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ABSTRACT 13 

Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of 14 
the human gut microbiome. However, due to practical limitations, the most densely sampled 15 
time series from the human gut are collected at a frequency of about once per day, while the 16 
population doubling times for gut commensals are on the order of minutes-to-hours. Despite 17 
this, much of the prior work on human gut microbiome time series modeling has, implicitly or 18 
explicitly, assumed that day-to-day fluctuations in taxon abundances are related to population 19 
growth or death rates, which is likely not the case. Here, we propose an alternative model of the 20 
human gut as a flow-through ecosystem at a dynamical steady state, where population 21 
dynamics occur internally and the bacterial population sizes measured in a bolus of stool 22 
represent an endpoint of these internal dynamics. We formalize this idea as stochastic logistic 23 
growth of a population in a system held at a semi-constant flow rate. We show how this model 24 
provides a path toward estimating the growth phases of gut bacterial populations in situ. We 25 
validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we 26 
show how this method can be applied to densely-sampled human stool metagenomic time 27 
series data. Consistent with our model, stool donors with slower defecation rates tended to 28 
harbor a larger proportion of taxa in later growth phases, while faster defecation rates were 29 
associated with more taxa in earlier growth phases. We discuss how these growth phase 30 
estimates may be used to better inform metabolic modeling in flow-through ecosystems, like 31 
animal guts or industrial bioreactors. 32 

 33 

 34 

 35 
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INTRODUCTION 36 

The human gut is an anaerobic flow-through bioreactor, ecologically distinct to each individual, 37 

that transforms dietary and host substrates into bioactive molecules important to host health 1–3. 38 

Disruptions to the ecological composition of the gut have been shown to mediate the 39 

progression of various complex diseases 4–8. Furthermore, the ecological dynamics of the gut 40 

appear to be relevant to both health and disease states 9,10. However, the biological 41 

interpretation of densely-sampled adult human fecal microbiome time series is fraught. 42 

Various dynamical models have been applied to gut microbial abundance data collected 43 

from adult human donors 11–15. These models often assume, either explicitly or implicitly, that 44 

day-to-day changes in abundance are proportional to population growth and/or death 16. 45 

However, the underlying data often do not match this assumption 11,16–20. The gut is a flow-46 

through ecosystem and commensal gut bacteria must grow fast enough to avoid dilution-to-47 

extinction. As such, gut bacterial doubling times tend to be fast, ranging from minutes-to-hours 48 

21–23. However, stool sampling frequency is usually limited to, at most, about once per day. 49 

Consequently, rapid internal population dynamics likely cannot be directly estimated from the 50 

day-to-day measurements obtained from stool 16.  51 

Given these sampling limitations, and in the absence of major perturbations that require 52 

multi-day recovery processes in the human gut, it is unclear whether or not meaningful insights 53 

into commensal population dynamics can be gleaned from adult human gut microbiome time 54 

series. One workaround for inferring growth rates of bacterial populations in situ is to leverage 55 

metagenome-inferred replication rates 21,22. Briefly, instantaneous replication rates can be 56 

estimated for abundant bacterial populations in metagenomic samples by taking advantage of 57 

the fact that fast-growing taxa show an asymmetry in reads mapping to different genomic loci, 58 

with higher read depth near the origin of replication and a lower depth near the terminus due to 59 
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the initiation of multiple replication forks 21–23. However, even when replication rates and 60 

population abundances can both be estimated from the same metagenomic samples, it is 61 

unclear how these measurements are related to the in situ growth phase of a population. As 62 

such, biological interpretations regarding population size and replication rate fluctuations in flow-63 

through ecosystems like the human gut, where internal dynamics are much faster than sampling 64 

rates, remain challenging. 65 

Early experiments by Jaques Monod 24 identified distinct growth phases for bacterial 66 

populations in culture, which can be captured by the stochastic logistic growth equation (sLGE) 67 

25. The sLGE has been shown to be a good fit for bacterial population growth in vitro and in real-68 

world, steady-state ecosystems 26–32. We used the sLGE to study statistical relationships 69 

between population sizes and growth rates across the various phases of growth (i.e., 70 

acceleration, mid-log, deceleration, stationary phases) to see if we could extract in situ growth 71 

phase information. Overall, the sLGE model yields statistical relationships that may be 72 

leveraged to identify the in situ growth phase of a bacterial population sampled at a regular 73 

period from a flow-through ecosystem, like the human gut.  74 

To assess our model predictions, we sampled Eschericial coli populations at different 75 

points along the growth curve. We calculated population sizes and replication rates for these 76 

samples and observed excellent agreement between this in vitro model and our sLGE 77 

predictions. We also measured population abundance and replication rate trajectories from 78 

more than a dozen organisms across four densely sampled human gut metagenomic time 79 

series 33. On average, gut commensal growth rates and population sizes were positively 80 

correlated, both cross-sectionally over 84 stool donors and longitudinally within each of four 81 

stool donor time series, which suggests that most abundant taxa in the gut are growing 82 

exponentially when sampled in stool. Furthermore, we were able to identify specific growth 83 

phase signatures in abundant bacterial populations in the guts of four individuals with long and 84 
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dense metagenomic time series by analyzing paired replication rate and abundance trajectories. 85 

We describe how our growth phase inference approach can serve to improve statistical 86 

inferences derived from microbiome data and to inform more accurate mechanistic modeling of 87 

flow-through ecosystems (e.g., community-scale metabolic models, which usually assume 88 

exponential growth), which could have broad implications for human health 8,34,35, agricultural 89 

systems 36,37, climate change 36,38,39, and industrial bioreactor production processes 40,41. 90 

