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Abstract  
 
Animal and human postmortem studies provide evidence for changes in gamma-aminobutyric 
acid (GABA) and glutamate in prefrontal cortex (PFC) during adolescence, suggesting shifts in 
excitation and inhibition balance consistent with critical period plasticity. However, how GABA and 
glutamate change through adolescence and how the balance of these inhibitory and excitatory 
neurotransmitters changes is not well understood in vivo in humans. High field (7 Tesla) Magnetic 
Resonance Spectroscopic Imaging was used to investigate age-related changes in the balance 
of GABA/creatine (Cr) and glutamate/Cr in multiple developmentally-relevant regions of PFC in 
144 10 to 30-year-olds. Results indicated a homogenous pattern of age-related Glu/Cr decreases 
across PFC regions, while age-related changes in GABA/Cr were heterogenous, with a mix of 
stable and decreasing age effects. Importantly, balance between glutamate/Cr and GABA/Cr in 
areas of prefrontal cortex increased through adolescence, suggesting the presence of critical 
period plasticity in PFC at this significant time of development when adult trajectories are 
established. 
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Introduction 
 

Adolescence is a period of significant maturation in prefrontal cortex (PFC), supporting 
development of cognitive control that stabilizes in adulthood (Luna et al., 2015; Sydnor et al., 
2021). Synaptic pruning (Petanjek et al., 2011) and gray matter thinning in PFC continues through 
adolescence (Gogtay et al., 2004), while its functional (Calabro et al., 2019; Gabard-Durnam et al., 
2014; Jalbrzikowski et al., 2017; Parr et al., 2021), and structural (Jalbrzikowski et al., 2017; Lebel 
& Beaulieu, 2011; Simmonds et al., 2014) connectivity continues to specialize supporting 
cognitive development (Liston et al., 2006). Underlying this transitional developmental period might 
be heightened neural plasticity consistent with a critical period. At the molecular level, animal and 
postmortem human studies show changes in GABA and glutamate in PFC (Caballero et al., 2021), 
which has been proposed to be consistent with a model of adolescence as a developmental critical 
period for executive function (Larsen & Luna, 2018). 

Studies in animal model sensory systems have demonstrated that a key mechanism 
regulating the opening of a critical period is a shift in the excitation/inhibition (E/I) balance. In 
visual cortex, the critical period occurs in the first years of life, driven by maturation of inhibitory 
circuitry, particularly Parvalbumin (PV) neurons, which leads to the establishment of balanced 
excitation and inhibition, thus closing the critical period (Dorrn et al., 2010; Hensch & Fagiolini, 
2005; Toyoizumi et al., 2013). More recently, it has been proposed that critical periods progress 
hierarchically through development, with sensory area critical periods occurring early in 
development, and critical periods of higher-order association cortices occurring later in 
development (Larsen & Luna, 2018; Reh et al., 2020). Animal and human postmortem evidence 
of increases in aspects of prefrontal GABAergic PV neurons (Caballero et al., 2014; Erickson & 
Lewis, 2002) and reductions in processes of prefrontal glutamatergic signaling (Harris et al., 2009; 
Henson et al., 2008; Hoftman et al., 2017) provide support for this proposal. Taken together, this 
literature suggests that dynamic shifts in E/I balance may be occurring during adolescence in 
cognitively-relevant association cortex. 

To date there is still limited understanding of E/I development in vivo in human adolescent 
prefrontal cortex. Recently, a study applying pharmacological fMRI with a GABAergic 
benzodiazepine challenge to model changes in E/I balance through adolescence found a 
reduction in excitation relative to inhibition in association cortex during adolescence (Larsen et 
al., 2021), providing initial indirect evidence of greater inhibition through adolescence in 
association cortex. Initial findings from Magnetic Resonance Spectroscopy studies using 1.5T, 
3T, or 4T scanners in single voxels provide some support, although findings have been 
inconsistent with some studies showing no age-related changes in glutamate (Blüml et al., 2013; 
Ghisleni et al., 2015; Gleich et al., 2015; Silveri et al., 2013) while others find age-related 
decreases (Shimizu et al., 2017), as well as some studies showing greater GABA levels in adults 
relative to adolescents (Ghisleni et al., 2015; Silveri et al., 2013).  

