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 Abstract 

 Background: 
 The impact of thousands of individual genetic variants on molecular phenotypes for 
 disease-relevant genes remains unknown. Multiplexed assays for variant effect 
 (MAVEs) are highly scalable methods to annotate the relevant variants. However, 
 current software methods for analyzing MAVEs lack standardized annotation, can 
 require cumbersome configuration, and do not easily scale to large target regions. 

 Results: 
 Here, we present satmut_utils as a flexible solution for 1) simulation of saturation 
 mutagenesis data; and 2) quantification of variants across four orders of magnitude 
 from multiplexed assay data. Improvements of satmut_utils over existing solutions 
 include support for multiple experimental strategies, unique molecular identifier-based 
 consensus deduplication, and machine learning-based error correction. We developed 
 a rigorous simulation workflow to validate the performance of satmut_utils and carried 
 out the first benchmarking of existing software for variant calling. Finally, we used 
 satmut_utils to determine the mRNA abundance of thousands of coding variants in 
 cystathionine beta-synthase (  CBS  ) by two library preparation methods. We identified 
 an association between variants near chemical cofactor binding sites and decreased 
 mRNA abundance. We also found a correlation between codon optimality and the 
 magnitude of variant effects, emphasizing the potential of single-nucleotide variants to 
 alter mRNA abundance. 

 Conclusions: 
 satmut_utils enables high-performance analysis of saturation mutagenesis data, 
 achieves unprecedented specificity through novel error correction approaches, and 
 reveals the capability of single-codon variants to alter mRNA abundance in native 
 coding sequences. 

 Keywords 
 MAVE, DMS, mutagenesis, variant calling, SNP,  CBS  ,  codon optimality 
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 Background 
 Multiplexed assays of variant effect (MAVEs) employ next-generation sequencing to 
 profile the phenotypic effects of hundreds to thousands of genetic variants in a target 
 gene. These assays, which rely on saturation mutagenesis, have been used to survey 
 variant effects on molecular phenotypes ranging from mRNA and protein expression to 
 protein binding and enzyme activity  [1–10]  . As a result, MAVEs emerged as methods to 
 study variant effects and annotate variant significance, ultimately informing disease 
 diagnosis and prognosis  [11,12]  . Guidelines now exist for the development of MAVEs, 
 underscoring their utility for variant annotation and interpretation  [13]  . Given saturation 
 mutagenesis data contains variants with frequencies at and even below error rates for 
 some polymerases (1 x 10  -4  ), variant callers for MAVEs  must have not only high 
 sensitivity, but also high specificity. Yet, analysis methods for MAVEs are not 
 standardized, and to our knowledge, none of the existing variant callers for analysis 
 have previously benchmarked performance. 

 Existing tools for MAVE analysis require detailed configuration of parameters 
 (  Methods  ), and may only address particular experimental  designs.  For example, the 
 dms_tools2 package  [14]  has specific input requirements: primer designs should start 
 flush with codons, and reads must be dual-barcoded and align contiguously to a 
 user-provided reference (no insertions or deletions). Similarly, the Enrich2 package  [15]  , 
 requires that reads align contiguously with a provided reference sequence. DiMSum 
 [16]  only annotates standard amino acid changes, and like dms_tools2 and Enrich2, 
 only calls variants in a single PCR amplicon at a time. Hence, none of the current 
 methods allow variant calling from multiple PCR amplicons at once with one 
 configuration of analysis parameters, limiting the ability to rapidly scale to large genes. 
 Also, current strategies  generally assume pre- and post-selection sequencing of the 
 variant library, for example when assaying variant effects on organismal growth  [4]  . 
 While this is the predominant MAVE design, a generalized variant caller would facilitate 
 not only selection-based assays but also assays of arbitrary design. 

 Similarly, while a multitude of methods exist to call somatic variants in clinical samples 
 [17–19]  , somatic variant callers for whole-transcriptome analysis are tailored to quantify 
 variants in samples with few real  s  ingle- and  m  ulti-nucleotide  polymorphisms (  SNP  s 
 and  MNP  s, respectively). In contrast, MAVE data contain  a high density of 
 low-frequency SNPs and MNPs. For example, di- and tri-nt MNPs may comprise a 
 large proportion of the total variants in codon saturation mutagenesis. The low 
 frequency of variants (< 1 x 10  -4  ) pose new problems  to variant calling for MAVE data. 
 Analysis is further complicated by the hierarchical composition of variants, wherein true 
 positive variants may be called together with nearby true or false positive variants  [16]  . 
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 To address the need to call ultra-low frequency variants in MAVE data, we designed 
 and implemented satmut_utils (  sat  uration  mut  agenesis  util  itie  s  ), incorporating modern 
 software development practices, extensive documentation, integration with package 
 management, and rigorous unit testing. The satmut_utils ‘call’ workflow  is an 
 end-to-end variant caller for MAVEs  that supports analysis of  both a) amplicon  [4]  ; and 
 b) rapid-amplification-of-cDNA-ends (RACE)-like library preparation methods  [20–22]  . 
 To achieve high specificity,  satmut_utils optionally  builds on a simulation workflow 
 (‘sim’), enabling the generation of datasets for benchmarking and error modeling. 

 Here, we performed the first benchmarking analysis of MAVE variant callers and show 
 that satmut_utils achieves superior performance for MAVE analysis  .  We then assayed 
 variant effects on mRNA abundance using two library preparation methods. Using 
 satmut_utils, we identified variants in cystathionine beta-synthase (  CBS)  with effects on 
 mRNA abundance, expanding a prior variant effect map for  CBS  function  [10]  . We 
 further characterized possible mechanisms of altered mRNA abundance, including 
 codon-mediated,  cis-  regulatory  effects. The satmut_utils  package enables flexible 
 experimental design and comparative analysis of saturation mutagenesis data from 
 various sources, and will facilitate the interpretation of variant effects on the RNA life 
 cycle. 

 Results 
 Design of simulation and variant calling workflows for saturation mutagenesis data 
 We developed a workflow to simulate ultra-low frequency variants in real alignments, 
 termed ‘sim’ (  Figure 1A  ). ‘sim’ generates variants by editing into pre-existing 
 alignments that correspond to a negative control (NC) sequencing library prepared from 
 a non-mutagenized template. Editing real alignments enables us to capture sequencing 
 errors and experiment-specific biases that may escape model-based  in silico  read 
 generation. ‘sim’ can efficiently simulate the number of variants typically targeted in 
 MAVEs (>1000) in a single transcript, improving on the scalability of existing solutions 
 [23]  . 

 The ‘sim’ workflow supports editing of multiple SNPs and MNPs at the same 
 coordinate; ensures reads are edited only once; and allows the user to prohibit 
 simulation of variants adjacent to pre-existing errors to ensure errors in the edited read 
 do not convert the simulated variant to higher order (e.g. SNP to MNP; see  Additional 
 File 1  ). In summary, satmut_utils ‘sim’ enables deterministic simulation of many low 
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 frequency variants at the same position, and offers the first generalized simulation 
 method specific for multiplexed assays. 

 Next, to call ultra-low frequency SNPs and MNPs in targeted sequencing data, we 
 developed the satmut_utils ‘call’ workflow (  Figure  1B  ). Importantly, ‘call’ supports 
 variant calling from multiple interleaved PCR tiles simultaneously, a feature lacking from 
 other tools for analysis  [14,15,24]  . A curated human transcriptome is included to 
 facilitate ease-of-use, although custom reference files are also supported. Our method 
 provides two additional features missing in other MAVE analysis methods. First, 
 satmut_utils enables variant calling from RACE-like library preparation methods such 
 as Anchored Multiplex PCR  [20]  (  Supplementary Figure 1A  ). Second, satmut_utils 
 extracts read-based quality data for each mismatch contributing to a primary variant 
 call. Quality data may then be used to train error correction models. (For a detailed 
 comparison of variant caller features see  Supplementary  Figure 1B  ; for time and 
 memory consumption of satmut_utils see the  Additional  File 1  ). 

 To improve specificity of variant calls, the ‘call’ algorithm (  Supplementary Figure 1C  ) 
 incorporates filters based on read edit distance and base qualities. Then, variants are 
 called in read pairs if mates are concordant  [4,10]  , i.e. if the same base call is observed 
 in both forward and reverse reads. This filters out sequencing errors which are found in 
 only one read of the pair. Finally, satmut_utils employs a novel variant calling algorithm 
 that prioritizes MNPs and improves sensitivity for MNP calls when they are adjacent to 
 errors (  Supplementary Figure 1D  ). We coined the term  variant conversion  for cases 
 when a true variant and adjacent error are called together as a false positive 
 (  Additional File 1  ). Conversion is particularly insidious  for MAVE analyses as it may 
 also lead to a false negative call. Altogether, satmut_utils 1) requires a single 
 configuration for analysis of data from multiple amplicons; 2) supports two different 
 library preparation methods; and 3) employs a unique variant calling algorithm for 
 high-accuracy estimates of variant abundance. 

