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Abstract  13 

The study of microbiome dynamics is key for unveiling the role of the microbiome in 14 

human health. Addressing the compositional structure of microbiome data is 15 

particularly critical in longitudinal studies where compositions measured at different 16 

times can yield to different subcompositions.  17 

We propose a new compositional data analysis (CoDA) algorithm for inferring dynamic 18 

microbial signatures. The algorithm performs penalized regression over the summary of 19 

the log-ratio trajectories (the area under these trajectories) and the inferred microbial 20 

signature is expressed as a log-contrast model. Graphical representations of the results 21 

are provided to facilitate the interpretation of the analysis: plot of the log-ratio 22 

trajectories, plot of the signature and plot of the prediction accuracy of the model. The 23 

new proposal is illustrated with data on the developing microbiome of infants.  24 

The algorithm is implemented in the R package “code4microbiome” (https://cran.r-25 

project.org/web/packages/coda4microbiome/) that is accompanied with a vignette with 26 

a detailed description of the functions. The website of the project contains several 27 

tutorials: https://malucalle.github.io/coda4microbiome/ 28 

 29 
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1. Introduction 36 

Microbiome composition is dynamic and the study of microbiome changes over time is 37 

of primary importance for understanding the relationship between microbiome and 38 

human phenotypes. Longitudinal studies are costly, both economically and logistically, 39 

but there is growing evidence of the limitations of cross-sectional studies for providing 40 

a full picture of the role of the microbime in human health. Microbiome longitudinal 41 

studies can be very valuable in this context, provided appropriate methods of analysis 42 

are used (Schmidt et al. 2018) 43 

Microbiome data analysis is challenging because, among other things, the 44 

compositional nature of the data (Susin et al. 2020, Calle 2019, Gloor et al. 2016, 2017, 45 

Gloor and Reid, 2016). This is particularly critical in the context of microbiome 46 

longitudinal studies where compositions measured at different times can be affected by 47 

distinct batch effects and similar quality control or filtering protocols may yield to 48 

different subcompositions at each time point.  49 

The log-ratio approach (Aitchison 1986), that consists in analyzing the abundances of 50 

some taxa relative to the abundances of other taxa, is subcompositionally coherent and 51 

provides an especially interesting standpoint for exploring microbiome dynamics. In 52 

longitudinal studies, the log-ratio between two groups of taxa measured at different time 53 

points gives a curve profile or trajectory for each sample. We propose to explore the 54 

association between the phenotype of interest and the shape of the log-ratio microbiome 55 

trajectories.  56 

Among the questions outstanding about microbiome dynamics, we focus on inferring 57 

dynamic microbial signatures and propose a novel algorithm to identify a set of 58 

microbial taxa whose joint dynamics is associated with the phenotype of interest. For 59 
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binary outcomes, such as disease status, we aim to identify two groups of taxa with 60 

clearly different log-ratio trajectories for cases and controls.  61 

The algorithm performs variable selection through penalized regression over the 62 

summary of the log-ratio trajectories (the area under these trajectories). The inferred 63 

microbial signature is expressed as a log-contrast model (Aitchison, J. and Bacon-64 

Shone,J. 1984), i.e. a log-linear model with the constraint that the sum of the 65 

coefficients is equal to zero. The zero-sum constraint ensures the invariance principle 66 

required for compositional data analysis. 67 

The interpretability of results is of major importance in the context of microbiome 68 

studies. We provide several graphical representations of the results that facilitate the 69 

interpretation of the analysis: plot of the log-ratio trajectories, plot of the signature 70 

(selected taxa and coefficients) and plot of the prediction accuracy of the model.  71 

The methodology is illustrated with data from the “Early childhood and the microbiome 72 

(ECAM) study” (Bokulich et al. 2016).  73 

The algorithm is implemented in the R package “code4microbiome” (https://cran.r-74 

project.org/web/packages/coda4microbiome/) that is accompanied with a vignette with 75 

a detailed description of the functions. The website of the project contains several 76 

tutorials: https://malucalle.github.io/coda4microbiome/ 77 

 78 
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2. Materials and methods 80 