However, these MRS studies were performed at lower field strengths, which provides 
some challenges to interpreting the data. First, it is more difficult to separate the overlapping 
signals of glutamate and its metabolic precursor, glutamine, thus undermining the ability to assess 
developmental change specific to glutamate. Further, GABA measurements can be confounded 
by overlapping macromolecule signals, which can impact measurement of GABA levels (Bell et 
al., 2021). Moreover, these studies typically measure changes within one large voxel (e.g., with 
typical voxel sizes ranging from 6 cm3 (Shimizu et al., 2017) to 30 cm3 (Ghisleni et al., 2015)), 
often leading to a reduction in the amount of gray matter relative to white matter in the voxel, is 
likely to influence measurement (Choi et al., 2006). Thus, while these initial results suggest that 
there may be important developmental changes in GABA and glutamate levels, these 
methodological limitations, in addition to small sample sizes (ranging from 28-56 participants), 
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limit the ability to draw conclusions. The advent of 7T Magnetic Resonance Spectroscopic 
Imaging (MRSI) allows for better separation of confounding signals by doubling signal strength 
and improving signal-to-noise ratio (Pradhan et al., 2015), thus providing a more precise 
assessment of GABA and glutamate.  

Here we apply 7T MRSI in a sample of 144 10-30 year-olds to assess age-related changes 
in GABA/Cr and glutamate/Cr. In this study, we acquired a multivoxel slice with voxel sizes of 
0.9x0.9x1.0 cm, typically at least an order of magnitude smaller than previous developmental 
MRS studies to provide greater anatomical specificity within regions of PFC gray matter. We also 
assessed age-related changes in inter-subject variability, given evidence for developmental 
decreases in behavioral and brain functional variability (Klein et al., 2011; Montez et al., 2017; 
Ordaz et al., 2013; Tamnes et al., 2012). Following evidence from sensory system critical periods, 
we hypothesized that there would be decreases in glutamate/Cr and increases in GABA/Cr in 
PFC through adolescence to adulthood, resulting in a decrease in glutamate/GABA ratio and 
greater correlation or balance between glutamate and GABA, as well as decreases in inter-subject 
variability with age. While we found widespread age-related decreases in glutamate/Cr across 
both lateral and medial regions of the prefrontal cortex, GABA/Cr showed a regionally 
heterogeneous pattern of age effects, including no age-related change in some regions but 
decreases in others. Importantly, we also identify regions showing age-related increases in the 
correlation of glutamate and GABA, which might reflect greater E/I balance in adulthood as 
compared to adolescence. Together, the current study provides evidence for changes in the 
balance of glutamate and GABA through adolescence that might reflect critical period plasticity 
mechanisms.   
 
Results 
 
Age-related changes in metabolite levels 
 

We characterized age-related changes in GABA/Cr and glutamate/Cr (Glu/Cr) including 
sex and fraction gray matter (frac GM) in the voxel as covariates in regions selected from across 
an MRSI slice, including dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), 
anterior insula (AIns), and medial prefrontal cortex (MPFC). In regions that had both a left and a 
right hemisphere, data from both hemispheres was included in statistical models with hemisphere 
included as a covariate, and age by hemisphere interactions considered. Results showed 
significant age-related decreases in Glu/Cr in the DLPFC (Standardized coefficient b [see 
methods] = 0.15, Bonferroni-corrected p = 0.016), ACC (b  = 0.21, p =0.0056), and AIns (b = .29, 
p = 6.5x10-9), and no change in the MPFC (b = 0.12, p = 0.24) (Figure 1). These relationships 
remained significant upon inclusion of all covariates (Supplementary Table 1). There was a main 
effect of hemisphere in the DLPFC (b = -0.40, p = 7.84  x 10-6) as well as the AIns  (b  = -0.76, p 
=2.28x10-28), with the left hemisphere having overall higher levels of Glu/Cr than the right. There 
were no significant interactions of age with hemisphere or sex in any of the regions.  