 In silico  validation and benchmarking of variant calls  with ‘sim’ 
 We compared performance of satmut_utils to dms_tools2  [14]  , Enrich2  [24]  , and 
 DiMSum  [16]  , in the first benchmarking analysis of MAVE variant callers. We speculate 
 that a prior lack of benchmarking was due to several challenges: 1) lack of truth 
 datasets; 2) different experimental design assumptions; and 3) non-standardized input 
 and output file formats. Nonetheless, after preprocessing alignments to meet the 
 various input requirements for Enrich2 and dms_tools2 (  Methods  ), we successfully 
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 generated a common benchmarking dataset using reads from a single PCR amplicon 
 in cystathionine beta-synthase (  CBS)  [10]  . This simulated dataset contained 281 
 variants at frequencies between 1 x 10  -6  to 1 x 10  -3  in a background of approximately 
 two million negative control read pairs. 

 With a threshold of two supporting reads/fragments to make a variant call, Enrich2, 
 dms_tools2, and satmut_utils achieved perfect sensitivity at the nucleotide level 
 (  Figure 1C  ). However, precision was 0.023 (Enrich2),  0.487 (dms_tools2), and 0.553 
 (satmut_utils). Because DiMSum does not output annotations at nucleotide resolution, 
 we compared DiMSum to satmut_utils for amino acid changes. At perfect sensitivity, 
 DiMSum precision was 0.440 compared to satmut_utils precision of 0.605. Lower 
 precision for Enrich2 and DiMSum may be due to merging with nearby errors. The 
 satmut_utils ‘call’ workflow does not call phased SNPs as a MNP unless the SNPs are 
 within 3 nt (no haplotype calls are made). We found that this algorithmic design choice 
 is a reasonable compromise to remove thousands of false positive calls arising from 
 the merging of read errors. We note that Enrich2 precision might be higher with another 
 analysis mode (barcoded sequencing). See  Additional  File 1  for a detailed explanation 
 of benchmarking considerations. 

 Despite differences in overall performance, dms_tools2 and Enrich2 reported largely 
 similar counts to satmut_utils for true positive variants, especially MNPs 
 (  Supplementary Figure 2B,C  ). Yet, strikingly, satmut_utils  reported more accurate 
 variant counts than other methods for MNPs (  Figure  1D  ). Deviations from the truth 
 count are likely impacted by read filtering and the variant calling algorithm 
 (  Supplementary Figure 1 C,D  ), which may explain the  higher accuracy of satmut_utils 
 variant calling. In total, by satmut_utils ‘sim’, we performed the first benchmarking 
 analysis of MAVE variant callers, and showed that satmut_utils ‘call’ is more accurate 
 than other methods for variant calling of  in silico  mutagenesis data. 

 ‘sim’ and ‘call’ power machine learning-based error correction 
 Sequencing libraries contain systematic errors arising from library preparation- and 
 sequencer-specific biases  [25–27]  . In MAVEs, a negative control (  NC  ) library of the 
 non-mutagenized template is typically sequenced in the same experiment as 
 mutagenized libraries  [10]  . In agreement with prior observations of experiment- and 
 platform-specific errors  [27]  , we found a wide range of error rates for independent 
 libraries from various labs, experiments, and sequencing runs (  Figure 2A  ). We noted 
 the highest error rates for (C>A, G>T) and (C>T, G>A) substitutions across all Illumina 
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 platforms, library preparation methods, and independent libraries from various input 
 nucleic acid sources. We hypothesized that sequencing a NC library, simulating 
 variants in this control, and then training classifiers would help moderate such biases. 

 To test the utility of error correction models enabled by satmut_utils, we generated four 
 large simulated datasets by editing thousands of variants into two NC libraries, 
 sequenced on four Illumina platforms (  Methods  ). At  perfect recall, satmut_utils 
 precision in these datasets with default calling parameters and no model-based error 
 correction (  Methods  ) was 0.552 +/- 0.041 (mean +/ s.d.). Thus, with a naïve filter using 
 a minimum count threshold, thousands of false positives remain in multiplexed assay 
 datasets, deteriorating their quality. 

 We next used the simulated dataset from the first NC library, which comprised the 
 human  CBS  coding sequence after functional complementation in yeast  [10]  , to assess 
 performance of machine learning models in reducing false positives. We trained binary 
 classifiers using quality features extracted by satmut_utils ‘call’ from the first simulated 
 dataset (hereafter dataset  A  ). Of the five classifiers  tested by nested cross validation 
 (CV), all five models showed a median accuracy >0.95 (  Figure 2B  )  .  The remaining three 
 datasets (  B-D  ) arose from a second NC library consisting  of the  CBS  coding sequence 
 amplified from human HEK293T total RNA and sequenced on different platforms. We 
 selected the random forest (RF) to test performance on all four datasets generated with 
 ‘sim’ (  Figure 2C  ). The mean accuracy of the final  models (N=4) on an independent test 
 set was  0.954 +/- 0.020 (mean, s.d.), indicating that  models trained on simulated data 
 are robust to different choices of NC library and sequencing platform, and outperform 
 filtering variants using a fixed count threshold (Figure 1D). Several quality features lent 
 predictive power as measured by RF feature importance (  Figure 2D  ). 

 To assess generalization of the models, we trained a RF on one simulated dataset and 
 tested it on all other datasets (all pairwise permutations,  Figure 2E  ). Models 
 generalized well for our own NC library sequenced on different platforms, with an 
 accuracy of 0.939 +/- 0.014 (mean, s.d.). Accuracy was slightly worse when trained on 
 the independent dataset  A  and tested on datasets  B-D  :  0.892 +/- 0.010 (mean, s.d.). 
 We finally applied the models to filter calls in the NC libraries and observed a strong 
 reduction of false positives (  Figure 2F  ). Therefore,  training error correction models on 
 simulated data significantly improves variant calling precision (see  Additional File 1  for 
 potential caveats). 
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 Read pre-processing steps implemented in satmut_utils reduce false positive variant 
 calls 
 While machine learning models using sequence-level features significantly reduce false 
 positives, additional improvements that leverage read pre-processing can further 
 improve specificity. For example, primer base quality masking  [19]  may be used to omit 
 variant calls that have arisen from primer synthesis errors by setting base qualities to 0 
 for synthetic read segments (  Figure 3A  ). When unique  molecular indices (UMIs) are 
 incorporated into the library design, further improvements can be obtained by 
 consensus deduplication  [14,19,28]  , where a consensus sequence is generated from 
 PCR duplicates (  Figure 3B  ). We implemented these additional methods and compared 
 variant calls in simulated datasets before and after primer masking and consensus 
 deduplication using UMIs. 

 Primer masking removed a small number of false positive SNPs in ‘sim’ datasets 
 (min=1, max=64; min proportion of SNPs remaining=0.985). More importantly, primer 
 base quality masking improved the accuracy of variant counts in simulated data 
 (  Figure 3C,  N=4 pooled datasets). In parallel with  primer masking, consensus 
 deduplication of a RACE-like (Anchored Multiplex PCR) NC library through UMIs 
 reduced depth of coverage across  CBS  by 63.1% (  Figure  3D, Methods  ). Further, 
 deduplication reduced false positive (FP) SNPs by 21.5% (1026 FPs); di-nt MNPs by 
 70.3% (237 FPs); and tri-nt MNPs by 27.2% (3 FPs) (  Figure 3E  ). This significant 
 improvement in specificity may be accompanied by a slight cost to sensitivity, but the 
 current implementation of the  ‘sim’ workflow was insufficient to determine the exact 
 sensitivity-specificity tradeoff (see  Additional File 1  for details). Altogether, read 
 pre-processing steps can improve the quality of MAVE data prior to variant calling, 
 independent of other model-based error correction. 

 Variant calls are reproducible by two orthogonal library preparation methods 
 To demonstrate the flexibility of satmut_utils in analyzing MAVE data, we measured 
 gDNA and mRNA abundance for a complete coding variant library in  CBS  following 
 stable expression in a HEK293T landing pad cell line (iCasp9 Int Blast)  [29]  . We 
 recombined a  CBS  variant library  [10]  into the landing pad line with a downstream 
 IRES-mCherry element (  Figure 4A  ). Then, we assayed  variant abundance in gDNA and 
 cDNA by amplicon  [4,10]  and RACE-like (Anchored Multiplex PCR)  [20]  library 
 preparation methods (  Methods  ). The quality of total RNA input as well as PCR 
 products at steps in library preparation were confirmed (  Supplementary Figure 3A-C  ). 
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 For each method, we included a NC sequencing library to enable variant filtering with a 
 random forest (RF) model. These libraries showed uniform coverage across the CBS 
 target regions (  Figure 4B)  , as did mutagenized libraries.  We found high performance of 
 RF models for both library preparation methods (0.975, 0.959 accuracy for amplicon 
 and RACE-like simulated datasets, respectively). These models were subsequently 
 used to filter variant calls from the mutagenized sequencing libraries (  Figure 4C  ). 

 The difference in log  10  frequencies between cDNA and  gDNA for each variant 
 highlighted large effects on relative abundance in both directions. As expected, 
 missense and nonsense variants reduced mRNA abundance compared to silent 
 changes (  Figure 4D  ). Variant calls made by both library  preparation methods 
 comprised 22.9% of the maximum theoretical calls for the two amplicons (  Methods  ), 
 and overlap was significant by a hypergeometric test (  Figure 4E,  p=7 x 10  –112  ). For the 
 amplicon method, among variants detected at least once, 55.7% of variants were 
 found in all replicate gDNA and cDNA libraries (N=3 replicates each). In contrast, only 
 15.9% of variants were observed in all replicates by the RACE-like method. 

