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Abstract

Pathogens found within local environments are a major cause of morbidity and mortality. This is particularly

true in Indonesia, where infectious diseases such as malaria or dengue are a significant part of the disease

burden within the country. One way to strengthen the control of infectious diseases is through better

surveillance, however unequal investment in medical funding throughout Indonesia, particularly in rural

areas, has resulted in under-reporting of cases. Here, we use transcriptome data from 117 healthy individuals

living on the islands of Mentawai, Sumba, and the Indonesian side of New Guinea Island to explore which

pathogens are present within whole blood. We are able to detect a broad range of taxa within RNA-

sequencing data generated from whole blood, including bacteria, viruses, archaea, and eukaryotes. Using

independent component analysis, we find that two of these pathogens—Flaviviridae and Plasmodium—have
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the most noticeable effects on expression profiles. We also identify specific genes linked with Plasmodium

and Flavivirus abundance and find that both of these infections are most pronounced in the easternmost

island within our Indonesian dataset. This study provides a framework for novel applications of RNA-seq

as surveillance and a better understanding of environmental contributors affecting gene expression within

Indonesia.
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Introduction

Pathogens are a major cause of morbidity and mortality, especially in the Global South. Current knowledge

of which taxa are present within remote regions of the world, along with how they impact health outcomes,

remains limited. Not only is surveillance complex in these settings, but identifying which pathogens are

responsible for disease symptoms can be challenging. For instance, although a pathogen may be identified

in a population, it might not be the causative agent of disease. Having a more detailed understanding

of which pathogens are the major causes of morbidity across different global populations and how they

affect host responses to disease can focus elimination efforts on specific pathogens and aid in more targeted

disease therapeutics.

Using blood transcriptome data serves as a way to empirically test which blood-borne pathogens are

present within an individual. Along with pathogenic organisms that infect blood cells, such as arthropod-

borne pathogens [1, 2] and various viruses [3, 4], emerging research has shown that even bacteria and

fungi can release DNA and RNA into blood [5]. For example, commensal bacteria [6, 7], viruses [8, 9],

fungi [10], and archaea [11] have all been identified independently in multiple studies of human blood,

suggesting blood has its own unique microbiome. For health diagnostics, this has been exploited to identify

relationships between the blood microbiome and celiac disease [12] and to explore connections between the

blood microbiome and brain disorders [7]. While not yet common, the use of blood as a surveillance tool is

growing. For instance, Kafetzopoulou et al. [13] used plasma samples from Lassa fever patients to identify

the emergence of new strains, while two recent studies used whole blood samples from critically endangered

mammals [14] and songbirds [15] to aid in the characterisation of diverse blood parasites.

Indonesia is a country with large numbers of endemic and emerging infectious diseases [16], making

it a crucially important location to monitor and understand the effects of pathogens on human hosts.

While several endemic diseases have been successfully reduced or eliminated in Indonesia [17], pathogen

abundance can still be high in more rural areas, which tend to have less access to medical resources [17–19].

We have previously sampled individuals from three remote islands in Indonesia—Mentawai, Sumba, and

the Indonesian side of New Guinea Island—and showed that individuals from the easternmost side of

Indonesia (New Guinea Island) show widespread differences in immune gene expression levels compared

to individuals from western (Mentawai) or central (Sumba) Indonesian islands [20]. While some of this

variation is likely attributable to the different genetic ancestries of individuals in these islands [20, 21],

another contributor may be differences in pathogenic loads between them. Indeed, both Plasmodium

falciparum and Plasmodium vivax are detectable within whole blood of these individuals [22], with a
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higher Plasmodium abundance within individuals from New Guinea Island. This observation suggests that

pathogen loads are variable across the country, and that a non-targeted, transcriptomic approach can be

used to capture these differences.

To characterise blood-borne microorganisms within Indonesia and investigate the relationship between

gene expression in whole blood and pathogen abundance, this study utilises transcriptomic data collected

from whole blood within these three previously described groups: the peoples of Mentawai and Sumba,

and the Korowai. These populations span a gradient from west to east across Indonesia, thus capturing

pathogens along the main geographical axis of the country. Unlike more populous regions within Indonesia,

these three islands serve as models to understand pathogen load in areas with limited resources and where

reporting and traditional surveillance methods can be challenging. This can therefore provide a valuable

resource from under-represented areas, as well as show the relationship between local environments and

immune gene expression.
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Methods

Samples

The Indonesian dataset consists of 100 base-pair, paired-end data from whole blood collected by members

of the Eijkman Institute from 117 healthy individuals living on the Indonesian islands of Sumba (n = 49),

Mentawai (n = 48), and on the Indonesian side of New Guinea Island (n = 20, as described in [20]; all

Indonesian data are available from the European Genome-phenome Archive study EGAS00001003671). All

collections and analyses followed protocols for the protection of human subjects established by institutional

review boards at the Eijkman Institute (EIREC #90 and #126); the analyses in this publication were

additionally approved by University of Melbourne’s Human Ethics Advisory Group (1851639.1). In the

original Natri et al. study, 6 samples were sequenced twice as technical replicates, however for our study we

only retained the replicate with the highest read depth. Samples were collected using Tempus Blood RNA

Tubes (Applied Biosystems) and RNA-Seq libraries were prepared using Illumina’s Globin-Zero Gold rRNA

Removal Kit. Samples were then sequenced on an Illumina HiSeq 2500, resulting in an average read depth

of 30 million read pairs per individual (Supplementary Table 1).