 91 

RESULTS 92 

Framing the gut as an anaerobic flow-through bioreactor 93 

The mammalian gut can be understood as an anaerobic batch culture reactor with a semi-94 

continuous input (i.e., discrete boluses of dietary inputs, mixed with host substrates like mucin 95 

and bile acids) and output (i.e., discrete boluses of stool) 42, and microbial taxa must grow fast 96 

enough within the system to avoid dilution-to-extinction (Fig. 1A). Thus, stool sampling captures 97 

the endpoint of internal gut bacterial population dynamics. For example, in our conceptual figure 98 

we see that Taxon 1 starts growing higher up in the colon and is in stationary phase by the time 99 

a stool sample is collected, while Taxon 3 starts growing lower in the colon and is still growing 100 

exponentially at the point of stool sampling (Fig. 1A).  Overall, the daily abundances of Taxa 1-3 101 

represent the average (μ) steady-state population size, plus or minus some amount of biological 102 

and technical noise, at the time of stool sampling (Fig. 1A). To investigate improved methods 103 

for interpreting the dynamics of human gut microbial time series, we downloaded shotgun 104 

metagenomic time series data from the BIO-ML cohort (i.e., health-screened stool donors who 105 

provided fecal-transplant material to the stool bank OpenBiome) 33. The BIO-ML cohort 106 

contained 84 donors 33. To filter for dense longitudinal data, we selected a subset of donors with 107 

more than 50 time points. Four donors (i.e. donors ae, am, an, and ao) met this criterion, with 3-108 

5 fecal samples per week for >50 days (Fig. 1B). 109 
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 110 

Characterizing the relationships between gut commensal population size and growth rate 111 

using metagenomic time series data 112 

We first investigated the statistical properties of day-to-day fluctuations in gut bacterial 113 

population sizes, estimated from fecal shotgun metagenomic time series. Specifically, we 114 

looked at the associations between population abundance estimates (tn) and the changes in 115 

abundance estimates (i.e., deltas) between time points (tn+1 – tn). Naïvely, if most bacterial 116 

populations in stool were growing exponentially, we would expect that population abundances 117 

and growth rates would be positively correlated. However, prior work has indicated an overall 118 

negative correlation between abundances and changes in abundances in stool 16S rRNA gene 119 

amplicon sequencing data generated from densely sampled human stool time series 15. Indeed, 120 

we found that abundant bacterial populations in the stool of the four BIO-ML donors maintained 121 

stable average abundances over time (μ), with day-to-day fluctuations above and below this 122 

average, as pictured in the example of Bacteroides cellulosilyticus in donor am (Fig. 2A-B). This 123 

kind of pattern mirrors what one would expect when randomly sampling from a stationary 124 

distribution (Fig. 2B). We observed that the deltas (tn+1 – tn) for the same gut taxon (Bacteroides 125 

uniformis) measured across each donor time series, when plotted against their respective 126 

normalized abundances (tn), showed the expected negative association (Fig. 2C). Furthermore, 127 

similar negative associations were uniformly observed across all taxa analyzed, across all four 128 

donors (Fig. 2D). This negative association between population abundances and changes in 129 

abundance between time points is strongly consistent with sampling from a stationary 130 

distribution, which is equivalent to ‘regression-to-the-mean’ as an organism fluctuates around a 131 

fixed carrying capacity, similar to what we have reported previously 15,32. 132 

One important ecological factor that can impact gut microbial dynamics is host diet 43,44. 133 

Although changes in dietary intake can alter microbial abundance, average dietary choices are 134 
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highly conserved within an individual and these choices are notoriously difficult to modify 135 

outside of radical changes in geography or lifestyle 45–47. Prior work demonstrated that 136 

macronutrient intake within an individual is largely stable over time and does not show 137 

significant autocorrelation or drift 15,48. Indeed, for donor A from this prior study, we found that 138 

longitudinal measurements of macronutrients (i.e. daily intake of calories, carbohydrates, 139 

protein, fat, fiber, cholesterol, saturated fat, sugar, sodium, calcium) were stationary over 140 

several months, despite day-to-day fluctuations (Fig. S1). Combined with the overwhelming 141 

stationarity of microbial abundance trajectories within healthy individuals not undergoing major 142 

lifestyle changes 15,32,33, these results support our assertion that dietary patterns are largely 143 

stable over weeks-to-months and stool samples provide stable, steady-state population 144 

abundance estimates of abundant gut commensal bacteria.  145 

Next, we looked at the statistical associations between calculated peak-to-trough ratios 146 

(i.e., PTRs; a proxy for growth-rate) for abundant bacterial populations from each metagenomic 147 

sample and their respective metagenomic population abundance estimates 22. If the deltas, 148 

presented above, were truly proportional to growth and/or death rates, we would expect that the 149 

statistical relationships between deltas and population size would be similar to those between 150 

PTRs and population size. However, unlike the regression-to-the-mean signature identified for 151 

the deltas, we found variable statistical relationships between log2PTR and centered log-ratio 152 

(CLR) transformed population abundances for the same taxon across the four donors 153 

(Bacteroides ovatus, Fig. 3A). Similarly, we saw a wide range of positive, negative, and null 154 

associations between log2PTRs and CLR abundances across all measured taxa within each 155 

donor (Fig. 3B). These results are inconsistent with a regression-to-the-mean signal, and 156 

suggest a more complex relationship between growth rate and population size 49–51.  Finally, we 157 

calculated temporally-averaged (i.e., mean for all collection time within a taxon) PTRs and 158 

population sizes for each abundant taxon within each of the four donors. Overall, there was a 159 
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significantly positive association (linear regression, p-values = 0.0318, 0.125, 0.155, 0.031 for 160 

donors ae, am, an, and ao, respectively; combined p-value using Fisher’s method = 0.005) 161 

between average log2PTR and average CLR abundance across all four donors (Fig. 3C), 162 

indicating that taxa with higher average population sizes tend to have higher average growth 163 

rates. This result is consistent with what one would expect to observe in exponentially-growing 164 

populations. We also looked into whether or not log2PTR magnitudes were inter-comparable 165 

across taxa (Fig. S2). We calculated log2PTRs for all abundant taxa detected across all 84 BIO-166 

ML donors and found that the median log2PTR was fairly similar across taxonomic classes 167 

