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Abstract 

 

Background: The Andean fever tree (Cinchona L.; Rubiaceae) is the iconic source of bioactive 

quinine alkaloids which have been key to treating malaria for centuries. In particular, C. 

pubescens Vahl has been an important source of income for several countries in its native range 

in north-western South America. However, the genomic resources required to place Cinchona 

species in the tree of life and to explore the evolution and biosynthesis of alkaloids are meagre. 

Findings: Using a combination of ~120 Gb of long sequencing reads derived from the Oxford 

Nanopore PromethION platform and 142 Gb of short read Illumina data, we address this gap 

by providing the first highly contiguous nuclear and organelle genome assemblies and their 

corresponding annotations. Our nuclear genome assembly consists of 603 scaffolds comprising 

a total length of 903 Mb, representing ~85% of the genome size (1.1 Gb/1C). This draft genome 

sequence was complemented by annotating 72,305 CDSs using a combination of de novo and 

reference-based transcriptome assemblies. Completeness analysis revealed that our assembly 

is highly complete, displaying 83% of the BUSCO gene set, and a small fraction of genes 

(4.6%) classified as fragmented. We demonstrate the utility of these novel genomic resources 

by placing C. pubescens in the Gentianales order using plastid and nuclear datasets. 

 

Conclusions: Our study provides the first genomic resource for C. pubescens thus opening 

new research avenues, including the unravelling of the gene toolkit for alkaloid biosynthesis in 

the fever tree. 

 

Keywords: Oxford Nanopore, Rubiaceae, transcriptomics, whole genome sequencing. 
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Data Description 

1.1 Background 

The fever tree (Cinchona L., Rubiaceae) is a genus of 24 species native to the Eastern 

slopes of the Andes mountain range in South America ([1,2]; Fig. 1) and perhaps one of the 

most economically important genera in the family, second only to coffee [3]. The genus is 

widely known as the source of a group of at least 35 quinine alkaloids collectively called 

quinolines that have been shown to be key to ameliorating the fever and chill episodes 

associated with malaria [4]. As such, the fever trees have played a crucial role in the economies 

and livelihoods of people worldwide for centuries [5,6].  

Despite the tremendous historical and economic importance of Cinchona, DNA 

sequence datasets for Cinchona are rather meagre, limited to 252 DNA Sanger sequences 

available in the NCBI repository (accessed on May 17, 2021; [7]). More importantly, no 

nuclear and organellar reference genomes exist for any species of the genus. As such, important 

fundamental and applied questions – such as the mode and tempo of evolution of the fever tree, 

or the genetic pathways responsible for quinine alkaloid production – remain elusive. Previous 

phylogenetic studies of the Rubiaceae family, and more specifically of the Cinchonoideae 

subfamily where the Cinchoneae tribe is found, are based on just a handful of nuclear (ITS) 

and plastids data sets (matK, rcbL, rps16, trnL-F). They show an unresolved polytomy between 

the tribes and the seven genera of the Cinchoneae tribe that have so far been included in more 

specific studies [8,9] (including the genus Cinchona, which shows very unclear relationships). 

Furthermore, studies are lacking of the relationships within species of this genus [7,8]. A recent 

genome-wide phylogenetic tree for the order Gentianales (Antonelli et al., in press) provided 

strong support for C. pubescens as sister to Isertia hypoleuca, but the sampling was exclusively 

at the genus level and therefore did not include any other species of Cinchona nor other genera 

in tribe Cinchoneae.  
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 The  production of alkaloids is highest in C. calisaya, also known as yellow bark 

[10][11]. However, several species of the genus Cinchona have historically been harvested to 

provide sources of quinine alkaloids, one of the most traded natural products, resulting in 

significant reductions in their natural ranges and population size [12,13]. Nevertheless, among 

them, C. pubescens or red Cinchona bark is now widely cultivated throughout the New and 

Old-World tropics, with some instances where the species has escaped cultivation and become 

invasive [14]. Extensive research on the structure, abundance, and chemical composition of 

quinine alkaloids in the Cinchona genus have been conducted [15], revealing further potential 

in novel drug discovery. However, the identity of the genes involved in the synthetic pathway 

of quinine alkaloids remain elusive. 