In order to compare our samples to other global populations, we searched multiple publicly-available

transcriptomic datasets of whole blood from self-described healthy human donors. To control for technical

covariates, we limited ourselves to datasets prepared using a globin depletion method and collected using

Tempus Blood RNA Tubes, the same criteria as in our own samples. We identified two publicly-available

datasets as controls. The first dataset comes from Tran et al. [23, 24], and consists of 100-bp human whole

blood RNA-seq data, hereafter referred to as the Mali study. As described in [24], samples were collected

from individuals living in the rural village of Kalifabougou, Mali, an area where there is a high rate of

seasonal P. falciparum transmission. Raw sequence reads for this study were downloaded from SRA study

GSE52166 and only samples which were collected pre-infection (n = 54) were used. The second dataset

comes from Singhania et al. [25] consisting of 75-bp human whole blood RNA-seq data, collected from

volunteers at the MRC National Institute for Medical Research in London, UK, hereafter referred to as

the UK study. Raw sequence reads for this study were downloaded from SRA study GSE107991 and only

healthy control samples (n = 12; all of European ethnicity) were used.
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RNA sequencing data processing

In order to investigate the metatranscriptome of whole blood, we put all reads through a stringent quality

control pipeline. RNA-seq reads from all datasets went through an initial sample quality analysis using

FastQC v. 0.11.5 [26]. In order to ensure reads were of high quality and free from artefacts, leading and

trailing bases below a Phred quality score of 20 were removed and universal Illumina adapter sequences

were trimmed (TruSeq3-PE.fa) using Trimmomatic v. 0.36 [27]. For comparisons between the Indonesian,

Malian, and UK populations, the Malian and Indonesian datasets were trimmed to 75-bp, which is the

read length of the UK dataset. We did this to control for differences in mappability and taxa identification

associated with read length.

RNA-seq reads were first aligned to the human genome (GrCh38, Ensembl release 90: August 2017)

with STAR v. 2.5.3a [28] using a two-pass alignment and default parameters, and only reads that did not

map to the human genome were retained for further analysis. This step was performed to reduce the total

library size to only pathogen candidates, and significantly decreases subsequent processing time. Unmapped

sequence reads were then processed using KneadData v. 0.7.4, which uses BMTagger [29] and Tandem

Repeats Finder (TRF) [30] to remove human contaminant reads and tandem repeats, respectively. Using

Kneaddata, BMtagger and TRF were run with default parameters. This resulted in a mean of 100,000

reads per sample for the Indonesian dataset (both 75 and 100-bp; Supplementary Table 1). For the 75-bp

Malian and UK datasets, this resulted in a mean of 330,000 and 3,000,000 reads per sample, respectively

(Supplementary Table 1). Read depths after each filtering step are available in Supplementary Table 1.

Mapping and metagenomic classification

Processed metagenomic reads were mapped using KMA v. 1.2.21 [31] against a filtered NCBI nt reference

database, where artificial sequences and environmental sequences without valid taxonomic IDs were excluded

[32] (downloaded from https://researchdata.edu.au/indexed-reference-databases-kma-ccmetagen/1371207).

We mapped reads using default settings and the following additional flags as recommended on the CCMetagen

page: -ef (extended features) was used to calculate reads as the total number of fragments, -1t1 was used

for one read to one template (no splicing allowed in the reads), and -apm was set to false so that matches

could be made against sequences that were not significantly over-represented. We attempted read mapping

using both paired and single-end configurations. Single-end mapping resulted in a much larger proportion

of successfully mapped reads than paired-end. Upon investigation, we found that, although pairwise

correlations between reads from the same mate pair were higher than between reads outside of a mate
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pair (Supplementary Figure 1, A), read pairs had over 35% dissimilarity, on average, at the species level

(Supplementary Figure 1, B), resulting in an excess of unmapped reads. We therefore decided to perform

mapping on single-ended reads, using the forward strand only from each dataset. After mapping, we

performed read classification using CCMetagen v. 1.2.2 [33] with default settings for single-ended reads.

Read depth was calculated using the number of fragments with the read depth set to 1 so that we could

analyse all possible matches. For the Indonesian dataset, these steps resulted in a mean of 24,000 reads

per sample, which increased to 44,000 when we trimmed reads to 75-bp (Supplementary Table 1). For

the 75-bp Malian and UK datasets, this resulted in a mean of 52,000 and 2,200,000 reads, respectively

(Supplementary Table 1).

Data filtering

After removing singletons to prevent spurious identification of taxa, we observed a large proportion of the

remaining reads mapped to the kingdoms Viridiplantae, which contains green algaea and plants, and Metazoa.

As we are interested in pathogenic microorganisms, we decided to remove the entire kingdom of Viridiplantae,

reasoning that these likely represented misassignments or poor quality annotation (Supplementary Figure

2, A-C) and further investigated the metazoan reads. We found that the majority of these mapped to

the phylum Chordata (Supplementary Figure 2, D-F) although some potentially pathogenic taxa, such as

helminths (Platyhelminthes, Nematoda), were present in the data. Upon further investigation, we found

that every individual, including samples within the UK dataset where we would not expect to observe

widespread helminth infection, had reads mapping to helminth species (Supplementary Figure 2, G-I).

BLAST analysis of helminth reads also confirmed that these were reads that mapped equally well to the

human genome. We therefore decided to discard all reads mapping to Metazoa from subsequent analysis.

In addition, we also chose to remove taxa with no taxonomic rank assigned at the superkingdom level, as

these taxa could not be linked to any known species. After removing Viridiplantae, Metazoa, and taxa with

no taxonomic rank assigned at the superkingdom level, we obtained a mean of 8,120 reads in the Indonesian

dataset (a mean of 8,466 for the 75-bp Indonesian reads; Supplementary Table 1), 20,096 for the 75-bp

Malian dataset, and 966,195 for the 75-bp UK dataset (Supplementary Table 1; Supplementary Figure 3).

Sample clustering

To correct for uneven library depth between samples and the compositional nature of microbiome data [34],

we applied a center log ratio (CLR) transformation [35] to the taxa abundance matrix when performing
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principal component analysis (PCA). Since a high number of zeros were present in the data, which CLR

transformation is sensitive to [36], we chose to merge the abundance matrix at the phylum level. For

this reason, we also performed analyses at the phylum level for all subsequent analyses utilising CLR-

transformation. Throughout, analyses are reported at the taxonomic level at which they were carried out,

unless otherwise noted.