 Variant abundance estimates were reproducible across input sources and independent 
 biological replicate cell lines (  Figure 4F, Supplementary Figure 4A-B  ). Despite a 
 difference in coverage depth (  Figure 4B  ), the variant  frequency correlation was 
 satisfactory compared to the RACE-like method for variants that were well-measured 
 (0.91 Pearson’s correlation,  Figure 4G, Supplementary  Figure 4C  ). Taken together, 
 our results suggest satmut_utils reports reproducible variant frequency estimates from 
 two library preparation strategies, and facilitates analysis of data from multiple nucleic 
 acid sources. 

 Identification of  CBS  variants that alter mRNA abundance 
 To apply satmut_utils variant calling to unveil biological insights, we next determined 
 CBS  variants with effects on mRNA abundance. The human  CBS enzyme has specific 
 amino acids that bind to two cofactors (heme and pyridoxal phosphate- PLP)  [30–32]  . 
 These cofactors regulate folding, stability, and activity of CBS  [10,33–35]  . Because 
 heme and PLP can stabilize CBS variants and remediate pathogenic phenotypes 
 [10,36,37]  , and because heme binding is not reversible  [38]  , we hypothesized heme 
 facilitates co-translational folding of CBS, similar to its role in folding of globin  [39,40]  . 

 We reasoned that  CBS  variants with low mRNA abundance may be enriched at or near 
 important structural residues of CBS, as improper co-translational folding may trigger 
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 ribosome quality control, leading to mRNA and protein degradation  [41,42]  . To address 
 this hypothesis, we determined  CBS  variants with significant  differential abundance 
 between cDNA (total RNA) and gDNA using the high-quality data from the amplicon 
 method (  Figure 5A, Supplementary Figure 5A, Methods  ).  Of 2676 theoretical variants 
 (SNPs, MNPs) for the amplicon method, 1238 were detected (46.3%) at least once, 
 and 691 were observed in all gDNA and cDNA replicates (N=6, 25.8%). Of these, 6 
 variants were higher in mRNA abundance compared to 22 variants that were lower 
 (FDR < 0.1). 

 Several variants at and near important residues for activity, including variants at 
 positions previously implicated in CBS deficiency, exhibited significant effects on 
 mRNA abundance (  Supplementary Table 1  ). Specifically,  we identified decreased 
 mRNA abundance of the variant K119F, which interrupts the Schiff base formed by this 
 residue with PLP  [30]  . Similarly, mutations at or adjacent to the heme binding residue 
 (H65) exhibited a strong reduction in mRNA abundance: H65R, H65V, H66F, and H67T. 
 Variants with decreased mRNA at positions previously implicated in CBS deficiency 
 were P49K, R58I, E128I, I143R, and E144L  [35,43–46]  . 

 Twenty other variants had differential mRNA abundance by the RACE-like method 
 (  Supplementary Figure 5B,  FDR < 0.1)  , and  we found  modest correlation in the 
 measurement of mRNA abundance effect between amplicon and RACE-like methods 
 (0.57 Pearson’s coefficient,  Supplementary Figure  5C  ). We noted variant effects that 
 depend on the position of the variant in the coding sequence. In the amplicon method, 
 the variance of the effect at each position was higher in the catalytic domain than in the 
 heme domain, suggesting the magnitude of  CBS  variant  effects may depend on the 
 encompassing structure of the CBS protein (Levene’s test, p=0.005,  Supplementary 
 Figure 6A  ). Similarly, RACE-like data indicated nonsense  variants had the strongest 
 effects on mRNA abundance when located near the middle (catalytic domain) of the 
 coding sequence (  Supplementary Figure 6B  ). 

 Altogether, we identified  CBS  variants near important  functional residues that alter 
 mRNA abundance. Consistent with co-translational folding of CBS by cofactors, 
 mutations at and adjacent to the heme and PLP binding residues uniformly exhibited 
 decreased mRNA abundance. Other mutations in these domains showed increased 
 mRNA abundance, suggesting complex regulation of  CBS  mRNA expression linked to 
 other nucleotide or codon features. 
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 Differential mRNA abundance is consistent with codon-mediated stability and identifies 
 variant effects undetected at the protein level 
 In yeast, zebrafish,  Xenopus  , and human cells, mRNA  decay and translation efficiency 
 are partially explained by codon optimality  [47–52]  , where optimal codons are defined 
 as those enriched in transcripts with longer mRNA half-lives and/or increased 
 translation efficiency. While previous studies predominantly relied on reporter assays to 
 assess the impact of codon optimality on these gene expression phenotypes, our 
 approach enabled testing the relationship in the context of a native transcript coding 
 sequence. To test if any  CBS  variants alter mRNA abundance  through codon-mediated 
 mRNA stability, we compared the difference in tRNA abundance and the codon 
 stability coefficient (CSC)  [50,53]  between reference and alternate codons to the 
 magnitude of differential mRNA abundance (  Methods  ). 

 tRNA abundance exhibited a modest correlation with the mRNA abundance fold 
 change for variants down in mRNA (0.49 and 0.31 Spearman correlation for 
 hydro-tRNAseq  [54]  and mim-tRNAseq  [53]  , respectively) (  Figure 5B, Supplementary 
 Figure 6C  ). Further, the difference in CSC  [50]  between alternate and reference codons 
 was lower for variants with decreased mRNA abundance compared to variants with 
 increased abundance, indicating changes to less-stable codons may reduce mRNA 
 levels (  Figure 5C  , one-sided Wilcoxon rank sum test  p=0.029). Aside from the 
 mutations at C52 and C272, important structural residues of CBS  [55]  , mutations to 
 cysteine (A38C, T135C, P138C) and from cysteine (C109G/T) exhibited effects 
 consistent with its low codon stability  [50]  (  Supplementary Table 1  ). By comparing 
 each differential variant to a non-significant variant leading to the same amino acid 
 change, we found nine variants had a CSC difference in the expected direction (  Figure 
 5D  ) compared to four variants in the opposite direction  (binomial test for 9 successes 
 of 13, p=0.046). Notably, changes to the valine codon UUG, phenylalanine codon UUU, 
 and arginine codon AGG may be candidates for codon-mediated reduction in mRNA 
 abundance (  Supplementary Table 1  ). Our results suggest  codon optimality partially 
 explains mRNA abundance effects for at least some missense variants. 

 Finally, we integrated paired yeast functional complementation data for the  CBS  variant 
 library  [10]  and found 61/108 (56.5%) of variants called by both methods (FDR < 0.15) 
 showed a consistent directional effect (e.g. low mRNA, low fitness) at a fitness score 
 cutoff of 0.7 (score range 0-1, binomial test p=0.074). 16.9% of missense variants 
 (14/83) with low mRNA abundance were at amino acid positions implicated in CBS 
 deficiency. Of variants with decreased mRNA abundance, low fitness was confirmed 
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 for H65R/V, K119F, I122F, T135C, I142W, I143R, E144L, while other variants showed a 
 more modest reduction of fitness (A38C, K39V, P49K, R58I, H66F, H67T, E128I, P138C) 
 (  Supplementary Table 1  ). Our results highlight the  utility of mRNA abundance readouts 
 to complement protein abundance and activity data. Together, we find variant effects 
 on mRNA abundance are partially explained by codon-mediated stability and may 
 diverge from yeast functional complementation readouts. 

 Discussion 
 The explosion of saturation mutagenesis studies  [2,5–7,9,10,56–58]  , facilitated by next 
 generation tools to measure molecular phenotypes  [4,5,29,59]  , prompts a need for an 
 analysis solution that is extensible to multiple experimental designs. We created 
 satmut_utils to fill this gap by providing simulation and variant calling in multiple 
 amplicons simultaneously for both amplicon and RACE-like methods. 

 With satmut_utils ‘sim’, we conducted the first benchmarking analysis of MAVE variant 
 callers and trained error correction models to achieve high variant calling performance. 
 We further implemented several read preprocessing strategies (primer masking, 
 consensus deduplication), which act synergistically with error correction models to 
 improve specificity. Our goal with satmut_utils ‘call’ was to enable primary variant 
 calling analysis to accurately resolve low-frequency SNPs and MNPs. The previously 
 developed software methods for analysis of MAVEs  [14–16]  do not easily scale for large 
 genes and are generally tailored to pre-/post-selection designs. Thus, we developed a 
 general solution that makes limited assumptions about experimental design, and 
 focuses on accurately identifying and quantifying variants prior to statistical inference. 

 One limitation of satmut_utils is that it is not compatible with barcode-sequencing, 
 wherein a barcode (i.e. randomer) is separated from the mutagenesis region and linked 
 to a specific variant. While this method simplifies variant calling and quantification, it 
 requires initial sequencing for barcode assignment, which increases cost and time. 
 Further, compared to direct variant calling, barcode-sequencing may lead to regulatory 
 changes due to molecular linking between the barcode and the gene of interest. 

 We demonstrate the utility of our software solution by mapping coding variant effects 
 on mRNA abundance for the  CBS  gene. Building on prior clinical and functional data 
 [10]  , we assayed variant effects on  CBS  mRNA abundance in human cells and found 
 several variants at important CBS structural residues with low mRNA abundance. Our 
 results are consistent with a recent study that employed saturation genome editing of 
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 BRCA1  to uncover hundreds of SNPs with differential  mRNA abundance, and 
 supported the notion that variants at key structural residues can lead to low mRNA 
 abundance  [60]  . 