Here, we present the first high quality draft nuclear and plastid genomes of C. 

pubescens, which is characterised by having a genome size of 1.1 Gb (1C, this study) and a 

chromosome number of 2n=34. The assemblies were generated using a combination of 

extensive long-read Nanopore (~218x) and short-read Illumina paired-read datasets (~300x) 

jointly with state-of-the-art genome assemblers, resulting in a reference genome for which 

contiguity and quality are comparable to, or even higher [16] than in the three previously 

published genome assemblies in Rubiaceae, such as Chiococca alba [16], Coffea canephora 

[17], and Coffea arabica [18]. The plastid genome from short-reads of C. pubescens had a 

length of 156,985 bp and a GC content of 37.74%, very similar to other Rubiaceae plastid 

genomes [16,19]. Lastly, we demonstrate the utility and reliability of our resources by 

constructing nuclear and plastid phylogenomic frameworks of C. pubescens. 

 

1.2 Sampling and genomic DNA/RNA sequencing 

We sampled leaves from a single Cinchona pubescens individual (1977-69, propagated 

vegetatively from a tree collected in Tanzania in 1977) cultivated in the Temperate House of 
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the Royal Botanic Gardens, Kew (RBG Kew), UK (a voucher was also prepared which is 

deposited in the RBG Kew herbarium (K)). DNA was extracted from fresh tissue using two 

different protocols to produce paired-end Illumina and native Nanopore libraries. For Illumina 

DNA library preparations, we used 1000 mg of starting material that was first frozen with liquid 

nitrogen and subsequently ground in a mortar. The Qiagen DNeasy (Qiagen, Denmark) plant 

kit was used to extract DNA from the ground tissue, following the manufacturer’s protocol. 

We built the libraries using the Illumina TruSeq PCR-free library (NEX, Ipswich, MA, USA) 

following the manufacturer’s protocol, by first quantifying the DNA quantity and quality using 

a Nanodrop fluorometer (Thermo Scientific, Denmark) and then fragmenting oligonucleotide 

strands through ultrasonic oscillation using a Covaris ME220 (Massachusetts, USA) device to 

yield fragments with an average length of 350 bp. Then we sequenced on a lane the paired-end 

150 bp libraries using the HiSeq X Ten chemistry. Total RNA was extracted from 1000 mg of 

frozen-ground leaf, bract, and flower tissue using the TRIZoL reagent (Thermo Fisher 

Scientific, Denmark) following the manufacturer’s protocol. Illumina library preparation and 

sequencing were conducted by Genewiz GmbH (Leipzig, Germany).  

The nanopore sequencing data were generated and base called as part of Oxford 

Nanopore’s London Calling 2019 conference [20]. For Nanopore library preparation, 1000 mg 

of leaf tissue was frozen and ground with a mortar and pestle. The lysis was carried with 

Carlson lysis buffer (100 mM Tris-HCl, pH 9.5, 2% CTAB, 1.4 M NaCl, 1% PEG 8000, 20 

mM EDTA) supplemented with β-mercaptoethanol. The sample was extracted with chloroform 

and precipitated with isopropanol. Finally, it was purified with QIAGEN Blood and Cell 

Culture DNA Maxi Kit (Qiagen, UK). Size selection was performed using the Circulomics 

Short Read Eliminator kit (Circulomics, MD, USA) to deplete fragments below 10 kb. Then 

libraries were prepared using the ONT Ligation Sequencing Kit (SQK-LSK109, Oxford 

Nanopore Technologies, UK). During sequencing on the PromethION library, re-loads were 
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performed when required. Though yield was slightly lower in sequencing for these samples 

(over 50 Gb in 24 hours), the read N50 was over 48 kb (up from 28 kb without size selection). 

 

1.3 Estimation of genome size  

 

To accurately determine the genome size of C. pubescens, we followed the one-step flow 

cytometry procedure [21], with modifications as described in Pellicer et al. [22]. Freshly 

collected tissue from the same individual sampled for DNA/RNA sequencing was measured 

together with Oryza sativa L. ‘IR-36’ as the calibration standard using general purpose buffer” 

(GPB) [23] supplemented with 3% PVP-40 and β-mercaptoethanol [22]. The samples were 

analysed on a Partec Cyflow SL3 flow cytometer (Partec GmbH, Münster, Germany) fitted 

with a 100 mW green solid-state laser (532 nm, Cobolt Samba, Solna, Sweden). Three 

replicates were prepared and the output histograms analyzed using the FlowMax software v.2.4 

(Partec GmbH, Münster, Germany). The 1C-value of C. pubescens was calculated as: (Mean 

peak position of C. pubescens/Mean peak position of O. sativa) × 0.49 Gb(= 1C value of O. 

sativa) [24] and resulted in a 1C-value of 1.1 Gb. 