Differential abundance testing and diversity estimation

We used ANOVA-like differential expression (ALDEx2) [37–39] to test for differences in species composition

between populations, which applies CLR-transformation to correct for uneven library depth and data

compositionality [38]. We performed differential abundance testing at the phylum level using the default

Welch’s t-test and default 128 Monte Carlo simulations. For alpha and beta diversity estimates, we used

count abundances at the phylum level without removing singletons using the package DivNet v. 0.3.6 [40],

which expects the presence of singletons in order to model species richness [40].

Independent component analysis of expression data

To estimate source signals within expression data, we applied independent components analysis (ICA) to

the whole blood expression data using the Bioconductor package MineICA v. 1.26.0 [41]. To compute the

independent components (ICs), we applied the default JADE algorithm [42] to the data using 5 ICs. As

suggested by Jutten et al. [43], we chose the number of ICs to compute based on the amount of variance

explained by principal component analysis (PCA). We found that the first 5 components captured the

most variance within the data (18% of variance in the first component, down to 3.5% of variance in the

fifth component), with all subsequent components contributing only a small amount of variance (less than

3% per component; Supplementary Figure 4). To test whether populations and pathogen abundances

were differentially distributed on the components, we respectively performed Kruskal-Wallis and Pearson

correlation tests using MineICA and corrected for multiple testing using the Benjamini-Hochberg method [44].

To draw correlations between sample contributions and pathogen load, we used the CLR-transformed

pathogen abundance matrix at the phylum level. Finally, in order to test for enrichment of contributing

genes within each IC against Gene Ontology (GO) [45] and Kyoto Encyclopedia of Genes and Genomes

(KEGG) [46] pathways, we used GOseq [47], which corrects for gene length bias.

Code for all analyses is available at https://gitlab.unimelb.edu.au/igr-lab/Epi Study
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Results

The blood microbiome of Indonesians

In order to provide a more comprehensive understanding of the blood microbiome of remote populations

within Indonesia, we analysed unmapped reads from previously-published whole blood transcriptomes,

collected from 117 Indonesian individuals living on the islands of Mentawai (MTW) in western Indonesia,

and Sumba (SMB) in central Indonesia, as well as the Korowai (KOR), a group living in the Indonesian

side of New Guinea Island. The human samples have been extensively described [20,21]. After extensive

quality control, we obtained a mean library size of 8,146 taxonomically informative reads (range: 221 -

403,796), which was further reduced to 8,120 reads after the removal of singletons (range: 196 - 403,771;

Supplementary Table 1). We assigned these reads to a total of 1,390 taxa across all phylogenetic levels,

including 271 distinct taxa at the family level. We found these reads were predominantly assigned to the

families Plasmodiidae (86.4% of the total read pool across all individuals) and Flaviviridae (4.0% of reads),

and to various species of bacteria, the most abundant being Enterobacteriaceae (2.9%; Figure 1, A). In order

to control for sparsity in the abundance matrix, which is crucial when performing CLR-transformation [36],

we also analysed the abundance of taxa at the phylum level in tests applying a CLR transformation

to the data. Analysis of microbial reads at the phylum level resulted in the identification of 33 taxa,

with Apicomplexa (85.9% of reads, within which 99.9% of reads mapped to the family Plasmodiidae),

Proteobacteria (5.8% of reads), Kitrinoviricota (4.0% of reads, within which 100% of reads mapped to

Flaviviridae), Actinobacteria (1.9% of reads), and Firmicutes (0.8% of reads) making up the majority.

These estimates of Apicomplexa load are higher than our previous estimates of Plasmodium burden [22],

where we used a different, more conservative approach. We observed that the microbiome composition

varied substantially between islands. This was most pronounced in the Korowai population, where the

majority of samples had reads assigned to either Apicomplexa (65% of reads) or Kitrinoviricota (30% of

reads).

PCA of the CLR-transformed taxonomic matrix showed sample clustering clearly driven by the phyla

Apicomplexa and Kitrinoviricota (Figure 1, B and C). We found that PC1, which captured over 34% of

the variation, separated individuals by their abundance of either of these pathogens, as well as separating

the Korowai from the populations of Mentawai and Sumba (Figure 1, B and C). PC2 could further be

seen to separate samples with a high abundance of Apicomplexa from samples with a high abundance of

Kitrinoviricota (Figure 1, B and C). Although other taxa contributed less to sample clustering, we did
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observe that some bacteria had a significant correlation with sample clustering, such as Actinobacteria in

PC3 which captured 9.9% of the variation (Supplementary Figure 5; For a full table of p-values for each

taxa from ANOVA, see Supplementary Table 2).
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Fig 1. The blood metatranscriptome of the Indonesian populations. A) Circular barplot showeing relative
abundance (as % of reads) of the top 20 taxa within each individual in the Indonesian dataset, resolved at
the family level. Bacteria are shown in blue, eukaryotes in red, and viruses in green. KOR = Korowai;
MTW = Mentawai; SMB = Sumba. Taxon labels include both phylum and family information. B)
Principal component analysis of the CLR-normalised taxa abundance data at the phylum level. Plotting
shapes indicate population while log1 0 Apicomplexa abundance is indicated in red and C) green for
Kitrinoviricota.
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The Korowai drive differences in microbiome diversity between island populations

As we are interested in whether there are observable differences in blood microbiomes between Indonesian

island populations, we next performed differential abundance testing between the three groups using

the ALDEx2 package [37–39]. Differential abundance testing at the phylum level resulted in significant

differences in Apicomplexa abundances between population comparisons with the Korowai (FDR adjusted

Welch’s t-test: Mentawai versus Korowai p = 0.011; Sumba versus Korowai p = 0.028; Figure 2, A and B).

When we performed the same test on individuals from Mentawai versus individuals from Sumba, we found

no differentially abundant phyla (Figure 2, C).