Results showed significant age-related decreases in GABA/Cr in the AIns (b  = 0.20, p = 
9.04 x10-5) and the ACC (b  = 0.26, p =3.79 x 10-4), and no change in the MPFC (b  = 0.11, p = 
0.36) or DLPFC (b  = -0.01, p = 1.00) (Figure 1). As with Glu/Cr, we observed a main effect of 
hemisphere in the DLPFC (b = -0.26, p = 0.004) and AIns (b  = -0.49, p = 6.56 x10-8), with higher 
GABA/Cr levels in the left as compared to the right hemisphere. Again, these relationships 
remained significant upon inclusion of all covariates (Supplementary Table 2). In the AIns, there 
was an uncorrected-significant age-by-hemisphere interaction, but this did not survive multiple 
comparisons correction (b  = 0.16, Bonferroni-corrected p = 0.19). No other age-by-covariate 
interactions were observed.  
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Age-related changes in the ratio of Glu/Cr to GABA/Cr were examined for each region of 
interest. Results showed no age-related changes in any of our regions of interest (Figure 2; 
Supplementary Table 3). However, results showed a significant age-by-hemisphere interaction in 
the AIns (b = -0.39, p = 5.88x10-5), which was driven by age-related increase in Glu/GABA ratio 
in the right AIns (b  = -0.28, p = 0.00043) that was not significant in the left hemisphere (b  = 0.11, 
p = 0.11).  
 
Decreased inter-subject variability through adolescence 
 
 Age-related changes in inter-subject variability in metabolite levels were assessed using 
models of age-related change (described above) with the best fitting functional form of age (i.e., 
inverse age), and computing the absolute value of the residual of each metabolite relative. This 
approach captures the absolute deviation from the age-adjusted mean, with higher values 
indicating greater deviation, and lower values indicating metabolite levels very near the expected 
level for the participant’s age. Absolute deviation values were then assessed as a function of age 
to measure inter-subject variability. Due to the main effect of hemisphere as well as interaction 
effect, hemispheres were considered separately for all further analyses. Age-related decreases 
in variability in Glu/Cr were identified in ACC (b  = 0.26, p = 0.018), right AIns (b  = 0.24, p = 
0.039), MPFC (b  = 0.26, p = 0.021), and left DLPFC (b  = 0.32, p = 0.0026) (Figure 3) but not in 
left AIns or right DLPFC (Supplementary Table 4). Inter-subject variability in GABA/Cr did not 
change with age in any ROI (Figure 4; Supplementary Table 5). 
 
Emergence of E/I balance with age 
 
 To determine the extent to which age-related changes in GABA/Cr and Glu/Cr are 
inter-related, we measured GABA/Cr-Glu/Cr correlation as a function of age based on a 
previously reported approach (Steel et al., 2020). While the Glu/GABA ratio provides a measure 
of the relative over- or under-abundance of each metabolite, the correlation provides a measure 
of how glutamate and GABA levels tend to covary by region (Rideaux, 2021; Steel et al., 2020). 
That is, if Glu and GABA are balanced, then the relative level of GABA should be associated 
with the relative level of Glu (i.e., both high, or both low), whereas relative mismatches in GABA 
and Glu levels (e.g., high GABA but low Glu, or vice versa) would be indicative of Glu-GABA 
imbalance. In order to examine whether Glu/Cr and GABA/Cr were correlated within regions in 
our sample, and to what extent these correlations varied with age, we used linear regression to 
examine the relationship between GABA/Cr and Glu/Cr and their interaction with age. Results 
showed that Glu/Cr and GABA/Cr were significantly associated in all our ROIs (Supplementary 
Table 6) and this balance increased with age in the right AIns (b  = -0.20, p = 0.042), ACC (b  = 
-0.22, p = 0.0102), MPFC (b  = -0.19, p = 0.037), and a trend-level interaction in the right 
DLPFC (b  = -0.21, p = 0.06) (Supplementary Table 7). There were no age-related effects in L 
DLPFC (b  = -0.08, p = 1.00) or L AIns (b  = -0.11, p = 1.00).To visualize these interactions non-
parametrically, we computed group-wise correlations between GABA and Glu (Figure 5a), and 
used a sliding window approach to assess the effect size of Glu-GABA associations within each 
age bin (Figure 5b). Both approaches illustrate that significant interactions reflect age-related 
increases Glu-GABA balance.  

