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ABSTRACT

Small molecules have been the preferred modality for drug development and
therapeutic interventions. This molecular format presents a number of advantages,
e.g. long half-lives and cell permeability, making it possible to access a wide range
of therapeutic targets. However, finding small molecules that engage “hard-to-drug”
protein targets specifically and potently remains an arduous process, requiring
experimental screening of extensive compound libraries to identify candidate leads.
The search continues with further optimization of compound leads to meet the
required potency and toxicity thresholds for clinical applications. Here, we propose
a new computational workflow for high-throughput fragment-based screening and
binding affinity prediction where we leverage the available protein-ligand complex
structures using a state-of-the-art protein surface embedding framework (dMaSIF).
We developed a tool capable of finding suitable ligands and fragments for a given
protein pocket solely based on protein surface descriptors, that capture chemical
and geometric features of the target pocket. The identified fragments can be
further combined into novel ligands. Using the structural data, our ligand discovery
pipeline learns the signatures of interactions between surface patches and small
pharmacophores. On a query target pocket, the algorithm matches known target
pockets and returns either potential ligands or identifies multiple ligand fragments
in the binding site. Our binding affinity predictor is capable of predicting the
affinity of a given protein-ligand pair, requiring only limited information about
the ligand pose. This enables screening without the costly step of first docking
candidate molecules. Our framework will facilitate the design of ligands based
on the target’s surface information. It may significantly reduce the experimental
screening load and ultimately reveal novel chemical compounds for targeting
challenging proteins.
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1 INTRODUCTION

Small molecule drug discovery is an arduous and resource-intensive process, characterised by
declining productivity and high attrition rates. Computational design and, in particular, computational
structure-based drug design (SBDD) — where the 3D structure of the target protein is known — of
small molecules has been a successful strategy in developing novel therapies (Congreve et al., 2005).
Typical computational SBDD workflows are based on virtual screening of large libraries of drug-like
compounds, which are docked and scored by scoring functions to determine ideal geometries and
complementarity (Ou-Yang et al., 2012). Various deep learning approaches have been applied to
components of SBDD with promising results. However, rational de novo design has been relatively
less studied by the machine learning community.

Fragment-based drug discovery (FBDD) has been a successful paradigm in early-stage drug develop-
ment (Erlanson et al., 2016). The majority of the current workflows involve screening libraries of
low molecular weight fragments against macromolecular targets of interest. Fragments can occupy
multiple binding locations on the target providing starting points for developing candidate com-
pounds through growing, linking or merging fragments. By incorporating structural knowledge of
the target, a bottom-up approach like FBDD can result in reduced cost compared to high-throughput
screening workflows (Erlanson et al., 2016). Furthermore, by designing candidate molecules around
constituent favourable interactions, improved ligand efficiency can be achieved (Hopkins et al., 2014).
However, fragments typically bind with much lower affinities than drug-like molecules making their
identification and structural characterisation difficult.

Geometric deep learning, which encompasses deep neural networks operating on non-Euclidean
domains (Bronstein et al., 2017), has shown considerable benefits in representation learning on
proteins (Zhang et al., 2022; Jing et al., 2021; Gligorijević et al., 2021; Hermosilla et al., 2021) and
other molecular structures (Fang et al., 2022; Townshend et al., 2021), particularly in the context of
drug discovery (Gaudelet et al., 2021; Méndez-Lucio et al., 2021).

In this work, we develop a novel ligand and fragment searching methodology based on geometric deep
learning applied to surface representations of binding pockets. We demonstrate the effectiveness of our
method on a subset of the PDBbind dataset (Wang et al., 2004) and show that the proposed approach
performs on par with the state of the art and outperforms a recent deep learning-based method. We
also develop a binding affinity prediction model competitive with the current state of the art. Our
method requires limited knowledge of the binding pose, accelerating virtual screening workflows by
circumventing docking and screening of compounds and targets for which co-crystallised structures
are not available.

1.1 RELATED WORK

Pocket-Centered Ligand Screening Binding pocket similarity plays an important role in drug
discovery. Incorporating structural knowledge about pockets of interest enables efficient search of
relevant binding molecules and provides new means for exploring molecular space. Provided that a
ligand can be recognized by different residues with different interaction types (Barelier et al., 2015),
finding a suitable pocket representation is the most crucial and highly challenging part of the task.
Various pocket representations have been explored, including pharmacophore (Wood et al., 2012)
and deep learning-based fingerprints (Simonovsky & Meyers, 2020) as well as geometric and chemo-
physical descriptors (Konc & Janežič, 2010; Shulman-Peleg et al., 2004; Zhu et al., 2015). Recently,
pocket-centered methods for conditional molecule generation (Masuda et al., 2020; Méndez-Lucio
et al., 2021) have been proposed. Stärk et al. (2022) developed a geometric deep learning method for
predicting the receptor binding location and the ligand’s bound pose and orientation.

