1	
2	
3	
4	
5	Early dosage compensation of zygotically-expressed genes in Drosophila melanogaster
6	is mediated through a post-transcriptional regulatory mechanism
7	
8	Victoria M. Blake ^{1,#*} , Michael B. Eisen ^{1,2,3,#}
9	
10	¹ Department of Molecular and Cell Biology, University of California, Berkeley, California,
11	United States of America
12	
13	² Department of Integrative Biology, University of California, Berkeley, California, United
14	States of America
15	
16	³ Howard Hughes Medical Institute, University of California, Berkeley, California, United
17	States of America
18	
19	[#] Current Address: 151A Koshland Hall, Berkeley, California, 94720, United States of
20	America
21	
22	*Corresponding author
23	Email: victoriamblake104@gmail.com

24	Full title: Early Dosage Compensation of zygotically-expressed genes in Drosophila
25	melanogaster is mediated through a post-transcriptional regulatory mechanism
26	
27	Short title: Regulation of RNA abundance of X-linked genes during early
28	embryogenesis in Drosophila melanogaster
29	
30	Funding: This work was funded by a Howard Hughes Medical Institute Investigator
31	award to MBE, and a National Science Foundation Graduate Research Fellowship to
32	VMB. The funders had no role in study design, data collection and analysis, decision to
33	publish, or preparation of the manuscript.
34	
35	Competing Interests: MBE is a co-founder of PLOS.
36	
37	Abstract:
38	
39	Many key regulators of early embryogenesis in Drosophila melanogaster are X-linked.
40	However, the canonical, MSL-mediated dosage compensation, which involves hyper-
41	transcription of the genes on the single X chromosome in males, is not active until the
42	post-syncytial stage of development. A separate MSL-independent dosage
43	compensation system active earlier in development has been described, though the
44	mechanism through which the process functions remain unclear. In this study, we
45	quantified transcription in living embryos at single-locus resolution to determine if early
46	dosage compensation of the X-linked genes buttonhead and giant is sensitive to X

47 chromosome dose. We found no evidence for a transcriptionally regulated mechanism of early dosage compensation, suggesting that the previously observed compensation 48 of mRNA levels for these genes is achieved via a post-transcriptional regulatory 49 50 mechanism. 51 52 53 Introduction 54 In multicellular diploid organisms with chromosomal sex determination, the functional 55 56 degeneration of sex chromosome specific to the heterogametic sex (the Y in XY 57 systems and W in ZW systems) creates a dosage imbalance for sex-chromosome 58 encoded genes. To mitigate the detrimental impact that this dosage imbalance could 59 have on fitness, a variety of mechanisms have evolved to equalize the abundance of 60 gene products found on only one sex chromosome (typically the X or Z). 61 In the vinegar fly Drosophila melanogaster, which uses an XX/XY sex-determination 62 system, dosage compensation is achieved by upregulating transcription of genes on the 63 male X chromosome (reviewed in Kuroda et al. 2016). Mutations that affect this process 64 are lethal in males (Belote and Lucchesi 1980, Lucchesi and Skripsky 1981, Hilfiker et 65 66 al. 1997, Meller and Ratner 2002). 67 All but one of the Male Sex Lethal (MSL) proteins that mediate this process are present 68

in the maternally deposited protein component. Male specificity is achieved through the

activity of the male-specific MSL-2, which directs assembly of the dosage compensation
complex to the X chromosome, resulting in acetylation of H4K16 by MOF (Hilfiker et al.
1997, Smith et al. 2000) and a subsequent doubling of transcription from X-linked genes
(Smith et al. 2001, Gelbart et al. 2009).

74

However, an early, MSL-2 independent dosage compensation system acting on *runt* was discovered via genetic experiments (Gergen 1987, Bernstein and Cline 1994) and shown to apply more broadly by direct measurement of mRNA levels in early male and female embryos (Lott et al. 2011). It was hypothesized, based on the enrichment of putative binding sites for the master sex regulator Sxl in the 5' and 3' untranslated regions of X encoded genes, that this system was based on post-transcriptional regulation of mRNA levels (Bernstein & Cline 1994, Lott et al. 2011).

82

83 Here we use quantitative live-embryo imaging (Garcia et al. 2013, Bothma et al. 2014) 84 to compare rates of transcription at individual X-linked loci across early development in 85 male and female embryos. Briefly, transcription of a gene tagged with a reporter 86 sequence (MS2 or PP7) forms stem loops that, when bound by a coat protein (MCP or 87 PCP) conjugated to GFP, gives rise to a fluorescent signal. This allows for simultaneous 88 direct quantification via microscopy of transcription rates at individual loci across many 89 nuclei. The ability to quantify transcription rates of candidate genes in embryos of both 90 sexes makes this system uniquely amenable for testing if early dosage compensation is 91 due to increasing the rate of transcription of genes on the male X chromosome.

93 We focus on four X-linked genes: *giant (gt)* and *buttonhead (btd)* that had previously 94 been shown to be dosage compensated in the early embryo, and embryonic lethal 95 abnormal vision (elav) and bangles and beads (bnb) whose early mRNA levels are 96 dosage sensitive. We found that the early dosage compensation observed for these 97 genes was not due to a doubling of transcription in males, suggesting that this process 98 is likely regulated post-transcriptionally. In addition, we discovered an unreported 99 doubling of the transcription rate in females for *elav*, a gene that is not dosage 100 compensated and has no defined role in sex differentiation. 101 Materials and Methods: 102 103 104 **DNA constructs:** 105 Fly strains were tagged with MS2 or PP7 reporter sequences at the endogenous loci of 106 X-linked genes through CRISPR-Cas9 Homology-Directed Recombination. We used the 107 U6-gRNA protocol from flycrispr.org (Gratz et al. 2016) to clone three guide RNA 108 sequences per gene, targeting a 100 bp region around the start codon, into pCFD5 109 plasmids (Port and Bullock 2016). For donor plasmids, we inserted a 24X MS2 or PP7 110 cassette (Garcia et al. 2013, Liu et al. 2020) between 1kb of homology arms for a gene 111 of interest into a pUC19 vector backbone using the NEBuilder HiFi DNA Assembly 112 protocol. We attempted to tag all target genes with both MS2 and PP7, but, due to low 113 editing efficiency and potentially other factors, recovered only one for each gene, as 114 described in text.