 
 
Discussion  
 

This study describes a novel high-field (7T) MR spectroscopic imaging approach using a 
large dataset to characterize age-related changes in glutamate/Cr and GABA/Cr in PFC to identify 
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markers of critical period plasticity in adolescence. In accordance with our hypotheses, we found 
evidence for global age-related decreases in Glu/Cr across PFC. Contrary to our hypotheses, we 
did not find evidence for increases in GABA/Cr through adolescence, which appeared stable in 
DLPFC and MPFC, while showing decreases in AIns and ACC. Importantly, while Glu/GABA 
ratios did not show systematic age-related change, we found age-related increases in the 
correlation of these metabolites suggesting E/I becoming balanced into adulthood. Overall, these 
results, when coupled with evidence from the extant animal and postmortem literature, provide 
compelling new evidence that through adolescence, there is dynamic change in excitatory and 
inhibitory balance informing models of an adolescent critical period of plasticity (Larsen et al., 
2021). 

MRSI evidence of decreases in glutamate through adolescence may be driven by known 
related brain maturational changes including decreases in the density of pyramidal cell dendritic 
spines, particularly in layer 3 prefrontal cortex (Bourgeois et al., 1994; Huttenlocher, 1999; 
Petanjek et al., 2011; Rakic et al., 1986), reductions in AMPA GluR1 subunits (Datta et al., 2015; 
Hoftman et al., 2017), NMDAR NR3A subunits (Henson et al., 2008), and genes involved in 
glutamate signaling (Harris et al., 2009). Indeed, a recent multimodal study found significant 
associations between MRSI Glu/Cr and PET-based measures of synaptic density using the 
radioligand [11C]UCB-J (Onwordi et al., 2021), supporting that changes in Glu may be associated 
with underlying developmental mechanisms such as synaptic pruning.  

Additionally, many of the regions in which we observed significant age-related decreases 
in metabolite levels showed age-related decreases in inter-subject variability of Glu/Cr. Inter-
subject variability may be driven by greater intra-subject variability, as is evident in behavior (Klein 
et al., 2011; McIntosh et al., 2008; Montez et al., 2017; Tamnes et al., 2012) and brain function 
during cognitive tasks (Montez et al., 2017). Developmental decreases in variability suggest that 
glutamate levels may fluctuate through adolescence, reflecting an adaptive period of plasticity 
that may be necessary for stabilization in adulthood. This is supported by our findings showing 
greater correlation between Glu/Cr and GABA/Cr in adulthood, reflecting convergence and 
equifinality with maturation. Future longitudinal follow-up studies delineating individual trajectories 
can more directly inform this hypothesis. 

There is strong evidence for increases in GABAergic transmission from animal models 
and post-mortem human studies, specifically in aspects of inhibition related to PV neurons . 
However, we did not find any regions exhibiting age-related increases in GABA. While this was in 
contrast to our hypotheses, it is notable there are other aspects of PFC GABA that show divergent 
age-related trajectories through adolescence, including stability of GABAergic synapse density 
(Bourgeois et al.,1994), decreases in PV positive cartridges (Cruz et al., 2003) and GABA alpha 
2 subunit expression (Hashimoto et al., 2009), and increases in PV positive varicosities (Erickson 
and Lewis 2002). Taken together, these results could indicate that while MRS is not sensitive 
enough to pick up on specific changes in PV-positive neurons, it instead reflects a composite view 
of many aspects of GABA signaling, providing a more generalized measure of the overall tone of 
GABAergic inhibition.  