Fragment-Based Drug Discovery In a standard setting, screening methods are fundamentally
limited by the diversity of the underlying compound libraries. FBDD operates on small labile
molecules (typically with molecular weight < 300 Da) to identify low potency, high-quality leads,
which are then matured into more potent, drug-like compounds (Imrie et al., 2020). Millions of
compounds such as rings, linkers and scaffolds are available in databases such as ZINC (Sterling
& Irwin, 2015). However, identifying and filtering relevant fragments from such a database is a
challenging problem (Kirsch et al., 2019). Instead, one can split molecules of interest into smaller
compounds based on various chemical and geometric assumptions (Bemis & Murcko, 1996; Lewell
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et al., 1998; Degen et al., 2008; Ghersi & Singh, 2014; Jin et al., 2018) to generate a relevant fragment
database. Another FBDD-specific problem is constructing a ligand from the found fragments. Various
linking (Böhm, 1992; Thompson et al., 2008; Yang et al., 2020) and scaffold hopping (Maass et al.,
2007; Vainio et al., 2013) methods have been developed to address this task. Recently, deep generative
models have been proposed (Jin et al., 2018) or adopted (Liu et al., 2018; Imrie et al., 2020) for these
purposes. Notably, Drotár et al. (2021) developed a structure-based method for generating drug-like
ligands from molecular fragments via a sequential VAE-based approach, conditioning each step of
the generative process on a graph representation of the binding pocket.

Binding Affinity Prediction Predicting the affinity of a given protein-ligand interaction is an
important component of virtual screening pipelines. Traditionally, methods for predicting binding
affinity have been based on physics-based free energy calculations which do not account for entropic
contributions (Kitchen et al., 2004). Machine learning approaches based on hand-crafted features,
which do not impose a pre-defined functional form, were shown to improve performance by learning
from the experimental data (Ballester & Mitchell, 2010). Several types of deep learning models have
been applied to this problem, including 3D-CNNs (Stepniewska-Dziubinska et al., 2018; Jiménez
et al., 2018; Zheng et al., 2019), GNNs (Li et al., 2021), and surface-based models (Somnath et al.,
2021). However, the majority of existing ML-based approaches heavily rely on co-crystallised
structures of complexes which are hard and not always possible to obtain. Often, docking algorithms
are used which typically result in noisier and more error-prone poses that prove more challenging
to accurately predict binding affinity from (Jones et al., 2021). Furthermore, these approaches are
insensitive to scenarios where multiple binding mechanisms and poses contribute to the overall
affinity (Stjernschantz & Oostenbrink, 2010).

Protein Surface Representation Structure-based encoders of protein molecular surfaces have
been successfully applied to predicting protein-protein interaction sites and identifying potential
binding partners in protein docking (Gainza et al., 2019; Sverrisson et al., 2021; Somnath et al.,
2021). Molecular surface interaction fingerprinting (MaSIF) (Gainza et al., 2019) pioneered learning
geometric surface descriptors for solving protein interaction-related tasks. It computes geometric
and chemical features on a triangulated surface mesh and aggregates local information using a
geometric deep learning architecture based on geodesic convolution operators (Bronstein et al.,
2017). Differential MaSIF (dMaSIF) (Sverrisson et al., 2021) is a derived method that sidesteps
the expensive mesh generation and feature pre-computation steps and creates a lightweight point
cloud representation of the molecular surface solely from raw atom coordinates and types. Feature
vectors at each surface point are updated by applying approximate geodesic convolutions resulting
in the final embedding vectors that can be further used in various downstream tasks. In this work,
we employ these vectors to compare protein binding pockets and to predict protein-ligand binding
affinity. Figure 1 illustrates the workflow of dMaSIF.

2 METHODS

2.1 LIGAND SEARCH

A typical pocket-centered drug discovery workflow involves screening libraries containing millions
of molecules to identify an initial set of candidates. To ensure effectiveness, both a suitable pocket
description and appropriate search procedure are required. In this section, we introduce a novel
pocket-centered ligand search pipeline. We construct a library of available (known) ligand-pocket
pairs that are queried by new (query) pockets to identify candidate ligands that are most likely to bind
to the input pockets.