116	Fly line generation:
117	gRNA, donor, and selection plasmids (for phenotypic screening, Kane et al. 2017) were
118	purified and sent to Rainbow Transgenic Inc. for microinjection into y2 cho2 v1; Sp/CyO,
119	P{nos-Cas9, y+, v+}2A embryos.
120	
121	Full details of construct and sequence information can be found in a public Benchling
122	folder.
123	
124	Progeny of injected flies with an ebony phenotype were molecularly screened by PCR
125	for the insertion of the MS2 or PP7 cassettes at endogenous X-linked loci. Lines with
126	successful transgene insertion were confirmed by Sanger sequencing.
127	
128	Transcription of X-linked genes was measured by imaging embryos homozygous for the
129	MS2- or PP7-tagged gene and a constitutively expressed Histone-RFP; MCP-eGFP
130	(Garcia et al. 2013) or PCP-eGFP (Larson et al. 2011) allele.
131	
132	Live imaging:
133	
134	Image acquisition:
135	Sample preparation followed the procedures described in (Bothma et al. 2014, Garcia et
136	al. 2013, Lammers et al. 2020). In brief, embryos were collected, dechorinated with 50%
137	bleach, and mounted between a semipermeable membrane (Lumox film, Starstedt,
138	Germany) and a coverslip while in Halocarbon 27 oil (Sigma). Data collection was

139 performed using a Zeiss LSM 800 scanning confocal microscope (Zeiss, Jana, 140 Germany). The MCP-eGFP or PCP-eGFP were excited with laser wavelengths of 488 nm, respectively. Data were collected at a 40X objective with oil immersion where the 141 142 average laser power on the specimen was 7.3 mW and a master gain of 550V. The 143 confocal stack consisted of 21 equidistant slices with an overall z-height of 5.97 µm and an interslice distance of 0.29 µm. The images were acquired at a frame time of 633.02 144 145 ms and a pixel dwell time of 1.03 µs. Image sizes were 78 µm x 19.5 µm, a frame size 146 of 1024 pixels x 256 pixels, and a pixel size of 0.08 µm. Data were taken for at least 3 147 embryos of each sex per genotype, and each embryo was imaged for at least the first 148 30 minutes of nuclear cycle 14. 149 150 Image analysis: 151 Live-imaging data were analyzed using a custom-written software following the 152 protocols in (Garcia et al. 2013, Lammers et al. 2020). This software, containing 153 MATLAB code, can be found in a public GitHub repository. In brief, this procedure involves nuclear segmentation, segmenting transcription spots based on fluorescence, 154 and calculating the intensity of each MCP-eGFP or PCP-eGFP transcription spot inside 155 156 a nucleus as a function of time. 157 158 Data analysis 159 To infer bursting parameters from experimental fluorescence traces, we used a compound-state hidden Markov Model described in Lammers et al. 2020 whose code 160

161 can be found in a <u>public GitHub repository</u>.

162

163	All data analysis was done in Python using a Jupyter Notebook with custom code to
164	generate figures. The Jupyter notebook and all data required to run it are available in
165	Supplementary File 1 this Github link.
166	
167	Quantitative RNA-FISH:
168	Probe design and hybridization:
169	Custom Stellaris® FISH Probes were designed against gt and bnb RNA by utilizing the
170	Stellaris® RNA FISH Probe Designer (Biosearch Technologies, Inc., Petaluma, CA)
171	available online at www.biosearchtech.com/stellarisdesigner (version 4.2). Single-
172	molecule RNA-FISH protocol was followed using the D. melanogaster embryo protocol
173	at the Biosearch Technologies website.
174	
175	Image acquisition:
176	Embryos were staged at nuclear cycle 14A based on percent membrane invagination
177	during cellularization (< 25%). Data collection was performed using a Zeiss LSM 800
178	scanning confocal microscope (Zeiss, Jana, Germany). A laser wavelength of 670 nm
179	was used to excite the probe-conjugated fluors. Data were collected at a 63X objective
180	with oil immersion with the laser power on the specimen was set to 5% and a master
181	gain of 650V. The images were acquired at a frame time of 930.91 ms and a pixel dwell
182	time of 1.52 $\mu s.$ Image sizes were 202.8 μm x 202.8 $\mu m,$ a frame size of 512 pixels x
183	512 pixels, and a pixel size of 0.4 μ m.

185	The field of view was adjusted to encompass the entire expression domain of probed
186	patterned genes, and the bounds of the z-stack for each image were determined by
187	when the z-plane no longer detected the probe fluorescent signal.
188	
189	Full details of probe sequence information can be found in a public Benchling folder.
190	Raw and max intensity projection images can be found in Supplemental File 2.
191	
192	Image analysis:
193	Total signal of mRNA with background correction was measured for probed genes using
194	ImageJ. Z-slices of the original image that contained no signal were trimmed from the
195	image before generating a 2D max intensity projection. We followed the Cooper Lab
196	protocol for Quantitation of Total Fluorescence per Cell with Background correction
197	(https://cooperlab.wustl.edu/). In brief, two ROIs were determined in ImageJ: one to
198	measure signal and the other to measure background. We then averaged the mean
199	Integrated Density of the signal (5 separate measurements encompassing the total
200	expression domain) and of the background. The mean background is subtracted from
201	the mean integrated density, and then divided by the area of the signal ROI to obtain
202	the Corrected Integrated Density.
203	