The diversity and types of microbes within human tissues can be an indicator of the overall health of an

individual, and of a population [7, 48]. We therefore analysed levels of alpha (within individual) and beta

(between individual) diversity within the three islands using DivNet [40], again at the phylum level. We

found that while alpha diversity estimates were overall largely similar between individuals from Mentawai

and Sumba, they were slightly lower in individuals from the Korowai population. This was true for both

estimates of Shannon diversity (mean Shannon KOR = 0.92; MTW = 1.15; SMB = 1.18; Supplementary

Figure 6, A) and inverse Simpson diversity indices (mean inverse Simpson KOR = 0.42; MTW = 0.53;

SMB = 0.54; Supplementary Figure 6, B). On average, however, this observation was likely due to the high

abundance of Apicomplexa reads amongst the Korowai, which account for the majority of the available

read pool in these individuals, and therefore drive overall diversity rates down. To confirm this, we focused

on Korowai individuals with some of the lowest rates of diversity and found they were samples with a high

number of reads mapping to either Apicomplexa or Kitrinoviricota (Supplementary Figure 7). In support

of this, we found that if we excluded individuals with the highest Apicomplexa and Kitrinoviricota loads

when calculating these statistics, diversity estimates increased. We also found that samples within the

Korowai population had the greatest levels of dissimilarity from each other in estimates of beta diversity

(Figure 2, D). Indeed, most comparisons that involved Korowai individuals resulted in higher estimates of

Bray-Curtis dissimilarity than comparisons with either the Sumba or Mentawai populations (Figure 2, D),

demonstrating the range of microbial diversity within this population.

Microbiomes are distinct between global populations

In order to test whether blood microbiomes in Indonesia differ from those of other global populations, we

also analysed microbiome data from two other publicly-available datasets of whole blood transcriptomes.

This includes 54 healthy individuals living in Kalifabougou, Mali [23, 24], which represents the microbiome
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Fig 2. The Korowai drive differences between island populations. A) Volcano plot of BH adjusted p-values
from Welch’s t-test and the effect size for each taxa at the phylum level, in Mentawai versus Korowai B)
Sumba versus Korowai and C) Sumba versus Mentawai. Taxa with a BH-corrected p-value less than 0.05
are coloured in red. D) Bray-Curtis distance estimates for each population comparison at the phylum level.

of individuals living in rural environments, and 12 healthy individuals collected from the city of London in

the United Kingdom [25], representing the blood microbiome of individuals living in a highly urbanised

environment. Similar to our Indonesian datasets, Kalifabougou is a malaria-endemic region and the majority

of residents engage in subsistence farming practices [49].

After processing of reads as above, we obtained a mean library size of 966,203 reads (range: 403,414 -

1,422,632) for the UK dataset and 20,119 (range: 2,268 - 180,484) for the Malian dataset. This was further

reduced to a mean of 966,195 reads (range: 403,402 - 1,422,623) and 20,096 reads (range: 2,241 - 180,468)

for the UK and Malian datasets after the removal of singletons, respectively (Supplementary Table 1). This

difference in depths is attributable to different numbers of reads being filtered out at different processing

stages in the three datasets, as all three had similar starting read depths. In particular, the Indonesian

dataset loses significant numbers of reads when we filter reads assigned to either Viridiplantae or Metazoa,

and the UK dataset has a lot fewer reads mapping to repetitive regions than either the Malian or Indonesian
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datasets (Supplementary Table 1; Supplementary Figure 3). In the UK dataset, we identified a total of 745

distinct taxa across all phylogenetic levels. These were predominantly bacterial in origin, with the majority

of reads assigned to Proteobacteria (75.1% of the total read pool across all individuals) and Actinobacteria

(22.3% of reads; Supplementary Figure 8). Within the Malian dataset, we found a much greater variation

in taxa (2,193 distinct taxa across all phylogenetic levels), the majority of which were Apicomplexa (42.6%

of reads), followed by Euryarchaeota (20.3% of reads), Actinobacteria (12.7% of reads), Firmicutes (12.3%

of reads), Proteobacteria (7.8% of reads), and Artverviricota (1.1% of reads; Supplementary Figure 8).

Although archaea have previously been identified in whole blood [7, 50], we found the high number of

Euryarchaeota within the Malian dataset surprising. However, investigation of the archaeal reads confirmed

they mapped to several different loci (Supplementary Figure 9), and BLAST searches only returned archaea

as best matches. Although there is a substantial difference in read depths between all three data sets,

saturation curves show that at the same read depth the UK samples are systematically less diverse than

the Indonesian or Mali samples (Supplementary Figure 10).

We performed differential abundance testing between the Indonesian, Malian, and UK datasets (Sup-

plementary Figure 11). Twenty-nine phyla were significantly differentially abundant between Indonesian

and Malian individuals (Supplementary Table 3). The strongest signal was driven by Euryarchaeota (FDR

adjusted Welch’s t-test p = 2.9 × 10−70), which was completely absent from the Indonesian population, as

well as higher abundances of Artverviricota and Apicomplexa in the Malian population (FDR adjusted

Welch’s t-test p = 5.3 × 10−12 and 7.5 × 10−12, respectively; Supplementary Table 3). Euryarchaeota is an

archaeal taxa that contains methanogens, halophiles, and hyperthermophiles [51], and has been previously

observed in the blood of Korean and Dutch populations [7, 50]. When comparing blood microbiomes

between the UK and Indonesian populations, we found 4 differentially abundant phyla, the most significant

being Proteobacteria and Actinobacteria, both of which were more abundant in the UK population (FDR

adjusted Welch’s t-test p = 1.3 × 10−10 and 5.7 × 10−14, respectively; Supplementary Table 3).

Since our analyses above suggested that the Korowai are the most differentiated out of the three

Indonesian island populations (Figure 2), we next repeated differential abundance testing using only the

Korowai as the Indonesian comparison group. We found that in comparisons between the UK and Korowai

population, Apicomplexa and Kitrinoviricota were significantly more abundant within the Korowai (FDR

adjusted Welch’s t-test p = 1.4 × 10−3 and 0.049, respectively; Figure 3, A; Supplementary Table 3). In

comparisons between the Korowai and Malian groups, 9 taxa were significantly diferentially abundant,

with no significant difference in Apicomplexa abundance and a higher abundance of Kitrinoviricota in the
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Korowai population (FDR adjusted Welch’s t-test p = 0.043; Figure 3, B; Supplementary Table 3). We

found that 8 of these taxa were shared with the Indonesian versus Malian comparison at the country-level,

however 21 taxa which were significantly differentially abundant at the country-level did not near significance

(before and after FDR correction) in tests between the Korowai and Malian populations, suggesting closer

similarity of taxa abundance between these two populations.

