to persistently 
set its own P1 copy number levels (i.e. mCherry expression levels) via selection pressures from 
kanamycin/chloramphenicol and cognate inducer activation. This enables the local and 
unsupervised training of weights, a desired feature in the training of ANN(23).  

We can use the combined output (e.g. fluorescence) of a set of active memregulons for decision 35 
making. If the output is not desired, we then reproduce the environmental condition, activating 
memregulons in the presence of kanamycin/chloramphenicol to downregulate/upregulate their 
expression, thus contributing to decision making. This allows training by self-programming of 
the decision-making, by a stepwise downregulation/upregulation of the memregulons’ 
contribution to wrong/correct decisions.  40 

Choosing the highest weight among independent memregulon cocultures allows an 
experimental reinforcement learning algorithm to find the optimal path in decision trees 
The distributed multicellular circuits (DMC)(24, 25) strategy allows us to explore whether a 
coculture of strains, containing memregulons, can learn complex decision-making. For this, we 
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initially challenged the cultures with a mathematical problem equivalent to solving a maze (Fig. 
2A), where a “rat” must find the path to the exit without backtracking. Although this corresponds 
to one of the simplest decision trees, it will allow defining the methodology to be used for more 
complex problems. Paths encounter crossings with 3 possible diversions each. Among the 
maze’s four crossings, the one encountered first is designated the inducer L-arabinose (Ara) and 5 
the others the inducer 3-hydroxytetradecanoyl-homoserine lactone (OHC14). The optimal path 
follows the diversions 1 and 2 at the crossings a and b. To choose the diversion at each crossing, 
we set up three cocultures of two strains at a 1:1 cell ratio. Each coculture contains strains with 
the pBAD and pCin memregulons of different weights, encoding Marionette promoters(19), 
inducible under the chemicals Ara and OHC14 respectively. The 'chosen' diversion at the a and b 10 
crossings is defined as the number of the coculture with the highest pBAD and pCin weight, 
allowing generating an integer value from a vector of analog values. The starting cultures were 
picked such that they had weights where their initial decisions were the furthest from the optimal 
path. The weights are measured after replica plating measurement of the red and green 
fluorescence, adding the chemical inducer designated to the crossing (Fig. 2B). If the two 15 
decisions (a, b) do not correspond to the unique path towards the exit, we apply a “punishment” 
selection using a destination plate containing kanamycin, ampicillin, and the inducers Ara and 
OHC14. We repeat this cycle of measurement and negative reinforcement learning twice until no 
more kanamycin selection is needed because the memregulons have modified their weights to 
encode the output of the optimal path (Fig. 2C). Controls where the learning is done with either 20 
swapped antibiotics or swapped inducers show no change in decisions (Fig. S6). 
Generalizing the experimental reinforcement learning algorithm allows finding the optimal 
strategy in the tic-tac-toe game 
Because memregulon cocultures maintain stable their constituent memregulon weights (Fig. S7), 
we investigated whether the use of additional promoters could scale up the complexity of 25 
problems by challenging cocultures of memregulon strains to learn mastering a board game. As 
done with the early computers, we chose the familiar tic-tac-toe game, a two-player game on a 
3x3 board, where the two players (“X” and “O”) alternately occupy one vacant board position; 
the winner is the first player obtaining 3 matching symbols on any row, column, or diagonal. 
This game was studied recently using DNA computing(11, 26), which required implementing 30 
custom 3-input logic gates with catalytic DNA. However, it is not necessary to implement 
combinatorial gates to implement expert players if decisions are made by choosing the highest 
weight (called winner-take-all, WTA, strategy) even when using linear positive weights (27) 
(Fig. S8).  