We first describe the analysis of log-ratios between two taxa A and B in longitudinal 81 

studies, which involves the summary of the log-ratio trajectories. Then we explain how 82 

to generalize the analysis of pairwise log-ratios to identify microbial signatures 83 

involving more than two taxa.  84 

Log-ratio analysis and taxa prioritization 85 

Assume n subjects with fixed phenotype 𝑌 = (𝑌1, … , 𝑌𝑛). Subject i has been observed in 86 

𝐿𝑖  time points, (𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝐿𝑖
). We denote by 𝑋𝑖(𝑡𝑖𝑗) = (𝑋𝑖1(𝑡𝑖𝑗), 𝑋𝑖2(𝑡𝑖𝑗), . . . , 𝑋𝑖𝐾(𝑡𝑖𝑗)) 87 

the microbiome composition of subject i at time  𝑡𝑖𝑗, where K is the number of taxa 88 

which is assumed to be the same for all the individuals and all the time points. 𝑋𝑖(𝑡𝑖𝑗) 89 

can represent either relative abundances (proportions) or raw counts. We denote by 90 

𝑙𝑜𝑔𝑋𝑖(𝑡𝑖𝑗) the logarithm transformation of microbiome abundances after zero 91 

imputation. The log-abundance trajectory of component A for individual i is denoted by 92 

𝑙𝑜𝑔𝑋𝑖𝐴 = (𝑙𝑜𝑔𝑋𝑖𝐴(𝑡𝑖1), 𝑙𝑜𝑔𝑋𝑖2𝐴(𝑡𝑖2), . . . , 𝑙𝑜𝑔𝑋𝑖𝐴(𝑡𝑖𝐿𝑖
)) and the log-ratio trajectory 93 

between components A and B for individual i is given by: 94 

𝑙𝑜𝑔𝑋𝑖𝐴 − 𝑙𝑜𝑔𝑋𝑖𝐵  = (𝑙𝑜𝑔𝑋𝑖𝐴(𝑡𝑖1) − 𝑙𝑜𝑔𝑋𝑖𝐵(𝑡𝑖1),95 

𝑙𝑜𝑔𝑋𝑖2𝐴(𝑡𝑖2) − 𝑙𝑜𝑔𝑋𝑖𝐵(𝑡𝑖2), . . . , 𝑙𝑜𝑔𝑋𝑖𝐴(𝑡𝑖𝐿𝑖
) − 𝑙𝑜𝑔𝑋𝑖𝐵(𝑡𝑖𝐿𝑖

)) 96 

We summarize the log-ratio trajectories within two time points 𝑙1 and 𝑙2 as the integral 97 

of the log-ratio trajectory: 98 

                                   𝑠𝑖(𝐴, 𝐵) = ∫ (𝑙𝑜𝑔𝑋𝑖𝐴(𝑡) − 𝑙𝑜𝑔𝑋𝑖𝐵(𝑡)) 𝑑𝑡
𝑙2

𝑙1
                                 (1) 99 

where the values of the log-ratio for 𝑡 ∉ (𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝐿𝑖
) are linearly interpolated. 100 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 26, 2022. ; https://doi.org/10.1101/2022.04.25.489415doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.25.489415