To identify overall trends between whole blood microbiomes of Indonesians and that of other populations,

we next performed PCA on the CLR-transformed abundance matrix containing the Indonesian, UK, and

Malian samples. Microbiomes clearly differed between countries, with PCA yielding a separate cluster

for each dataset (Figure 3, C). These differences were most apparent in comparisons with the Malian

population, where PC1 separated the UK and Indonesian samples from the Malian samples. Indeed, this

was recapitulated by Bray-Curtis distance estimates, where population comparisons with Mali showed

higher estimates of Bray-Curtis distance compared to comparisons with the Indonesian or UK populations

(Supplementary Figure 12). In PC2, we found samples to be further separated into two clusters, with the

Malian and Indonesian samples were separated from the UK samples (Figure 3, D).

Finally, to understand species richness in blood microbiomes between populations, we again analysed

levels of alpha diversity in each of the three global datasets. We found that the UK samples had the

lowest Shannon and inverse Simpson diversity values (mean Shannon = 0.61; mean inverse Simpson =

0.36), followed by individuals from Indonesia, then Mali (Indonesian mean Shannon = 1.04; Indonesian

mean inverse Simpson = 0.48; Malian mean Shannon = 1.41; Malian mean inverse Simpson = 0.63; Figure

3, E and F). Although alpha diversity estimates were highest in the Malian population, we expect that

the Indonesian and Malian populations would have similar estimates of diversity if read abundances were

higher in the Indonesian dataset (Supplementary Table 1), which did not reach a full saturation of reads

(Supplementary Figure 10). In order to ensure that diversity estimates were not driven by differences in

sample size, we also subsampled the Malian and Indonesian datasets to 12 samples and repeated this test

1,000 times. We found that after subsampling, each population had similar diversity estimates (Indonesian

mean Shannon = 1.02; Indonesian mean inverse Simpson = 0.48; Malian mean Shannon = 1.41; Malian

mean inverse Simpson = 0.63). We also note that the UK population has the highest library depth out of

the three populations and consequently the greatest power to detect rare taxa, and therefore these estimates

likely reflect true rates of lower diversity within the UK population.
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Fig 3. Taxa differences between Korowai individuals and other global populations. A) Volcano plot of BH
adjusted p-values from Welch’s t-test for each phyla in Malian versus Korowai individuals and B) UK
versus Korowai individuals. Taxa with a BH-corrected p-value below 0.05 for are coloured by superkingdom
(red: eukaryotes; blue: bacteria; green: viruses; yellow: archaea). C) Principal component analysis of the
CLR-normalised taxa abundance data at the phylum level for PC1 versus PC2 and D) PC2 versus PC3. E)
Violin plots of Shannon diversity and F) inverse Simpson diversity for each population.

ICA reveals Apicomplexa and Kitrinoviricota are contributors to gene expression

Transcriptomic data is influenced by various technical and biological factors. The ability to separate these

mixed signals into independent sources can be solved by using ICA [52]. At the most basic level, ICA

works by uncovering independent source signals from a set of expression data by creating a set of linear

mixtures across genes and samples, which when applied to gene expression can reflect distinct biological

processes [53,54], and the contributions of specific genes to each component. Here we apply it to the original

human RNA-seq dataset from these same individuals, to explore whether human gene expression in these

individuals is influenced by pathogen load as quantified in our analyses above. ICA across 5 independent

components identified hundreds of significant contributing human genes (Supplementary Table 4), which

we then tested for enrichment against GO and KEGG pathways to interpret which biological processes

these components represent. With the exception of IC5 which had no significantly enriched pathways, we

were able to investigate the source signals associated with the first four ICs.

In IC1, the most enriched GO categories and KEGG pathways were those related to cell adhesion

and the general immune response. Some of the most highly enriched GO categories included granulocyte

activation and leukocyte activation involved in the immune response (Supplementary Table 5), while KEGG

pathways were enriched in cell adhesion molecules, cell surface proteins involved in the immune response,

and inflammation [55] (Table Supplementary Table 6). We next assessed correlations between microbial

taxa load and individual sample contributions to the IC and found that six microbial taxa were significantly

associated with IC1 (Supplementary Figure 13). The strongest correlation in this IC was that of total CLR-

transformed Apicomplexa (Plasmodiidae) load and sample contribution, with a negative sample contribution

correlating with a higher Apicomplexa load (R = -0.51; FDR-adjusted p = 5.4 × 10−9; Figure 4A). This

seemed to be driven by inter-island differences: Korowai individuals had a much larger negative contribution

to IC1, while individuals from Mentawai and Sumba had, on average, positive contributions (Figure 4, B).

Since Apicomplexa levels are, on average, higher in Korowai individuals, we cannot distinguish between

this component being driven by Apicomplexa abundance or by other island-level differences; however, we

note that this IC was the most significant in its differential distribution of island and sample contributions
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(FDR adjusted Kruskal-Wallis p = 1.3 × 10−18). Some of the most significant contributing genes included

genes we have previously identified as differentially expressed between these island populations [20], such as

MARCO, a macrophage surface receptor involved in antigen presentation [56] and which has been shown to

clear various microorganisms within the host [57] (Figure 4, C; Supplementary Table 4). While this gene

did have a significant negative correlation between Apicomplexa load and expression (Figure 4, C), we

found that this gene is heavily-stratified by island, with the majority of Korowai individuals having lower

MARCO expression. This was true even for Korowai individuals with low levels of Apicomplexa abundance.

Indeed, we have recently [21] identified rs13425622 as an eQTL that strongly impacts expression levels

of MARCO in these populations (p = 3.10 × 10−14). All Korowai individuals in our dataset are fixed for

the minor G allele, which is associated with lower expression, while the majority of individuals from both

Mentawai and Sumba are at least heterozygotes for the major T allele (Figure 4, D).