Dataset Preparation We consider a subset of PDBbind v2020 (Wang et al., 2004) by combining
the general (n = 14, 127) and refined (n = 5, 316) sets and selecting only complexes with ligands
that are not amino acids, which are subsequently parsed by RDKit (Landrum et al., 2013), have
QED > 0.3 (Bickerton et al., 2012), and are present in more than 10 complexes. We obtain 488
complexes and protonate the structures with Reduce (Word et al., 1999). To construct the query
(n = 130) and library (n = 358) datasets, we compute sequence similarity clusters for all proteins
using CD-HIT (Fu et al., 2012) with a similarity threshold of 0.9. For each ligand, we split the set

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.26.489341doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.26.489341
http://creativecommons.org/licenses/by-nc-nd/4.0/


Published at the MLDD workshop, ICLR 2022

Surface Encoder

3D structure Surface Chemistry Curvatures Embeddings

Pr
e-

tra
in

ed
 S

ur
fa

ce
 E

nc
od

er

… … …

…

1.

2.

Query Protein Pocket Extraction Ultra-Fast Search Alignment Scoring

Ligand Search
Candidates

……

Pr
e-

tra
in

ed
 S

ur
fa

ce
 E

nc
od

er

Library Construction

… … …

Figure 1: Surface encoding workflow of dMaSIF (top left), library construction (top right), and ligand
search pipeline (bottom).

of the corresponding complexes in query and library sets in proportion 30/70, such that clusters
assigned to each set do not overlap.

Protein Pockets To retrieve the protein pocket, we first generate a surface of the protein and
compute embeddings for each point on the surface using dMaSIF (Sverrisson et al., 2021). For each
ligand atom, we select the closest point on the protein surface. For each selected point, we consider
its r-neighborhood, a set of points within Euclidean distance r. We consider different values for r
(see Appendix A), and achieve the best performance with r = 2 Å. The resulting pocket embedding
is generated as a union of r-neighborhoods of all selected points.

Workflow For each pocket in the query set, we search for the most similar binding pockets in the
library and output the corresponding ligands as candidates for the query pocket. The general scheme
of the workflow is represented in Figure 1 and consists of three main steps: shortlisting, alignment
and scoring. First, we perform ultra-fast search over the whole library in order to shortlist candidate
ligands. The purpose of this step is to filter out irrelevant ligands and hence reduce the computational
complexity of the subsequent steps. For each query pocket, we select the top-50 candidates based on
similarity between global pocket embeddings. As shown in Appendix A, we consider two similarity
functions: Euclidean distance and dot product. We achieve the best performance using Euclidean
distance. Global pocket embeddings are created by averaging the embedding vectors of all points in
the pocket. An alternative approach was to consider an embedding vector of a single point, e.g. of
the one closest to the center of the pocket. However, as shown in Appendix A, better results were
achieved with averaging. In the second step, we align pockets of shortlisted candidates with the
query pocket. We consider two methods: Random Sample Consensus (RANSAC) (Fischler & Bolles,
1981) followed by point-to-point Iterative Closest Point (ICP) (Besl & McKay, 1992), and our own
optimization-based alignment approach described in Section 2.2. Once the shortlisted pockets are
aligned with the query pocket, we score pairs of pockets using a pre-trained neural network (described
in Section 2.3).

2.2 OPTIMIZATION-BASED ALIGNMENT

Consider two point clouds: a source point cloud with M points described by coordinates {rj}Mj=1,
normal vectors {nj}Mj=1, and embedding vectors {fj}Mj=1, and a target point cloud with N points
described by coordinates {ri}Ni=1, normal vectors {ni}Ni=1, and embedding vectors {fi}Ni=1.
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We represent normal vectors and embeddings of the target point cloud as continuous vector fields
n(r) =

∑N
i=1 nigi(r) and f(r) =

∑N
i=1 figi(r) correspondingly in R3 by smoothing the discrete

points of the target point cloud via Gaussian kernels:

gi(r) =
1√
2πσ2

exp

(
−∥r− ri∥2

2σ2

)
, i ∈ {1, . . . , N}, σ ∈ R. (1)

Our task is to find the optimal orientation of the source point cloud with respect to the vector fields
f(r) and n(r). The best orientation of the source point cloud is the orientation that maximizes two
terms. The first term is similarity S between embedding vectors of the source point cloud and values
of the field f(r) in coordinates that correspond to the positions of points of the source point cloud.
Similarity can be expressed as Euclidean distance, dot product, or cosine between two vectors. The
second term is dot product between normal vectors of the source point cloud and values of the field
n(r) in coordinates that correspond to the positions of points of the source point cloud. Orientation
of the source point cloud is parameterized by rotation matrix R ∈ M3(R), R⊤R = I, detR = 1,
and translation vector t ∈ R3. The objective function can be written as follows,

L(R, t) =
1

M

M∑
j=1

[
βS (fj , f(Rrj + t)) + (1− β)(Rnj)

⊤n(Rrj + t)
]
, (2)

where β ∈ [0, 1] is a parameter that controls the contribution of each term in the final objective value.
Using a 6D-parameterization R = R(u,v) of rotation matrix R with u ∈ R3,v ∈ R3 as described
in Zhou et al. (2019), the optimization problem can be written as maxu,v,t∈R3 L(R(u,v), t).