 Both synonymous and nonsynonymous variants may have strong effects on expression 
 through translation regulation, codon optimality, and alteration of mRNA secondary 
 structure  [61–67]  . Optimal codons tend to be enriched in regions encoding buried, 
 non-solvent accessible residues  [68]  , which may explain our observation of a 
 dependence of the magnitude of variant effect on position in the coding sequence. We 
 also identified seven variants that converted to a non-optimal cysteine codon (UGU) 
 and exhibited low mRNA abundance, consistent with its low codon stability  [50]  . We 
 speculate mutations causing CBS deficiency may negatively feedback on  CBS  mRNA 
 expression via reduced biosynthesis of cysteine to compound the deleterious effect of 
 low stability of the UGU codon. Further work is needed to quantify the extent to which 
 codon optimality modulates expression of endogenous transcripts  [60]  as opposed to 
 reporter constructs, and satmut_utils is poised to support such studies. 

 Here we analyzed coding variant effects on mRNA abundance, but analysis of other 
 MAVE data is possible. For example, yeast functional complementation assays  [4,10] 
 and FACS-based assays to measure protein abundance  [5,7,9]  are plausible 
 applications for satmut_utils analysis. 

 Conclusions 
 We offer satmut_utils as a flexible solution for variant simulation and variant calling in 
 saturation mutagenesis experiments. The satmut_utils package is unit-tested, 
 well-documented, and available on GitHub and PyPi. Our method supports two 
 different library preparation methods and incorporates state-of-the-art error correction 
 through read pre-processing and machine learning models. Further, satmut_utils uses 
 standardized input and output files and is compatible with existing statistical inference 
 tools. In conclusion, satmut_utils is a complete solution for analysis of multiplexed 
 assays of variant effect, and will motivate novel assays based on targeted DNA- and 
 RNA-sequencing. 

 Methods 
 Code availability 
 Source code, installation instructions, and documentation is available on GitHub: 
 https://github.com/CenikLab/satmut_utils  . A Python  package is available on PyPi: 
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 https://pypi.org/project/satmut-utils/  . See the satmut_utils manual for details on usage 
 and algorithmic design of the ‘sim’ and ‘call’ workflows. 

 Secondary analysis 
 Secondary analysis of satmut_utils results, including benchmarking and error 
 correction modeling, used a pre-release version of satmut_utils with accessory scripts, 
 located at  https://github.com/ijhoskins/satmut_utils  .  Supplementary Tables, Additional 
 files, and reference files used in analysis are available at 
 https://github.com/ijhoskins/satmut_utils_supplementary  .  All analyses were carried out 
 on an AMD Ryzen Threadripper 3990X 64-Core Processor with Ubuntu OS. 

 satmut_utils ‘sim’ workflow 
 The satmut_utils ‘sim’ workflow takes a Variant Call Format (VCF) and alignment (BAM) 
 file with paired reads as input, and generates variants in the reads at specified 
 frequencies. Outputs are a VCF of true positive (truth) variants and counts, along with 
 edited reads (FASTQ). ‘sim’ is comprised of three overall steps: 1) a single samtools 
 ‘mpileup’ call  [69,70]  is made to query reads at each position in the target region. The 
 number of fragments to edit and the read positions to edit are determined for each 
 variant based on specified frequencies in the input VCF. ‘sim’ employs a heuristic to 
 sample reads for editing at each target position while prohibiting variant conversion 
 (the merging of edited variants with nearby errors). 2) With these edit configurations, 
 variants are edited into read pairs and written as raw reads in FASTQ format by 
 ̀samtools fastq`. 3) The raw reads are re-aligned with bowtie2  [71]  global  alignment 
 mode to generate valid CIGAR and MD tags, which are required for visualization of 
 edited reads in genome browsers. 

 satmut_utils ‘call’ workflow 
 satmut_utils ‘call’ utilizes cutadapt  [72]  for adapter and 3’ base quality trimming, 
 followed by an optimized, paired-end  local  alignment  to the transcript reference using 
 bowtie2  [71]  with the following parameters: ‘--maxins=1000 --no-discordant --fr --mp 4 
 --rdg 6,4 --rfg 6,4’. If consensus deduplication is requested, this step directly follows 
 alignment. Then, if a primer BED file is provided, primer base quality masking is 
 performed. Following read preprocessing, filtering on base quality, read edit distance, 
 and min supporting counts is applied during variant calling. Variant calls are made by 
 iterating over filtered read pairs, finding mismatches with mate concordance, extracting 
 quality features, and  writing results for each mismatch  participating in a primary variant 
 call  . (This should be considered when counting records  from output files). Fragment 
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 coverage depth is reported in bedgraph format. To validate satmut_utils ‘call’, we 
 generated  in silico  , error-free, paired-end RNA reads  and then introduced 187 SNPs 
 and MNPs, each at 10 read pairs in 10,000 (0.1%). Tuning of bowtie2 InDel penalties 
 was required to achieve 100% recall for MNPs (Supplementary Figure 1E). 

 satmut_utils primer base quality masking 
 If a primer BED file is provided, alignments are intersected with primers with ‘bedtools 
 intersect -bed -wa -wb’. The resulting BED file is processed with ‘bedtools groupby -o 
 collapse’ to group the intersecting primers for each read, and primers which originate 
 the read are determined by the following criteria: 1) the read 5’ end begins within the 
 aligned coordinates of the primer, or starts within a buffer upstream of the primer 5’ 
 end (relative to strand); 2) the read 3’ end stops within the aligned coordinates of a 
 primer on the opposite strand, or stops within a buffer upstream of the primer 5’ end 
 (relative to strand). The buffer is 15 nt for amplicon methods and 3 nt for RACE-like 
 methods. (These rules ensure masking for 3’ base-quality trimmed reads and reads 
 with slight differences in alignment start and stop coordinates, for example due to 
 incomplete primer synthesis or alignment clipping). Subsequences for originating 
 primers are masked in the reads by setting the base qualities of these read segments 
 to 0. These bases are not subsequently considered for variant calling and fragment 
 coverage enumeration. 

 satmut_utils UMI-based consensus deduplication 
 Unique molecular indexes (UMIs) are extracted to the read header prior to adapter and 
 3’ base quality trimming. Following alignment, reads are grouped by [UMI x R1 POS] 
 with UMI-tools  [73]  default directional adjacency method and the --paired, --ignore-tlen 
 flags. Group ID tags are copied from R1 alignments to R2 alignments, paired reads are 
 combined and sorted by read name, and then R1 and R2 are consensus deduplicated 
 using a majority vote at each aligned position in the UMI group. In base call ties (two 
 duplicates), if one base call matches the reference base, the reference base is used for 
 the consensus. Otherwise, the base call with the higher base quality is used, thereafter 
 defaulting to random choice. 

 Data preprocessing for benchmarking 
 Reads originating from a single  CBS  negative control amplicon (tile 6) from the 
 wild-type, non-selected condition  [10]  were selected for simulation. To meet 
 dms_tools2 and Enrich2 input requirements, reads were preprocessed using an 
 accessory script 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2022. ; https://doi.org/10.1101/2022.04.25.489390doi: bioRxiv preprint 

https://paperpile.com/c/jxGOmH/Q2CV
https://paperpile.com/c/jxGOmH/9i7f
https://doi.org/10.1101/2022.04.25.489390
http://creativecommons.org/licenses/by-nc-nd/4.0/


 (  https://github.com/ijhoskins/satmut_utils/blob/satmut_utils_dev/src/scripts/run_design 
 _conversion.py  ). Preprocessing comprised several steps:  1) reads were locally aligned; 
 2) any hard- or soft-clipped reads, unpaired singletons, and reads with InDels were 
 filtered out; 3) reads were modified to start and end flush with codons by trimming 
 and/or appending reference sequence; 4) for dms_tools2, 12 nt unique molecular 
 indices (UMIs) were added to the 5’ end of both R1 and R2, enforcing unique UMIs for 
 each read pair. 

 An accessory script 
 (  https://github.com/ijhoskins/satmut_utils/blob/satmut_utils_dev/src/scripts/run_ec_dat 
 a_generator.py  ) was used to generate the benchmarking  dataset. 281 SNPs and MNPs 
 were simulated in the preprocessed negative control (NC) alignments for tile 6 of  CBS  , 
 using frequency parameters estimated from satmut_utils variant calls (-m 2 -q 30 -e 10 
 -s NNK) across all tiles of the mutagenized, non-selected condition  [10]  . In addition, the 
 proportion of SNPs in the truth set was set at 0.25. To balance the number of true and 
 false positive labels, the number of variants to edit was determined by a heuristic that 
 samples variants until the number of component mismatches comprising these 
 variants equals the number of false positive mismatches in the NC library. The number 
 of false positive mismatches in the NC library was determined by satmut_utils call 
 using the following parameters: ‘-m 1 -q 30 -e 10 -s NNK’. 

