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Abstract  7 

People show vast variability in skill learning. What determines a person's individual learning 8 

ability? In this study we explored the possibility to predict participants’ future learning, based 9 

on their behavior during initial skill acquisition. We recruited a large online multi-session 10 

sample of participants performing a sequential tapping skill learning task. We trained machine 11 

learning models to predict future skill learning from raw data acquired during initial skill 12 

acquisition, and from engineered features calculated from the raw data. While the models did 13 

not explain learning, strong correlations were observed between initial and final performance. 14 

In addition, the results suggest that in correspondence with other empirical fields testing 15 

human behavior, canonical experimental tasks developed and selected to detect average 16 

effects may constrain insights regarding individual variability, relevant for real-life scenarios. 17 

Overall, implementing machine learning tools on large-scale data sets may provide a powerful 18 

approach towards revealing what differentiates between high and low innate learning abilities, 19 

paving the way for learning optimization techniques which may generalize beyond motor skill 20 

learning to broad learning abilities. 21 

 22 
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Introduction 28 

People vary substantively in their ability to execute daily skills. What are the sources of such 29 

variability? Most studies have focused on initial and online task performance, known to vary 30 

between individuals (Anderson, Lohse, Lopes, & Williams, 2021). Thus, with no prior practice, 31 

some individuals might exhibit outstanding performance, while others might express slow and 32 

inaccurate performance. Importantly, people vary greatly in their ability to learn new skills as 33 

well, with the range of possible improvement differing between individuals. Predicting learning 34 

based on early skill acquisition offers an abundance of benefits and may be useful for effective 35 

adjustment of training regimes in daily life and for neurorehabilitation. What determines 36 

individual differences in learning abilities? Here, we aimed to investigate individual differences 37 

in skill learning by predicting the amount of learning an individual will exhibit across different 38 

time intervals, based on information extracted from performance at an early session. 39 

Investigating individual differences with complex statistical modeling requires a large pool of 40 

participants. Therefore to address this question, we leveraged online platforms enabling 41 

crowdsourced recruitment producing large-scale data sets (Chandler & Shapiro, 2016; Ranard 42 

et al., 2014). Furthermore, the combination of such online platforms along the recent rise of 43 

machine learning models as means to understand rich data sets in neuroscience (Richards et al., 44 

2019), provides a unique opportunity to investigate individual differences in skill learning. 45 

To predict the extent of learning from skill acquisition characteristics, we utilized a common 46 

motor sequence learning task, widely used to model human skill acquisition (Brown & 47 

Robertson, 2007; Cohen, Pascual-Leone, Press, & Robertson, 2005; Genzel et al., 2012; Karni et 48 

al., 1998; Muellbacher et al., 2002; Perez et al., 2007; Reis et al., 2009; Robertson, Pascual-49 

Leone, & Press, 2004; Wiestler & Diedrichsen, 2013; Wu, Srinivasan, Kaur, & Cramer, 2014).  50 

Thus, we conducted a large-scale crowdsourced experiment, recruiting online participants to 51 

take part in 3 learning sessions, with a retention session following one week, and an additional 52 

long-term retention session following 2-4 months. First, we validated that online participation 53 

demonstrates common learning rates within each session as well as between sessions offline 54 

gains (Karni et al., 1995; Lugassy, Herszage, Pilo, Brosh, & Censor, 2018; Robertson et al., 2004). 55 

Next, we applied a wide array of machine learning models based on engineered features 56 

derived from existing literature of motor skill learning, as well as models based on raw data, 57 

using machine extracted features with no involvement of prior knowledge.  58 

 59 

Methods 60 

Participants 61 
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Participants were recruited online from the Amazon Mechanical Turk platform 62 

(https://www.mturk.com). Qualifications for registered MTurk workers to participate in the first 63 

session of the experiment were: above 95% approval rate in previous MTurk assignments, 64 

currently located in the USA, right-handed, and did not previously participate in a sequential 65 

tapping task from our lab. Each of the following sessions were made available to qualified 66 

participants according to the predefined scheduling scheme and was available for 12 hours. 67 

Data were collected using non overlapping batches of participants – session 1 of the 68 

experiment was made available on a Monday and the next sessions accordingly. This resulted in 69 

the following number of participants per session: Session 1: 571 participants, Session 2: 334, 70 