Instead, we found that GABA/Cr exhibited a more regionally heterogeneous pattern of age 
effects with no change in DLPFC and MPFC, and decreases in AIns and ACC. These divergent 
developmental trajectories may reflect known differences in the functional recruitment of PFC 
through adolescence. For example, the activation of the ACC has been found to increase through 
adolescence into adulthood, mediating development of inhibitory control , while the AIns exhibits 
a protracted structural and functional developmental trajectory and is associated with attentional 
and interoceptive processes, aspects of cognition that show late development through 
adolescence (Uddin et al., 2011). This is in contrast to the DLPFC, which has been found to be 
engaged at adult-level levels by adolescence during cognitive control tasks (Ordaz et al., 2013; 
Simmonds et al., 2017). Consistent with this view, we found that the AIns and ACC showed 
protracted age-related decreases in GABA/Cr through our adolescent sample, while DLPFC and 
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MPFC were already at adult levels. GABA decreases in the AIns and ACC may reflect known 
decreases in calretinin neurons and PV-containing chandelier cells (Caballero et al., 2014; Fish 
et al., 2013). Notably, evidence suggests that GABA measured with MRS may reflect tonic 
neurotransmitter function instead of phasic processes (Dyke et al., 2017). Consistent with our 
results, the size of tonic inhibitory currents has been shown to decline through adolescence in 
mouse cingulate cortex (Piekarski et al., 2017).  In contrast, the lack of age effects for GABA 
levels in the DLPFC and MPFC are in line with a recent meta-analysis of MRS data showing 
GABA stability through adolescence (Porges et al., 2021). This could reflect either an earlier 
developmental plateau, consistent with functional data, or opposing GABAergic processes, such 
as increases in PV and decreases in calretinin, that may give the appearance of stability in our 
MRSI data.  

Given the substantial differences between 3T single-voxel MRS and our 7T multi-voxel 
MRSI data, it is likely not surprising that our findings diverge from several earlier studies. 3T MRI 
studies have typically not found age related changes in glutamate (Blüml et al., 2013; Ghisleni et 
al., 2015; Gleich et al., 2015; Silveri et al., 2013), except for (Shimizu et al., 2017). One key 
difference from these previous studies is that 7T MRSI allows us to separate the overlapping 
signals of glutamate and glutamine, and thus the decreases we observe may be more specifically 
associated with Glu, rather than the combined signal typically reported at 3T. Further, some 3T 
studies also show increases in GABA in adults compared to adolescents (Ghisleni et al., 2015; 
Silveri et al., 2013). However, lower-field strength GABA data is confounded by overlapping 
macromolecule signal that can have significant impacts on results (Bell et al., 2021). Importantly, 
our 7T voxels are 9 mm by 9 mm by 10 mm as compared to 3T MRS voxels, which are frequently 
larger. This allows us to more precisely define specific ROIs, as well as prioritize a higher fraction 
of gray matter in the voxel, all of which could have an impact on metabolite measurement (Choi 
et al., 2006). However, even at 7T, MRSI provides a measurement of total metabolite levels within 
a voxel, and although we can provide greater specificity in metabolite measurement, we cannot 
differentiate the unique contributions of that metabolite in neurotransmission from involvement in 
other biological or metabolic processes.  

Glutamate/GABA balance has been typically assessed by calculating their ratio, assuming 
that they are positively related. We did not find age related changes in the ratio of glutamate and 
GABA. The lack of widespread age-related changes in the Glu/GABA ratio indicates that 
aggregate metabolite levels do not show systematic age-related shifts within this age range. 
Substantial individual variability in adolescence in these metabolites may contribute to differences 
in their correlation across ages, rendering the ratio less likely to identify changes beyond those 
indicated by the individual metabolites alone (Steel et al., 2020). Indeed, our results show that 
Glu/Cr and GABA/Cr become more correlated with age; that is, those participants with higher or 
lower glutamate relative to the group also tended to have correspondingly higher or lower GABA, 
which may reflect greater E/I balance, as has been found in parietal cortex (Steel et al., 2020).  

Together, these findings provide compelling new evidence of increases in E/I balance 
through adolescence in PFC that may be consistent with critical period plasticity. Notably, 
cognitive development proceeds in a similar timeline to the developmental changes reported here, 
with improvements in executive function through adolescence into adulthood (Ordaz et al., 2013; 
Simmonds et al., 2017). Greater glutamate/GABA balance may support cognitive functions by 
enhancing signal-to-noise ratio and synchrony of neural activity (Larsen & Luna, 2018). 
Understanding the brain mechanisms underlying the transition from adolescence to adulthood 
informs our understanding of the processes driving normative development. This is critical for 
understanding disorders which may emerge as a result of impaired E/I balance developmental 
trajectories as schizophrenia, which often first emerge in adolescence and has been associated 
with alterations in the balance of GABA and glutamate (Glantz LA & Lewis DA, 2000; Gonzalez-
Burgos & Lewis, 2008; Hoftman & Lewis, 2011). Gaining a more complete understanding of 
impaired developmental trajectories in GABA and glutamate could better inform much-needed 
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pharmaceutical therapies that act on these neurotransmitters. Future longitudinal studies are 
needed to determine individual developmental trajectories, and to examine associations with 
behavioral indices of cognitive development as well as indices of improvements in signal-to-noise 
ratio. 
 