204 **Results**

205

Previous work identified a wide-spread dosage compensation of zygotic transcripts prior
to cellularization, where 36 out of 85 X-linked genes showed less than a 1.5-fold excess

208	of transcript abundance in female embryos relative to their male counterparts (Lott et
209	al., 2011). Many of these early-compensated genes are key developmental regulators,
210	where differences in transcript abundance could pose profound consequences to
211	organismal development. Because these early-compensated genes are regulated
212	before MSL-2, the molecule that mediates canonical dosage compensation, is
213	expressed, we sought to investigate if the early-compensation of these developmental
214	regulators occurred through a transcriptional mechanism independent of MSL-2.
215	
216	We chose two early-compensated genes (gt and btd) for further study that are essential
217	for mediating embryonic development and whose mRNA abundance is matched in male
218	and female embryos during the early nuclear cycles. Because not all zygotically-
219	transcribed genes emanating from X are early-compensated, we chose two additional
220	genes (elav and bnb) with twice as much female mRNA abundant relative to males as a
221	point of comparison in our study. All four of these genes reach maximum transcript
222	abundance during the first half of nuclear cycle 14 (Lott et al., 2011), mitigating any
223	differences due to developmental stages across datasets.

224

We used CRISPR-Cas9 (Gratz *et al.,* 2015) to insert an array of either MS2 or PP7 stem loop sequences immediately upstream of the translation start codon of the endogenous gene of interest. The rationale behind choosing this insertion site was to position at the stem loops sequences at beginning of the resulting transcript, ensuring a robust reporter signal of when transcription is occurring. The MS2 or PP7 sequences were flanked by the donor and acceptor splice sites from the *hunchback* intron so that

the stem loops would be removed from the mature mRNA to prevent problems with
RNA localization (Heinrich *et al.,* 2017) or the translation of the endogenous protein.

234 We homozygosed the lines containing MS2 and PP7-tagged genes and crossed in a 235 transgene encoding an MCP-GFP (or PCP-GFP) fusion protein that binds transcribed 236 stem loop sequences. The binding of fluorescently conjugated coat protein to these 237 stem loops (Bernardi et al.. 1972) gives rise to a fluorescent puncta (what we will refer to 238 as "spots" moving forward) in the nucleus (Figure 1B; Garcia et al., 2013) whose 239 fluorescence intensity correlates with the abundance of RNA present at the locus 240 (Garcia et al. 2013). This system offers a spatio-temporal and quantitative 241 characterization of transcript abundance for a gene of interest (Movies 1 & 2). 242 243 Figure 1: MS2-MCP and PP7-PCP reporter systems measure transcription rate of 244 X-linked genes in the early Drosophila melanogaster embryo A) An example 245 schematic of how the PP7-PCP reporter system works: 24 repeats of the PP7 stem loop 246 sequence (vellow) are flanked by splice donor and acceptor sites from the intron of the 247 hunchback gene (gold) were inserted upstream of the target gene's start codon (ATG), 248 represented here by the gene "buttonhead". When transcribed, the PP7 form RNA step 249 loops that are subsequently bound by PP7 Coat Protein (orange) conjugated to GFP 250 (green). B) The anterior portion of an embryo expression *PP7-buttonhead* (*PP7-btd*). C) 251 Zoomed-in view of the *PP7-btd* expression domain in a female embryo, made evident 252 by the two transcribing loci in nuclei as opposed to D) the same field of view for PP7-btd 253 expression in a male embryo, where there is only one transcribing locus per nucleus.

255	Embryos with successfully incorporated MS2-MCP or PCP-PP7 reporter systems
256	showed no signs of impaired organismal health and faithfully recapitulated the tagged
257	gene's expression patterns previously reported by FISH (Figure 1B; Wimmer et al.,
258	1996, Tomancak et al. 2002). A key feature of this system that lends itself for studying
259	dosage compensation is the ease in sexing embryos-the fluorescent spots in nuclei
260	serve as a readout for the number of X chromosomes present (embryos with two
261	fluorescent spots within the same nucleus are female, while embryos with one spot are
262	male) (Figure 1C & 1D).
263	
264	We used laser-scanning confocal microscopy to acquire MCP-GFP (or PCP-GFP)
265	movies of embryos during nc14, the last nuclear cycle before gastrulation. To ensure
266	consistency across fields of view across these high magnification movies, we optimized
267	data collection for patterned genes to capture all nuclei along the AP axis within the
268	same single expression domain (Movies 1 & 2, Supplemental Figure 1). If a gene had a
269	more ubiquitous expression domain within the anterior domain of the embryo, we
270	positioned the anterior pole relative to the field of view consistently across all data
271	collections. To obtain high temporal resolution and optimize signal-to-noise with minimal
272	bleaching, we collected movies so that the acquisition time for each timepoint (or Z-
273	stack) corresponded to intervals of 19.5s. In total, we collected 51 movies (Movies 3-51)
274	with a minimum of three movies of each sex per genotype (see Table 1).