 Configurations and quality parameters for benchmarking were as follows. 
 CBS_TILE6_SEQ = 
 “  GACGTGCTGCGGGCACTGGGGGCTGAGATTGTGAGGACGCCCACCAATGCCAGGTTCGACTCCC 
 CGGAGTCACACGTGGGGGTGGCCTGGCGGCTGAAGAACGAAATCCCCAATTCTCACATCCTAGA 

 CCAGTACCGCAACGCCAGCAACCCC  ” 

 1.  DiMSum: ‘--stranded=T -q 30 -m 10 -u coding --mutagenesisType=codon 
 --indels=none --mixedSubstitutions=T -s 1 -t 4 -w $CBS_TILE6_SEQ’ 

 2.  dms_tools2: ‘--alignspecs 19,132,31,34 --bclen 12 --bclen2 12 --chartype 
 codon --maxmuts 10 --minq 30 --minreads 1’ 

 3.  Enrich2: {"filters": {"avg quality": 20, "max N": 10}; "variants": {"max mutations": 
 3, "min count": 2, "use aligner": false, "wild type": {"coding": true, "reference 
 offset": 534, "sequence": $CBS_TILE6_SEQ}}} 
 The “Basic” mode was used (variant calling on R1 only), and variants to the 

 unknown base N were filtered out. 
 4.  satmut_utils: ‘-m 2 -q 30 -e 10 -s NNK’ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2022. ; https://doi.org/10.1101/2022.04.25.489390doi: bioRxiv preprint 

https://github.com/ijhoskins/satmut_utils/blob/satmut_utils_dev/src/scripts/run_design_conversion.py
https://github.com/ijhoskins/satmut_utils/blob/satmut_utils_dev/src/scripts/run_design_conversion.py
https://github.com/ijhoskins/satmut_utils/blob/satmut_utils_dev/src/scripts/run_ec_data_generator.py
https://github.com/ijhoskins/satmut_utils/blob/satmut_utils_dev/src/scripts/run_ec_data_generator.py
https://paperpile.com/c/jxGOmH/9i7f
https://doi.org/10.1101/2022.04.25.489390
http://creativecommons.org/licenses/by-nc-nd/4.0/


 A  post-hoc  filter was applied to select variants with  MATCHES_MUT_SIG=True. 

 Generation of error correction validation datasets 
 The same accessory script used for generation of the benchmarking dataset was used 
 for generation of four ‘sim’ datasets. To estimate error correction parameters, we ran 
 satmut_utils ‘call’ on each NC library with the parameters ‘-m 1 -q 30 -e 10 -s NNK’ to 
 count false positive mismatches in the control alignments. satmut_utils ‘call’ was also 
 ran on an input source-matched, mutagenized library with the same parameters, 
 except with a min count of 2 (-m 2). NC and mutagenized satmut_utils summary.txt 
 files, along with the trimmed NC alignments, were used as inputs to the script. To 
 complete each simulated dataset, satmut_utils ‘call’ was ran on the output FASTQs, 
 with the same parameters as NC libraries. Each simulated dataset (N=4) comprised 
 thousands of true positives (min 4850, max 7859) and thousands of false positives (min 
 4682, max 6463). 

 Data postprocessing and error modeling 
 Custom R functions in 
 (  https://github.com/ijhoskins/satmut_utils/tree/satmut_utils_dev/src/prototype  )  were 
 used to postprocess and model the resulting simulated datasets. The packages 
 data.table  [74]  , ggplot2  [75]  , cowplot  [76]  , viridis  [77]  , and ggsci  [78]  were used for data 
 processing and graphics. The following packages were used for modeling: leaps  [79]  , 
 caret  [80]  , e1071  [81]  , class  [82,83]  , randomForest  [84]  , gbm  [85]  , and glmnet  [86]  . 

 Variant calls in each simulated dataset within the mutagenized target region, and with 
 frequency < 0.3, were selected for modeling. Five classifiers were trained: gradient 
 boosted machine (decision trees); generalized linear model (binomial family) with 
 elasticnet regularization; k-nearest neighbors; random forest; and support vector 
 classifier. Performance was evaluated by nested 10-fold cross-validation (CV), 
 selecting 20% of each fold’s training data for hyperparameter tuning with caret::train. 
 Additionally, for k-nearest neighbors, the number of features was tuned in each fold 
 with best subset selection (leaps::regsubsets) by 5-fold CV, using between 3 and 10 
 features. For predictions of all models, a probability cutoff of 0.5 was used. The feature 
 importance metric (mean decrease in accuracy) was determined by passing 
 importance=TRUE during random forest training and subsequently calling 
 randomForest::varImpPlot(type=1). 

 Differential abundance analysis 
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 Variant calls were filtered by several sequential steps prior to differential abundance 
 analysis. First, variant frequencies were adjusted by subtracting the log  10  variant 
 frequency in the NC library from the frequency of corresponding variants in the 
 mutagenized libraries. Then, candidate variants were selected in sequential order by 
 the following criteria: 1) variant is within the mutagenized target region; 2) variant 
 matches the NNK codon mutagenesis signature; 3) variant is a single-codon change; 4) 
 SNP variant count >= 2 and MNP variant count >= 1; 5) no strong strand bias 
 (RACE-like method only, nucleic acid strand count difference <= 64); 6) no variants with 
 false positive RF predictions in all replicates (probability cutoff 0.49); 7) variant is 
 observed in all replicates. Additionally, for amplicon data, one sequencing library with 
 possible bottlenecking (gDNA replicate 3, Supplementary Figure 4A) was dropped and 
 replaced with the plasmid library sample to achieve three replicates. Amplicon method 
 gDNA replicate 3 was warranted for exclusion as it formed its own cluster from other 
 gDNA and cDNA replicates by hierarchical clustering analysis. 

 For filter 6, model training datasets were generated as described, and a RF model was 
 trained on the following features: log  10  frequency,  variant type (SNP, di-nt MNP, tri-nt 
 MNP), matches mutagenesis signature, substitution (e.g. A>G,T>C; six factor levels), 
 upstream reference nt, downstream reference nt, R1 and R2 median supporting base 
 qualities, R2 median supporting read position, R2 median supporting edit distance. For 
 the RACE-like model, R1 and R2-specific features (base quality, read position, read edit 
 distance) were additionally provided for each sample strand (R1+, R1-, R2+, R2-), 
 along with the sample strand count difference. For read position and edit distance 
 features, only R2 was used due to collinearity with the corresponding R1 features. 
 RACE-like model training also required na.action=”na.roughfix” to handle NAs in 
 training data due to count observations on only one sample strand. 

 To determine variants with differential abundance between mRNA and gDNA, we used 
 limma-trend  [87]  with empirical Bayes moderation and Benjamini-Hochberg multiple 
 test correction. gDNA readout serves to normalize for library abundance and 
 recombination efficiency of each variant. Relative changes in total RNA thus reflect 
 variant effects on population-wide, steady state mRNA abundance. 

 Replicate analysis 
 For Figure 4E-G, variant calls were processed as described for differential abundance 
 analysis with the exception of the last criterion (#6, variant observed in all replicates). 
 Instead, variants observed in only one replicate were filtered out. For Figure 4G, due to 
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 lower depth of coverage in RACE-like sequencing libraries, the median variant 
 frequency of cDNA replicates was plotted for variants with a log  10  frequency > -5.2 in 
 amplicon gDNA libraries. This is the approximate limit of detection for the RACE-like 
 method given the attained coverage. 

 Comparison of library preparation methods 
 The theoretical number of possible calls in CBS tiles 2 and 4 (2676) was calculated 
 empirically by counting all single SNPs, di-nt MNPs, and tri-nt MNPs that match a NNK 
 mutagenesis signature for each codon in the  CBS  coding  sequence. Unless otherwise 
 noted, variant counts, frequencies, and cDNA-gDNA frequency difference (effect 
 estimates) follow filtering as described in  Differential  abundance analysis  and  Replicate 
 analysis  and use the median for replicate summarization. 

 For variant effect comparison (Supplementary Figure 5C), variants determined 
 significant in the amplicon method at FDR < 0.1 were assessed in RACE-like data. 
 Many variants were at or below the limit of detection, so NAs were replaced with the 
 approximate limit of detection (the maximum of the minimum variant frequency across 
 all gDNA and cDNA replicates, log  10  frequency -5.38). 

 Analysis of tRNA abundance 
 Variants identified in the amplicon method at a FDR < 0.15 were used for analysis of 
 tRNA abundance data to achieve better power for analysis. For mim-tRNAseq  [53]  , the 
 mean of counts was taken of the HEK293T duplicates. For hydro-tRNAseq  [54]  , 
 HEK293 counts were used directly. For both datasets, anticodon abundance for 
 codons with Crick wobble base pairing (A-G and C-T) were added to the dataset. Then, 
 the sum of isodecoder counts was taken for each codon and log2 transformed. The 
 difference between the log2 sum of counts was calculated between the alternate 
 (variant) and reference codons and compared to the log fold changes determined by 
 limma. 

 Analysis of codon stability coefficient (CSC) data 
 The same set of variants used in analysis of tRNA abundance data was used to test for 
 differences in CSC for the ORFome in HEK293T cells  [50]  . For Figure 5C and D the 
 difference between the alternate codon (Alt.) and reference codon (Ref.) CSC was 
 computed. For Figure 5D, all pairwise distances of this difference between significant 
 and non-significant variants (691 total variants, “delta delta”) was determined to define 
 the null distribution. Variants with a distance in the lower quartile of this null distribution 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2022. ; https://doi.org/10.1101/2022.04.25.489390doi: bioRxiv preprint 

https://paperpile.com/c/jxGOmH/ND9a
https://paperpile.com/c/jxGOmH/QMQ2
https://paperpile.com/c/jxGOmH/KWb9
https://doi.org/10.1101/2022.04.25.489390
http://creativecommons.org/licenses/by-nc-nd/4.0/


 were filtered out, and variants in the upper quartile of the distribution were marked with 
 an asterisk. 