6 
 

We do not take the absolute value in equation (1) because the sign of the integral is 101 

informative: Positive values of 𝑠𝑖(𝐴, 𝐵) correspond to trajectories of component A 102 

above trajectories of component B, that is, larger relative abundances of A with respect 103 

to B, while negative values represent the opposite. Values of 𝑠𝑖(𝐴, 𝐵) around zero can 104 

represent similar abundances between A and B over time or a non-homogeneous trend 105 

between A and B within the observed region.  106 

Another advantage of the summary 𝑠𝑖(𝐴, 𝐵) is computational. Since the integral is 107 

linear, 𝑠𝑖(𝐴, 𝐵) is equal to the difference between the integrals of log-transformed 108 

microbiome abundances of taxa A and taxa B: 109 

𝑠𝑖(𝐴, 𝐵) = ∫ 𝑙𝑜𝑔𝑋𝑖𝐴(𝑡)
𝑙2

𝑙1

𝑑𝑡 − ∫ 𝑙𝑜𝑔𝑋𝑖𝐵(𝑡) 𝑑𝑡
𝑙2

𝑙1

 110 

Thus, the number of integrals to be calculated is of the order of K, the number of taxa, 111 

instead of 𝐾(𝐾 − 1)/2, the number of pairwise log-ratios.  112 

The log-ratio summary for the n subjects, 𝑠(𝐴, 𝐵) = (𝑠1(𝐴, 𝐵), … , 𝑠𝑛(𝐴, 𝐵)), can be 113 

tested for association with the phenotype 𝑌 = (𝑌1, … , 𝑌𝑛) with a generalized linear 114 

model (glm) adjusted for some covariates Z:   115 

           𝑔(𝐸(𝑌𝑖)) =  𝛽0+𝛽1 · 𝑠𝑖(𝐴, 𝐵) + 𝛾′ · 𝑍𝑖                      (2) 116 

where 𝛽0 is the intercept, 𝛽1 is the regression coefficient for the log-ratio summary 117 

between components A and B, Z = (𝑍1, 𝑍2, … , 𝑍𝑟) are non-compositional covariates and 118 

γ is the vector of regression coefficients for Z. 119 

Microbiome signature based on log-ratio analysis 120 

To identify those log-ratios that are most associated with the outcome Y, we implement 121 

glm penalized regression on the log-ratio summaries for all pairs of taxa:  122 
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          𝑔(𝐸(𝑌)) = 𝛽0 + ∑ 𝛽𝑗𝑗∈𝐽 · 𝑆(𝑗)                        (3) 123 

where 𝐽 = {1, … , 𝐾(𝐾 − 1)/2} and 𝑆(𝑗) = 𝑠(𝑗1, 𝑗2) is the log-ratio summary of 124 

components 𝑗1 and 𝑗2 with (𝑗1, 𝑗2) ∈ 𝐽12, the set of all possible combinations of pairs of 125 

components.  126 

The regression coefficients in equation (3) are estimated to minimize a loss function 127 

𝐿(𝛽) subject to a penalization on the regression coefficients, 𝑃(𝛽): 128 

                𝛽̂ = argmin
𝛽

{𝐿(𝛽) + 𝑃(𝛽)}                                            (4) 129 

For the penalty term we consider the elastic-net, which combines the L1 and L2 norms: 130 

𝑃(𝛽) = 𝜆1‖𝛽‖2
2 + 𝜆2‖𝛽‖1. A common reparameterization of 𝑃(𝛽) is 𝜆1 = 𝜆(1 − 𝛼)/2 131 

and 𝜆2 = 𝜆𝛼 where 𝜆 controls the amount of penalization and 𝛼 the mixing between the 132 

two norms.  133 

For the linear regression model the loss function is given by the residual sum of squares 134 

𝛽̂ = argmin
𝛽

{‖𝑌 − 𝑆𝛽‖2
2 + 𝜆1‖𝛽‖2

2 + 𝜆2‖𝛽‖1},  135 

where 𝑆 is the matrix of all log-ratio summaries and has dimension 𝑛 by 𝐾(𝐾 − 1)/2. 136 

The expression of the optimization problem (4) for other models, like the logistic 137 

regression and the multinomial regression models, can be found in Friedman et al. 138 