It is also useful to define a measure of the general skill level at a game, alike to the Elo 35 
ranking(28). Thanks to the small size of a 3x3 board game, we can use a computer simulation to 
play all possible games. For this, we input the measured F-weights into a simulation 
parametrized with our experimental data (supplementary text), where we evaluate the percentage 
of won or drawn games (called expertise) when playing all possible matches.  
As an example of how reinforcement learning can automatically train the weights to achieve a 40 
complex computation, we generalized our previous experimental learning algorithm (Fig. 2B) to 
two-player games. We now consider one of the players to be a trainer (player X) and the other a 
bacterial player. The O player consists of a set of cocultures, one for each of the board positions, 
excluding the central (played first by player X) (Fig. 3A, left). We assigned a chemical inducer 
to each of the 9 board positions (Fig. 3A, right). The cells play a match against an opponent by 45 
reading their F-weights through replica plating fluorescence measurements (Fig. 3B). The 
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experimental algorithm is as follows (see Fig. 3C): As in the maze example, the chemicals 
activate the memregulons’ promoters involved in a decision vertex (acting as a “leaf” selector in 
the decision tree), but now the simultaneous use of more than one inducer to measure the F-
weights allows the identification of all the opponent’s positions. The highest “multi-inducer” F-
weight, among memregulon cocultures at unoccupied positions, "chooses" the bacteria’s next 5 
move. After several rounds, the match finishes and, if the O player loses, we apply a negative 
reinforcement learning operation to the O cocultures, assigned to positions occupied by the O 
player (Fig. 3C). This updates the parental cultures and we play new matches until the player O 
achieves mastery (100% expertise). 
An example of a match is overviewed in Fig. 3D: After player X starts at the center (round 0), 10 
player O could move at any of the other 8 unoccupied positions and, therefore, we consider 
cocultures at all of them. We do replica F-weight measurements to the cocultures by inducing 
them with 3-oxohexanoyl-homoserine lactone (OC6, inducer assigned to the center position, 
where X has moved) and then we choose the position where its coculture had the highest F-
weight. In the next round, X makes another move (corresponding to the position assigned to Ara) 15 
and we inquire about O’s move by inducing the 6 cocultures (at unoccupied positions) with OC6 
and Ara (the two positions currently occupied by X), and measuring the highest F-weight among 
them. O loses in round 3, so we apply a negative reinforcement operation with kanamycin 
selection (Fig. 1E), in the cocultures at positions previously occupied by O (Fig. 3D, encircled in 
green), adding all the inducers corresponding to X’s moves before round 3 (OC6, Ara, & 20 
OHC14), which lead to the losing decisions of O. After this learning, we have updated 3 
cocultures, which become new parental plates for replica measurements, together with the 
unchanged 5. Bacteria play new matches until a match ends in a draw and the O player achieves 
mastery.  

In principle, a trainer can always choose strategies avoiding draws, although we do not impose 25 
any condition on the trainer. Two bacterial players can even learn together by playing each other. 
To test this, we set up 2 cocultures of 2 memregulon strains, both chosen to have some 
knowledge of the game (having X and O expertises of 90% and 48% respectively) and able to 
achieve mastery in few learnings. We performed a tournament of memregulon cocultures playing 
among themselves and applying positive or negative reinforcement to the players winning or 30 
losing matches. Both cocultures reached mastery after one match (Fig. S9). 
A random player of 9-memregulon cocultures learns to master tic-tac-toe by playing using 
reinforcement learning 
We asked if our experimental algorithm could train a naïve bacterial player O (playing uniformly 
random) to learn mastering the tic-tac-toe game. We chose bacterial cultures to be second player 35 
because the naïve player had a low starting expertise (20%). The starting cocultures (denoted by 
O0) consist of the same 9 memregulon strains at equal cell ratios and equal weights at all 8 
positions (Fig. 4A); this experimentally implements a random player because all positions have 
the same cultures and interrogating for the highest weight would give a random position. We 
performed all the experiments in 3 biological replicates: 40 