 Cell culture 
 HEK293T LLP iCasp9 Blast cells  [29]  were confirmed to be free of Mycoplasma and 
 were cultured in Dulbecco’s Modified Eagle Medium (Thermo Fisher Scientific, 
 11995065) with 10% fetal bovine serum (Gibco, and 1% penicillin-streptomycin (Gibco, 
 15140122). Prior to recombination at passage 16, cells were selected for one week 
 with 2 µg/mL Doxycycline (Sigma-Aldrich, D3072) and 10 µM Blasticidin (Gibco, 
 A1113903) to enrich for cells with the integrated landing pad. 

 CBS  library cloning 
 A  CBS  variant library was generated as previously described  [10]  . The  CBS  entry library 
 was transferred into pDEST_HC_rec_bxb_v2, a vector containing recombination sites 
 for the HEK293T LLP iCasp9 Blast landing pad line, by a Gateway LR II reaction 
 (Thermo Fisher Scientific, 11-791-020) following manufacturer’s recommendations. 1.5 
 µL of LR reaction was transformed into 25 µL Endura Electrocompetent cells (Lucigen, 
 60242), plated on Nunc Square Bioassay dishes, scraped in 6 mL LB Miller broth, and 
 3 mL resuspension was processed with the ZymoPURE II Plasmid Maxiprep Kit (Zymo 
 Research, D4203). Library size was estimated at ~540,000 species, or ~30-fold 
 coverage of each possible SNP or MNP variant in the  CBS  coding sequence. 

 Stable expression of  CBS  variant library 
 20 µg of the  CBS  variant library (in pDEST_HC_Rec_Bxb_V2),  along with an equal 
 mass of Bxb1 recombinase (pCAG-NLS-HA-Bxb1) was transfected into three 15 cm 
 dishes of HEK293T LLP iCasp9 Blast cells (passage 18, 65% confluency) using 
 Lipofectamine 3000 (Thermo Fisher Scientific, L3000008), with volumes scaled based 
 on 3.75 µL reagent per 6-well. 24 h later, cells were split 1:2 into 15 cm dishes. 48 h 
 after transfection, at near full confluency, 2 µg/mL Doxycycline and 10 nM AP1903 
 (MedChemExpress, HY-16046), both solubilized in DMSO, were added for negative 
 selection of non-recombined cells. The next day, dead cells were removed and 
 recombined cells were grown out for an additional two days with fresh media 
 containing Doxycycline and AP1903. Cells were recovered for one day by growth in 
 media without Doxycycline and AP1903. Transcription was induced with 2 µg/mL 
 Doxycycline for 24 h, cells were stimulated with fresh media for 3 h, and then harvested 
 at 95% confluency. 
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 gDNA extraction 
 gDNA was extracted from approximately 3-4 million cells with the Cell and Tissue DNA 
 Isolation Kit (Norgen Biotek Corp, 24700), including RNaseA treatment and eluting in 
 200 µL warm elution buffer. 

 RNA extraction and cDNA synthesis 
 Approximately 3-4 million cells were solubilized with 1 mL QIAzol (Qiagen,   79306) and 
 0.2 mL chloroform in 5PRIME Phase-Lock Gel heavy tubes (QuantaBio, 2302830), 
 according to the manufacturer’s recommendations. RNA was precipitated at -20 ˚C 
 following the addition of 2 µL GlycoBlue (Thermo Fisher, AM9515) and 2.5 volumes of 
 cold absolute ethanol. RNA was washed once with cold 70% ethanol then 
 resuspended in 30 µL water. 10 µg total RNA was treated with DNaseI (NEB, M0303), 
 then re-purified by the RNA Clean and Concentrator Kit (Zymo Research, R1015) and 
 eluted in 15 µL water. RNA quality was assessed with the Bioanalyzer Eukaryotic RNA 
 Pico kit (Agilent, 5067-1513). For each of six reactions, 2.5 µg DNaseI-treated total 
 RNA was denatured at 65 ˚C for 5 min followed by RT primer annealing at 4 ˚C for 2 
 min, using 2 pmol pDEST_HC_Rec_Bxb_v2_R primer specific for the landing pad. See 
 Supplementary Table 2. 

 Primed total RNA was included in six 20 µL SuperScript IV cDNA synthesis reactions 
 (  Thermo Fisher, 18090010)  with SUPERase-In RNase inhibitor  (Thermo Fisher, 
 AM2696),  and first-strand cDNA was synthesized by  incubating at 55 ˚C for 1 h, 
 followed by RT inactivation at 80 ˚C for 10 min. RNA was digested with addition of 5 U 
 RNaseH (NEB, M0297) to the first strand cDNA synthesis reaction and incubation at 37 
 ̊C for 20 min. One reaction was saved for amplicon library preparation, while the other 
 five were saved for RACE-like (Anchored Multiplex PCR) library preparation. 

 Amplicon library preparation 

 See Supplementary Table 2 for primers used in PCR1 and PCR2 of amplicon method 
 library preparation, outlined below. 

 Landing pad amplification (PCR1) 
 2.5 µg of gDNA was amplified with Q5 polymerase (NEB, M0491) for 14 cycles in each 
 of six 50 µL PCR reactions with 500 nM landing-pad-specific primers 
 (pDEST_HC_Rec_Bxb_V2_F, pDEST_HC_Rec_Bxb_v2_R) flanking the entire  CBS  insert 
 (~1.7 kb), and including the high GC enhancer reagent. The cycling parameters were: 
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 initial denaturation at 98 ˚C for 30 s; 3-step cycling with denaturation at 98 ˚C for 10 s, 
 anneal at 65 ˚C for 30 s, extension at 72 ˚C for 1 min; final extension at 72 ˚C for 2 min. 

 Products were pooled, resolved on a 0.8% agarose/TAE gel, visualized with 1x SYBR 
 Gold, and extracted from the gel using the Macherey-Nagel Nucleospin Gel and PCR 
 Cleanup Kit (Takara, 740609  )  with 15-25 µL 70 ˚C elution  buffer. 

 Coding sequence amplification (PCR2) 
 500 pg of the gDNA and cDNA PCR1 products (landing pad insert) was amplified for 
 each of two CBS tiles (CBS_2_v2, CBS_4_v2 primer pairs) in a 50 µL NEB Q5 reaction 
 (NEB, M0491) with high GC enhancer for 8 cycles, following the same cycling 
 parameters as for PCR1. 

 Illumina adapter addition (PCR3) 
 Products for tile 2 and 4 amplicons were cleaned up with the Nucleospin Gel and PCR 
 Cleanup Kit (Takara, 740609  ),  eluted in 30 µL 70 ˚C  buffer, and then mixed together at 
 equal volumes (5 µL each) and input into a final NEB Q5 reaction for 8 cycles with the 
 same formulation as PCR2 but using NEBNext Multiplex Oligos for Illumina Dual Index 
 Primers Set 1 (NEB, E7600S) according to manufacturer’s recommendations (65 ˚C 
 annealing). Final library was purified with the Nucleospin Gel and PCR Cleanup kit and 
 eluted in 30 µL 70 ˚C buffer. 

 RACE-like library preparation 
 Anchored Multiplex PCR libraries were generated with modifications following the initial 
 strategy  [20]  . Briefly, for cDNA libraries, double-strand cDNA was first synthesized, and 
 gDNA and double-strand cDNA inputs were sheared prior to library preparation. 
 Libraries were prepared using the ArcherDX, Inc. (now Invitae) LiquidPlex library 
 preparation kit with a custom  CBS  primer assay 
 (  https://archerdx.com/research-products/custom-panels/  ). See Supplementary Tables 
 2 and 3 for primer sequences. 

 Second strand cDNA synthesis 
 Second strand cDNA synthesis was carried out with 1  st  strand cDNA from each of five 
 reactions converting 2.5 µg total RNA and digesting with 5U RNaseH. 2 pmol 
 landing-pad-specific forward primer (pDEST_HC_Rec_Bxb_v2_F) and 1 µL Q5 
 polymerase (NEB, M0491) were added to 20 µL of each 1st strand cDNA reaction and 
 incubated as follows: 95 ˚C denaturation for 30 s, followed by three cycles of 1) 55 ˚C 
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 anneal for 30 s and, 2) 72 ˚C extension for 3 min, for a total of three linear primer 
 extension cycles. Reactions were pooled and cleaned up with the Nucleospin Gel and 
 PCR Cleanup kit with 1:1 buffer NTI dilution and elution with 15 µL 70 ˚C elution buffer. 

 DNA fragmentation 
 gDNA was extracted from 5 million cells with the Cell and Tissue DNA Isolation Kit 
 (Norgen Biotek Corp, 24700), including RNaseA treatment and eluting in 200 µL warm 
 elution buffer. gDNA and double-strand cDNA were fragmented using the Covaris S2 
 with the following parameters:  microTUBE AFA Fiber  Snap-Cap, 10% duty cycle, 5 
 intensity, 200 cycles per burst, 1 min treatment. Sheared DNA inputs were brought up 
 to 50 µL with ultrapure water. 