Session 3: 273, Session 4: 195, Session 5: 103. Additional exclusion criteria were enforced to 71 

make sure the remaining sample of participants were all attentive and complied with 72 

instructions (see below). This resulted in the final sample of: session 1: N=460; 274 Female; 73 

Mean age = 43.35, Std = 12.99; session 2: N=254; 154 Female; Mean age = 43.29, Std = 12.83; 74 

session 3: N=203; 116 Female; Mean age = 44.07, Std = 12.72; session 4: N=134; 75 Female; 75 

Mean age = 46.08, Std = 13.00; session 5: N=75; 39 Female; Mean age = 47.48, Std = 12.47. All 76 

participants used a button press to sign an online informed consent form presented at the 77 

beginning of each session. The payment scheme for all sessions was visible in the experiment 78 

page on the Mturk platform. To minimize dropouts, the compensation increased as sessions 79 

progressed (1.5$, 2$, 2.5$, 2$ for the shorter 4th Retention session, and 5$ for the final long-80 

term Retention session). 81 

Task 82 

Participants performed a procedural motor task - the sequence tapping task (Karni et al., 1995), 83 

a highly common task used in numerous motor learning studies (Albouy et al., 2012; Bönstrup, 84 

Iturrate, Hebart, Censor, & Cohen, 2020; Herszage, Sharon, & Censor, 2021; Rickard, Cai, Rieth, 85 

Jones, & Ard, 2008). Participants were instructed (using illustrative slides) to place their non-86 

dominant left hand on their keyboard in a one-to-one correspondence between fingers and 87 

digit-numbers; pinky – #1, ring finger – #2, middle finger – #3, index finger – #4. They were 88 

instructed to repeatedly tap the requested pattern (4-1-3-2-4) as fast and as accurate as 89 

possible using their left hand for the entire trial duration (10 seconds). A 10 second count-down 90 

screen preceded each trial and served as a break. Feedback was provided in the form of dots, 91 

with each keypress adding an additional dot to the display, regardless of correctness. Except for 92 

the sequence itself, this was the only visible item on the screen during the trial. The experiment 93 

was programed in Psychopy (Peirce et al., 2019) and was hosted on Pavlovia servers 94 

(https://pavlovia.org/). 95 

Experimental procedure  96 
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Before the first session, participants reported their age, gender, education level, time of weekly 97 

engagement with musical instruments and time engaged in physical activities. Additionally, at 98 

the beginning of each session, participants were asked to report the duration and the quality of 99 

sleep on the night preceding that session. At the end of each session, as a simple attention 100 

check, participants were asked to report the hand they used to perform the task. The study 101 

initially comprised of 4 sessions - each consisting of 36 trials except for the Retention session 102 

(4th session) containing 9 trials. A fifth session, the long-term Retention session, was made 103 

available 2-4 months after the completion of the Retention session, and comprised of 36 trials, 104 

identical to the first 3 sessions (figure 1a). 105 

Data analysis and machine learning feature engineering 106 

 All analyses were performed using custom code written in python (Van Rossum & Drake Jr, 107 

1995). Data preprocessing and handling was done using the Numpy (Harris et al., 2020) and 108 

Pandas (McKinney, 2010) package. The machine learning pipeline was defined using Scikit-learn 109 

(Pedregosa et al., 2011) and Pytorch (Paszke et al., 2019). The Matplotlib (Hunter, 2007) and 110 

Seaborn (Waskom, 2021) libraries were used for data visualization. Statistical analysis was 111 

conducted using Pinguin (Vallat, 2018).  112 

Participants were qualified to continue to the next session if they did not end the experiment 113 

mid-session and averaged at least 9 input characters per trial. Additionally, to validate 114 

participants’ attention to the task, data were discarded from all sessions if participants were 115 

too slow to start the trial following a break (first input exceeded 2 seconds) or failed to respond 116 

in more than 5 trials per session. Next, if the reported sleep duration was outside of the 117 

acceptable range of 6-12 hours, the data from that session and all following sessions were 118 

discarded.  119 

Performance was defined as the overall number of correct keypresses in a trial (Censor, 120 

Horovitz, & Cohen, 2014; de Beukelaar, Woolley, & Wenderoth, 2014; Herszage et al., 2021; 121 