O plays a tournament against a trainer player X (decision matrix in Table S1). The first match 
lasts for 5 rounds and ends with O losing. We show in Fig. 4B the F-weights of the cocultures at 
allowed positions as filled red circles (containing the F-weight value multiplied by 100). Their 
highest value represents O’s decision (O’s move in the next round). The match ends and player 
X wins the match, which triggers a negative reinforcement (L1) of the O0 cocultures at the 4 45 
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positions occupied by O in round 4, to produce O1. The weight decreases at those positions and 
the measurement of O1 in round 0 shows that the position with the highest F-weight has changed, 
implying a different decision (Fig. 4B). After each learning, we also compute the expertise of 
each of the biological replicates (Fig. 4C). Tables S2-S11 detail the computation of the O 
player’s expertise after each learning, by showing the results of using the measured F-weights to 5 
play every possible tic-tac-toe match. The cocultures continue the matches by losing each time in 
a different way, and suffering a negative reinforcement learning (L2 to L7) each time, which 
further changes the cocultures (O2 to O8). The expertise did not increase monotonously, but it 
reached 100% for all replicates in O8. We also validated the mastery by letting the cocultures 
play against an expert automaton (Fig. 4B).  10 

Although the O8 cultures acquired their mastery by playing 8 games, they have the capability to 
win arbitrary matches (Fig. 4C, Fig. S10). As a positive control, we performed a single steepest-
descent-like operation to manually train the weights, according to a computational calculation to 
obtain an expert player (Osd) (supplementary text) (Fig. S11). Two alternative learning 
tournaments were performed as negative control, starting from O7; using either negative 15 
reinforcement with a swapped inducer (O7a) or using chloramphenicol instead of kanamycin 
(O7b) did not improve the expertise, as the player lost against the expert automaton (Fig. 4A). We 
also verified that the cocultures maintained their expertise in time after cold storage (at 4 °C or -
80 °C) (Fig. 4D, S12). Reinforcement learning also allowed naïve bacterial cocultures to reach 
mastery when acting as a first player (Fig. S13). 20 

Memregulon cocultures can also learn mastering arbitrary 3x3 board games 
To explore the capacity of a consortium of memregulon strains to learn arbitrary algorithms, we 
performed computer simulations of cocultures of 9 memregulons at every position of a 3x3 board 
except the center, showing that they can learn in less than 35 cycles (Fig. 4E) 98% of the 
possible games in this board (Fig. S14A). Moreover, trying to push the limits of learning, they 25 
could even learn how to simultaneously master more than one game at the same time, although 
not always (Fig. S14B). In some cases, we found that such repeated learning tournaments 
required enough negative reinforcement steps that some weights vanished (Fig. S15A). If a 
weight vanishes, the P1 plasmid is lost, and so is its ability to store a memory, because it is not 
possible to have a P1 and P2 mixture anymore. To rescue this, we add to the experimental 30 
algorithm an operation that we call memregulon fusion. For this, we mix each memregulon strain 
culture with another one that contains the same memregulon with a weight of 0.5. This mixture 
operation changes all weights by averaging each of them with 0.5. This averaging maintains the 
position with the highest weight, and therefore the player’s expertise (Fig. 4F), while increasing 
the weights smaller than 0.5 (Fig. S15B).  35 
 