(2010).  Non-compositional covariates Z are previously modeled with Y and the fitted 139 

values are considered as “offset” in the penalized regression.  140 

The result of the penalized optimization provides a set of selected pairs of taxa, those 141 

with a non-null estimated coefficient. For each individual, 𝑖 ∈ {1, … , 𝑛}, the linear 142 

predictor of the generalized linear model (3), 𝑀𝑖 = ∑ 𝛽𝑗̂𝑗∈𝐽,(𝑗1,𝑗2)=𝐽12(𝑗) · 𝑠𝑖(𝑗1, 𝑗2), is the 143 

microbiome signature which is associated with the phenotype 𝑌𝑖. Because of the 144 

linearity of the integrals used as summaries of the log-ratio trajectories, the microbiome 145 

signature M can be rewritten in terms of the selected single taxa which is more 146 

interpretable than the selected pairs of components:  147 
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𝑀 = ∑ 𝛽𝑗̂

𝑗∈𝐽,(𝑗1,𝑗2)=𝐽12(𝑗) 

· 𝑠(𝑗1, 𝑗2) = 148 

= ∑ 𝛽𝑗̂

𝑗∈𝐽,(𝑗1,𝑗2)=𝐽12(𝑗) 

· ∫ 𝑙𝑜𝑔𝑋𝑗1
(𝑡)

𝑙2

𝑙1

𝑑𝑡 − ∑ 𝛽𝑗̂

𝑗∈𝐽,(𝑗1,𝑗2)=𝐽12(𝑗)  

· ∫ 𝑙𝑜𝑔𝑋𝑗2
(𝑡)

𝑙2

𝑙1

𝑑𝑡 = 149 

                                            = ∑ 𝜃𝑘 · ∫ 𝑙𝑜𝑔𝑋𝑘(𝑡)
𝑙2

𝑙1
𝑑𝑡𝐾

𝑘=0 = 150 

                                             = ∫ (∑ 𝜃𝑘 · 𝑙𝑜𝑔𝑋𝑘(𝑡)𝐾
𝑘=0 )𝑑𝑡

𝑙2

𝑙1
           151 

                                                                                                                                (5) 152 

where 𝜃𝑘 = ∑ 𝛽𝑗̂𝑗:𝑘∈𝐽12(𝑗)  , that is, the sum of the coefficients 𝛽𝑗̂ corresponding to a log-153 

ratio that involves component k.  154 

It can be proved that ∑ 𝜃𝑘
𝐾
𝑘=0 = 0 and thus, the microbiome signature M is the integral 155 

of the trajectory of a log-contrast function involving the selected taxa (those with 𝜃𝑘 ≠156 

0). This ensures the invariance principle required for proper compositional data analysis 157 

and it facilitates the interpretation of the microbiome signature: Expression ∑ 𝜃𝑘 ·𝐾
𝑘=0158 

𝑙𝑜𝑔𝑋𝑘(𝑡) in (5) can be interpreted as a weighted balance between two groups of taxa, 159 

𝐺1 and 𝐺2, the taxa with a positive coefficient vs those with a negative coefficient 160 

(Susin et al. 2020).  161 

The package “coda4microbiome” (Calle and Susin, 2022) contains several functions 162 

that implement the proposed algorithms. The two main functions are 163 

explore_lr_longitudinal(), that implements the simple generalized linear model 164 

(equation 2), and coda_glmnet_longitudinal(), that performs penalized regression for 165 

the multivariable generalized linear model (equation 4). Additional functions are 166 

available like function plot_signature_curves() that provides a plot of the signature 167 
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trajectories or filter_longitudinal() that filters those individuals and taxa with 168 

enough longitudinal information.  169 

To illustrate the proposed approach and the R implementation we use data from the 170 

early childhood and the microbiome (ECAM) study (Bokulich et al. 2016). Metadata 171 

and microbiome data were downloaded from https://github.com/caporaso-172 

lab/longitudinal-notebooks. Microbiome data, corresponding to 16S rRNA gene 173 

microbiota compositions sampled at regular intervals, were available in QIIME 2 qza 174 

file format (file ecam-table-genus.qza) and were transformed to R objects with function 175 

read_qza() of the R library qiime2R: https://github.com/jbisanz/qiime2R. Metadata 176 