In IC2, we found 215 contributing genes, which were broadly associated with multiple cardiomyopathies

and regulation of cardiac muscle (Supplementary Table Supplementary Table 5; Supplementary Table 6).

Within this component, there was a significant difference between island and sample contributions (FDR

adjusted Kruskal-Wallis p = 2.2 × 10−8), with individuals from Mentawai observed to drive differences

between the populations (Supplementary Figure 14, A). Although the abundance of Apicomplexa was

significantly correlated with sample contribution to IC2, only 4 Mentawai individuals had reads mapping to

Apicomplexa, all at low levels (range: 4-18 reads; Supplementary Figure 14, B). This suggests that taxa we

could identify within whole blood are likely not a driver of the signal within this component.

Apicomplexa load was also weakly associated with IC3 contributions (Supplementary Figure 14, D), a

component which we found to be involved in the response to malaria. Some of the most highly enriched GO

categories associated with this IC were those involved in heme metabolic processes (Supplementary Table

5); the only significantly enriched KEGG pathway was malaria (Table Supplementary Table 6). While both

IC1 and IC3 had an association between sample contributions and Apicomplexa (Plasmodiidae) abundance,

we found that there were differences between contributing genes of the two components. Rather than cell

adhesion and a general immune response, many of the genes in IC3 were well-characterised genes related to

a malaria response. These included SLC4A1, the gene with the highest contribution to IC3, and which was

not found in IC1. SLC4A1 is involved in Southeast Asian Ovalocytosis, a red blood cell disorder that is

protective against malaria infection and most commonly found in the Southeast Asia and the Southwest

Pacific region [58]. Other genes which were unique to IC3 and that have been implicated in the response to

malaria included HBB, HBA1, HBA2, ACKR1, and the glycophorins GYPA, GYPB, and GYPC. However,
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Fig 4. Independent component analysis on the CLR-normalised Indonesian expression data. A)
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MARCO expression levels in these populations.

although many of the contributing genes and enriched pathways within this component were involved

in malaria processes, we did not find a strong correlation between total Apicomplexa load and sample

contributions. While we did find a significant difference between island populations for this entire component

(FDR adjusted Kruskal-Wallis p = 2.2 × 10−8), with individuals from Sumba having a positive sample

contribution on average, and Korowai and Mentawai individuals having a negative sample contribution

on average (Supplementary Figure 14, E), it was not as clearly stratified as in IC1. Furthermore, major

contributing genes such as SLC4A1 did not have significant differences in levels of expression between

islands (Supplementary Figure 14, F). Indeed, individuals with Southeast Asian Ovalocytosis are reported
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to have decreased levels of SLC4A1 due to a nonfunctional copy of the gene [59], and we did not find any

evidence of decreased SLC4A1 expression to be correlated with higher Apicomplexa abundance (R = 0.04;

p = 0.64). While this component as a whole does seem to be involved in malaria-associated processes, the

signal may instead come from multiple individuals across islands, and is more challenging to interpret.

Finally, viral signatures were the main signal within IC4. We found that the most enriched GO categories

included defense response to virus (p = 4.6×10−30) and negative regulation of viral genome replication (p =

6.8×10−12), while KEGG pathways were enriched in hepatitis C genes (FDR adjusted p = 1.3×10−5), RIG-

I-like receptor signaling pathway (FDR adjusted p = 1.1×10−4), and cytosolic DNA-sensing pathway (FDR

adjusted p = 2.3 × 10−4; Table Supplementary Table 6), all well-documented responses to viruses [60,61].

Similar to IC1 and IC3, there was a significant negative correlation between Kitrinoviricota (Flaviviridae)

load and sample contributions (FDR adjusted Kruskal-Wallis p = 4.1 × 10−15; Supplementary Figure 14,

G), with Korowai individuals having on average mostly negative contributions (Supplementary Figure 14,

H). While we did find a significant difference between islands and sample contributions, once again sample

contributions were not as clearly stratified as in IC1. Rather, certain individuals, predominantly within

the Korowai, were found to drive the correlation between Kitrinoviricota load and sample contributions

(Supplementary Figure 14, G). However, we did find that multiple genes involved in response to viruses, such

as RSAD2, were genes which we have previously found to be significantly differentially expressed between

comparisons involving Korowai individuals [21]. RSAD2, or viperin (virus inhibitory protein, endoplasmic

reticulum associated, interferon inducible), is a well-characterised gene involved in antiviral activity [62]

and its upregulation has been associated with multiple viruses, including Flaviviruses [63–66]. Indeed, we

found that RSAD2 was the main contributing gene to this component, with higher levels of expression, on

average, in Korowai individuals (Supplementary Figure 14, I). Other notable genes implicated in antiviral

activity within this component, which we have previously found to be significantly differentially expressed

between comparisons with Korowai individuals, include the genes OAS1-3. These genes are implicated

in antiviral activity [67], with both OAS1 and OAS3 being implicated in protection against Flavivirus

infection [68,69].
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Discussion

Our understanding of pathogens found within remote regions within Indonesia, along with their impact on

gene expression, is limited. Here, we have investigated which microbial taxa can be detected within whole

blood and the influence they have on blood expression profiles. Although we did not reach full saturation of

reads (Supplementary Figure 10), we found a combination of multiple taxonomic kingdoms that constitute

the Indonesian whole blood microbiome. As described in previous research on blood microbiomes from other

global populations [70–72], bacteria were some of the most abundant taxa found within Indonesian samples

(Figure 1, A). Although bacteria found within blood have most commonly been associated with sepsis,

mounting evidence suggests that some bacteria are normal inhabitants of whole blood, likely originating

from the gut and oral cavities [72,73], although they may also represent leakage from other parts of the body.

We also found evidence for the presence of eukaryotes, archaea, and viruses, all of which have previously

been characterised in blood transcriptomes [74]. This study supports a growing body of research suggesting

that rather than being a sterile environment, a variety of taxa naturally reside within whole blood, and

understanding the roles of these microbes in future studies may help facilitate better understanding of

healthy and disease states in different populations.