(~0.45-0.75), with most classes showing a wide range of log2PTRs (Fig. S2). To assess 168 

whether or not log2PTR-CLR associations were robust to controlling for taxonomy, we included 169 

either class- or species-level categorizations as covariates in a linear regression model and saw 170 

a significant association, independent of taxonomy (class-level � = 0.0612, p = 8.359e-60; 171 

species-level � = 0.0101, p = 0.0006). 172 

 173 

Stochastic logistic growth equation provides insights into growth phases 174 

In order to better understand and interpret the varying relationships we observe between 175 

log2PTRs and CLR abundance time series, we used a modeling approach. The basic properties 176 

of growth curves of microbial taxa can be captured using the logistic growth equation (Fig. 4). 177 

This model is defined such that the change in abundance for each taxon � ����/��� is captured 178 

by the current abundance at time �, �����, multiplied by the maximal growth rate, �, and the 179 

carrying capacity �	� term �1 � �����/	� 52. In this model, population size over time shows a 180 

sigmoidal curve, with the abundance asymptotically approaching 	 (Fig. 4A, top panel). The 181 

derivative of this curve with respect to time yields the growth rate over time, which peaks during 182 

mid-log phase (Fig. 4A, middle panel). The second derivative of abundance with respect to 183 

time, which is the instantaneous change in growth with respect to time and is often referred to 184 
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as the acceleration rate, shows a peak during the acceleration phase and a trough during the 185 

deceleration phase (Fig. 4A, bottom panel). Based on this second-derivative curve, we show 186 

the expected relationships between growth rate and abundance as you move across the logistic 187 

growth curve, along the time axis (Fig. 4B). These expected relationships provide a potential 188 

path forward for inferring the in situ growth phase of a bacterial population sampled at a 189 

consistent frequency from a flow-through ecosystem. 190 

The logistic growth model is a deterministic equation. However, the observed 191 

abundances of commensal bacterial populations in the gut fluctuate due to myriad factors 192 

including interspecies competition, resource fluctuations, technical noise, sampling noise, and 193 

stool residence time 27,32,53. In order to approximate these fluctuations in our modeling, we 194 

introduced a stochastic term to the logistic growth model (Fig. 5A). Herein, 
 denotes the noise 195 

magnitude and ���� represents a white noise term. Four growth phases (i.e., acceleration, mid-196 

log, deceleration, and stationary) were defined using the half-maximum and half-minimum, 197 

respectively, of the second derivative of the LGE curve (Fig. S3A). We simulated 100 iterations 198 

of the stochastic logistic growth equation (sLGE) for each of a range of parameterizations (see 199 

Methods), which recapitulated the expected statistical relationships between growth rates and 200 

abundances for populations consistently sampled within our four major growth phase categories 201 

(Fig. 5A-C). For example, Pearson's correlations between growth rates and abundances were 202 

significantly positive in the acceleration phase and significantly negative in the deceleration 203 

phase (Fig. 5B). Mid-log phase growth was more variable, but showed little-to-no significant 204 

association between growth rates and abundances (Fig. 5B-C). These results were reproduced 205 

across a wide range of parameter space and were robust to varying noise levels (Fig. S3B).  206 

Even though we expect dietary intake to be stationary within an individual, variation in 207 

diet can drive day-to-day fluctuations in the carrying capacities of microbial populations. In order 208 

to investigate whether growth-phase specific associations between abundances and growth 209 
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rates were influenced by fluctuations in carrying capacity, we added variation to k in the sLGE 210 

model (Fig. S4). Fluctuations in k did not alter the sigmoidal shape of the sLGE curve (Fig. 211 

S4A), and the relationships between abundances and growth rates across growth phases were 212 

preserved (Fig. S4B-C).  213 

 214 

Validating sLGE growth phase inferences in vitro 215 

To validate the relationship between growth rates and abundances across growth phases, we 216 

cultured replicate E. coli populations in vitro and sampled them across their growth curves (Fig. 217 

6A). E. coli abundances were measured as OD600 values and as the log-ratio of E. coli reads 218 

to phiX reads (i.e., a fixed amount of the phiX genome was spiked into each DNA extraction) 219 

from the shotgun sequencing data (Fig. 6A-C). Growth rates were quantified as the log2PTR for 220 

each E. coli sample 54. The relationships between the log2PTRs and CLR-normalized E. coli 221 

abundances across growth phases matched the sLGE model predictions (Fig. 6B-C). 222 

Specifically, growth rates and abundances were significantly positively and negatively correlated 223 

in acceleration and deceleration phases, respectively (Fig. 6B-C). Furthermore, we saw no 224 

significant association between growth rates and abundances in mid-log and stationary phases 225 

(Fig. 6B-C). Finally, we found that samples in mid-log phase had an average log2PTR of 226 

1.25±0.167 (± standard deviation), while samples in stationary phase had an average log2PTR 227 

of 0.358±0.059, which clearly distinguished between these phases. 228 

 229 

Inferring in situ growth phases for abundant gut commensal populations sampled in 230 

metagenomic time series 231 

Based on the sLGE results and in vitro validation work presented above, we assigned putative 232 

in situ growth phases to abundant gut bacterial populations from the four BIO-ML gut 233 

metagenomic time series. The average magnitude of the PTR provides additional information on 234 
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whether a population is more likely to be in acceleration/mid-log/deceleration (i.e., log2PTR >> 235 

0.358) or stationary (i.e., log2PTR < 0.358) phase (Fig. 6). For those taxa with average 236 

log2PTRs above the empirical stationary phase threshold, significantly positive associations 237 

(linear regression, adjusted p-value < 0.05, with a positive beta-coefficient) between log2PTRs 238 

and CLR abundances likely indicate acceleration-phase and significantly negative associations 239 

(linear regression, adjusted p-value < 0.05, with negative beta-coefficient) likely indicate 240 

deceleration phase. Bacteroides cellulosilyticus, Bacteroides ovatus 1, and Megaspaera eldenii 241 

showed significantly positive PTR-abundance associations within donor ae (Figs. 7A and S5). 242 