Korman et al., 2007). Keypresses were deemed correct if they were part of the complete 122 

requested pattern (4-1-3-2-4). If the trial ended mid-pattern, all keypresses from the start of 123 

that pattern were also considered correct. To minimize the effects of fatigue, learning was 124 

defined as the difference between the average of the 3 best trials in each session.  125 

The following statistics were extracted from each session for each participant: start 126 

performance was defined as the average of trials number 2 and 3 (trial 1 not included due to 127 

warm-up decrements) (Adams, 1952; Rickard et al., 2008). End performance was defined as the 128 

mean of the last 3 trials in a session. Maximal and minimal performance were defined as the 129 

mean of the 3 trials with highest/lowest performance within each session. Offline gains were 130 

defined as the difference between consecutive sessions i.e., the start performance in session 131 

n+1 was deduced from the end performance. Continuity was defined as the average of the 132 
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longest consecutive correct keypress of each trial across an entire session (Herszage et al., 133 

2021). The mean accuracy was also computed for each participant in each session based on the 134 

average accuracies in all trials within the session. Additionally, the average response time of the 135 

first keypress of each trial across the session was defined as the mean first RTs and used as a 136 

proxy for estimating the level of attentiveness during the trial.  137 

Session dynamics. Session performance, defined as number of correct keypresses per trial 138 

within a session, was fitted with a learning curve according to the following equation:  139 

𝑇𝑛 =  𝑇1𝑛−𝑙(𝑛), 𝑙(𝑛) = 𝑙 +  𝑓𝑝 + 1 − exp (𝑓𝑝(𝑛𝑓𝑝 − 1))  140 

where 𝑇 − the amount of correct keypresses , 𝑙 − learning rate, 𝑓𝑝 −141 

fatigue paramter (Asadayoobi, Jaber, & Taghipour, 2021), 𝑛 − trial number. 142 

Scipy.optimize.curve_fit (initial guess for parameters (0.5,0.2,0) all bounded between [0-1]) was 143 

used to find the optimal Parameters 𝑓𝑝, 𝑙 and 𝑇1 for each participant and session. 144 

End of session slopes. A regression line (intercept and slope) was fitted for the number of 145 

correct trials for the last 15 trials in the session separately for each participant and session 146 

(excluding session 4, which included only 9 trials).  147 

Locally weighted scatterplot smoothing (lowess) features. For each participant, the correct 148 

number of keypresses per trial were smoothed across the session using a non-parametric local 149 

regression (statsmodel.api.nonparamateric.lowess, fraq = 0.5). Several features were extracted 150 

from the smoothed curve. First, we defined the regions of plateau on the curve as the longest 151 

streak of consecutive trials in which the derivative was below 0.25, meaning that the smoothed 152 

improvement between trials was less than a quarter of a keypress. The start and end of the 153 

plateau were defined as the first and last trials within this streak and the streak count was their 154 

difference. Additionally, the maximum of the smoothed curve and its index within the session 155 

(the trial in which it was achieved) were also extracted per participant and session.  156 

Within sequence consistency dynamics. To derive a representation of within sequence dynamics 157 

we first extracted the response time of the last sequence in a correct pattern (the 5th input per 158 

sequence) in relation to the first input of the same sequence. This resulted in a vector of last 159 

keypress durations (locked to the first input of the sequence) for all correct sequences in the 160 

order of execution. To examine the consistency of this input over time we calculated the 161 

standard deviation over a running window of 10 consecutive inputs (running RT consistency). 162 

This running estimate was then fitted with a 3rd degree polynomial (using the numpy.polyfit 163 

function). The coefficients of this polynomial and the fit prediction error (root mean square 164 

error) were used as additional hand-crafted features which capture the pattern dynamics 165 

across the session for each participant.  166 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2022. ; https://doi.org/10.1101/2022.04.24.489296doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.24.489296
http://creativecommons.org/licenses/by-nc-nd/4.0/


-6- 
 

Pattern consistency trend. To examine the amount of monotonicity apparent in the running RT 167 

consistency estimate, we used Spearman correlation with the corresponding vector of window 168 

number within the session. A high negative correlation suggests that a participant’s strategy 169 

gradually converged to a stable pattern. A high positive correlation on the other hand, suggests 170 

a diverged strategy, entering correct sequences less consistently as time progressed.  171 