Embryo ID	Gene	Sex	nuclear cycle	Duration (in frames)	Total time	Movie #
M_btd_1	PP7-btd	М	14	159		Movie 1
F_btd_1	PP7-btd	F	14	172		Movie 2
M_btd_2	PP7-btd	М	14	142		Movie 3
M_btd_3	PP7-btd	M	14	162		Movie 4
M_btd_4	PP7-btd	M	14	125		Movie 5
M_btd_5	PP7-btd	M	14	141		Movie 6
M btd 6	PP7-btd	M	14	183		Movie 7
M_btd_7	PP7-btd	M	14	99		Movie 8
M_btd_8	PP7-btd	M	14	110		Movie 9
M btd 9	PP7-btd	M	14	94		Movie 10
F_btd_2	PP7-btd	F	14	122		Movie 11
F_btd_3	PP7-btd	F	14	194		Movie 12
F_btd_4	PP7-btd	F	14	208		Movie 13
F_btd_5	PP7-btd	F	14	123		Movie 14
F_btd_6	PP7-btd	F	14	125		Movie 15
F btd 7	PP7-btd	F	14	166		Movie 16
F btd 8	PP7-btd	F	14	173		Movie 17
F_btd_9	PP7-btd	F	14	119		Movie 18
M_gt_1	MS2-gt	M	14	119		Movie 19
M_gt_2	MS2-gt	M	14	148		Movie 20
M_gt_3	MS2-gt	M	14	140		Movie 20
M_gt_4	MS2-gt	M	14	123		Movie 22
F_gt_1	MS2-gt	F	14	111		Movie 22 Movie 23
F_gt_2	MS2-gt	F	14	143		Movie 23
F_gt_3	MS2-gt	F	14	143		Movie 24
F_gt_4	MS2-gt	F	14	139		Movie 26
M_bnb_1	PP7-bnb	M	14	102		Movie 27
M_bnb_1	PP7-bnb	M	14	102		Movie 28
M_bnb_2 M_bnb_3	PP7-bnb	M	14	122		Movie 29
F bnb 1	PP7-bnb	F	14	122		Movie 30
F_bnb_1	PP7-bnb	F	14	100		Movie 31
F bnb 3	PP7-bnb	F	14	140		Movie 32
M_elav_1	MS2-elav	M	14	137		Movie 33
M elav 2	MS2-elav	M	14	133		Movie 34
	MS2-elav	M	14	148		Movie 35
M_elav_3 F_elav_1	MS2-elav	F	14	128		Movie 36
		F	14	159		
	MS2-elav	-				Movie 37
F_elav_3	MS2-elav	F	14	141		Movie 38
M13_btd_1	PP7-btd	M	13	33		Movie 39
M13_btd_2	PP7-btd	M	13	31		Movie 40
M13_btd_3 F13_btd_1	PP7-btd	M F	13	25		Movie 41 Movie 42
	PP7-btd		13	26		
F13_btd_2	PP7-btd	F	13	23		Movie 43
F13_btd_3	PP7-btd	F	13	23		Movie 44
M13_bnb_1		M	13	38		Movie 45
M13_bnb_2		M	13	25		Movie 46
M13_bnb_3		M	13	29		Movie 47
	PP7-bnb	F	13	50		Movie 48
F13_bnb_2		F	13	44		Movie 49
F13_bnb_3	PP7-bnb	F	13	32	10.4	Movie 50

Table 1: MS2 or PP7 live-imaging data collected in this study

We used a custom image analysis pipeline (Garcia et al. 2013, Lammers et al. 2020) to
identify nuclei and extract fluorescent intensity measurements for actively transcribing
X-linked loci in embryos of both sexes. A representative example of the resulting data is
shown in Figure 2.

281

282 No hyper-transcription of male X in dosage compensated genes

283

We compared the average fluorescence intensity (which we expect to be proportional to 284 285 polymerase density on transcribing loci) of detected transcription foci from male and 286 female X chromosomes across time during mitotic cycle 14 for both *btd* and *gt* (Figure 287 2A). For *btd* they are nearly identical, and for *gt*, the differences both balances out over 288 time (with slightly higher transcription from male X's early in cycle 14 and slightly higher 289 transcription from female X's later in cycle 14). As it is possible to increase 290 transcriptional output even with identical polymerase density on transcribing loci by 291 increasing the fraction of loci actively transcribing, we also looked at the number of 292 transcribing loci as a function of time in male and female embryos (Figure 2B), and, as 293 expected, observed them to be in approximately a 2:1 ratio between females and 294 males. These results are inconsistent with early dosage compensation of *btd* and *qt* 295 being achieved via hyper-transcription of the male X.

296

Figure 2: Transcription rate of the early dosage compensated *PP7-btd* and *MS2-gt* genes is the same in male and female embryos

A) Average distributions of fluorescent spot intensity over time (in frames, where "1" is

300 the first instance of transcription of the locus during nuclear cycle 14) for all female

301	(orange) and male (dark cyan) PP7-btd (N=9 embryos of each sex) and MS2-gt (N=4 of
302	each sex) embryos. The dashed, dark orange line represents double the average
303	female fluorescent spot intensity for every given timepoint. B) The distribution of
304	fluorescent spot intensities plotted over time for the dosage compensated $MS2$ -gt (N=4
305	embryos of each sex) with total spot intensity histograms on the right. B) The number of
306	transcribing PP7-btd and MS2-gt loci throughout nuclear cycle 14. The dashed orange
307	line represents half of the transcribing female loci.
308	
309	We made similar comparisons between average fluorescence and number of
310	transcribing loci in the two non-compensated loci bnb and elav. These show more
311	variation between sexes than two dosage compensated genes, with bnb generally
312	higher in males, and elav higher in females (Figure 3).
313	
314	Figure 3: Transcription rate of <i>PP7-bnb</i> and <i>MS2-elav</i> is does not result in dosage
315	compensation
316	A) Averages for male (dark cyan) and female (orange) PP7-bnb and MS2-elav
317	fluorescent spot intensities plotted over nuclear cycle 14. The dashed, dark orange line
318	represents double the average female fluorescent spot intensity for every given
319	timepoint. B) The number of transcribing PP7-bnb and MS2-elav loci throughout nuclear
320	cycle 14. The dashed orange line represents half of the transcribing female loci.
321	
322	Discussion

Our tailoring of quantitative live-imaging methods to examine early embryonic dosage compensation in *Drosophila melanogaster* were motivated by the hypothesis that the equalizing of mRNA abundance between sexes in the absence of MSL-2 mediated by regulation of transcription rate at X-linked loci.