 

1.4 Short read data processing of the chloroplast genome assembly 

Sequencing of the DNA Illumina library generated 428M paired reads, representing 

310Gb of raw data. RNA sequencing produced 385M paired reads, representing 142.6 Gb. The 

quality of the raw reads was assessed using the FastQC software [25], and quality trimming 

was conducted using the software AdapterRemoval2 v.2.3.1 [26]. Here, bases with phred score 

quality <30 and read lengths <50 bp were removed together with adapter sequences. The final 

short-read dataset was of 131 Gb and contained 384,626,011 paired reads, which corresponds 

to 464.8x coverage (1.2 Gbases, see DNA content assessment section).  
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The plastid genome of C. pubescens was assembled using only short reads, as there 

were some discrepancies using the hybrid dataset. The toolkit GetOrganelle v.1.7.5, was used 

with the parameters suggested for  assembling plastid genomes in Embryophyta  (i.e., 

parameters -R 15, -k 21,45,65,85,105, -F embplant_pt). GetOrganelle produced a single linear 

representation of the C. pubescens plastid genome, with a length of 156,985 bp (Fig. 2) and a 

GC content of 37.74%. These are very similar to those reported for the Coffea arabica plastid 

genome, which is reported to be 155,189 bp in length and have a GC content of  37.4% [19].  

We annotated the plastid genome assembly of C. pubescens in CHLOROBOX [27], 

which implements GeSeq [28], tRNAscan-SE v2.0.5 [29], and ARAGORN v1.2.38 [30]. 

CHLOROBOX annotations indicated that the C. pubescens genome has the typical angiosperm 

quadripartite structure, i.e., Inverted Repeat (IRa and IRb) (each 27,502 bp long), the Small 

Single Copy (SSC) region (18,051 bp), and the Large Single Copy (LSC) region (83,930 bp). 

We predicted 128 genes, of which 34-37 were tRNA (tRNAScan-SE and ARAGORN, 

respectively), 81 CDSs, and four ribosomal RNAs (rRNAs). The junction between SSC-IRa 

and LSC-IRa contains the ycf1 (pseudogene) and rps3 (gene), respectively. Similarly, the 

junction between IRb-SSC and LSC-IRb contains the ycf1 (pseudogene) and rsp3 (gene), 

respectively (Supp. Fig. 1). The final structural features of the C. pubescens plastid genome 

were generated using OGDRAW v. 1.3.1  [31] (Fig. 2) and edited manually. Finally, the quality 

of the plastid genome assembly was estimated by mapping the Illumina DNA short reads to the 

newly assembled genome using the bam pipeline in Paleomix [32], where we used BWA [33] 

for alignment, specifying the backtrack algorithm, and filtering minimum quality equal to zero. 

The overall mapping rate was 7.34%, prior to PCR duplicate filtering, and the coverage of 

unique hits was 7,960x. 

 

1.5 Long-read nuclear genome assembly and quality assessment 
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The quality and quantity of the PromethION sequencing output conducted across four 

flow cells was evaluated in NanoPlot v.1.82 [34] independently for each flow cell, using as 

input the sequencing summary report produced by Guppy v3.0.3. Overall, the average read 

length, phred score quality and N50 following base calling with Guppy v3.0.3, and the High 

Accuracy model reached values of ~19,000 bp, 9, and ~46,000 bp, for mean read length, mean 

read quality, and read length N50, respectively (Supp. Tab. 1). A total of 13,252,640 quality-

passed reads were produced, representing ~262 Gb and providing a theoretical genome 

coverage of ~218x. To assemble the raw Nanopore reads into scaffolds, we first corrected and 

trimmed the quality-passed reads using the software CANU v.1.9 [35] in correction and 

trimming mode with the following parameters: genomeSize = 1.1g, -nanopore-raw. This step 

generated a total of 1,265,511 reads, representing c. 89 Gb, or a theoretical genome coverage 

of 74x. Next, the corrected/trimmed reads were used as input into SMARTdenovo v.1.0 [36], 

using the following parameters: -c 1 (generate consensus mode), -k 16 (k-mer length) and -J 