To allow our experimental learning optimization to converge towards mastery on arbitrary 
games, we need to avoid getting non-expert players trapped in draws where no more learning 
occurs. For this, we further extended the experimental learning algorithm by applying a 
reinforcement learning using chloramphenicol (instead of kanamycin) for selection. After the last 40 
match where a negative reinforcement was applied, we incubated the cocultures with 
chloramphenicol and the inducers used in the match. We call this reinforcement “unlearning”, 
mirroring a similar concept from machine learning(29). After one round of unlearning, the 
bacteria altered their decisions and therefore their expertise also changed, thus avoiding getting 
trapped in draws  (Fig. 4F). 45 
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Discussion 
We can better appreciate the computational power of our memregulon cocultures by identifying 
them with a single-layer artificial neural network of three 2-input neurons (maze example) or 
nine 9-input neurons (3x3 board games), with the only non-linearity coming from a winner-take-
all (WTA) interaction among the neurons (decision on the highest weight). Such networks can be 5 
universal function approximators, even when using positive weights exclusively (27). The 
change of a weight only when a memregulon is active is central to learning. This follows Hebb’s 
idea(30) that the changes in synaptic strength (weight) should be proportional to the presynaptic 
cell activity and to a function of the postsynaptic cell activity. Long-term potentiation and long-
term depression would correspond to a weight increasing and decreasing respectively(31). 10 
Moreover, similarly to neuromodulated synaptic plasticity, because their change of weights 
requires the memregulon activity together with either kanamycin or chloramphenicol, these 
antibiotics act as neuromodulatory signals(32). 
Memregulons also allow for the construction of gene circuits with predefined behaviors because 
the red fluorescence per cell linearly correlates with its weight (Fig. S16A). Although positive 15 
and negative reinforcement learning could be thought to be equivalent to positive and negative 
selections in directed evolution(33), here we do not have mutations, which allows for a 
smoother, faster and reversible traversing of the phenotypic landscape. Memregulons maintained 
their weight in solid cultures across many days, suggesting the possibility of using them in 
ecosystem-level gene circuits(34). It could be possible to enrich the computation capability by 20 
using different promoters in P1 and P2 (Fig. S16B), providing a mechanism to adapt the 
topology of gene circuits(35). Further developments could involve genetically encoding the 
computation of the maximum output among positions(36), negative selection markers(37), 
CRISPR to cleave(20) or regulate(38) the plasmid copies, engineered RNA replicons(39), 
engineered microbial ecosystems(40), as well as adding an extra memregulon library to each 25 
player, designed to receive the output of the first library through a cell-cell communication 
system, mimicking a hidden layer in a neural network. This would enable the processing of more 
complex information and, therefore, learning more advanced algorithms.  