To find the optimal rotation and translation parameters, we perform gradient descent in R3×R3×R3

implemented in PyTorch (Paszke et al., 2017) using Adam optimizer (Kingma & Ba, 2014).

2.3 SCORING NEURAL NETWORK

For the final ranking after pocket alignment, we train a neural network to distinguish between good
— where pockets correspond to the same ligand and are properly aligned — and bad matches. The
training dataset is crucial to the method’s success as it implicitly defines a notion of quality that is
subsequently used to score shortlisted pairs of pockets.

Dataset We prepare data in a similar procedure to Section 2.1. However, here we select ligands
represented in fewer than ten complexes. This means that complexes used for training are not used
in the ligand search experiments. To create positive training examples we select pairs of pockets
that bind to the same ligands but originate from complexes with less than 90% sequence identity.
We align these pockets based on ligand atom coordinates using rigid-body SVD-based alignment
(Arun et al., 1987). To create negative examples we randomly select pairs of pockets that correspond
to different ligands and match their centers of mass. We randomly split the positive and negative
example pairs into training (n = 2, 562) and validation (n = 654) sets.

Input Features For a given pair of pockets, we first compute their point-wise features that are input
to the network. For each point in the source pocket we find the closest point in the target pocket, and
for each of the resulting point pairs, we compute three values: inverted distance between two points,
dot product of normal vectors, and dot product of embedding vectors.

Architecture The scoring model consists of two symmetric blocks with global average pooling
between them. The first block takes three-dimensional feature vectors for each point and projects them
to the 256-dimensional hidden vector via three fully-connected layers followed by batch normalization
(Ioffe & Szegedy, 2015) layers and ReLU activations. Global pooling averages hidden vectors over
all points in the source pocket resulting in a single 256-dimensional vector which is processed by the
final block. This block includes a sequence of three fully connected layers with ReLU activations
followed by softmax. For symmetry, each pocket pair is processed twice: with the original order of
source-target pockets and with the swapped order. Final predictions are averaged.
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2.4 FRAGMENT SEARCH

Fragment-based search has a notable advantage compared to the ligand search. Although the number
of unique available ligands is usually orders of magnitude larger than the number of unique constituent
fragments, the latter can be considered as building blocks of ligands. Therefore, the fragment-based
method becomes less dependent on the available data and allows exploration of ligand space by
combining available fragments. Below, we describe the modified search approach that operates on
fragments instead of entire ligands.

Fragment Generation To decompose ligands into fragments, we use BRICS (Degen et al., 2008)
which simultaneously breaks retrosynthetically relevant bonds and filters unwanted chemical motifs
and small terminal fragments. For each ligand in the dataset described in Section 2.1, we retrieve
its BRICS fragments, remove open exits, and filter out fragments with molecular mass > 300 Da,
deduplicate the resulting set based on Tanimoto distance, and match every resulting compound with
other ligands in order to get all its occurrences. In total, we gather 36 unique fragments. Exemplary
fragments along with their occurrences are provided in Figure S4. Mapping unique fragments back to
ligands in which they occur, we obtain the query (440 entries) and library (1,434 entries) datasets for
fragment search.

Workflow The fragment search process is very similar to the ligand-based algorithm described
in Section 2.1 and fragment pockets are constructed in the same way. However, as fragments are
smaller, the resulting point clouds constructed for fragments describe smaller regions of ligand
binding pockets. For clarity, we refer to these regions as fragment patches. The main difference
between ligand and fragment search workflows lies in the first step, ultra-fast search. In ligand search,
the top-ranked candidates in the library are returned. In fragment search, for each fragment in the
library (that can have more than one corresponding patch), we select a single patch that has the
highest similarity score among all patches corresponding to a given fragment. This allows us to
increase the diversity of candidates in the subsequent steps of the pipeline.

2.5 BINDING AFFINITY PREDICTION

Dataset Preparation We use PDBbind v2016 (Liu et al., 2017), a dataset of protein structures
co-crystallised with ligands and their associated binding affinity. Structures are protonated with
Reduce (Word et al., 1999) and only atoms belonging to the polypeptide chain(s) are extracted. To
enable comparison with existing methods, the training set is constructed from the refined set, from
which we randomly sample 10% for the validation set. Models are evaluated on the CASF 2016
core set (Su et al., 2018) (which is removed from the training data). Binding pocket embeddings
are extracted as described in Section 2.1 using a much larger neighbourhood radius of r = 12 Å to
reduce the sensitivity to pose. Ligands are represented as molecular graphs. Edges correspond to
chemical bonds (single, double, triple, aromatic or ring) and node features include one-hot encoded
atom types, degree, valence, hybridization state, number of radical electrons, formal charge, and
aromaticity. Crucially, we make no use of positional information in the ligand representation.