Methods 
 
Participants 
 

MRSI data were collected on 144 10–30 years old participants (73 females, see 
Supplementary Figure 1) recruited from the community. Participants were excluded if they had a 
history of head injury with loss of consciousness, a non-correctable vision problem, a history of 
substance abuse, a learning disability, a history of major psychiatric or neurologic conditions in 
themselves or a first-degree relative. Participants were also excluded if they reported any MRI 
contraindications, such as non-removable metal in their body. For participants under the age of 
18, parental consent and participant assent were obtained prior to data collection. For participants 
over the age of 18, participant consent was obtained. Participants received payment for their 
participation. All experimental procedures were approved by the University of Pittsburgh 
Institutional Review Board and complied with the Code of Ethics of the World Medical Association 
(Declaration of Helsinki, 1964). 
 
 
MRSI Data Acquisition 
 

This study was performed at the University of Pittsburgh Medical Center Magnetic 
Resonance Research Center in a Siemens 7T scanner. Structural images were acquired using an 
MP2RAGE sequence (1 mm isotropic resolution, TR/TE/flip angle 1/ flip angle 2: 6000 ms/2.47 
ms/40/50) for parcellation and alignment. MRSI of GABA and glutamate were acquired using a J-
refocused spectroscopic imaging sequence (Pan et al., 2010) (TE/TR = 2x17/1500ms) in order to 
minimize the impact of momentary interactions between separate molecules on chemical shifts. 
Radiofrequency (RF) based outer volume suppression was used to minimize interference in the 
signal from extracerebral tissue (Hetherington et al., 2010). An 8x2 1H transceiver array using 8 
independent RF channels was used to acquire data. High order shimming was used to optimize 
homogeneity of the B0 magnetic field. 

One oblique axial slice (10mm thick, 24x24 encoded across a FOV of 216x216 mm, 
0.9x0.9x1.0 cm effective resolution) was acquired and positioned to ensure that the DLPFC 
(roughly defined as Brodmann Area 9) was present (Figure 6a). MRSI slice positioning was 
accomplished by aligning the T1 anatomical images of each participant to MNI space, and then 
aligning the MRSI acquisition to the anatomical image. An in-house program - Quantitative Partial 
Acquisition Slice-Alignment (Q-Pasa) - was used to ensure equivalent slice acquisitions across 
individual variability in brain morphology and slice positioning. Q-Pasa maps an oblique slice atlas 
(standard MNI space) into a participant’s native space during the scan using BA9 and the thalamus 
as reference points in order to guide placement of the acquired slice.  
 
Metabolite Levels 
 

Quantification of neurotransmitters was achieved by fitting MRSI data using LCModel 
(Provencher, 2001). The LCModel output provides estimates of metabolite levels for all metabolites 
present, including metabolites of interest such as Glutamate and GABA, as well as major 
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metabolites like glycerophosphocholine + phosphocholine + choline (GPC+Cho), N-
Acetylaspartate + N-Acetylaspartylglutamic Acid (NAA+NAAG), and creatine (Cr). LCModel 
outputs contain Cramer-Rao Lower Bounds (CRLB), which provide an expression of the 
uncertainty of the estimate for each metabolite. The CRLB provides an estimate of the lowest 
achievable variance for an estimator and is used as an indicator of how well the measurement of 
a given metabolite fits the ideal spectrum for that metabolite, providing an assessment of data 
quality. Additionally, outputs were used to visually inspect spectra and model fit, which we used 
as a first-pass exclusion criteria for data, along with the CRLB.  

Brain neurotransmitter levels are given as metabolite ratios of the neurotransmitter of 
interest to creatine (Cr) (Glu/Cr or GABA/Cr). This allows for a shorter acquisition time (as 
compared to using a water reference) while also providing for a means to control for inter-subject 
variability due to the factors such as an amount of cerebrospinal fluid in the voxel. Cr is used as 
the denominator in metabolite ratios because it is a metabolite with a strong signal and reliable 
chemical shift, in addition to being relatively stable under healthy conditions (Rackayova et al., 
2017) and with age (Saunders et al., 1999). 
 