(file ecam-sample-metadata.tsv) were in long format: multiple rows for individual, one 177 

for each time-point observation. Initially the data contained information on 43 child and 178 

445 taxa at the genus level. We filtered those individuals and taxa with enough 179 

information for time-course profiling: we removed individuals with only one time-point 180 

observation and those taxa with less than 30 children (70% of individuals) with at least 181 

3 non-zero observations over the follow-up period. After filtering, the data reduced to 182 

42 children and 37 taxa.  183 

3. Results 184 

We demonstrate the proposed methodology with data from the “Early childhood and the 185 

microbiome (ECAM) study” that followed a cohort of 43 U.S. infants during the first 2 186 

years of life for the study of their microbial development and its association with early-187 

life antibiotic exposures, cesarean section, and formula feeding (Bokulich et al. 2016). 188 

Microbiome data were available for 43 child and 445 taxa at the genus level (Bokulich 189 

et al. 2018). After filtering those individuals and taxa with enough information for time-190 

course profiling, the data were reduced to 42 child and 37 taxa. We focus on the effects 191 
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of the diet on the early modulation of the microbiome by comparing microbiome 192 

profiles between children with breastmilk diet (bd) vs. formula milk diet (fd) in their 193 

first 3 months of life.  194 

Most important taxa  195 

By implementing the pairwise log-ratio approach for longitudinal data (function 196 

explore_lr_ongitudinal()), we identified which taxa have more different dynamics 197 

between bd and fd children in the first three months of life. Table 1 provides the top 15 198 

taxa with more discriminative dynamics between both diets.  199 

Table 1. Taxa with most different abundances between the two diets groups during the first 200 
three months of life. 201 

 202 

Taxanomic assignment More abundant 
group 

"p_Proteobacteria;c_Gammaproteobacteria;o_Pasteurellales;f_Pasteurellaceae;g_Hae

mophilus" 
bd 

"p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Staphylococcus"   
bd 

"p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Veillonella" 
fd 

"p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia" 
fd 

"p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_1" 
fd 

"p_Firmicutes;c_Clostridia;o_Clostridiales" 
fd 

"p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae" 
fd 

"p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;f_Bifidobacteriaceae;g_Bifidob

acterium" 
bd 

"p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae"   
fd 

"p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides"    
bd 

"p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus" 
bd 

"p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_[Eubacter

ium]" 
fd 

"p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus" 
fd 

"p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Dorea" 
fd 

"p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Enterococcaceae;g_Enterococcus" 
fd 

 203 

 204 
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Microbiome signature 205 

The application of the proposed algorithm (with function coda_glmnet_longitudinal()) 206 

identified a microbiome signature with maximum discrimination accuracy between the 207 

two diet groups. The signature is defined by the relative abundances of two groups of 208 

taxa, 𝐺1 and 𝐺2, where 𝐺1 is composed of 6 taxa (those with a positive coefficient in the 209 

regression model) and 𝐺2 is composed of 2 taxa (those with a negative coefficient) 210 

(Table 1 and Figure 1). Group 𝐺1 is mainly dominated by three taxa within the order 211 

Clostridiales (family Ruminococcaceae (2) and gender Blautia) and one taxon within 212 

the gender Actinomyces. Two taxa (g_Veillonella and f_Lachnospiraceae) have a 213 

coefficient close to zero and will have a very small contribution to the signature. Group 214 

𝐺2 is composed by two taxa within the genders Haemophilus and Staphylococcus. Note 215 

that the selected taxa within the microbial signature are among most important taxa 216 

according to the results of the pairwise log-ratio analysis (Table 1). 217 

 218 

Table 2. Taxa included in the microbiome signature that best discriminates between the two diet  219 
groups  220 

 221 

Balance 

group 

Coefficient Taxanomic assignment 

 

 