 PCR enrichment and library preparation 
 Libraries were prepared from 1-1.5 µg sheared gDNA or double-stranded cDNA 
 according to the manufacturer recommendations (ArcherDX, PRO027.4), using 15 
 cycles for both PCR1 and PCR2 with custom  CBS  primers (Supplementary Table 3). 

 Quantification and size-selection of final libraries 
 Final libraries were quantified using the KAPA Library Quantification Kit for Illumina 
 (Roche, KK4873) according to the manufacturer’s recommendation, using 1:10,000 
 dilution of libraries and size-correction using an average fragment size of 300 nt. qPCR 
 was performed on the Applied Biosystems ViiA 7 instrument. The final pool was 
 size-selected using  Sage Bioscience BluePippin 2%  gel (marker V1 and/or V2) to 
 select fragments from 200-400 bp. Following size-selection, the final pool was 
 quantified by both the High Sensitivity DNA Kit (Agilent, 5067-4626) and Qubit High 
 Sensitivity DNA assay (Thermo Fisher, Q32851). 

 Preparation of negative control libraries 
 Negative control libraries and mutagenized libraries used for estimating true variant 
 frequencies were prepared from various sources (HEK293T total RNA, plasmid DNA) 
 with several methods. See protocols for each library under the GEO submission. Primer 
 sequences for all CBS amplicons are provided in Supplementary Table 4. 

 Next-Generation Sequencing 
 Libraries were sequenced 2 x 150 (paired-end) at MedGenome, Inc. on the Illumina 
 HiSeq X platform. RACE-like (Anchored Multiplex PCR) libraries were re-sequenced on 
 the Illumina NovaSeq 6000 and FASTQs were concatenated prior to analysis. 5-10% 
 PhiX was included during sequencing. 
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 Figure 1 

 Figure 1: satmut_utils design and performance benchmarking.  Solid circles 
 represent single or multiple-nucleotide polymorphisms (SNPs, MNPs), which may be 
 either true or false positives (errors).  A) Variant  simulation workflow.  With 'sim', 
 ultra-low frequency variants in Variant Call Format (VCF) are edited into pre-existing 
 sequencing read alignments (BAM). Edited reads (FASTQ) and true positive variants 
 (Truth) are output with expected counts and frequencies. The 'call' workflow (  B  ) 
 extracts quality features during variant calling, which may be used for assay design 
 validation, software parameter tuning, and machine learning-based error correction.  B) 
 Variant calling workflow  . SNPs and MNPs are identified  and quantified in paired-end 
 reads following optional preprocessing to improve specificity. Transcript nucleotide and 
 protein changes are annotated and a VCF and fragment coverage bedgraph file are 
 output.  C) Performance of MAVE variant callers.  281  variants were simulated in 
 alignments for a single amplicon in  CBS  and performance measures were evaluated 
 after applying to simple count filters. nt: nucleotide/codon-level calls; aa: amino 
 acid-level calls.  D) Accuracy of variant count estimates.  Count accuracy is quantified 
 as the difference between the observed and truth (simulated) count, divided by the 
 truth count. One outlier SNP was excluded for visualization (Enrich2 accuracy: 130.6; 
 satmut_utils and dms_tools2 accuracy: 1.415).  dedup=deduplication. 

 Figure 2 
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 Figure 2: Machine learning models for error correction.  Negative control (NC) 
 alignments for  ‘  sim’ dataset  A  (Nextseq 500) arose  from the human  CBS  coding 
 sequence after functional complementation in yeast  [10]  . Alignments for ‘sim’ datasets 
 B-D  (NovaSeq 6000, HiSeq 2500, HiSeq 4000) and MiSeq  runs arose from HEK293T 
 endogenous  CBS  cDNA, and alignments for HiSeq X datasets  arose from  CBS 
 template plasmid.  A  )  Error proportions in negative  control libraries  . Proportion of 
 each error substitution across NC libraries from various sources. Shape of the points 
 indicates an independent NC library.  B) Model selection.  To compare models, dataset 
 A  (3802 variants, 7859 true mismatches, 6463 false  mismatches) was used. Up to 19 
 satmut_utils call quality features were selected to train binary classifiers (Methods).  C) 
 Random forest performance.  Random forests (RF) were  trained on all four ‘sim’ 
 datasets and cross-validation performance across different platforms was calculated. 
 D) Feature importance for RF models.  A RF was trained  on a combined dataset (all 
 ‘sim’ datasets  A-D  ), and the top fifteen important  features as measured by mean 
 decrease in accuracy (Methods) are plotted.  E) Cross-generalization  of RF models. 
 Pairwise train-test regimes were carried out with all ‘sim’ datasets to assess model 
 generalization across sequencing libraries and platforms.  F) Error correction impact 
 on variant calls in NC libraries.  satmut_utils variant  calls from each NC library were 
 filtered by the RF models. The number of error mismatches before and after filtering is 
 plotted for each NC library. NC: negative control; GBM: gradient boosted machine; 
 GLM-elasticnet: generalized linear model with elastic net regularization; kNN: k-nearest 
 neighbors; RF: random forest; SVC: support vector classifier. 

 Figure 3 
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 Figure 3: Read preprocessing for error correction.  For A and B, solid colored circles 
 represent SNPs, either true or false positive (error).  A) Primer base quality masking 
 schematic.  Base qualities for read segments determined  to originate from synthetic 
 primer sequences are set to 0. Black lines indicate the sequenced fragment. Solid gray 
 lines with ticks represent primers/directionality. Grey dotted lines represent reads off 
 the input fragment. Readthrough coverage refers to coverage from adjacent PCR tiles, 
 required to call variants that overlap primers.  B)  Consensus deduplication 
 schematic.  UMI-tools directional adjacency method  [73]  is used to group paired-end 
 reads from a common unique fragment, defined by UMI and read 1 position (R1 pos.). 
 A custom consensus deduplication algorithm generates the consensus base among 
 duplicates at each aligned fragment position for each read.  C) Primer base quality 
 masking improves accuracy of variants underlying primers.  Simulated datasets 
 (Figure 2, N=4) were analyzed with/without primer BQ masking and true positive 
 variants that overlap primers are plotted compared to variants not overlapping a primer. 
 D) Consensus deduplication maintains coverage uniformity.  A UMI-containing, 
 RACE-like negative control (NC) library was generated. Waterfall plots of cumulative 
 fragment coverage for consensus-deduplicated reads and non-deduplicated reads 
 indicate uniform collapse of PCR duplicates. x-axis is in log  10  scale with a range 
 between 4.6 and 5.6.  E) Consensus deduplication reduces  false positives.  The 
 effect of consensus deduplication is shown for the RACE-like NC library for each 
 variant type. UMI=Unique molecular index; SNP=Single nucleotide polymorphism; 
 MNP=Multiple nucleotide polymorphism; NC: negative control. 
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 Figure 4: satmut_utils analysis of a  CBS  variant library  by orthogonal library 
 preparation methods. A) Experimental strategy.  A human  CBS  coding variant library 
 was stably expressed in a landing pad cell line (293T LLP iCasp9 Blast)  [29]  . gDNA and 
 total RNA were sequenced by one of two targeted-sequencing methods 24 h after 
 induction with Doxycycline (Dox).  B)  CBS  domains and  sequencing coverage. 
 Coverage for two tiles by the amplicon method is contrasted with full coverage in the 
 RACE-like method. The maximum coverage depth is shown on the left of the track.  C) 
 Filtering of variant calls.  Random forest models were trained for each method using 
 negative control libraries and the ‘sim’ workflow. Plotted are the mean number of 
 variant calls +/- the standard deviation (N=3). The total possible calls are as follows: 
 amplicon (531 SNPs, 2145 MNPs); RACE-like (4105 SNPs, 16863 MNPs).  D) 
 Differential abundance for mutation types.  The difference in the median log  10 

 frequency between cDNA and gDNA is shown for variants observed in all gDNA and 
 cDNA replicates (N=6). Outliers are greater than 1.5 * interquartile range. Asterisks 
 indicate significant differences by one-sided Wilcoxon rank sum tests (p < 0.05).  E) 
 Variant call overlap between methods.  Overlap in variant calls is shown for  CBS  tiles 
 2 and 4. Total calls is the theoretical number of variant calls. Significance of overlap 
 was computed by a hypergeometric test.  F) Biological replicate correlation for 
 amplicon libraries  . Reproducibility between log  10  frequencies was determined by 
 Pearson's correlation coefficient, after filtering out variants only observed in one 
 replicate (Methods).  G) Similarity of variant frequency estimates between methods 
 in cDNA replicates.  The difference in median log  10  frequency between amplicon and 
 RACE-like methods is shown for cDNA libraries with filtering as in F. Reproducibility of 
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 cDNA frequencies between methods was determined by Pearson's correlation 
 coefficient after filters (Methods).  RACE=rapid amplification of cDNA ends; M=million; 
 PLP=pyridoxal-5'-phosphate; SNP=single nucleotide polymorphism; MNP=multiple 
 nucleotide polymorphism. 