Bacteroides xylanisolvens had an average log2PTR less than the stationary threshold in donor 243 

am (Fig. S6). Bacteroides ovatus 1 and Parabacteroides distasonis showed positive log2PTR-244 

CLR abundance associations, while Alistipes finegoldii, and Bacteroides uniformis showed 245 

negative associations in donor am (Figs. 7A and S6). Acidaminococcus intestini, Bacteroides 246 

xylanisolvens, and Odoribacter splanchnicus showed average log2PTR below the empirical 247 

stationary phase threshold in donor an (Fig. S7). Alistipes shahii, Bacteroides intestinalis, 248 

Bacteroides thetaiotaomicron, and Bacteroides uniformis showed significantly negative 249 

log2PTR-CLR abundance associations in donor an (Figs. 7A and S7). Finally, Favonifractor 250 

plautii showed a positive log2PTR-CLR abundance association and Bacteroides fragilis, 251 

Bacteroides ovatus 1, Bacteroides uniformis, and Bacteroides xylanisolvens showed negative 252 

associations in donor ao (Fig. 7A and S8). In all four donors, many taxa showed average 253 

log2PTRs greater than the stationary threshold but without significant associations between 254 

log2PTR and CLR abundances (Figs. 7A and S5-8). The absence of a significant association 255 

for these non-stationary taxa likely indicates mid-log phase, but a non-significant association 256 

could also represent a false negative (i.e., not powered enough to detect a positive or negative 257 

association with the number of time points sampled). 258 
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We observed a slight difference in the number of significantly positive and negative PTR-259 

abundance associations between donors ae/am, and an/ao. Donors ae and am tended to have 260 

a larger proportion of taxa in acceleration phase, while an and ao tended to have a larger 261 

proportion of taxa in deceleration or stationary phases. Interestingly, donors an and ao had a 262 

lower average defecation frequency (≤ 1 per day) than donors ae and am (> 1 per day). 263 

Concordantly, based on our flow-through model of the gut ecosystem (Fig. 1A), we would 264 

expect that bacterial populations would be pushed towards earlier growth phases at faster flow 265 

rates (Fig. 7B). Overall, we were able to at least partially constrain our phase estimates for all 266 

taxa with sufficient longitudinal data (Fig. 7A). Our approach provides a new path toward 267 

providing constraints on in situ growth phases for microbial populations in flow-through 268 

ecosystems.  269 

 270 

DISCUSSION 271 

Many prior studies assumed, either implicitly or explicitly, that the growth and death rates of gut 272 

bacterial populations were proportional to day-to-day changes in abundances, as measured 273 

from human stool samples. However, we outline how this assumption is likely invalid due to the 274 

fact that human gut bacterial population growth/death processes inside the intestinal tract are 275 

known to be faster (minutes-to-hours) than our sampling timescales (days). In support of this 276 

assertion, we show how the statistical relationships between changes in abundance (tn+1 – tn) 277 

and abundances (tn), estimated from stool metagenomic time series, indicate a regression-to-278 

the-mean effect that one would expect when sampling from a steady-state population fluctuating 279 

around a carrying capacity (Figs. 1-2). Thus, as prior work has indicated 15,32, bacterial taxa in 280 
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the gut have stable average population sizes, which likely represent steady-state endpoints of 281 

internal dynamics (Figs. 1-2). Despite the fundamental mismatch between gut bacterial 282 

population dynamics and sampling timescales, we attempt to identify statistical signatures within 283 

these daily-sampled human gut time series that might provide accurate insights into in situ 284 

population dynamics. 285 

While changes in abundance between time points do not appear to be related to 286 

population growth, PTRs enable direct estimates of in situ growth rates from metagenomic 287 

samples 21–23,55–57. Unlike the relationships between deltas and abundances, which were always 288 

negative (Fig. 2C-D), the relationships between PTRs and abundances were quite variable (Fig. 289 

3A-B). While regression-to-the-mean is a plausible mechanism for the consistent negative 290 

delta-abundance relationships (Fig. 2), the underlying processes driving variable log2PTR-291 

abundance relationships appear to be more nuanced (Fig. 3).  292 

We turned to the sLGE to explore relationships between growth rate and abundance 293 

across different phases of growth, and we found clear diagnostic patterns (Fig. 4). Simulations 294 

showed a wide range of demographic stochasticity (Fig. 5) and fluctuations in carrying 295 

capacities (Fig. S4) could not ablate these patterns, although adding enough noise to these 296 

models eventually overrides the signal. We validated these patterns in vitro and saw marked 297 

correspondence between model predictions and empirical measurements (Fig. 5-6). Finally, we 298 

applied our sLGE predictions to four human gut metagenomic time series. Consistent with our 299 

predictions, we found that individuals with higher defecation rates tended to be enriched for taxa 300 

in earlier growth phases (Fig. 7). In a recent study, we observed a similar association between 301 

PTRs and bowel movement frequency (BMF) in another independent cohort, where PTRs 302 

appeared to increase with increasing BMF 58. Overall, our results reveal a promising approach 303 

to inferring in situ growth phases for abundant organisms detected in human gut metagenomic 304 

time series.  305 
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We observed that the average log2PTR and average CLR abundance of a given taxon 306 

over time were positively correlated, which is consistent with exponentially-growing populations 307 

(Fig. 3C). However, despite this average pattern across taxa, we were also able to identify 308 

specific taxa that were abundant in stool that appeared to be in stationary phase (Fig. 7A). 309 

These results are highly relevant to the metabolic modeling community. Ecological interactions 310 

within free-living and host-associated microbial communities are largely governed by exchanges 311 

of small-molecule metabolites 59,60. Genome-scale metabolic modeling and flux-balance analysis 312 

(FBA) has been effective mechanistic tools for simulating these metabolic exchanges, especially 313 

in controlled bioreactor systems 61. The objective function used to find a solution subspace for 314 

these bacterial FBA models is often biomass maximization, which assumes that these 315 

organisms are growing exponentially at steady state. Exponential growth is a valid assumption 316 

for organisms in acceleration or mid-log phases, and to some extent in deceleration phase, but 317 

this assumption breaks down completely in stationary phase. Prior work has demonstrated that 318 

biomass composition can change depending on the growth phase of a population, which ideally 319 

could be taken into account to more accurately model metabolic fluxes within the system 62–64. 320 