Although we found that the majority of these microorganisms did not have a detectable association with

gene expression, two phyla—–Apicomplexa (driven nearly exclusively by the family Plasmodiidae) and

Kitrinoviricota (driven by the family Flaviviridae)–—did have noticeable effects. This was supported by ICA,

which showed that contributing genes were enriched in responses to malaria and viruses (Supplementary

Table 5). Indeed, genes such as SLC4A1, which is involved in Southeast Asian Ovalocytosis—a protective

polymorphism against severe malaria [58]—and ACKR1 which encodes the Duffy antigen/chemokine

receptor (DARC ) [75], were some of the highest contributing genes in IC3. Responses to viral infections

were also apparent in IC4, where RSAD2, a well-characterised gene involved in the antiviral response [62],

was the main contributing gene and multiple pathways were enriched for viral responses (Supplementary

Table 5). From taxonomic profiling, we could attribute Kitrinoviricota viral signals to the family Flaviviridae,

which is a family of primarily found in mosquitos and ticks, and is responsible for multiple human illnesses

including Zika, Dengue, and Yellow Fever [76, 77], alhough we were unable to refine this assignment further.

For Apicomplexa, we could attribute 99.9% of reads to the family Plasmodiidae, of which Plasmodium

falciparum and Plasmodium vivax are endemic throughout Indonesia [78].

Of all the Indonesian island populations in this study, we found that the Korowai not only had the highest

abundance of both of these two pathogens, but were also a driver of differences between islands in ICA. The

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2022. ; https://doi.org/10.1101/2022.04.24.489025doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.24.489025
http://creativecommons.org/licenses/by/4.0/


Indonesian side of New Guinea Island is documented to have the highest rates of malaria in Indonesia [79],

as well as the lowest number of healthcare facilities [80]; our results corroborate existing observations of a

high endemic pathogen load within this region. The Korowai were the biggest drivers of difference within

IC1 (FDR adjusted Kruskal-Wallis p = 1.2 × 10−18), which we identified to be associated with a general

immune response. Supporting this, we have shown in our previous data [20] that multiple immune genes

are differentially expressed between both Sumba and Mentawai and the Korowai. This includes MARCO, a

macrophage receptor gene which is activated upon infection by bacteria and parasites [81,82], and which we

found to be one of the main contributing genes to IC1. Together, this suggests that differences in exposure

to pathogens contribute to gene expression differences between populations.

Although this study focuses on pathogens within Indonesian blood microbiomes, the ability to detect

signals relating to cardiomyopathies and cardiovascular pathways in IC2 (Supplementary Table 5; Sup-

plementary Table 6) demonstrates the ability of ICA to differentiate multiple biological signals into their

constituent parts. Indeed, Indonesia faces multiple health burdens including not only infectious diseases, but

also non-communicable diseases, such as cardiovascular disease [83,84]. Applications of ICA on expression

profiles could therefore be especially useful when multiple illnesses are comorbid within a population in

order to discriminate between diseases and apply more targeted interventions.

In addition to characterising Indonesian whole blood microbiomes, we have also shown that these are

distinct to those of other global populations, although these findings are limited by the fact that all three

datasets we considered were generated by different groups in different places. Nevertheless, Bray-Curtis

distance estimates showed that the Indonesian, Malian, and UK populations had high levels of dissimilarity

from one another (Supplementary Figure 12, C), and multiple taxa were differentially abundant between the

three global populations (Figure 3, A and B; Supplementary Table 3). Intriguingly, we found that within the

Malian population, every individual had high abundances of the archaeal phylum Euryarchaeota. Although

we found this result surprising, previous studies have documented not only archaea within whole blood [7],

but also the same phylum of archaea [50]. Furthermore, an independent study conducted on Malian

individuals found Euryarchaeota within oral cavities of patients, [85] and archaea are well-characterised to

naturally inhabit the human body [86].

Apart from differences between the three global populations, we also found differences in diversity

between populations comparisons to the UK. Indeed, alpha diversity indices were higher in Malian and

Indonesian populations, although the UK population had the highest read depth out of all three populations.

This may suggest that rural and urban microbiomes differ, with a more microbially-rich microbiome in
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rural populations. Supporting this, a study of gut microbiomes within hunter gatherers found similar

results: the Hadza, a small hunter gatherer group living in Tanzania, had more diverse gut microbiomes

than Italian urban controls [87]. In addition, a different study comparing gut microbiomes of rural and

urban environments found that urban microbiomes were distinct, and that urbanisation led to a loss of

certain bacterial taxa [88]. This raises the question of what healthy whole blood microbiomes look like, and

calls for further research into the influence of lifestyle, geography, and pathogenic load on this tissue type.

Although we have shown that whole blood transcriptomes can be exploited for diagnostic purposes,

some limitations remain. For one, we note that although our total sample sizes are high—which is rare

in studies utilising understudied populations, or more broadly, populations outside an urban, ”western”

environment—our total read depth is low, limiting the taxa we can detect in the population. Indeed,

out of all three global populations, the Indonesian dataset had the lowest read depth and did not reach

full saturation (Supplementary Figure 10). However, in opportunistic studies such as this, meeting the

conditions required for high sequencing depth is rare; sequencing depth of unmapped reads is sensitive to

multiple factors, including sequencing platform, sample collection and processing strategy, and only two

publicly-available datasets that we could find met the requirements needed to withstand total microbiome

depletion. Therefore, for studies utilising whole blood RNA for diagnostic purposes, care should be taken

to understand the influence of these factors on pathogen detection.

A better understanding of which pathogens affect remote populations and the impact they have on the

immune response is crucial. Whole blood is one of the most abundant tissue types in RNA-seq analysis

due to its relative ease of collection [89], and therefore its ability to provide information on environmental

factors influencing disease phenotypes is ripe for investigation. In Indonesia, this is particularly important;

Indonesia has a growing number of emerging infections [16,90], however proper surveillance in rural areas

still remains limited. This study therefore provides valuable surveillance information on blood-borne

microorganisms within the region, which is a crucial step in limiting the spread of endemic and emerging

diseases, as well as a readily-adaptable approach that can be applied to already existing RNA-seq datasets

from anywhere in the globe.
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Supplementary Figure 1 Analysis of forward and reverse reads to investigate the higher proportion of

mapped single-ended reads.