Architecture We train a model using a dMaSIF-based encoder for the protein pocket. Importantly,
the encoder receives the whole protein surface. After encoding, pocket point embeddings are extracted
and aggregated into a global embedding vector by taking the element-wise max of individual point
embeddings as we found this resulted in better performance than sum or average pooling. As we
focus on understanding the effectiveness of surface-based descriptors, we use a simple GCN (Kipf &
Welling, 2016) as the ligand encoder and aggregate node embeddings via sum pooling to obtain the
graph representation. Ligand and pocket embeddings are concatenated and used as input for an MLP
decoder to predict the binding affinity values. Hyperparameters are provided in Table S11.

3 RESULTS

3.1 LIGAND SEARCH

In this experiment, we evaluated the ability of the proposed multi-staged search algorithm to output
relevant ligands to the query pockets. We compare our approach with three state-of-the-art methods
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for pocket-centered ligand screening, ProBiS (Konc & Janežič, 2010), KRIPO (Wood et al., 2012),
and DeeplyTough (Simonovsky & Meyers, 2020). ProBiS detects structurally similar sites on protein
surfaces by local surface structure alignment using an efficient maximum clique algorithm (Konc &
Janežič, 2010). KRIPO is a method for quantifying the similarities of binding site subpockets based
on pharmacophore fingerprints (Wood et al., 2012). DeeplyTough is a convolutional neural network
that encodes a three-dimensional representation of protein pockets into descriptor vectors that are
further compared using Euclidean distance (Simonovsky & Meyers, 2020). We note that KRIPO
failed on 6 query pockets, hence all the resuts discussed below were obtained on 124 query pockets
successfully processed by all the methods.

In Table 1, we report the fractions of pockets from the query set for which the methods returned
correct ligands in top-1, top-5, top-10, top-20, and top-50. Our best performing method operates
on pockets built with neighborhood radius r = 2 Å and using a dMaSIF-search model trained (for
33 epochs) with the standard parameters (Sverrisson et al., 2021) except subsampling (set to 150),
resolution (set to 0.7 Å), and embedding size (set to 16). We report metrics computed after the first
and last stages of the search process. Namely, metrics were computed for lists of candidates ranked
by global search score and neural network score. We provide results of pipelines that use RANSAC
and our optimization method for alignment.

Table 1: Ligand search results.

Method Top-1 Top-5 Top-10 Top-20 Top-50
ProBiS (Konc & Janežič, 2010) 0.581 0.718 0.750 0.806 0.863
KRIPO (Wood et al., 2012) 0.573 0.726 0.798 0.863 0.935
DeeplyTough (Simonovsky & Meyers, 2020) 0.331 0.597 0.710 0.758 0.903

Ours: search 0.387 0.516 0.629 0.734 0.871
Ours: search+ransac+score 0.516 0.661 0.742 0.823 0.871
Ours: search+optim+score 0.516 0.637 0.710 0.766 0.871

Our full-scale search pipeline performs on par with state-of-the-art methods (Table 1). Notably, the
first stage of the search process, ultra-fast global search, returns relevant ligands within the top-50
candidates in 87% of cases, making it appropriate for the initial shortlisting of candidates prior to
fine-grained scoring.

Pocket Clustering To illustrate that global embeddings of pockets contain information about the
types of binding ligands, we select pockets bound by five structurally different ligands, compute
all-by-all pairwise similarities between pairs of their cognate binding pockets, and visualize the
results using multidimensional scaling (Torgerson, 1952). As pockets corresponding to the same
ligand should show functional and structural similarity, we expect the embeddings of these pockets to
be clustered in the plane. The embeddings of the selected pockets should be grouped in 5 clusters,
where each cluster corresponds to a certain ligand. The resulting distribution of points is shown in
Figure 2A and clearly demonstrates that pockets binding to the same ligands are grouped together.