Alternatively, organisms that are not actively growing could be omitted from community-scale 321 

metabolic models of colonic metabolism 65. Overall, our work suggests that most abundant 322 

organisms in human stool are amenable to FBA, and our growth phase estimation approach 323 

allows for the identification of abundant populations that may not fit classical FBA assumptions.  324 

 In conclusion, we provide a new path forward for the biological interpretation of 325 

metagenomic time series data generated from adult human stool samples. Our results are 326 

somewhat reassuring for cross-sectional studies, as they indicate that bacterial abundances in 327 

the gut fluctuate around stable carrying capacities within an individual, making inter-individual 328 

comparisons fairly robust. Furthermore, this suggests that multi-day averages of abundances 329 

will be even more accurate estimates of this carrying capacity, as we have suggested previously 330 
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33. This work is especially relevant to the design and interpretation of human gut microbiome 331 

studies that aim to characterize or investigate ecosystem-scale dynamics. We hope that in situ 332 

growth phase estimation will be applied more broadly to other kinds of flow-through 333 

environments to improve our understanding of internal dynamics in these systems and provide 334 

improved constraints for mechanistic modeling of microbial communities. 335 

 336 

METHODS 337 

Stationarity testing for daily nutrient intake in a human stool donor 338 

Metadata for daily nutrient intake, excluding the time window when the donor was traveling 339 

abroad, was downloaded from David et al. 48. We tested for stationarity in these nutrient intake 340 

time series using the augmented Dickey-Fuller (ADF) test (tseries package in R 66), with 341 

significance threshold for stationarity at p < 0.1. ADF tests the null hypothesis that a unit root is 342 

present in a time series, with the alternative hypothesis being that the time series is stationary. 343 

Thus, significant p-values indicate stationarity of the time series. All analyses throughout the 344 

manuscript in R were conducted in R v4.2.2 67, unless stated otherwise. 345 

 346 

E. coli strain information and growth curve analysis with a microplate reader 347 

Escherichia coli strain (MG1655) was streaked from a glycerol stock onto R2A agar plates 348 

(Thermo Fisher Scientific: Oxoid CM0906) and incubated overnight at 37°C. A colony was 349 

selected using an inoculating loop and transferred to 200 mL of LB-broth (Lennox) and grown at 350 

37°C overnight in a shaking incubator at 225 rpm until the culture reached stationary phase. The 351 

overnight culture was then diluted in fresh LB medium to an OD of 0.51 (600 nm). The diluted 352 

culture was then chilled for ~25 minutes at ~2°C using an ice bath to synchronize metabolic 353 

activity. The chilled culture was then aliquoted (2μL) into a non-treated 96-well flat-bottomed 354 

plate (Thomas Scientific Cat No. 1154Q44) containing 198 μL of LB media (Lennox) in each 355 
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well. The inoculated plate was then transferred to a BioTek Epoch II plate reader set to 37°C 356 

with orbital shaking and programmed to make OD600 readings every minute for the first 60 357 

minutes and every 5 minutes for the remainder of the experiment (~10 hours). The first set of 358 

inoculations covered plate rows A and B (n = 24), this was followed by the sequential 359 

inoculation of the next 3 sets of rows at 15-minute intervals (i.e., Set 1 = A/B: 0 min; Set 2 = C/D 360 

15 min; Set 3 = E/F: 30 min; Set 4 = G/H 45 min.). This resulted in 4 sets of replicate cultures 361 

inoculated 15 minutes apart, allowing sampling every hour for the next 10 hours, spanning 40 362 

time points spaced 15 minutes apart. To ensure there was enough DNA for sequencing at early 363 

low OD time-points (first two sample points), we pooled two wells into one sample. All samples 364 

were collected in PCR strip tubes (Axygen: PCR-0208-CP-C) and centrifuged at room 365 

temperature to pellet the cells. The supernatant was decanted and the remaining cell pellet was 366 

immediately frozen in liquid nitrogen for storage at -80°C. 367 

 368 

DNA extraction, library preparation, and sequencing 369 

Cell Pellets were resuspended and transferred to 96 deep-well plates for DNA extraction using 370 

the IBI Scientific 96-well Genomic DNA Bacteria Kit (IBI Scientific: IB47295) per the 371 

manufacturer's protocol. DNA quantification was done using Qubit HS DNA assay, on a Qubit3 372 

device. After DNA quantification, we added PhiX DNA (Thermo Fisher Scientific: SD0031) as an 373 

internal standard and run-quality monitor across all samples. A total of 500 fg PhiX DNA was 374 

added to each DNA sample before library preparation. DNA libraries were constructed following 375 

the NEBNext Ultra II FS DNA Library Prep Kit for Illumina (New England Biolabs: E7805L) and 376 

indexed using Dual Index Primer Set 2 (New England Biolabs: E7780S). Libraries were 377 

quantified again via Qubit 3, and the quality and size of libraries were checked using an Agilent 378 

Tapestation, and a D5000 high sensitivity DNA tape assay. Libraries were pooled to 2 nM and 379 

sent to NovoGene for sequencing on a NovaSeq 6000  device (Illumina, USA). A partial lane 380 
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was used for sequencing, 150 cycles, generating ~64GB (~3.3 million reads per sample) of 381 

paired-end reads.  382 

 383 

Shotgun metagenomics data processing and analysis 384 

Longitudinal shotgun metagenomics sequencing data from healthy human stool samples (BIO-385 