5000 (minimum read length). This step produced an assembly composed of 603 scaffolds with 

an N50 = 2,783,363 bp, representing ~903 Mb (~84% of the genome size; Tab. 1). Lastly, a 

round of scaffold correction was implemented in RACON v.1.4.3 [37] using as input the 

corrected Nanopore reads generated by CANU and an alignment SAM file produced by 

mapping the trimmed DNA Illumina reads against the assembly produced by SMARTdenovo. 

The alignment file was produced by Minimap2 v.2.18 [38] using the “accurate genomic read 

mapping” settings designed to map short read Illumina data (flag -ax). RACON was executed 

using an error threshold of 0.3 (-e flag), a quality threshold of 10 (-q), and a window length of 

500 (-w). The corrected assembly differed little compared with the raw assembly produced by 

SMARTdenovo (Tab. 1). 

 We followed a two-pronged approach to assess the quality of our corrected nuclear 

genome assembly by: i) evaluating the proportion of Illumina reads that mapped against our 
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new genome assembly using as input the SAM file generated by Minimap2 and computing 

coverage and mean depth values per scaffold, as implemented in the function view (flag –F 

260) of the software Samtools v1.12 [39]; and ii) estimating the completeness of the genome 

as implemented in the software BUSCO v.5.12 and using the eudicots_odb10 [40]. A total of 

827,098,761 reads were mapped against the corrected genome assembly, representing 99% of 

the trimmed reads used as input (241,498,983). Mean coverage and read depth ranged from 26-

48x. The genome completeness analysis recovered a total of 87.6% conserved eudicot genes, 

of which 77% were single copy, 6% duplicated, and 4.6% fragmented. The remaining BUSCO 

genes were labelled as missing (12.4%). Taken together, our results suggest that our nuclear 

genome assembly presents high contiguity and quality with a moderate completeness. 

 

1.6 Transcriptome assembly, candidate gene annotation, and quality assessment 

To produce a comprehensive database of assembled transcripts, we generated 

reference-based and de-novo assemblies with the Trinity toolkit v. 2.8 [41] using the trimmed 

RNA-seq data. The reference-based assembly was conducted using as input the aligned RNA-

seq trimmed reads against our new reference genome as produced by aligner STAR v.2.9 [42] 

with default settings, and a maximum intron length of 57,000 as estimated for Arabidopsis 

thaliana (flag --genome_guided_max_intron). The de-novo transcriptome assemblies were also 

produced using the default settings of Trinity and the trimmed RNA-seq reads as input. A 

comprehensive database of de-novo and reference-based assembled transcriptomes was 

compiled with the software PASA v.2.0.2 [43], using the following parameters: --min_per_ID 

95, and --min_per_aligned 30.  

To assess the completeness of the de-novo transcriptome assembly, we used BUSCO 

v. 3.0.2 and the representative plant set viridiplantae_odb10, which currently includes 72 

species, of which 56 are angiosperms. Our assembled transcriptome captured 72.5% (312/430) 
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of the BUSCO set as complete genes, of the remainder, 19.3% of the genes were fragmented, 

and 8.2% were missing. 

 We predicted the structure and identity of the genes in the nuclear genome using the 

comprehensive transcriptome assembly compiled with PASA. For this purpose, we used 

AUGUSTUS v3.3.3 [44] for a combination approach of ab initio and transcript evidence-based 

from RNA-seq data. As we considered the transcripts as EST, we first generated hints from the 

transcriptome data by aligning the transcripts to the genome using BLAT v 3.5 [45]. Then, we 

set the hint parameters to rely on the hints and anchor the gene structure. Finally, we predicted 

the genes using the hints and tomato (Solanum lycopersicum L.) as reference species.  

The structural annotation of the nuclear genome was performed with AUGUSTUS, in 

a combined ab initio and evidence-based approach. As evidence, we used the assembled 

transcriptome contigs, which are very similar in size to ESTs and cover more than one exon. 