 172 

Machine learning modeling 173 

To test the predictive power of the behavior observed during initial training (session 1) on 174 

future learning induced by subsequent training sessions, three time intervals were examined: a) 175 

change in performance from the 1st session to the 2nd session. b) change in performance from 176 

the 1st session to the 3rd session. c) change in performance from the 1st session to the 4th 177 

retention session. Two additional time intervals were used to predict skill retention a) one week 178 

retention interval (from the 3rd session to the 4th) and b) a long-term retention interval (2-4 179 

months) (from the 4th session to the 5th). Note that the number of participants decreases as the 180 

experiment reached later sessions, hence the number of observations available for modeling of 181 

later intervals is smaller. Accordingly, different modeling approaches were used, as detailed 182 

below.   183 

The first approach utilized the engineered features as predictors and examined a wide range of 184 

machine learning techniques. Specifically, we tested: two tree-based models: Random Forest 185 

regression (Ho, 1995) and Sequential Regression Trees using gradient boosting (Xgboost) (J. H. 186 

Friedman, 2001). Regularized regression (Elastic net (Zou & Hastie, 2005)) and a multi-layer 187 

perceptron (MLP (Haykin, 1994)). Due to the large number of potential predictors, and to avoid 188 

over-fitting of the training set, we tested these pipelines both with and without an additional 189 

preprocessing step of principle components analysis (PCA)-based dimensionality reduction. 190 

Each modeling pipeline started with a standard scaler, transforming the feature values into z-191 

scores. We used grid search for hyper-parameters tuning of the algorithms and regularization 192 

parameters. Each set of hyper-parameters was optimized separately for each type of algorithm, 193 

predictors step and time interval. The best model was selected based on the average 5-fold 194 

cross validation (CV) score. For each model type and time interval, the model selection was 195 

done in stages. In each stage an additional set of predictors was introduced based on their 196 

complexity, starting with high level features (i.e., session dynamic parameters) and ending with 197 

the simplest features (performance per trial). Initially, only non-behavioral features were 198 

included (i.e., Age and Gender). Next, predictors were introduced in steps. In the 1st step 199 

parameters from the learning curve were introduced. The 2nd step included the parameters 200 

extracted to capture Within sequence consistency dynamics and the pattern consistency trend. 201 

The 3rd step included Lowess based features. The 4th step included session statistics. The 5th 202 

step included the micro-offline and micro-online features of the first 5 trials (Bönstrup et al., 203 
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2019). And the 6th and final step, included the performance per trial for all trials in the session. 204 

For prediction purposes, normalization was done using the means and standard deviations of 205 

the variables in the training set. Additionally,  we tested a recurrent Long Short-Term Memory 206 

(LSTM) network architecture in which the input was the most common end-point measure (de 207 

Beukelaar et al., 2014; Herszage & Censor, 2017; Herszage et al., 2021; Karni et al., 1995) of the 208 

task - the number of correct keypresses for each trial in the first session.  209 

The second approach examined the prediction of future learning, based on all previous 210 

sessions. We used a linear regression model with correlation-based feature selection, 211 

introducing all available predictors at once and running a hyperparameters grid search on the 212 

number of selected features.  213 

In the third approach, models were trained directly on raw data from the first session, 214 

predicting learning between the first and second training sessions. Task performance was 215 

represented as a binary image of size 4 x 7200, where rows represent the key identity (1-4) and 216 

columns represent the time where the key was pressed (in 50ms bins). For example, a key press 217 

on the key “3” performed 250ms after trial start, will have a value of 1 in the coordinate (3,5). 218 

We then trained a convolutional neural network to predict learning. Hyper parameters of the 219 

topology and the optimization parameters were tuned manually. Similarly, a convolution 220 

encoder-decoder based method was built using the above binary session image as input, 221 

geared to reproduce the same image with a compact embedding layer which is then used as 222 

features in a regression analysis. 223 

Model evaluation 224 

The parameters that resulted in the best performance on the training-set for each model type 225 

and prediction interval were used to re-train the model on the entire training set and examine 226 

it on the 20% of hold-out data that was not accessible during training. The final score is thus the 227 

reported explained variance (R2) of the hold-out dataset.  228 

Statistical analysis  229 

One sample t-tests were used to examine the statistical significance of the offline gains analysis. 230 