ML) was downloaded from NCBI BioProject accession PRJNA544527, and the associated 386 

metadata was downloaded from the associated article 33. Raw FASTQ files from the BIO-ML 387 

cohort and from the in vitro E. coli experiment were filtered and trimmed using FASTP 68, 388 

removing the first 5 nucleotides of the read 5’ end to avoid leftover primer and adapter 389 

sequencing not removed during demultiplexing and an adaptive sliding window filter on the 3’ 390 

end of the read with a required minimum quality score of 20. Reads containing ambiguous base 391 

calls, having a mean quality score less than 20, or with a length smaller than 50nt after trimming 392 

were removed from the analysis. Taxonomic assignment on the read level was performed with 393 

Kraken2 using the Kraken2 default database 69. Abundances on the kingdom, phylum, genus, 394 

and species ranks were then obtained using Bracken 70. Trimmed and filtered reads were then 395 

aligned to 2,935 representative bacterial reference genomes taken from the IGG database 396 

(version 1.01) using Bowtie2 71,72. Coverage profiles and log2 estimates of peak-to-trough ratios 397 

(PTRs) were estimated using COPTR v1.1.2 at the species-level within each sample for taxa 398 

that passed our abundance threshold 54. PTR estimates were then merged with Bracken 399 

abundance estimates, retaining only those species identified by both methods (Kraken2 and 400 

Bowtie2 alignment to IGGdb). For the in vitro E. coli experiment, reads were aligned to a custom 401 

database containing the E. coli K12 strain genome (NCBI accession NC_000913.3) and the 402 

phiX174 genome (NCBI accession NC_001422.1). CLR abundances were then calculated from 403 

the read counts for the E. coli genome and the phiX174 genome. 404 
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 The processed data containing the raw reads and log2 peak-to-trough ratios (log2PTRs) 405 

were read into R version 4.1.3  for analysis 67.  All plots were generated using ggplot2 73, unless 406 

indicated otherwise. BIO-ML donors were selected by retaining individuals with over 50 407 

metagenomic time points, resulting in four time series (i.e., donors ae, am, an, and ao).  Distinct 408 

Bacteroides ovatus strains across all four donors contained duplicated taxon names with unique 409 

taxonomic identifiers, and were renamed to “Bacteroides ovatus_1” and “Bacteroides ovatus_2.” 410 

Raw read counts for a given taxon within a sample were centered log-ratio (CLR) transformed 411 

74. Taxa that had matched log2PTR and CLR abundance information available across more than 412 

5 time points within an individual, with time differences between samples less than three days, 413 

were used in subsequent analyses. Changes in normalized abundance were calculated as 414 

��������� �������������� � ��� � 1� � ����,where �� � 3 ����.  To assess the regression-to-415 

the-mean effect, CLR-normalized abundances were plotted against deltas for each taxon, and 416 

the regression coefficients, aggregating all microbial taxa, were plotted as boxplots (showing 417 

median and interquartile range), summarized by donor.  418 

 For each donor, to estimate the growth phase of each individual taxon, we used linear 419 

regression of CLR-normalized abundances vs. log2PTRs, followed by a Benjamini-Hochberg p-420 

value correction to control for the false discovery rate (FDR) in base R.  Regression coefficients 421 

with FDR-adjusted p-values < 0.05 were considered significant. Taxa with average log2PTRs < 422 

0.358 (experimentally-determined stationary threshold) were designated as being in stationary 423 

phase. For those taxa not designated as being in stationary phase, significantly positive or 424 

negative associations between log2PTRs and abundances were considered to be in 425 

acceleration or deceleration phase, respectively. Those with no correlation and an average 426 

log2PTR above the stationary threshold were constrained to be in mid-log phase or in 427 

acceleration/deceleration phase (i.e., if there was a false negative due to lack of statistical 428 

power in detecting a positive or negative slope). Linear regression was also used to test 429 

whether or not average CLR-normalized abundances and average log2PTRs were significantly 430 
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associated within each donor, and p-values from individual tests were combined using Fisher’s 431 

method 75. 432 

 433 

Stochastic logistic growth model simulation  434 

The stochastic logistic growth equation (sLGE) was implemented as:  
���
��

� ������  1 � �����

�
! �435 


���������, where t is time, r is the growth rate, ��  is the abundance of taxon i, K is the carrying 436 

capacity, 
 is the noise magnitude term, and ���� is the noise distribution term.  Using the R 437 

package sde 76, taxonomic growth was simulated with �� ,	 � 1, �	 � 1 to �
���
 � 100, for 100 438 

iterations. The other parameters were varied as described in the results and below. To 439 

investigate the impact of noise on sLGE trajectories, noise levels were set from 0.001 to 1, with 440 

r and K ranging from 1 to 3 and 10 to 1000, respectively. To investigate the statistical 441 

relationships between deltas and abundances across growth phases and across model 442 

parameterizations, Pearson’s R coefficients and p-values were calculated for each of the three 443 

growth phase categories. The growth phases for each model parameterization were defined 444 

using the non-stochastic logistic growth equation (LGE): 
���
��

� ������  1 � �����

�
!, the solution for 445 

which can be written as �� � ��,�����

�����,�����,����
. 446 

 The ��values for each simulated time point from solving the LGE were used to calculate 447 

the first derivative (i.e., the growth rate), which is exactly equal to the LGE. The second 448 

derivative (i.e., growth acceleration), 
����
���

� #���  1 � ��
�

! $1 �  ���
�

!%, was calculated using 449 

solved ��values. Growth phases from the sLGE were defined using the second derivative 450 

curves. First, the intersections of the acceleration curve and the half-max, ��and  ��, and the 451 

half-min, ��and ��, were calculated (Fig. S3). The corresponding simulated time points of ��, 452 

denoted as ��, where j = 1 - 4, were then used to define growth phases as follows: lag 453 

phase: � � ��; acceleration phase:�� � � � ��; log phase: �� � � � ��; deceleration phase:�� �454 
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� � ��; and stationary phase:� & ��. Here, lag and acceleration phases were combined, as these 455 

phases display similar delta-abundance relationships along the logistic growth curve. 456 