3.2 FRAGMENT SEARCH

We evaluate our fragment search algorithm in the same way as our ligand-search approach (Section
3.1). Instead of ligand-pocket pairs, we consider fragment-patch pairs, and search for candidates for
each fragment’s patch separately. The scoring neural network explained in Section 2.3 was retrained
specifically for scoring patches of fragments. We compute Pearson and Spearman correlation of the
predicted scores with Tanimoto similarity scores between fragments, and compare our method with
KRIPO. We note that KRIPO failed on 16 query patches, hence the results discussed below were
obtained on 424 query patches successfully processed by all the methods. Table 2 summarizes the
performance of the fragment search pipeline. It includes results obtained after the ultra-fast search
stage and after the scoring step that processed patches aligned with RANSAC and our optimization-
based algorithm. Figure 2B contains several ligands with their ground-truth fragments and fragments
identified and aligned with RANSAC. In each case, fragments were manually selected from the
top-10 candidates returned by the algorithm.
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Figure 2: (A) Multidimensional scaling applied to pairwise similarities of pockets corresponding to
five different ligands. Each point represents a single pocket coloured by the corresponding ligand
type. (B) Fragment search examples. For each ligand, we show the most suitable found and aligned
fragments from top-10. Black lines represent parts of ligands that are not covered by fragments.

Table 2: Fragment search results.

Method Top-1 ↑ Top-5 ↑ Top-10 Top-20 Pearson Spearman
KRIPO (Wood et al., 2012) 0.469 0.724 0.816 0.873 0.089 0.098
ours:search 0.255 0.717 0.892 0.958 0.346 0.127
ours:search+ransac+scoring 0.245 0.594 0.715 0.861 0.119 0.126
ours:search+optim+scoring 0.245 0.479 0.601 0.776 0.172 0.136

3.3 AFFINITY PREDICTION

To assess the ability of the model to learn useful representations of protein pocket surfaces in the
context of small-molecule binding, we train a binding affinity predictor. We are concerned with
the scenario in which a co-crystallised structure is unavailable, as this is the most likely scenario
in practice. We therefore compare our approach to baseline methods evaluated on docked poses
of ligands in the PDBbind v2016 core set and demonstrate state-of-the-art performance without
requiring accurate docking as an initial step (Table 3). We also compare to baseline models evaulated
on poses from co-crystallised structures and perform on par with the alternative methods despite not
making use of pose information (Table S12).

4 CONCLUSION

Accurate prediction of small-molecule protein interactions remains a very challenging task for
computational methods. Here, we propose a general framework that leverages protein surface
descriptors for small molecule related tasks. Our novel ligand and fragment searching methods can be
employed as starting points in FBDD or as initialisations to generative chemistry models to develop
novel chemical matter in a principled structure-based manner. Furthermore, we underline that this
approach has been developed using a surface embedding model trained for predicting protein-protein
interactions. There is significant scope to improve performance by developing surface encoders
explicitly trained on tasks more closely related to protein-ligand interactions. We emphasize that
properties of the surface embedding space play a crucial role in the ability to identify similar pockets
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Table 3: Binding affinity prediction performance on PDBbind v2016 Core Set Docking Poses. [*]
results taken from Jones et al. (2021).

Method RMSE ↓ MAE ↓ R ↑
SG-CNN* 1.576 1.277 0.699
3D-CNN* 2.558 2.058 0.537
Vina* (Trott & Olson, 2009) - - 0.616
MM-GBSA* - - 0.629
FAST-midlevel* (Jones et al., 2021) 1.874 1.487 0.702
FAST-late* (Jones et al., 2021) 1.871 1.498 0.712

Ours 1.540 1.248 0.721

based on dot product or distance similarity metrics. Therefore, an ideal protein surface encoder for
this task should be trained in a way that it constrains the resulting embedding space to be Euclidean.
Additionally, we develop a binding affinity predictor that is comparable in performance to existing
methods without explicit consideration of pose or modelling of intramolecular interactions. We note
that incorporating pose information is a natural extension of our work though this framing does not
retain some of the reduced pose sensitivity advantages we sought to. The components discussed
in this paper can be combined in subsequent work to use a fully-differentiable affinity predictor as
a scoring function to directly optimize fragment placement. The resulting set of fragments can be
further merged into a single chemically relevant molecule.
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Pedro Hermosilla, Marco Schäfer, Matěj Lang, Gloria Fackelmann, Pere Pau Vázquez, Barbora
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A LIGAND SEARCH PARAMETERS

Pocket construction The radius of the neighborhood used for extracting binding pockets plays
an important role in the performance of the global search. Fixing the remaining parameters, we
experiment with different neighborhood radii (shown in Table S4) and identify an optimal radius of
r = 2 Å.

Table S4: Global ligand search experiments with different neighborhood radius values.

Radius (Å) Top-1 ↑ Top-5 Top-10 Top-20 Top-50
2.0 0.331 0.508 0.605 0.774 0.935
3.0 0.306 0.508 0.581 0.750 0.911
1.0 0.282 0.516 0.605 0.782 0.919
10.0 0.282 0.492 0.613 0.766 0.887
5.0 0.250 0.460 0.605 0.790 0.895

Global search To find the best way of constructing global pocket embeddings, we experimented
with two aggregation schemes: simple averaging and taking the embedding vector of the point closest
to the center of mass of the pocket. For similarity measures, we consider Euclidean distance and
dot product. Fixing the remaining parameters, we perform global search experiments with different
aggregation and similarity functions (Table S5) identifying mean aggregation and Euclidean distance
similarity as the most performant schemes.