327

328 Instead, what our studies revealed was a post-transcriptional mechanism for regulating 329 early dosage compensation of two key developmental regulators, btd and at. These 330 findings represent a broadening of our understanding of different ways in which the sex 331 chromosome dosage imbalance is mitigated during early embryogenesis. Our findings 332 offer a more dynamic way of understanding how mRNA abundance is regulated across 333 developmental stages. Importantly, this presents a shift in our understanding of how 334 mRNA abundance is regulated considering the decades of research whose findings 335 posited that dosage compensation is almost exclusively a transcriptionally regulated 336 process.

337

Sex lethal (Sxl), and RNA-binding protein that inhibits dosage compensation in females,
may play a role in regulating the abundance of X-linked mRNAs during early
embryogenesis. The regulation of X-linked *runt* abundance by Sxl is the only
documented observation of an MSL-2-independent, post-transcriptional regulation of
dosage compensation prior to our study (Gergen 1987, Bernstein and Cline 1994). It is
possible that because the two molecules regulate each other's expression (Kramer et
al. 1999, Torres et al. 2009), that observation of post-transcriptional dosage

345 compensation by Sxl is gene-specific and therefore inapplicable to the widespread
346 phenomenon we observe during early embryogenesis (Lott et al. 2011).

347

348 Considering our findings, the observed enrichment of predicted Sxl binding sites (poly-U 349 tracts) in the 5' and 3' UTRs of many X-linked genes (Kelley et al. 1995) may point to 350 one mechanism for post-transcriptionally regulating dosage compensation. There is no 351 direct correlation between genes that are early dosage compensated and their predicted 352 regulation by Sxl-not all genes that are early dosage compensated are predicted to be 353 Sxl targets, and not all predicted Sxl targets are early dosage compensation. There may 354 however be a subset of early dosage-compensated genes whose abundance may be 355 regulated by Sxl, a hypothesis worth exploring in future studies.

356

357 It is formally possible that regulation of transcriptional elongation may mediate early 358 dosage compensation of *btd* and *qt*. Because the MS2 and PP7 stem loop sequences in 359 our study are inserted immediately upstream of the translation start codon and flanked 360 by splice donor and acceptor sites from the *hb* intron, our findings speak only to the 361 regulation of transcription initiation. However, a recent study using MS2 and PP7 362 reporter systems demonstrated a concerted regulation of transcription initiation as 363 opposed to a highly variable regulation of elongation between nuclei (Liu et al. 2020). 364 These findings suggest that elongation is not the major contributor to transcriptional 365 regulation, though the role of elongation during early dosage compensation using these 366 tools warrants further study.

368	While the primary goal of this study was to study dosage compensation, our
369	measurements of transcription rate at endogenous loci represent a significant advance
370	for in vivo studies of mechanisms of gene regulation in the D. melanogaster embryo.
371	Our use of our reporter at an X-linked loci for sexing embryos also provides a
372	straightforward control for detecting differences in the regulation of gene expression
373	between male and female embryos.
374	
375	We hope that our data, as well as the reagents generated for the purposes of our study,
376	can help address other open questions about gene regulation in the early D.
377	melanogaster embryo. The reagents generated can be used for protein colocalization
378	studies or can be crossed mutant alleles of interest to assess the contribution of a
379	particular molecule in the regulation of our tagged genes. Overall, we are eager to learn
380	how the data and reagents generated in our discovery of a post-transcriptional form of
381	early dosage compensation make possible future learnings that deepen the
382	community's understanding of regulating gene expression during development.
383	
384	Supporting Information
385	
386	Supplementary Figure 1: Transcription rate of <i>PP7-btd</i> and <i>MS2-gt</i> is the same in
387	male and female embryos
388	A) Distributions of fluorescent spot intensity over time (in frames, where "1" is the the
389	first instance of transcription of the locus during nuclear cycle 14) for all female (orange)

390 and male (dark cyan) embryos (N=9 embryos of each sex) with total spot intensity

histograms on the right. B) The distribution of fluorescent spot intensities plotted over
time for the dosage compensated *MS2-gt* (N=4 embryos of each sex) with total spot
intensity histograms on the right. B&C) The distribution of fluorescent spot intensities
plotted over time for *PP7-bnb* and *MS2-elav*, genes that are not early dosage
compensated (N=3 embryos of each sex for each genotype) with total spot intensity
histograms on the right.

397

398 Supplementary Figure 2: Validation of early dosage compensation phenotype by quantitative FISH A) A maximum intensity projection of the anterior portion of a wild 399 400 type male embryo at early nc14 probed for *qt* (an early dosage compensated gene) RNA and B) a female embryo probed for *bnb* (an X-linked gene that is not early dosage 401 402 compensated) RNA. Embryos were sexed by determining the number of large puncta 403 were present within nuclei, which are dark and circular in appearance. C & D) 404 Quantification of total probe signal for each probe in individual embryos, where the 405 signal intensity was averaged across the expression domain with background subtraction. 406

407

Supplemental Figure 3: Transcription rate for *PP7-btd* and *PP7-bnb* are the same
in male and female embryos at nuclear cycle 13 A) The total distribution of
fluorescent spot intensities and the same data plotted over the course of nuclear cycle
13 for *PP7-btd* (N=3 embryos for each sex). B) The total distribution of fluorescent spot
intensities and the same data plotted over the course of nuclear cycle 13 for *PP7-bnb*(N=3 embryos for each sex).