Thus, we incorporated EST alignments to the nuclear genome as an extrinsic source. First, we 

prepared the hints from ESTs by aligning the ESTs against the genome using BLAT and 

filtering out the short alignments. Then, we generated the hints from the EST alignments using 

blat2hints.pl. As we were using the ESTs as an anchor for the structural annotation, we changed 

the hint parameters, so AUGUSTUS used the hints as evidence. Finally, using tomato as a 

reference species, we predicted 72,305 CDSs.  

 

1.7 Nuclear and plastid phylogenomics of Cinchona  

To verify the nuclear genome, we inferred nuclear phylogenetic relationships using the 

reference sequences of 353 low copy nuclear genes that are conserved across angiosperms from 

the Plant and Fungal Trees of Life project [46].  Here, we sampled gene sequences of 18 taxa 

from the Gentianales, which included another C. pubescens from that study (Supp. Tab. 2) that 

are publicly available in the Tree of Life Explorer [47] hosted by the Royal Botanic Gardens, 
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Kew. To include this study C. pubescens in the sampling of 353 low copy nuclear genes of 

selected Gentianales, we then retrieved these genes from the RNA-seq data utilized to produce 

transcriptome assemblies using the pipeline HybPiper v.1.3.1 [48]. Given the abundance of 

RNA-seq read data, to render the gene retrieval tractable, as input for HybPiper we used a 

subsample of the trimmed read data, as implemented in the software seqtk [49]. The gene 

sequences produced by HybPiper were aligned with the data for 19 selected Gentianales species 

using MAFFT v7.453 [50] and then they were concatenated into a supermatrix for 

phylogenomic analyses.  

We implemented the maximum likelihood approach using RAxML-HPC V.8 [51] with 

a GTRGAMMA substitution model for each gene and a rapid bootstrap analysis with 500 

replications. Then we filtered the bipartition trees that only had LBS>=20 using Newick 

utilities [52]. The resulting trees were rooted using phyx v1.2.1 [53], setting Uncarina 

grandidieri (Baill.) Stapf (Lamiales) as the root. To estimate the species tree from the gene 

trees, we used the coalescent approach with ASTRAL 5.6.1 to calculate the quartet scores, 

which is the number of quartet trees present in the gene trees that are also present in the species 

tree. Q1 which shows the support of the gene trees for the main topology, q2 which supports 

the first alternative topology, and q3 showing the support for the second alternative topology 

[54]. We incorporated these scores into the species tree with an R script [55]. All trees were 

visualized with FigTree v.1.4.4 [56]. 

In the nuclear phylogenomic tree resulting from the 353 low copy nuclear genes (Fig. 

3), C. pubescens clusters within the Cinchonoideae, which appears more closely related with 

the Ixoroideae group than with Rubioideae. Additionally, most of the nodes were also highly 

supported by quartet scores, showing that a large proportion of the gene trees agreed with the 

species tree.  
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For the plastid phylogeny, we used Sesamum indicum L. as an outgroup from the 

Lamiids cluster [57]. We performed maximum likelihood using the complete plastid genomes 

of the 20 species available to date in the Gentianales. All the plastid genomes we analysed had 

the classic quadripartite genomic structure, although some Rubiaceae species also show the 

tripartite structure [58]. We aligned the 20 Gentianales (Supp. Tab. 3) plastid genomes with 

MAFFT v7.427 using the default parameter settings to perform the multiple sequence 

alignments. Then we estimated the phylogenetic tree with the maximum likelihood approach 

using the GTRCAT model RAxML-HPC v.8. We conducted heuristic searches with 1000 

bootstrap replicates (rapid bootstrapping and search for the best-scoring ML tree). Both 

analyses were performed on the Cipres Science Gateway [59].  

As with the nuclear tree, the plastid trees were also clustered at the subfamily level, 

recovering the Cinchonoideae, Ixoroideae, and Rubioideae as natural groups, alongside the two 

species belonging to Pedilaceae used as outgroups for the phylogenetic analysis. For the plastid 

data, the vast majority of nodes were strongly supported (14 nodes had LBS=100), all but one 

node had a BS of 100%. However, we found Gynochthodes nanlingensis (Y.Z.Ruan) Razafim. 