Conceptual diagrams were created using BioRender.  457 

 Death or dilution terms were not explicitly added to the simulated sLGE models. Here, 458 

we discuss how death or dilution rates are equivalent to changing the carrying capacity term, 459 

which has no impact on our growth phase inferences. Analytically, a decrease in abundance at 460 

a given time can be represented as a fraction of the current abundance subtracted from the 461 

LGE: 
���
��

� ������  1 � �����

�
! � '����� . Here, ' is the “harvest rate”, which determines the 462 

proportional decrease in each timepoint in the equation. At steady state, �� (� ��� $1 �463 

��� ���

�
!  �  '� (� ���  �  0, where � (� ��� represents the fixed point. Two equilibria exists in 464 

this equation: � (� ���  �  0 and � (� ���  � #�1 � �

�
� , with the latter being asymptotically 465 

stable. As ' increases, the stable population size � (� ��� decreases due to the proportional 466 

decrease in #. As long as ' does not exceed the intrinsic growth rate of gut microbes, which is 467 

expected for highly abundant and stably colonized taxa, the resulting # becomes the new stable 468 

#. To show that variation in 	 does not impact the relationship between growth rate and 469 

abundance, we simulated the LGE with stochastically varying # by adding the stochastic term, 470 

i.e. 
	��������, to 	���� (Fig. S4). In base R, simulation was performed for 100 iterations with 471 

the same noise levels (
 = 0.1) as the representative sLGE simulations with stochastic �. Major 472 

growth phases were defined the same way as sLGE simulations with stochastic �.  473 

  474 

Data and code availability 475 

Nextflow pipelines implementing the processing of metagenomic shotgun sequencing data from 476 

raw reads to taxonomic abundance matrices and PTR estimates can be found at 477 

https://github.com/Gibbons-Lab/pipelines/ (metagenomics pipelines). These DNA datasets are 478 
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publicly available from the National Center for Biotechnology (NCBI) Sequence Read Archive 479 

(SRA), accession code PRJNA942341. Scripts used to analyze the data, run the sLGE 480 

simulations, and produce the figures in the manuscript have been deposited at 481 

https://github.com/Gibbons-Lab/human-microbiome-time-series-growth-phase-estimation. 482 
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 660 

FIGURE LEGENDS 661 

662 

Figure 1. Conceptual figure showing two flow-through microbial ecosystems: a 663 
bioreactor and a human gut. A. Both bioreactors and guts are continuous flow-through 664 
systems. Prior to reaching the measured abundances in stool, taxa grow in the large intestine 665 
with varying growth rates, carrying capacities, and steady-state population sizes, which may be 666 
in different growth phases at the time of measurement. For example, see dynamics for Taxa 1-667 
3. Daily stool collections show variation in abundances, but this variation likely does not reflect 668 
internal growth dynamics in the gut. B. Healthy BIO-ML stool donors (subject IDs: ae, am, an, 669 
and ao) with samples collected 3-5 days per week for a total of >50 time points. Red indicates 670 
presence of shotgun metagenomic sequencing data and gray represents absence of 671 
metagenomic data from consecutive daily time points. 672 
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673 

Figure 2. Regression-to-the-mean effect in human microbial time series data. A. Yellow 674 
line represents the mean abundance (μ) of Bacteroides cellulosilyticus over time in donor am. 675 
Time points t1 and t3 indicate fluctuations below and above the mean abundance, and t2 and t4 676 
show the return to the mean abundance. B. Distribution of time series delta values (e.g., t2-t1) 677 
for Bacteroides cellulosilyticus in donor am, which is approximately normally distributed. C. 678 
Delta vs. abundance for Bacteroides uniformis time series from donors ae, am, an, and ao.  D. 679 
Boxplots (showing median and interquartile range) of linear regression coefficients for deltas vs. 680 
abundances across all taxa time series in all four donors. Red line indicates a regression 681 
coefficient of 0.  682 
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683 
Figure 3. Variable relationships between PTRs and CLR-normalized abundances across 684 
human gut microbial time series. The ratio of sequencing coverage near the replication origin 685 
to the replication terminus for each species  (i.e. peak-to-trough ratio, or PTR), was calculated 686 
using COPTR. A. Log2(PTR) and CLR-normalized abundance relationships for donors ae, am, 687 
an, and ao. Orange and blue lines show significantly positive and negative linear regression 688 
coefficients (linear regression, FDR adjusted p-value < 0.05), respectively. Gray lines indicate 689 
no statistically significant association. B. Boxplots (showing median and interquartile range) of 690 
linear regression coefficient combined for all filtered taxa for each donor. C. Mean log2(PTR) 691 
and mean CLR-normalized abundance for all abundant taxa in each donor (p-values for 692 
regressions run within each donor were combined using Fisher’s method; combined p-value = 693 
0.005). PTR was calculated. 694 
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  695 

Figure 4. Diagram of the logistic growth equation. A. The logistic growth curve models 696 
abundance (x) with respect to time (top panel). Orange, grey, blue, and navy describes 697 
acceleration, mid-log, deceleration, and stationary phases, respectively. The first derivative of 698 
the logistic growth curve models the growth rate with respect to time (middle panel). The second 699 
derivative of the logistic growth curve models growth rate acceleration with respect to time 700 
(bottom panel). B. Expected relationships between abundance and growth rate at different 701 
locations along the logistic growth curve. 702 
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703 
Figure 5. Distinguishing growth phases using the stochastic logistic growth model. A. 704 
Stochastic logistic growth curves with growth rate (r) = 1.2, carrying capacity (k) = 100, and 705 
noise level (n) = 0.1 across 100 iterations. Major growth phase groups in orange (acceleration), 706 
gray (mid-log), blue (deceleration), and navy (stationary). B. Pearson r values between 707 
abundances and growth rates in each of the four growth phase windows across variable model 708 
parameterizations (r = 1-3, k = 10-1000) and a fixed noise level (� = 0.1).  C. Scatter plots in log 709 
scale showing relationships between abundance and growth rate across the four growth phase 710 
regions defined in panel A.  711 
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713 