414

415	Supplemental Figure 4: Total distribution of spot intensities of MS2-gt, MS2-elav,
416	and PP7-bnb A) Total distributions of fluorescent spot intensity for all female (orange)
417	and male (dark cyan) MS2-gt embryos (N=4 embryos for each sex) and the same data
418	plotted for individual embryos by sex. We also plotted data for MS2-elav in B) and PP7-
419	bnb in C) in the same manner (N=3 embryos for each sex per genotype).
420	
421	Supplementary Figure 5: Transcription rate of PP7-btd varies along the Dorsal-
422	Ventral axis of the developing embryo A) Distribution of fluorescent intensity of PP7-
423	btd spots in individual male and female embryos. B) Variation in the width of the PP7-
424	btd expression domain along the DV axis, where the dorsal (39% of the field of view)
425	expression domain correlates with spots of weaker fluorescence intensity (indicated by
426	the green color that matches one of the individual histograms of a male embryo in A).
427	An embryo whose recorded PP7-btd expression is more ventral (52% field of view) has
428	a wider distribution of spot fluorescent intensities. C) Distribution of fluorescent spot
429	intensities of individual embryos matched by FOV, and therefore, DV position. D)
430	Average particle intensities plotted over time for two male and female embryos on
431	different positions on the DV axis.
432	

433 Acknowledgments:

We thank Hernan Garcia for pioneering techniques for quantitative imaging of live
embryos and for project insight; Nicholas Lammers for help with computational analysis;
Gabriella Martini for generating the *MS2-gt* fly line; Barbara Meyer, Nicholas Ingolia,

- 437 and Doris Bachtrog for helpful comments; Michael Stadler and members of the Eisen
- 438 lab for helpful comments and project insight.
- 439
- 440 **References:**
- 441 Beadle LR, Love LC, Shapovalova Y, Artemev A, Rattray M, Ashe HL. Modelling global
- 442 mRNA dynamics during *Drosophila* embryogenesis reveals a relationship between
- 443 mRNA degradation and P-bodies. bioRxiv:484585 [Preprint]. 2022 [cited 2022 April 20]
- 444 Available from: <u>https://doi.org/10.1101/2022.03.17.484585</u>.
- 445
- 446 Belote JM, Lucchesi JC. MALE-SPECIFIC LETHAL MUTATIONS OF DROSOPHILA
- 447 MELANOGASTER. Genetics [Internet]. 1980;96(1):165–86. Available from:
- 448 http://dx.doi.org/10.1093/genetics/96.1.165
- 449
- 450 Bernardi A, Spahr PF. Nucleotide sequence at the binding site for coat protein on RNA
- 451 of bacteriophage R17. Proc Natl Acad Sci U S A [Internet]. 1972;69(10):3033–7.
- 452 Available from: <u>http://dx.doi.org/10.1073/pnas.69.10.3033</u>).
- 453
- 454 Bernstein M, Cline TW. Differential effects of Sex-lethal mutations on dosage
- 455 compensation early in Drosophila development. Genetics [Internet]. 1994;136(3):1051–
- 456 61. Available from: <u>http://dx.doi.org/10.1093/genetics/136.3.1051</u>
- 457
- 458 Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M. Dynamic
- 459 regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila

- 460 embryos. Proc Natl Acad Sci U S A [Internet]. 2014;111(29):10598–603. Available from:
- 461 <u>http://dx.doi.org/10.1073/pnas.1410022111</u>
- 462
- 463 Garcia HG, Tikhonov M, Lin A, Gregor T. Quantitative imaging of transcription in living
- 464 Drosophila embryos links polymerase activity to patterning. Curr Biol [Internet].
- 465 2013;23(21):2140–5. Available from: <u>http://dx.doi.org/10.1016/j.cub.2013.08.054</u>