& B.Bremer (Rubioideae) to cluster with other Apocynaceae species. While the same result 

has previously been reported in other studies [60,61], it seems to be due to an erroneous DNA 

sequence attributed to G. nanlingensis or a misidentification of the voucher, so it is 

recommended this is thoroughly checked before making any further statements in this regard. 

Additionally, the ingroup showed that the Cinchonoideae and Ixoroideae subfamilies are sisters 

while Rubioideae is placed as sister to this clade. The placement of C. pubescens in the 

Cinchonoideae subfamily cluster using both plastid and nuclear data presented in this study is 

consistent with previous taxonomic and phylogenetic studies [62] which gives support to the 

robustness to the assembled genome. As potential future work the Nanopore sequencing data 

could be re-base called using the latest algorithms from Oxford Nanopore to take advantage of 
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recent developments in this area over the last few years which has seen continuous 

improvement in raw-read accuracy [63,64].  

 

2. Conclusion 

Using a combination of extensive short and long read DNA datasets, we deliver the first 

highly contiguous and robust nuclear-plastid genome assemblies for one of the historically 

most traded and economically important Cinchona species, C. pubescens. As the third species 

of the Rubiaceae family with a nuclear genome sequenced in great detail, the abundant genomic 

resources provided here will open up new research avenues to disentangle the evolutionary 

history of the Fever tree. In the short-term, these genomic tools will significantly help to 

unravel the genes involved in the biosynthetic pathways of quinine alkaloids synthesis, 

identifying the underpinning genetic diversity of these genes both between and within species, 

and shed light on how the expression of these genes is regulated. It is hoped that the nuclear 

and plastid genome presented here will become the foundation for the Fever tree’s genomic 

data and databases. Our nuclear scaffolds and plastid genome assembly will enable future 

reference-guided assemblies, variant calling, and gene annotation to enhance functional 

analysis within the Cinchona genus, with potential to further explore the quinine alkaloid 

biosynthetic pathway in depth and hence enhance its potential for finding new medicinal leads 

to treat malaria.  

 

Data availability 

The genome sequences data, nuclear and plastid assemblies are available at the NBCI 

repository, under the BioProject number PRJAXXXXX.  
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Legends 

Figure 1. A. Cinchona trees in the Andean cloud forest. B. The C. pubescens specimen studied 

in this work (CP9014) growing in the Temperate House at the Royal Botanic Gardens, Kew, 
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UK. C. Inflorescence of C. pubescens, CP9014. D. Cinchona barks from the Economic Botany 

Collection, Kew, UK. E. Distribution map of the Cinchona genus across the American 

continent shown in blue dots, modified from Maldonado et al. 2015 [65]. 

 

Figure 2. Annotated C. pubescens plastome. Genes displayed on the inside of the circle are 

transcribed clockwise, while genes positioned on the outside are transcribed counter clockwise. 

 

Figure 3. The coalescent-based species tree estimation of the Gentianales order without 

distances, inferred using low copy nuclear gene trees. Pie charts positioned on the nodes 

represent the percentage of the gene trees that agree with the topology of the main species tree 

(red) and the other two alternative topologies (cyan and grey). The “Cinchona_pubescens” 

specimen is from the Plant and Fungal Trees of Life project [46] and “C_pubescens_WGS” is 

from this study. 

 

Figure 4. Phylogenetic tree showing the relationships of twenty Gentianales species built from 

the whole plastid genome. Numbers on the branches are bootstrap percentages of ML 

estimations. The coloured boxes depict the subfamily level that groups the species analysed. 

 

Table 1. Summary assembling statistics for C. pubescens using SMARTdenovo and RACON. 

 

 

Additional files 

Supplementary table 1. Summary statistics of the Nanopore reads. 

Supplementary table 2. Overview of the samples from the Tree of Life Explorer (Royal Botanic 

Gardens, Kew) that were used in the phylogenetic analysis to construct the coalescent tree. 
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Supplementary table 3. Sample overview of the specimens and their accession numbers used 

to infer the phylogenetic tree built using plastid data. 

Supplementary figure 1. Plastid genome visualization of junctions IRb-SSC (ycf1) and LSC-

IRb (rsp3). 
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