Adaptive gene circuits could already exist in prokaryotic or eukaryotic systems as a non-
Darwinian adaptation tool(41). Heterozygotic mutations in multicopy plasmids(42), polyploid 30 
Archea(43) or in mitochondrial DNA (microheteroplasmy)(44) maintain the ratios of wild-type 
to intra-cellular mutations. As a mutation in a growth-altering gene under a regulation could 
suffice to set up a reinforcement learning, it may be possible to infer memregulons in nature by 
identifying a mapping among environmental conditions, genes, inducible promoters, and 
selection markers with their inactivating mutations. This mapping would establish in fact a 35 
language for “teaching” algorithms to these cells. Reinforcement learning with memregulons 
provides a strategy for the unsupervised adaptation of complex gene circuits with a large, 
unknown number of interactions, which will allow for the engineering of genetically encoded 
general-purpose computational devices capable of self-learning, opening the way to the 
engineering of synthetic living artificial intelligence. 40 
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Fig. 1. Memregulons stably adapt their gene expression by varying plasmid copy-number 
ratios, when their promoter is activated by its cognate inducer. (A) Design of a memregulon, 
a stable heterozygotic plasmid system of two quasi-identical co-transformed plasmids P1 and P2, 
controlled by an inducible promoter (brown). Plasmids are designed such that, in the presence of 
ampicillin maintenance antibiotic, the number of DNA copies of plasmids P1 and P2 (a and b 5 
respectively) remains constant in a bacterial population, maintaining the P1 plasmid fraction 
(weight) stable. We engineered a library of 9 memregulons by using orthogonal inducible 
promoters (right), shown with their cognate inducers (Sal, Sodium salicylate; aTc, 
Anhydrotetracycline HCl; Cho, Choline chloride; Ara, L-Arabinose; OC6, 3OC6-AHL; Van, 
Vanillic acid; Nar, Naringenin; OHC14, 3OHC14:1-AHL; IPTG, Isopropyl-beta-D-10 
thiogalactoside). The memregulons are designed so the use of chloramphenicol or kanamycin 
resistance gene (CmR or KanR), in the presence of the cognate chemical inducer and appropriate 
selection antibiotic, implements a positive feedback on the number of copies of the P1 or P2 
plasmid. (B) Red fluorescence of cells containing only P1 plasmids is twice the fluorescence of 
their respective memregulon systems with 0.5 weight (W), after full induction (or no induction) 15 
with their cognate inducers. More generally, a memregulon’s red fluorescence is found to agree 
with W multiplied by the corresponding P1-only cells’ red fluorescence (Fig. S16A). A double 
asterisk denotes a statistically significant (p<0.01) identity in fluorescence value. (C) The weight 
of memregulon cocultures grown on agar plates is measured by either fluorescence 
characterization (F-weight) or DNA quantification (weight). We use a replica plating procedure 20 
to copy the cultures in the parental plate to a copy plate, where they are incubated at 37 °C. For 
fluorescence characterization (top) we add the appropriate inducers. One inducer for a single F-
weight calculation or several inducers for the sum of the corresponding memregulon’s F-weights. 
The plate is then photographed in a blue light transilluminator, and red and green fluorescence 
values are obtained through image analysis software to compute the F-weight (see supplementary 25 
text). While the copy plate is discarded after measurement, the parental plate is incubated at 37 
°C for its regrowth. No inducers are added for DNA quantification (bottom). F-weights correlate 
well with the weights obtained by Sanger sequencing (see supplementary text). Error bars 
indicate SD from n = 3 biological population replicates obtained on 3 different days. Data shown 
for a library of 9 memregulons. (D) F-weights stay stable despite subsequent replica plating 30 
procedures (vertical bars). Moreover, fluorescence weights remain stable when the memregulon 
strains are stored for 2 weeks in 4 °C (cold storage blue band). (E) Memregulon weights can be 
changed by selection in the presence of Kanamycin/Chloramphenicol + inducers during 
exponential growth on agar plates. The concentrations of antibiotics are included in Table S13. 
  35 
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Fig. 2 Cocultures of two strains with different memregulons stably learn the decision tree of 
a maze by a negative reinforcement wet-algorithm. (A) We challenge the bacteria with a 
problem equivalent to finding the single optimal path in a maze of 4 crossings (1 of type a and 3 
of type b), and 3 diversions each, where no backtracking is allowed. The paths are described as 
(a,b), where a is the diversion chosen at the a crossing and b is the diversion chosen at the b 5 
crossing. (B) Description of the experimental setup. Top: Setup of 3 cocultures, each composed 
of pBAD and pCin memregulon strains, at equal volumetric ratios but different weights. Bottom: 
flowchart with the experimental algorithm to find the optimal decisions at each crossing. a and b 
correspond to the coculture number with the highest F-weight when inducing with Ara and 
OHC14 respectively. This corresponds to measuring the pBAD and pCin memregulon weights. 10 
The algorithm stops when the optimal path (1,2) is found, otherwise if a ¹1 we apply a 
kanamycin selection with Ara to the culture number a. If b ¹2 we apply a kanamycin selection 
with OHC14 to the coculture number b. (C) F-weights measurement of the starting cocultures 
(M0) obtained by inducing with Ara and OHC14, giving the pBAD and pCin memregulon 
weights respectively. Top: Measurement of the highest F-weights gives the (2,3) path, leading to 15 
wrong a and b values. We therefore punish the cocultures 2 and 3 with kanamycin + Ara and 
kanamycin + OHC14, respectively, to create the cocultures M1. Middle: Highest F-weights of M1 
give the (3,1) path, with again incorrect a and b values. We again punish the cocultures 3 and 1 
with kanamycin + Ara and kanamycin + OHC14, respectively, to create the cocultures M2. 
Bottom: Highest F-weights of M2 give the (1,2) path, solving the maze.  20 
 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 25, 2022. ; https://doi.org/10.1101/2022.04.22.489191doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.22.489191


 