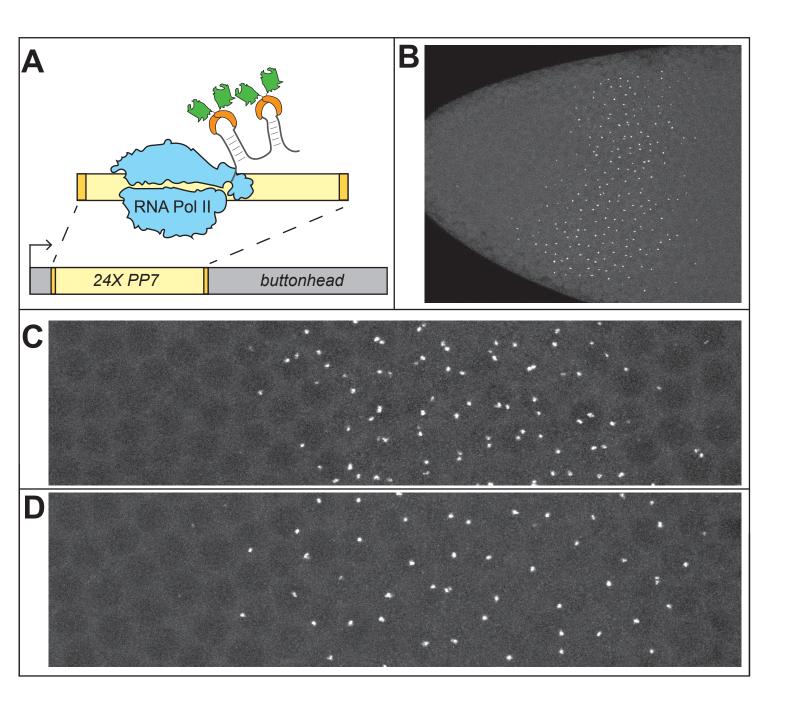
466

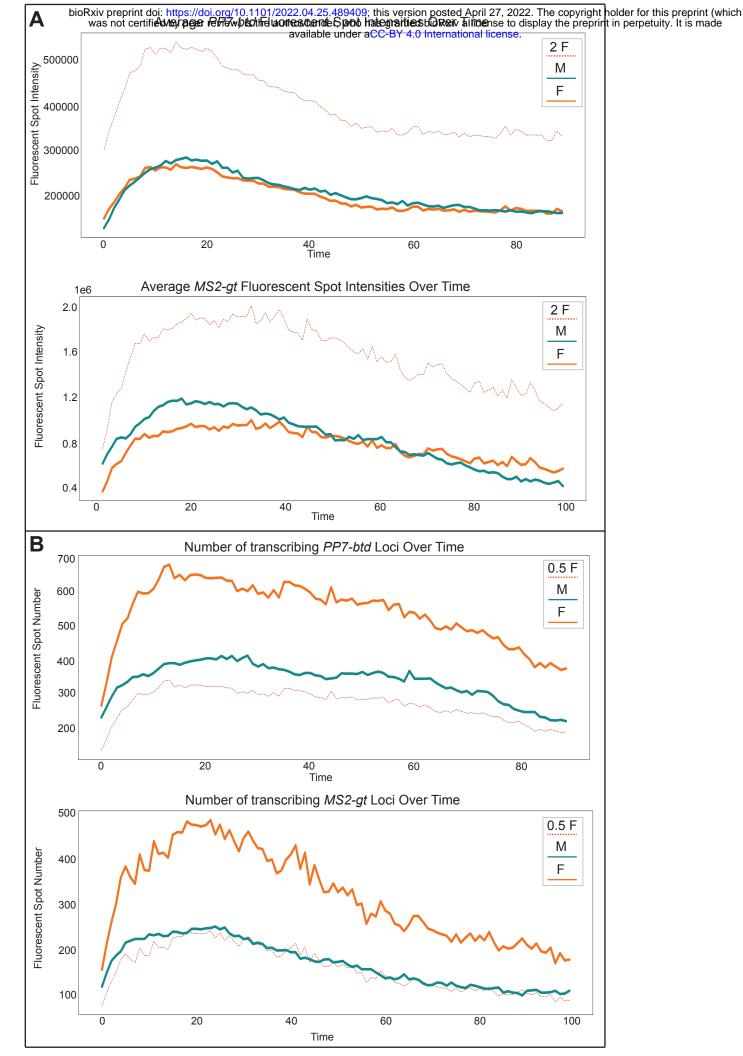
- 467 Gelbart ME, Larschan E, Peng S, Park PJ, Kuroda MI. Drosophila MSL complex
- 468 globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat
- 469 Struct Mol Biol [Internet]. 2009;16(8):825–32. Available from:
- 470 http://dx.doi.org/10.1038/nsmb.1644
- 471
- 472 Gergen JP. Dosage compensation in Drosophila: Evidence that daughterless and sex-lethal
- 473 control X chromosome activity at the blastoderm stage of embryogenesis. Genetics [Internet].
- 474 1987;117(3):477–85. Available from: <u>http://dx.doi.org/10.1093/genetics/117.3.477</u>

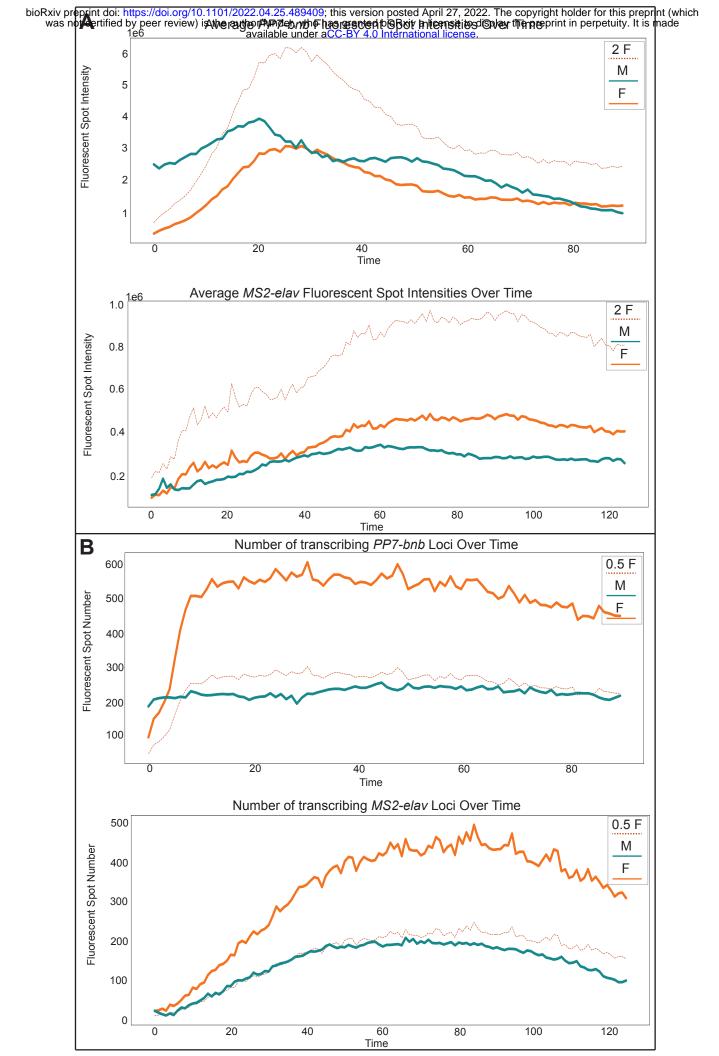
475

- 476 Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O'Connor-Giles KM. CRISPR-
- 477 Cas9 genome editing in Drosophila. Curr Protoc Mol Biol [Internet]. 2015;111(1):31.2.1-
- 478 31.2.20. Available from: <u>http://dx.doi.org/10.1002/0471142727.mb3102s111</u>

- 480 Heinrich S, Sidler CL, Azzalin CM, Weis K. Stem–loop RNA labeling can affect nuclear
- 481 and cytoplasmic mRNA processing. RNA [Internet]. 2017;23(2):134–41. Available from:
- 482 <u>http://dx.doi.org/10.1261/rna.057786.116</u>