Table S5: Global ligand search experiments with different aggregation and similarity functions.

Averaging Similarity Top-1 ↑ Top-5 Top-10 Top-20 Top-50
Mean Euclidean 0.331 0.508 0.605 0.774 0.935
Center Euclidean 0.274 0.548 0.685 0.815 0.887
Mean Dot 0.024 0.024 0.113 0.274 0.452
Center Dot 0.024 0.194 0.306 0.444 0.613

dMaSIF The choice of the pre-trained dMaSIF model plays an important role. We consider dMaSIF
models pre-trained for three different tasks: protein-protein interaction search (dMaSIF-search),
protein-ligand binding affinity prediction (dMaSIF-affinity), and protein-ligand pocket classification
(dMaSIF-ligand). An important dMaSIF property that we assume should matter in our task is
granularity of surfaces produced by dMaSIF. This property is controlled by two hyperparameters:
subsampling and resolution. Subsampling determines the initial number of points sampled around
each atom during the first step of the dMaSIF pipeline (Sverrisson et al., 2021). Resolution controls
the size of a 3D voxel that should contain not more than one point (Sverrisson et al., 2021). The
lower the resolution, the more detailed the resulting surface will be. We consider two dMaSIF-search
models: with subsampling 100 and resolution 1 Å, and with subsampling 150 and resolution 0.7
Å. Due to the high computational complexity, we had to set subsampling 20 and resolution 1 Å for
dMaSIF-affinity. For the same reason, the number of training epochs differs for each dMaSIF model.

Table S6: Global ligand search experiments with different pre-trained dMaSIF models.

Model Subsampling Resolution (Å) Top-1 ↑ Top-5 Top-10 Top-20 Top-50
dMaSIF-search 150 0.7 0.387 0.516 0.629 0.734 0.871
dMaSIF-search 100 1.0 0.331 0.508 0.605 0.774 0.935
dMaSIF-affinity 20 1.0 0.266 0.516 0.653 0.782 0.871
dMaSIF-ligand 100 1.0 0.242 0.395 0.516 0.661 0.823

Parameters for dMaSIF models listed in Table S6 are provided in Table S7. For training the models,
we used the code from https://github.com/FreyrS/dMaSIF. In case of dMaSIF-ligand
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and dMaSIF-affinity, we slightly adjusted the code for new purposes. dMaSIF-search models were
trained on the same dataset as in Sverrisson et al. (2021). dMaSIF-ligand was trained on the dataset
that was used for training MaSIF-ligand Gainza et al. (2019). Dataset for dMaSIF-affinity is described
in Section 2.5.

Table S7: Parameters of dMaSIF models used in this work.
model dMaSIF-search dMaSIF-search dMaSIF-ligand dMaSIF-affinity

embedding layer dMaSIF dMaSIF dMaSIF dMaSIF
resolution 0.7 1.0 1.0 1.0
distance 1.05 1.05 1.05 1.05
variance 0.1 0.1 0.1 0.1
sup sampling 150 100 100 10
atom dims 6 6 6 6
emb dims 16 16 16 32
in channels 16 16 16 16
orientation units 16 16 16 16
post units 8 8 8 8
n layers 3 3 3 1
radius 9.0 9.0 9.0 9.0
epochs 33 50 21 108

B ALIGNMENT

B.1 ALIGNMENT EXPERIMENT

To perform alignment, we select a subset of 460 pocket pairs from the training set of the scoring neural
network (section 2.3) and align them with RANSAC or our optimization-based approach described in
section 2.2. For RANSAC, we consider three different modifications: RANSAC, RANSAC followed
by point-to-point ICP (Besl & McKay, 1992), and RANSAC followed by point-to-plane ICP (Chen &
Medioni, 1992). For our optimization-based method, we consider three objectives based on different
underlying similarity functions: Euclidean distance, dot product, and cosine distance. To measure
the quality of aligned pairs, we compute the root-mean-square deviation (RMSD) between ligand
atoms that are transformed according to the corresponding pocket alignment. We report initial RMSD
between atoms of ligands (i.e. before alignment), and final RMSD computed on transformed ligands
in Table S8. We also provide the fraction of pairs for which alignment improved RMSD between
atoms of ligands. For each method reported in Table S8, we chose the best set of hyperparameters.
For details, see Appendix B.2. Figure S3 shows the RMSD distribution over all pairs before and after
alignment. The distribution of errors on pockets aligned by RANSAC is shifted towards zero most,
which makes this method the most preferable. On average, alignment of one pocket pair takes 0.17
seconds for RANSAC and 2.33 seconds for our optimization-based algorithm.