 Figure 5: Identification and mechanisms of CBS variants that alter mRNA 
 abundance.  In all panels, data from the amplicon method  is shown, and a grey dotted 
 line indicates no change in variant effect or comparative metrics. For panel A, variants 
 at a FDR < 0.1 are shown; in all other panels, variants with a FDR < 0.15 were 
 analyzed.  A) CBS variant differential abundance.  y-axis  labels denote the amino acid 
 change and the nucleotide substitutions for variants with significant differential 
 abundance. Structural residues at or adjacent to important features are labeled with an 
 icon. Red and blue dotted lines represent the median for each input source.  B) tRNA 
 abundance correlation with mRNA abundance effects.  For each variant, the 
 difference in tRNA abundance (Alt. codon - Ref. codon; hydro-tRNAseq  [54]  ) is plotted 
 against the log fold change. Spearman rank correlation (rho) is shown.  Blue line is a 
 loess fit with span=2; confidence intervals were omitted for clarity.  C) Codon stability 
 coefficient for variants grouped by directional effect.  The difference in HEK293T 
 ORFome codon stability coefficient (CSC) scores  [50]  between alternate and reference 
 codons is compared. p-value indicates a one-sided Wilcoxon rank-sum test between 
 RNA down and RNA up groups.  D) Comparison of codon stability between 
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 significant and non-significant variants  . Significant variants were compared to 
 another variant leading to the same amino acid change. Asterisks indicate a difference 
 in the upper quartile of the distribution of all pairwise distances between significant and 
 non-significant variants (null distribution, Methods). PLP=pyridoxal-5'-phosphate; 
 FC=fold change; Ref.=reference codon; Alt.=alternate codon; N.S.=not significant; 
 CSC=codon stability coefficient. 

 Supplementary Figure 1 

 Supplementary Figure 1:  A) Comparison of amplicon  and RACE-like library 
 preparation methods.  Pink segments indicate the first  half of the adapters (Illumina 
 P5/P7 sites). Blue and yellow segments indicate the rest of the adapter, containing read 
 primer sites and possibly a unique molecular index (UMI). TileSeq is an amplicon 
 method  [4]  . Anchored Multiplex PCR (AMP)  [20]  is a RACE-like method.  B) Feature 
 comparison of MAVE variant callers.  Blue text indicates  software utility/flexibility 
 while red text indicates unsupported features. *Barcoded-seq refers to estimating 
 variant abundance through counting a linked unique barcode.  +  Codon and protein 
 change annotations are reported with correct coding sequence positions, requiring no 
 manual configuration of offsets.  C) Variant calling  algorithm.  Read pairs are filtered 
 with max edit distance (dist.) and min base quality (BQ) parameters before finding 
 concordant mismatches (same base call in R1 and R2).  D) Schematic of MNP calling 
 algorithm.  Gray boxes denote the MNP span. In cases where there are multiple 
 mismatches within the window (--max_mnp_window), satmut_utils prioritizes 
 contiguous mismatch runs. In one hypothetical case (top), a mismatch precedes a 
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 contiguous run of three mismatches. The compact run is called as a tri-nt MNP,  and 
 the preceding mismatch is called as a SNP. In a second case (bottom), two compact 
 runs- each with two mismatches- are spaced by one base matching the reference. 
 Each run is called as a di-nt MNP.  E) Example of tri-nt  MNPs aligning as InDels. 
 Under default bowtie2 alignment parameters (--rdg/--rfg 5,3), MNPs may be aligned as 
 InDels. After adjustment of the scoring parameters (--rdg/--rfg 6,4), MNPs aligned as 
 contiguous mismatches (Methods). 

 Supplementary Figure 2 

 Supplementary Figure 2: Comparison of variant callers for nucleotide changes. A) 
 satmut_utils count accuracy.  Simulated truth counts  are compared to satmut_utils 
 reported counts. Deviation for SNPs is due to preservation of native errors during 
 simulation. Dotted gray lines indicate equivalence. Blue lines show the slope of a linear 
 regression fit between truth and observed counts, with 95% confidence intervals in 
 gray.  B) satmut_utils comparison to dms_tools2.  Counts  for true (blue) and false 
 positive (yellow) variants are shown.  C) satmut_utils  comparison to Enrich2.  Counts 
 are shown as in B. Higher false positive variants for Enrich2 is partly due to use of its 
 Basic mode, which uses only R1 for variant calling. Enrich2 Overlap mode led to a high 
 proportion of unresolved calls, which precluded analysis (see Additional File 1). 

 Supplementary Figure 3 
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 Supplementary Figure 3: Library preparation quality control.  For all panels, 
 normalized (Norm.) fluorescence was computed by dividing by the sum of fluorescence 
 across the displayed Time range. Panel A shows results from the Agilent Eukaryotic 
 RNA Pico kit. Panels B-D show results from the Agilent High Sensitivity DNA kit. For 
 panels B and C, traces indicate the mean of biological replicates.  A) Quality of 
 biological replicate total RNA  . DNaseI-treated total  RNA was assayed and the 18  S 
 and 28  S  rRNA peaks for each replicate (Rep), with  RNA integrity number (RIN), are 
 shown.  B) Confirmation of intermediate products for  the amplicon method  . PCR1 
 was performed to enrich the landing pad insert (  CBS  coding sequence) from gDNA and 
 cDNA prior to PCR2 for tiled amplicons.  C) Final library  confirmation for the 
 amplicon method  . Analysis of final libraries (PCR3)  confirmed a specific product of the 
 expected size (~150 bp insert plus adapters).  D) Final  library confirmation and 
 size-selection for the RACE-like method  . Final gDNA  and cDNA libraries were 
 pooled and assayed before and after size-selection (Methods). Exclusion of 
 incompletely-adapted library and short (<50 bp) or long (>450 bp) inserts is denoted. 

 Supplementary Figure 4 

 Supplementary Figure 4  :  CBS  variant frequency correlations  for amplicon and 
 RACE-like methods  . In all panels, log  10  variant frequencies  are plotted after filtering 
 out variants found in only one gDNA or cDNA library replicate. Pearson's correlation 
 coefficient (r) is indicated. Grey dotted lines indicate equivalence. Blue lines are a linear 
 regression fit, with grey shading indicating 95% confidence intervals.  A) Biological 
 replicate reproducibility  . gDNA and cDNA variant frequencies are shown for replicate 
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 cell lines independently recombined with the  CBS  variant library.  B) Correlation 
 between gDNA and cDNA for RACE-like libraries  . The median frequency was 
 computed among gDNA and cDNA replicates prior to comparison.  C) Variant 
 frequency correlation between methods  . Due to lower depth of coverage for 
 RACE-like libraries, variants with log  10  gDNA frequencies greater than -5.2 were 
 selected for comparison to the RACE-like method (Anchored Multiplex PCR)  [20]  . 
 Replicate summarization used the median. Top panel compares gDNA libraries, and 
 bottom panel compares cDNA libraries. 

 Supplementary Figure 5 

 Supplementary Figure 5:  CBS  variant effects by amplicon  and RACE-like 
 methods  .  A) Amplicon method variant effect map  . log  10  frequencies for variants 
 leading to the same amino acid change were summarized; fill is the median log  10 

 frequency difference between cDNA and gDNA. Bold borders indicate amino acid 
 changes with at least one significant variant (codon change) with an effect in either 
 direction. Arrows demarcate residues with heme binding (C52, H65), 
 pyridoxal-5’-phosphate (PLP) binding (K119), or a location at the dimerization interface 
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 (111-112).  B) CBS variant differential abundance by RACE-like method.  y-axis 
 labels denote the amino acid change and the nucleotide substitutions for variants with 
 significant differential abundance at a FDR < 0.1). Red and blue dotted lines represent 
 the median of each input source for all variants. (+) denotes one variant up in RNA.  C) 
 Correlation of variant effects between amplicon and RACE-like methods.  Variants 
 significant by the amplicon method (FDR < 0.1) are plotted if present in at least one 
 replicate by the RACE-like method. The median log  10  frequency difference between 
 cDNA and gDNA is plotted following replacement of NAs with the approximate limit of 
 detection (log  10  frequency -5.38, Methods). Color  indicates the number of RACE-like 
 replicates in which the variant was observed. Pearson’s correlation coefficient is 
 shown. 

 Supplementary Figure 6 

 Supplementary Figure 6  :  CBS variant effect dependence  on position and 
 comparison to tRNA abundance  . In all panels, a grey  dotted line indicates no change 
 in variant effect or comparative metrics.  A) Higher  variance of effects in the catalytic 
 domain  . The minimum log  10  difference between cDNA  and gDNA for data from the 
 amplicon method was computed at each targeted position and tested by a rank-based 
 Brown-Forsythe Levene-type test.  B) Nonsense variant  effects depend on location  . 
 The difference in median log  10  frequency between cDNA  and gDNA for silent and 
 nonsense variants in the RACE-like method is plotted across the  CBS  coding region. 
 Lines represent local regression fit, with 95% confidence intervals in shaded grey.  C) 
 tRNA abundance correlation with magnitude of variant effect  . The difference in 
 tRNA abundance (Alt. codon - Ref. codon log2 sum of counts; HEK293T mim-tRNAseq 
 [53]  ) is plotted against the log FC for variants identified by the amplicon method (FDR < 
 0.15). Spearman rank correlation is shown. FC=fold change. 
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