G1 

0.3359 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_1                        

0.2730 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia    

0.2159 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinomyces 

0.1358 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_2                       

0.0337 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Veillonella     

0.0055 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_     

 

G2 

−0.4327 p_Proteobacteria;c_Gammaproteobacteria;o_Pasteurellales;f_Pasteurellaceae;g_Haemophilus 

−0.5672 p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Staphylococcus                
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 222 

Fig 1. Taxa composing the microbiome signature that best discriminates between the two diet 223 
groups (green: positive coefficient and red: negative coefficient) 224 

 225 

The trajectories of the microbial signature over the observed period are represented in 226 

Figure 2, where the color of the curves corresponds to the diet group. Each trajectory 227 

represents the relative mean abundances between the two taxa groups for each child. We 228 

can see that the two groups are clearly separated. Those children under breastmilk diet 229 

(in orange) usually have trajectories below zero, which means they have more relative 230 

mean abundance of g_Haemophilus and g_Staphylococcus with respect to the relative 231 

abundance of taxa in group 𝐺1, while children with formula milk diet (in blue) have 232 

more relative abundance of taxa in group 𝐺1 relative to 𝐺2. 233 
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 234 

Fig 2. Relative abundance between group 𝐺1 and 𝐺2 during the first three months of life. 235 
Highlighted curves represent the mean value of the signature for each diet group  236 

(orange: breast milk diet, blue: formula milk diet) 237 
 238 

Figure 3 displays the distribution of the microbial signature scores for the two diet 239 

groups and offers a visual assessment of the (apparent) discrimination accuracy of the 240 

signature. Quantitatively, the apparent discrimination accuracy of the signature (i. e. the 241 

AUC of the signature applied to the same data that was used to generate the model) is 242 

0.96 and the mean cross-validation AUC is 0.74 (sd=0.10). 243 

 244 

 245 

Fig 3. Distribution of the microbial signature scores for the two diet groups  246 
(orange: breast milk diet, blue: formula milk diet) 247 

 248 
 249 
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Both results, the pairwise analysis and the taxa selected in the microbial signature, are 250 

consistent with previous studies on the association of the infant gut microbiome 251 

composition and breastmilk feeding practices. In Fehr et al. (2020), Haemophilus 252 

parainfluenzae and Staphylococcus were found to be enriched with exclusive breastmilk 253 

feeding together with lower prevalence of Actinomyces at 3 months. Lachnospiraceae 254 

(Blautia) was enriched among infants who were no longer fed breastmilk. Similar 255 

results are reported in Laursen et al. (2016) where the duration of exclusive 256 

breastfeeding was negatively correlated with genera within Lachnospiraceae (e.g., 257 

Blautia) and genera within Ruminococcaceae. Positive correlations with exclusive 258 

breastfeeding were observed for g_Bifidobacterium and Pasteurellaceae 259 

(Haemophilus). 260 

4. Discussion  261 

Longitudinal microbiome studies, especially those focused on the human microbiome, 262 

have usually low resolution: the number of individuals is small, each individual has few 263 

observation times, the observations of the different individuals are not made at exactly 264 

the same time, the data are very variable, the expected behavior of the abundance 265 

trajectories is not linear or quadratic, etc. This makes it difficult to justify and 266 

implement a parametric modeling of trajectories and limits the use of models for 267 

longitudinal data (time series, mixed models). In this context, a description of the 268 

trajectories such as the one we propose, although less precise, allows to extract valuable 269 

information from the data as we have shown in the example. Other longitudinal data 270 

modeling strategies (Gerberg et al. 2012, Park et al. 2020, Silverman et al. 2018, Äijö et 271 

al. 2017) could be used in longitudinal microbiome studies with higher resolution such 272 

as laboratory or animal experimental studies. 273 
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The applicability of CoDA methods in microbiome studies has been limited by the 274 

difficulty in interpreting the obtained results. We hope that this work and the R package 275 

“coda4microbiome” will help to increase the use of these methods in this field. 276 
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