 
 
ROI-Based Analysis  
 

Regions of interest (ROIs) were defined in MNI-space using a custom ROI atlas, and 
included right and left dorsolateral prefrontal cortex (DLPFC), right and left anterior insula (AI), 
anterior cingulate cortex (ACC), and medial PFC (MPFC) (Figure 6b). An automated nonlinear 
registration using FSL’s FNIRT was performed to map those ROIs into each subject’s native space. 
ROI centers were visually inspected and manually adjusted for each subject with in-house developed 
software in order to maximize spectral quality and gray matter content of the voxel. To ensure manual 
adjustment did not move ROI centers outside of the region of interest, the adjusted ROIs were 
registered back to standard space where their position was confirmed with the Eickhoff-Zielles 
maximum probability map of the Talairach-Tournoux atlas using AFNI’s whereami (Cox, 1996). The 
ROI coordinates were then used in the anatomically guided voxel-shifting reconstruction of MRSI data 
(Hetherington et al., 2007) to  gather spectroscopic data over the ROI. 
 
 
 
Data Quality Criteria  
 

LCModel fits were first visually inspected, and data were excluded for bad model fits due 
to obvious artifacts, lipid contamination or baseline distortion. Data were then excluded if any of 
the three major metabolite peaks, GPC/Cho, NAA/NAAG, and Cr had a CRLB greater than 10% 
or if the macromolecule/Cr content in their spectra was greater than 3, in order to remove distorted 
data that would lead to improper estimates of harder to detect metabolites. Consistent with 
generally accepted practice, GABA/Cr and Glu/Cr data were excluded if the CRLB of GABA or 
glutamate, respectively, was greater than 20. Data were excluded at the ROI level, so participants 
that had poor data in one region were not necessarily excluded from all analyses if they had high 
quality data in another region. For group level analyses assessing the relationship between 
metabolite levels and age, a threshold of 2 standard deviations from the mean was used to 
exclude outliers. For the analysis looking at the association between glutamate and GABA, only 
participants that had both good GABA and good glutamate data (as defined by the CRLB cutoff) 
were included. A representative spectrum is shown in Figure 6c.  

None of the regions tested showed worse data quality (higher CRLB) among younger 
subjects (Supplementary Table 8). One region (MPFC) showed higher CRLB among older 
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subjects, but this is unlikely to account for the effect reported as those with the highest correlations 
had worse data quality.   
 
Statistical Analysis  
 

To examine age-related change in metabolite levels, linear mixed-effects regression 
analyses were implemented through the R packages lme4 and lmerTest (Bates et al., 2014; 
Kuznetsova et al., 2017). For regions that had both a left and a right hemisphere (AIns and 
DLPFC), age-related changes in neurotransmitter measures were examined using linear mixed-
effects models with participant as a random effect and ROI hemisphere, sex, and fraction of gray 
matter in the voxel as covariates. For midline regions (the ACC and MPFC), hemispheres were 
not considered and linear regression was used, with sex and fraction of gray matter as covariates. 
All models were tested with and without these covariates.  

Three forms of age effects were tested: linear age, inverse age, and quadratic age; these 
are the functional forms that have previously characterized age-related change during this 
developmental period (Luna et al., 2004). The best form of age was chosen using Akaike’s 
Information Criterion (AIC), wherein the model with the lowest AIC was chosen as the best fit 
model (Akaike, 1974). For the majority of models, inverse age was the best fit (Supplementary 
Tables 9, 10, 11). For models in which no form of age was significantly different from the others, 
inverse age was chosen for consistency. To correct for multiple comparisons, we report adjusted 
p-values based on Bonferroni-correction, using the R package ‘stats’ (R Core Team 2013), and a 
correction based on the number of ROIs being tested. Variables were z-scored to obtain 
standardized coefficients.  

To examine age-related changes in inter-subject variability, we used linear regression to 
test for age effects in the absolute residuals (i.e., deviation from the age-adjusted mean) of 
metabolite levels. Given the age-by-hemisphere interaction in the Glu/GABA ratio of the AI, we 
considered all regions separately for this analysis. Inverse age was used as that was previously 
characterized as the best model for both GABA and glutamate individually.  