Figure 6. Relationship between growth rate and abundance in major growth phases in E. 714 
coli populations. A. Growth curve of E. coli (MG1655) using OD measurements. Colors 715 
describe major growth phases. Dotted black and red lines show the growth rate derived from 716 
OD measurements and mean growth trajectory, respectively. B. Pearson r values between 717 
abundance and growth rate in each of the four growth phase windows. Asterisks show statistical 718 
significance. **: p < 0.01, *: p < 0.05, n.s.: not significant.  C. Scatter plots in log scale showing 719 
relationships between abundance and replication rate (log2PTR) across the four growth phase 720 
regions defined in panel A.  721 
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722 
Figure 7. in vivo growth phase estimation. A. We find variable relationships between 723 
log2PTRs and population abundances across taxa in each of the four donors, consistent with 724 
the growth phase patterns observed in sLGE simulations. Donors with higher defecation rates 725 
tended to have a larger fraction taxa with positive log2PTR-abundance associations and fewer 726 
with negative associations, indicating acceleration and deceleration-stationary phases, 727 
respectively. Taxa in stationary phase were classified using an empirical threshold (average 728 
log2PTR < 0.358). Non-stationary taxa (i.e., above the stationary phase threshold, but lacking a 729 
significant correlation between log2PTRs and abundances) are likely in mid-log phase, but these 730 
taxa could also be in acceleration/deceleration phases (i.e., underpowered to detect the 731 
correlation). B. We suggest that higher defecation rates (i.e., higher dilution rates) push 732 
bacterial populations towards earlier growth phases, which is consistent with our results in panel 733 
A. C. Growth phase estimates can be leveraged to identify taxa that are more-or-less amenable 734 
to metabolic modeling techniques, such as Flux Balance Analysis, which assumes exponential 735 
growth. 736 

 737 
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Supplemental Figures 742 

743 
Figure S1. Lack of autocorrelation detected in most daily macronutrient intake. Daily 744 
measurements of nutrient intake were downloaded from David et al. 48. Post-travel time points 745 
are shown. Autocorrelation was tested using the augmented Dickey-Fuller test (i.e., p < 0.1 746 
indicates significant stationarity of a dietary variable). For each nutrient, p-values are reported 747 
for the recordings post-travel period of the subject. Calorie (p = 0.0341), carbohydrate (p = 748 
0.0144), protein (p = 0.0314), fat (p = 0.0172), fiber (p = 0.0369), cholesterol (p = 0.0534), 749 
saturated fat (p < 0.01), sugar (p = 0.0123), sodium (p = 0.0341), calcium (p < 0.01). Dotted red 750 
lines show the mean measurement values.  751 
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762 
Figure S2. Distributions of log2PTR values across 84 BIO-ML donors, broken down by 763 
phylogenetic class. We see a fairly wide range of log2PTRs within each taxonomic class. The 764 
median log2PTR across classes varies between ~0.45 and ~0.75. In a linear regression model, 765 
controlling from taxonomic group as a covariate, we see a significant positive association 766 
between log2PTRs and CLR abundances at the class-level (� = 0.0612, p = 8.359e-60). This 767 
positive taxonomy-controlled association is preserved at the species-level (� = 0.0101, p = 768 
0.0006). 769 
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778 

Figure S3. Definition of major growth phases using the stochastic logistic growth model. 779 
A. The half-maximum of the peak and half-minimum of the trough of the second derivative of 780 
abundance were used to define growth phases across model parameterizations. B. Pearson r 781 
values between abundances and growth rates in the three growth phase categories obtained 782 
from combined sLGE simulation results across a range of growth rates (r = 1-3), carrying 783 
capacities (k = 10-1000), and noise levels (n = 0.001-1). 784 

 785 
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786 
Figure S4. Relationship between growth rate and abundance across the major growth 787 
phases, simulated using the logistic growth model with stochastically varying carrying 788 
capacities. A. Stochastic logistic growth curves with growth rate (r) = 1.2, carrying capacity (k) 789 
= 100, and noise level (n) = 0.1 applied to k across 100 iterations. Major growth phase groups in 790 
orange (acceleration), gray (mid-log), blue (deceleration), and navy (stationary). B. Pearson r 791 
values between abundances and growth rates in each of the four growth phase windows across 792 
variable model parameterizations (r = 1-3, k = 10-1000) and a fixed noise level (� = 0.1).  C. 793 
Scatter plots in log scale showing relationships between abundance and growth rate across the 794 
four growth phase regions defined in panel A.  795 
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798 
Figure S5. Relationships between abundance and log2(PTR) for abundant taxa in donor 799 
ae. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5 800 
matched data points; time differences between adjacent samples less than three days) were 801 
selected for analysis. Gray trend lines show no significant correlations, orange trend lines 802 
indicate significant positive correlations, and blue trend lines represent significant negative 803 
correlations (linear regression, BH-FDR < 0.05).   804 
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805 
Figure S6. Relationships between abundance and log2(PTR) for abundant taxa in donor 806 
am. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5 807 
matched data points; time differences between adjacent samples less than three days) were 808 
selected for analysis. Gray trend lines show no significant correlations, orange trend lines 809 
indicate significant positive correlations, and blue trend lines represent significant negative 810 
correlations (linear regression, BH-FDR < 0.05).  811 
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812 
Figure S7. Relationships between abundance and log2(PTR) for abundant taxa in donor 813 
an. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5 814 
matched data points; time differences between adjacent samples less than three days) were 815 
selected for analysis. Gray trend lines show no significant correlations, orange trend lines 816 
indicate significant positive correlations, and blue trend lines represent significant negative 817 
correlations (linear regression, BH-FDR < 0.05).   818 
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819 
Figure S8. Relationships between abundance and log2(PTR) for individual taxon in donor 820 
ao. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5 821 
matched data points; time differences between adjacent samples less than three days) were 822 
selected for analysis. Gray trend lines show no significant correlations, orange trend lines 823 
indicate significant positive correlations, and blue trend lines represent significant negative 824 
correlations (linear regression, BH-FDR < 0.05).  825 
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