13 
 

Figure 3 
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Fig. 3. A general wet-algorithm, implementing positive and negative reinforcement 
learning, allowing memregulon cocultures to learn two-player 3x3 board games. (A) Left: 
Memregulon coculture arrangement in a plate for a bacterial O player. We assign cocultures at 
each board position except the center. Right: Mapping to inducers of the opponent positions. (B) 
A move is determined by the position of the coculture having the highest measured F-weight 5 
(Fig. 1C), when incubating the cocultures with the inducers associated to the X’s moves. After 
the move, the parental plates are interrogated again with the new X’s move. This is repeated for 
several rounds until the game ends. If the player O wins/loses, we apply a 
chloramphenicol/kanamycin selection, adding the inducers of X’s positions only to the O 
cultures involved in the played match. (C) General experimental algorithm for training 10 
cocultures to learn how to play two-player 3x3 board games. The steps highlighted in yellow are 
not needed for tic-tac-toe. (D) Example of a tic-tac-toe match showing the role played by the 
inducers in communicating the X’s positions to the O cocultures and the selective punishment of 
the cocultures deciding a move in the match. X plays first at the center position and we induce all 
the 8 cocultures with the inducer mapped to the the X’s position (OC6), to compute the highest 15 
F-weight. Player O moves at the position corresponding to the coculture with the highest F-
weight, here assumed to be at the top-left corner. In the following rounds, the cocultures at 
unoccupied positions are successively induced with all the inducers corresponding to X’s 
positions, until the game finishes with X winning. Afterwards, we apply a negative reinforcement 
operation to only the cocultures at the positions that O played. This is done by a kanamycin 20 
selection in presence of the inducers of X’s moves at all rounds before winning (OC6, Ara, 
OHC14). 
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Figure 4 
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Fig. 4. Uniform memregulon cocultures with random expertise learn to master the tic-tac-
toe game. Cocultures (player O) play a tournament against a trainer (player X) designed (see 
suppl. Table S1) to always try to win. (A) Top left: cocultures are initially setup (O0) at each of 
the 8 positions by mixing (at equal volumetric ratios) memregulon strains for each of the 9 
inducible promoters, and in three biological replicates. Top right: The cocultures lose at every 5 
match, and a negative reinforcement learning (L1 to L7) is applied to them, creating in 
succession the cocultures O1 to O8, until O8 reaches 100% expertise. We use as negative controls 
a kanamycin selection with swapped inducers (Lind) or swapped antibiotic (LCm) to the cocultures 
O7, to create O7a and O7b respectively. As a positive control, we implement a weight training 
experimentally mimicking steepest descent (Lsd), where the cocultures Osd have learned in one 10 
step without using antibiotic selection. (B) Detail of the F-weights of the matches played, shown 
inside red-colored circles (multiplied by 100). We challenged the obtained cocultures (O8, O8d, 
Osd, O7a and O7b) to play against an expert player automaton, verifying that their matches ended 
in draws except for the cocultures from the negative controls. (C) We computed a coculture’s 
expertise (defined as percentage of wins and draws after playing any possible match) by a 15 
computer simulation using the measured F-weights. We use a different color for each of the 3 
biological replicates. Dashed lines indicate the random and expert players. (D) The mastery 
(100% expertise) of player O is stable in time, even after cold storage of the plates for 4 days. 
(E) Computer simulation of the O0 cocultures playing negative reinforcement learning 
tournaments in 1,500 random games at 3x3 boards, achieving mastery in 98% of cases shown as 20 
a distribution of the length of the learning cycles. (F) Experimental testing of the operations 
highlighted in yellow in Fig. 3C, allowing extending the reinforcement learning algorithm to 
arbitrary games. An unlearning operation (see main text), based on a reinforcement learning 
with swapped antibiotic (chloramphenicol instead of kanamycin), avoids getting stuck at 
suboptimal (expertise < 100%) draws, at the cost of decreasing the expertise. Expertise was then 25 
dramatically increased after a subsequent negative reinforcement learning (double asterisk, 
p<0.01).  A memregulon fusion (see main text) maintains the expertise (star, p < 0.01) and allows 
for learning to continue without the risk of a weight reaching a value of 0 or 1 (which makes 
them unable to learn anymore). Error bars indicate SD from n = 3 biological population 
replicates, obtained on 3 different days. 30 
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