484	Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC. mof, a putative acetyl transferase
485	gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is
486	required for dosage compensation in Drosophila. EMBO J [Internet]. 1997;16(8):2054-
487	60. Available from: http://dx.doi.org/10.1093/emboj/16.8.2054
488	
489	Kane NS, Vora M, Varre KJ, Padgett RW. Efficient screening of CRISPR/Cas9-induced events
490	in Drosophila using a co-CRISPR strategy. G3 (Bethesda) [Internet]. 2017;7(1):87–93. Available
491	from: <u>http://dx.doi.org/10.1534/g3.116.036723</u>
492	
493	Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI. Expression of
494	msl-2 causes assembly of dosage compensation regulators on the X chromosomes and
495	female lethality in Drosophila. Cell [Internet]. 1995;81(6):867–77. Available from:
496	http://dx.doi.org/10.1016/0092-8674(95)90007-1
497	
498	Kramer SG, Jinks TM, Schedl P, Gergen JP. Direct activation of Sex-lethal transcription by the
499	Drosophila runt protein. Development [Internet]. 1999;126(1):191–200. Available from:
500	http://dx.doi.org/10.1242/dev.126.1.191
501	
502	Kuroda MI, Hilfiker A, Lucchesi JC. Dosage compensation in Drosophila-a model for the
503	coordinate regulation of transcription. Genetics [Internet]. 2016;204(2):435–50.
504	Available from: http://dx.doi.org/10.1534/genetics.115.185108
505	


- Lammers NC, Galstyan V, Reimer A, Medin SA, Wiggins CH, Garcia HG. Multimodal
- 507 transcriptional control of pattern formation in embryonic development. Proc Natl Acad
- 508 Sci U S A [Internet]. 2020;117(2):836–47. Available from:
- 509 <u>http://dx.doi.org/10.1073/pnas.1912500117</u>
- 510
- 511 Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH. Real-time observation of transcription
- 512 initiation and elongation on an endogenous yeast gene. Science [Internet]. 2011;332(6028):475–
- 513 8. Available from: <u>http://dx.doi.org/10.1126/science.1202142</u>
- 514
- Liu J, Hansen, Eck E, Kim YJ, Turner M, Alamos S, Garcia HG. Real-time single-cell
- 516 characterization of the eukaryotic transcription cycle reveals correlations between RNA
- 517 initiation, elongation, and cleavage. bioRxiv:273474 [Preprint]. 2020 [cited 2022 April
- 518 20]. Available from: https://doi.org/10.1101/2020/08.29.273474.
- 519
- Lott SE, Villalta JE, Schroth GP, Luo S, Tonkin LA, Eisen MB. Noncanonical
- 521 compensation of zygotic X transcription in early Drosophila melanogaster development
- revealed through single-embryo RNA-seq. PLoS Biol [Internet]. 2011;9(2):e1000590.
- 523 Available from: <u>http://dx.doi.org/10.1371/journal.pbio.1000590</u>
- 524
- 525 Lucchesi JC, Skripsky T. The link between dosage compensation and sex differentiation
- in Drosophila melanogaster. Chromosoma [Internet]. 1981;82(2):217–27. Available
- 527 from: <u>http://dx.doi.org/10.1007/bf00286106</u>
- 528


529	Meller VH, Rattner BP. The roX genes encode redundant male-specific lethal transcripts
530	required for targeting of the MSL complex. EMBO J [Internet]. 2002;21(5):1084–91.
531	Available from: http://dx.doi.org/10.1093/emboj/21.5.1084
532	
533	Port F, Bullock SL. Augmenting CRISPR applications in Drosophila with tRNA-flanked
534	sgRNAs. Nat Methods [Internet]. 2016;13(10):852–4. Available from:
535	http://dx.doi.org/10.1038/nmeth.3972
536	
537	Pritchard DK, Schubiger G. Activation of transcription in Drosophila embryos is a
538	gradual process mediated by the nucleocytoplasmic ratio. Genes Dev [Internet].
539	1996;10(9):1131–42. Available from: <u>http://dx.doi.org/10.1101/gad.10.9.1131</u>
540	
541	Smith ER, Allis CD, Lucchesi JC. Linking global histone acetylation to the transcription
542	enhancement of X-chromosomal genes in Drosophila males. J Biol Chem [Internet].
543	2001;276(34):31483-6. Available from: <u>http://dx.doi.org/10.1074/jbc.c100351200</u>
544	
545	Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD, et al. The Drosophila
546	MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to
547	dosage compensation. Mol Cell Biol [Internet]. 2000;20(1):312-8. Available from:
548	http://dx.doi.org/10.1128/mcb.20.1.312-318.2000
549	
550	Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, et al. Systematic
551	determination of patterns of gene expression during Drosophila embryogenesis.

- 552 Genome Biol [Internet]. 2002;3(12):RESEARCH0088. Available from:
- 553 http://dx.doi.org/10.1186/gb-2002-3-12-research0088
- 554
- 555 Torres M, Sánchez L. The segmentation gene runt is needed to activate Sex-lethal, a gene that
- 556 controls sex determination and dosage compensation in Drosophila. Genet Res. 1992;59(3):189–
- **557** 98.
- 558
- 559 Wimmer EA, Frommer G, Purnell BA, Jäckle H. buttonhead and D-Sp1: a novel
- 560 Drosophila gene pair. Mech Dev [Internet]. 1996;59(1):53–62. Available from:
- 561 <u>http://dx.doi.org/10.1016/0925-4773(96)00575-8</u>
- 562
- 563
- Zoller B, Little SC, Gregor T. Diverse spatial expression patterns emerge from unified
- kinetics of transcriptional bursting. Cell [Internet]. 2018;175(3):835-847.e25. Available
- 566 from: http://dx.doi.org/10.1016/j.cell.2018.09.056

- 568
- 569