Correlational analyses were conducted using Pearson or Spearman correlation.  231 

  232 
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Results  233 

We first validated that performance was consistent with previous studies employing the same 234 

task in laboratory settings (de Beukelaar et al., 2014; Herszage & Censor, 2017; Karni et al., 235 

1998; Korman et al., 2007). Indeed, participants displayed typical learning curves (figure 1b), 236 

with significant learning expressed both within-session, and between-sessions as offline gains 237 

(Karni et al., 1998; Press, Casement, Pascual-Leone, & Robertson, 2005; Walker, Brakefield, 238 

Morgan, Hobson, & Stickgold, 2002) (figure 1c). Specifically, there were significant offline gains 239 

between sessions 1 and 2 (t(253) = 2.639, p = 0.009, Cohen’s d = 0.126, CI = [0.36 2.45]), and 240 

between sessions 2 and 3 (t(202) = 4.008, p < 0.001, Cohen’s d = 0.191, CI = [1.08 3.16]). 241 

Interestingly, even when the skill memory was tested following one week, additional offline 242 

gains were evident, with a significant improvement between session 3 and Retention session 4 243 

(t(133) = 3.154, p = 0.002, Cohen’s d = 0.183, CI = [0.75 3.28]). In addition, during the long term 244 

retention interval, lasting between 2-4 months (see Methods) a significant reduction in 245 

performance was observed (difference from Retention (4th session) to Long-term Retention (5th 246 

session): t(74) = -7.661, p < 0.001, Cohen’s d = 0.722, CI= [-10.32 -6.06]), indicating a decay of 247 

the memory trace over a period of months. Overall, these results validate typical within and 248 

between session motor skill learning.  249 

 250 

Figure 1: Task performance within and between sessions. a) Experimental design. b) Learning curves across all five 251 

sessions (session 1 – blue, session 2 – yellow, session 3 – green, Retention session – orange, Long Term Retention 252 

session – pink), the shaded area represents the 95% confidence interval. c) Offline gains between consecutive 253 

sessions. Data points in the violin plots represent offline gains for each participant. The white dot represents the 254 

median.  255 
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How could machine learning tools be applied to predict future learning? We first used ML with 256 

engineered features (see Methods), training discriminative algorithms to predict learning based 257 

on performance in the first session. To that end, our goal was to predict the improvements 258 

between performance in session 1 and performance in each of the subsequent sessions 2-4. To 259 

minimize within session effects of warm-up and fatigue (Adams, 1952; Rickard et al., 2008), 260 

between–session learning was quantified based on maximal performance in each session (see 261 

Methods). Potential predictors were introduced in steps with diminishing feature complexity, 262 

ranging from whole session dynamics descriptors, to the number of correct keypresses in each 263 

trial. The best performing model was selected based on its mean cross validation and tested on 264 

a predetermined hold-out set. Models did not predict learning in the hold-out set (session2 - 265 

session1: R2
mean_cv_score= 0.08, R2

test =0.15; session3 - session1: R2
mean_cv_score= 0.09, R2

test=-266 

0.18; Retention session 4 - session1: R2
mean_cv_score = 0.01, R2

test = 0.07) (Figure 2a). Of note, a 267 

negative R2 score indicates that model predictions do not explain any variance in the dependent 268 

variable.  269 

Is behavior at initial stages of skill acquisition indicative of skill retention? To address this 270 

question, models were trained to predict the performance change during the short (from 271 

session 3 to Retention session) and long retention intervals (from Retention to Long-term 272 

retention), based on performance in either the first or all 3 prior sessions. The change in 273 

performance over both retention intervals was not predicted by the best performing model 274 

(highest cross validation score) as reflected in the negative R2 in the hold-out set (Retention 275 

session - session3: R2
mean_cv_score= 0.11, R2

test = -0.84; Long-retention – Retention session:  276 

R2
mean_cv_score= 0.10 R2

test = -0.65, figure 2b). Since the long-term retention interval showed 277 

negative changes in performance, further investigation of the data revealed that maximum 278 

performance in the Retention session was the best predictor for the subsequent long-term 279 

retention interval (Pearson’s r(73) = -0.49, p < 0.001, CI = [-0.65,-0.30]). Considering that 280 

maximum performance in the Retention session reflects both innate abilities and the overall 281 

benefit of training throughout the experiment, we examined the correlation between total 282 

learning and retention. Pearson correlation confirmed that the amount of total learning 283 

throughout the experiment (performance differences between session 1 and Retention session 284 