Supplementary Figure 2 Summary of reads mapping to filtered taxa for the Indonesian, Malian, and

UK populations.
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Supplementary Figure 3 Read depth per individual library across all filtering steps.

Supplementary Figure 4 Scree plot of variance explained per principal component.

Supplementary Figure 5 PCA of taxa abundance at the phylum level, highlighted by Actinobacteria

abundance.

Supplementary Figure 6 Shannon and inverse Simpson diversity estimates in the Indonesian population.

Supplementary Figure 7 Plasmodium abundance versus Shannon diversity for each Korowai individual.

Supplementary Figure 8 Relative abundance of the top 20 taxa within the Indonesian, Malian, and

UK dataset at the family level.

Supplementary Figure 9 Processed, unmapped Malian reads spanning the Methanocaldococcus jan-

naschii genome, visualised using IGV.

Supplementary Figure 10 Saturation curves for each global population after singleton removal.

Supplementary Figure 11 Volcano plots of differentially abundant taxa between Indonesian and other

global populations.

Supplementary Figure 12 Bray-Curtis distance estimates for Indonesian, Malian, and UK population

comparisons at the phylum level.

Supplementary Figure 13 Significant pathogens from BH-adjusted Pearson correlation p-values for

each IC.

Supplementary Figure 14 Distribution of sample contributions for each island for ICs 2-5.

Supplementary Table 1 The number of reads at each filtering stage for 100-bp Indonesian reads, as

well as 75-bp reads of all populations.

Supplementary Table 2 P-values from ANOVA tests between PCA of taxa abundances and logged

abundances of individual taxa.
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Supplementary Table 3 Significantly deferentially abundant taxa (Welch’s t-test BH-adjusted p =

0.05) at the phylum level for all populations.

Supplementary Table 4 Contributing genes for each IC for the Indonesian population.

Supplementary Table 5 GO enrichment testing results for contributing genes within each IC.

Supplementary Table 6 KEGG enrichment testing results for contributing genes within each IC.
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Supplementary Figure 1. Forward versus reverse read comparison. A) Pairwise Pearson correlations
between reads from the same mate pair (in blue) and reads outside of their mate pair (purple) for each
taxonomic rank. B) Proportion of dissimilar reads between forward and reverse reads at each taxonomic
rank.
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Supplementary Figure 2. Summary of reads mapping to filtered taxa for the Indonesian, Malian, and
UK populations. A-C) Reads mapping to the Viridiplantae D-F) Metazoa G-I) and helminths.
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Supplementary Figure 3. Read depth per individual library across all filtering steps.
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Supplementary Figure 4. Scree plot showing the percentage of variance explained for the first 20
principal components.
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Supplementary Figure 5. PCA of taxa abundance at the phylum level, highlighted by logged
abundance of Actinobacteria.
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Supplementary Figure 6. Alpha diversity estimates for Indonesian island populations. A) Estimates of
Shannon and B) inverse Simpson diversity within each population. KOR = Korowai; MTW = Mentawai;
SMB = Sumba
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Supplementary Figure 7. Plasmodium abundance for each Korowai individual. Individuals are ranked
from lowest Shannon diversity (on the left), to highest diversity.
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Supplementary Figure 8. Relative abundance of the top 20 taxa within the Indonesian, Malian, and
UK dataset at the superkingdom, phylum, and family level. Bacteria are shown in blue, eukaryotes in red,
viruses in green, and archaea in yellow.

Supplementary Figure 9. Processed, unmapped Malian reads spanning the Methanocaldococcus
jannaschii genome, visualised using IGV. Each row indicates read coverage for the first ten Malian samples
in the dataset, while each pane (column) indicates a genomic region.
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Supplementary Figure 10. Rarefaction curves of species saturation per individual at varying read
depths for the A) Indonesian B) Malian and C) UK populations.
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Supplementary Figure 11. Taxa differences between Indonesian and other global populations. A)
Volcano plot of BH adjusted p-values from Welch’s t-test for each phyla in the Malian versus Indonesian
populations and B) UK versus Korowai populations. Taxa with a BH-corrected p-value below 0.05 for are
coloured by superkingdom (red: eukaryotes; blue: bacteria; green: viruses; yellow: archaea).

Supplementary Figure 12. Bray-Curtis distance estimates for Indonesian, Malian, and UK population
comparisons at the phylum level.
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Supplementary Figure 13. Significant pathogens within each IC. Each row shows a pathogen with a
significant correlation between pathogen load and sample contribution for each IC (in columns). Positive
correlations are shown in red, while negative correlations are shown in blue. BH-adjusted Pearson’s
p-values are indicated by stars (0.05, 0.01, and 0.001 for one, two, and three stars, respectively).
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Supplementary Figure 14. Caption on next page
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Supplementary Figure 14. Independent component analysis for IC2 and IC5. A) Distribution of sample
contributions for each island within IC2 B) Correlation of CLR-normalised Apicomplexa load and sample
contributions for IC2 C) Correlation of CLR-normalised Apicomplexa load and CCL23 log2 CPM values,
the gene with one of the highest contributions to this IC, across all samples D) Correlation of Apicomplexa
load and sample contributions for IC3 E) Distribution of sample contributions for each island within IC3 F)
Correlation of CLR-normalised Apicomplexa load and SLC4A1 log2 CPM values across all samples G)
Correlation of Kitrinoviricota load and sample contribution to IC4 H) Distribution of sample contributions
for each island within IC4 I) Correlation of CLR-normalised Kitrinoviricota load and RSAD2 log2 CPM
values across all samples. J) Distribution of sample contributions for each island within IC5 K) Correlation
of Kitrinoviricota load and sample contributions for IC5 L) Correlation of CLR-normalised Kitrinoviricota
load and UTS2 log2 CPM values, the gene with the highest contribution to this IC, across all samples
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