In addition to metabolite levels, we were interested in examining correlation among 
metabolites, based on recent studies suggesting a balance of GABA and glutamate among young 
adult subjects (Steel et al., 2020). To examine age-related changes in metabolite correlation, we 
used linear regression to look at the association between GABA and Glutamate and their 
interaction with age across the sample within each region individually while controlling for the 
same covariates as before. The interaction was visualized in two ways. First, correlation 
coefficients (r values) were computed for each age group (10-16; 17-22; 23-30) of roughly equal 
sample size. Covariates were first residualized out prior to computing the correlation. Second, 
slope and standard error are modeled across a sliding window (each with 30 participants) while 
controlling for covariates.  
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Figure 1: Glutamate/Cr (blue) and GABA/Cr (red) age effects across PFC regions of 
interest. Statistical values reflect linear mixed effects model fits for regions with both 
a left and right hemisphere and linear model fits for midline regions. Solid line and 
dots reflect left hemisphere and dashed line and open dots reflect right hemisphere 
where applicable. All are modeled with an inverse function. (A) left and right 
dorsolateral prefrontal cortex (B) left and right anterior insula (C) midline anterior 
cingulate cortex (d) midline medial prefrontal cortex. 
* p < .05, ** p < .01, *** p < .001.  Asterisks reflect Bonferroni-corrected p-values.
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Figure 2: Glutamate/GABA age effects across PFC regions of interest. Statistical values reflect 
linear mixed effects model fits for regions with both a left and right hemisphere and linear model 
fits for midline regions.  All are modeled with an inverse function. Solid line and dots reflect left 
hemisphere and dashed line and open dots reflect right hemisphere where applicable. Legend 
refers to figures (A) and (B). (A) left and right dorsolateral prefrontal cortex (B) left and right 
anterior insula (C) midline anterior cingulate cortex (d) midline medial prefrontal cortex. 
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Figure 3: Age effects of inter-individual variability of glutamate/Cr. Statistical values reflect 
linear model fits for midline regions. All are modeled with an inverse function. (A) right 
dorsolateral prefrontal cortex (B) left dorsolateral prefrontal cortex (C) midline anterior cingulate 
cortex (D) midline medial prefrontal cortex (E) right anterior insula (F) left anterior insula.
* p < .05, ** p < .01, *** p < .001.  Asterisks reflect Bonferroni-corrected p-values.
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Figure 4: Age effects of inter-individual variability of GABA/Cr. Statistical values reflect linear 
model fits for midline regions. All are modeled with an inverse function. (A) right dorsolateral 
prefrontal cortex (B) left dorsolateral prefrontal cortex (C) midline anterior cingulate cortex (D) 
midline medial prefrontal cortex (E) right anterior insula (F) left anterior insula.
* p < .05, ** p < .01, *** p < .001.  Asterisks reflect Bonferroni-corrected p-values.
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Figure 5: Association between glutamate/Cr and GABA/Cr by age. Panels show 
association for each ROI (top: anterior cingulate cortex, left anterior insula, left 
dorsolateral prefrontal cortex; bottom: medial prefrontal cortex, right anterior insula, right 
dorsolateral prefrontal cortex). Grayscale bars (left y-axis) reflect correlation (r value) 
between GABA/Cr and Glu/Cr within each age group. Blue lines (right y-axis) reflect effect 
sizes of the GABA/Cr-Glu/Cr regression coefficients computed within a 30-subject sliding 
window (individual dots represent the association within each sliding window, plotted at 
the mean age within the window, and with x-error bars indicating the age range span, and 
y-error bars indicating the effect size SEM; blue lines are a loess curve fit across age 
windows). 
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Figure 6: (a) ideal oblique MRSI slice position through DLPFC and thalamus (shown 
in red boxes). (b) Typical positioning of all assessed ROIs (MPFC = salmon; ACC = 
red; right and left DLPFC = purple; right and left Anterior Insula = blue) (generated 
with code adapted from Westwater et al., 2022) (c) Representative spectral data 
from a typical participant's ACC ROI. Measured spectrum shows a typical acquired 
signal, and residual indicates the difference between the raw data and the combined 
signals of all fit metabolite spectra (shown right with CRLB estimates).
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