4) was even a stronger predictor of the change in performance (Pearson’s r(73) = -0.58, 285 

p<0.001, CI = [-0.71,-0.40]), suggesting that participants exhibit long-term decay of their own 286 

learning before the retention interval.   287 

 288 
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 289 

Figure 2: Model performance with engineered features. a) maximum mean cross-validation R2 scores (blue) and 290 

the corresponding hold-out R2 scores (orange) for each learning interval (X axis). b) Maximum mean cross-291 

validation R2
 scores (blue) and the corresponding hold out R2 (orange) for the two retention intervals (x axis).  292 

 293 

Next, we tested whether a different approach of machine learning models, avoiding feature 294 

selection based on prior assumptions, will achieve better prediction of future learning. To 295 

further investigate prediction in that direction, we trained a convolutional neuronal network on 296 

data from session 1, represented as a binary matrix of size 4 x 7200, where rows represent key 297 

identity and columns represent keypress time within the session in 50ms time bins (Figure 3). 298 

This representation reflects the available raw data, without imposing any definition of key 299 

correctness. This analysis was focused on the prediction of learning between the first and the 300 

second session, which includes the largest pool of participants. Additionally, to better utilize all 301 

available data, evaluation of model performance was based solely on cross validation. The best 302 

model resulted in mean cross validation R2
test=-0.049, std = 0.053 performance. Consistent with 303 

this result, two additional models, using a convolution based encoder-decoder and LSTM 304 

architectures (see Methods), did not show predictive power. 305 

 306 
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 307 

Figure 3. Convolution based neural network architecture. Input was represented as a 4 x 7200 binary matrix, where 308 

rows represent key identity (1-4) and columns represent time within the session (in 50ms time bins). The network 309 

architecture consists of two convolution layers, each followed by a pooling operation which is followed by 3 fully 310 

connected layers. The Rectified linear unit (Relu) was the selected activation function. 311 

  312 

To further investigate the above results, we assessed the consistency of simple performance 313 

metrics in each session and between-session learning, using Pearson correlations. Performance 314 

in each session explained a large portion of the variance in Performance scores across the 3 315 

sessions and Retention session (R2 range = [0.25-0.91], all p < 0.001; see figure 4a), indicating 316 

high test-retest reliability and thus a stable measure of individual performance. However, 317 

performance hardly explained any portion of the variance in learning (R2 range = [0.00,0.05]; 318 

figure 4b). While these results suggest that variability in performance can be explained by 319 

performance in previous sessions, variability in learning can hardly be explained. To further 320 

illustrate this point, participants were separated into 5 quantile ranges (each spanning 321 

20%)(Stafford & Dewar, 2014) based on their maximum performance in the Retention session, 322 

plotted throughout the experiment (figure 4c). The plotted curves show that participant’s relative 323 

performance remained stable throughout the experiment. 324 
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 325 

Figure 4: Performance was consistent across sessions but did not predict learning. a) Performance in all sessions 326 

explains a large portion of the variability in performance (R2 range = [0.25, 0.91]. b) Performance hardly explains 327 

the variability in learning (R2 range = [0, 0.05]. c) Performance throughout the experiment separated according to 328 

the performance quantile in the Retention session (colors), showing that participants' relative performance rank 329 

remains stable across sessions. Shaded areas represent the 95% confidence interval. Statistical significance is 330 

marked with * for p<0.05 and with ** for p<0.001 331 

 332 

 333 

 334 
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Discussion 335 

The goal of this study was to identify what determines an individual's skill learning ability, based 336 

on their initial behavior during skill acquisition. Learning was measured at different intervals, 337 

using large-scale crowdsourced data. Results showed that performance in early sessions did not 338 

predict subsequent learning, while variability in performance was explained by performance in 339 

previous sessions. In addition, participants exhibited long-term skill memory decay, bound by 340 

their own learning before the retention interval.  341 

Machine learning techniques were leveraged to predict learning, utilizing several families of 342 

algorithms relying both on manually engineered features and on raw data representations. 343 

First, we extracted various features from the observed behavior in the task, ranging from high 344 

level features such as the parameters of the learning curve, to simple features such as the 345 

correct number of keypress in a trial. The applied models cover a wide array of approaches: 346 

Random Forest regression and Xgboost use an ensemble of weak learners and aggregate their 347 

predictions either based on consensus (random forest regression) or in a sequential manner. 348 

Multi-layered Perceptron (MLP), on the other hand, is a simple deep learning architecture 349 

consisting only of fully connected layers. The main advantage of these algorithms is their ability 350 

to capture interactions and other non-linear effects between predictors without explicitly 351 

modeling them by creating new variables. Two linear regression techniques were also examined 352 

due to their straightforward interpretability. Specifically, ElasticNet uses both L1 (Lasso) and L2 353 

(Ridge) regularization penalties to limit model complexity while maintaining the linear relation 354 

between features and target. Finally, more sophisticated deep learning techniques were 355 

examined due to their ability to extract useful features from the data, without relying on expert 356 

knowledge and feature engineering.  357 

A prerequisite of successful prediction of individual differences is a reliable test-retest metric 358 

for prediction (Spearman, 1961). This concept was demonstrated in other fields, such as the 359 

field of attentional control, where many canonical tasks, including Stroop (Stroop, 1935), 360 

Flanker (Eriksen & Eriksen, 1974), and Navon (Navon, 1977) result in robust between-conditions 361 

experimental effects, but in unreliable estimates of individual effects (Hedge, Powell, & 362 

Sumner, 2018), thus limiting insights regarding individual differences. Spearman and colleagues 363 

attributed this limitation to the calculation of a composite score as the difference between two 364 

measurements for the same individual (affecting test-retest reliability, Cronbach & Furby, 1970; 365 

Spearman, 1961). Critically, such differences between two measurements are the key outcome 366 

for evaluating skill learning. Therefore, while skill learning tasks have extensively shown robust 367 

and replicable results when examined between conditions (de Beukelaar et al., 2014; Gabitov et 368 

al., 2017; Herszage & Censor, 2017; Herszage et al., 2021; Korman et al., 2007), insights into 369 

individual differences may be limited. Accordingly, while large sample sizes may reduce 370 

standard errors and enable to detect average between-conditions effects, they do not 371 
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necessarily improve the reliability of individual effects. This issue could be addressed by 372 

increasing the number of repeated measures or trials for each participant, as done for example 373 

in studies of perceptual learning (Sagi, 2011). 374 

Furthermore, our analysis revealed that separating participants into 5 groups based on their 375 

performance in the Retention session, resulted in a visible, consistent classification throughout 376 

all sessions, suggesting that future learning may be too small to change participants’ rank. 377 

Participants showing higher performance at the beginning, will also result in better 378 

performance at the end of the experiment. These results are consistent with previous findings 379 

of a large online sample of participants playing a complex online shooter game (Stafford & 380 

Dewar, 2014). When participants were split into 5 quantile ranges based on their best 381 

performance the curves remained separated from the very beginning of the task. Development 382 

of novel model motor skill tasks with high variability in between-session learning, and in which 383 

future performance is not determined by initial performance, may overcome the above 384 

constraints and provide further insights regarding learning variability, important for real-life 385 

scenarios. These may be combined with potentially useful predictors from other domains 386 

(Ackerman, 1987; Anderson et al., 2021; Chen, Gully, Whiteman, & Kilcullen, 2000), functional 387 

and anatomical neuroimaging information (Tomassini et al., 2011), or high-resolution kinematic 388 

inputs (Friedman & Korman, 2012). 389 

In correspondence with other empirical fields testing human behavior, canonical experimental 390 

tasks developed and selected to detect average effects may constrain insights regarding 391 

individual variability, relevant for real-life scenarios. Accordingly, development of novel tasks 392 

with high test-retest reliability which model real-life learning, may shed light on the underlying 393 

mechanisms of individual differences in skill learning and promote personalized learning 394 

regimes geared to enhance human performance. Consequently, collecting large online datasets 395 

of behaving participants combined with advanced machine learning approaches, holds great 396 

potential for modeling future learning based on easily observable behavior during initial 397 

training. In turn, this may allow efficient resource allocation and enhancement of training 398 

regimes tailored to each person according to their innate abilities. 399 

 400 

Data and code availability 401 

All collected data and the code for analysis are available upon request. 402 

  403 
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