Table S8: Alignment results.

Alignment Method Initial RMSD (Å) Final RMSD (Å) Improvement Rate
RANSAC 5.281 3.174 0.726
RANSAC+PointToPoint 5.281 3.082 0.772
RANSAC+PointToPlane 5.281 3.915 0.689

Optimization, Euclidean 5.281 4.332 0.667
Optimization, Dot 5.281 4.325 0.663
Optimization, Cosine 5.281 3.354 0.770
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Figure S3: Distribution of RMSD values over pocket pairs before (blue) and after alignment (red
and green).

B.2 ALIGNMENT PARAMETERS

In order to align pockets with RANSAC and ICP, we used the Open3D (Zhou et al., 2018) imple-
mentations of these algorithms. We considered different distance threshold values (between 1 Å and
10 Å) and different combinations of RANSAC and ICP: RANSAC, RANSAC+PointToPoint and
RANSAC+PointToPlane. The final parameter set with the best performance is reported in Table S9.

Table S9: Best configuration of RASNAC+ICP parameters.

ICP distance threshold ransac n max iter max validation

PointToPoint 2.0 3 100000 10000

For our optimization-based alignment algorithm, we considered three different similarity met-
rics (Euclidean distance, dot product, and cosine) and different values for the variance σ ∈
{0.5, 1.0, 2.0, 5.0, 10.0} of Gaussian kernels (1). We also varied β ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
in order to study the contribution of embeddings- and normals-related terms (2) to the total objective.
Before alignment, we matched point clouds based on their centers of mass. We optimized translation
parameter and rotation parameters with different learning rates, lrt and lrR correspondingly. Once
the initial matching by centers of mass is performed, translation should not differ much from zero
furthermore. Hence, the learning rate for the translation parameter was usually several orders of
magnitude lower than learning rate for rotation parameters. In all experiments, we performed 1,000
steps of optimization. The best parameter configurations for each similarity function along with final
RMSD results are provided in Table S10.

Table S10: Best parameter configurations of the optimization-based alignment algorithm with different
similarity functions.

Similarity σ β lrt lrR Final RMSD ↑
Euclidean 10.0 0.75 0.0001 0.1 4.332
Dot 10.0 0.75 0.0001 0.1 4.325
Cosine 5.0 1.0 0.0001 1.0 3.354

C SCORING NEURAL NETWORK

The neural network was trained to solve the binary classification problem using cross-entropy loss.
We train the network for 100 epochs with batch size 128 using Adam optimizer (Kingma & Ba, 2014)
with learning rate 10−4.
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Figure S4: Examples of fragments retrieved using BRICS. Occurrences of fragments in our data are
denoted beneath fragment representations.

E BINDING AFFINITY PREDICTION

E.1 HYPERPARAMETERS

Table S11: Hyperparameters considered for binding affinity predictor.

Component Hyperparameter Values
Surface Encoder embedding layer dMaSIF

resolution 1.0
distance 1.05
variance 0.1
sup sampling 10, 20
atom dims 6
emb dims 32
in channels 16
orientation units 16
post units 8
n layers 1, 3
radius 9.0, 15.0

Ligand Encoder Layers [GCN, GCN, GCN, Linear]
Dims [32, 32, 32, 32], [128, 128, 128, 32]

Decoder Dims [128, 128, 128, 1], [1024, 512, 128, 1], [1024, 1024, 1024, 1]
Batchsize 128
dropout 0.3
lr 0.00001, 0.0001, 0.001

optimiser Adam

E.2 COMPARISON ON POSES FROM CO-CRYSTALLISED STRUCTURES
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Table S12: Binding affinity prediction performance on PDBbind v2016 Core Set Docking Poses. [*]
results taken from Jones et al. (2021). (R) and (G) denote models trained on the refined and general
sets of PDBbind v2016.

Method RMSE ↓ MAE ↓ R ↑
SG-CNN (R)* 1.650 1.321 0.666
SG-CNN (G)* 1.508 1.277 0.699
SG-CNN (R + G)* 1.375 1.084 0.782
3D-CNN (R)* 1.501 1.164 0.723
3D-CNN (G)* 1.655 1.294 0.649
3D-CNN (R + G)* 1.688 1.334 0.677
Pafnucy* (Stepniewska-Dziubinska et al., 2018) 1.42 1.13 0.78
Kdeep* (Jiménez et al., 2018) 1.27 - 0.82
FAST-midlevel* (Jones et al., 2021) 1.308 1.019 0.810
FAST-late* (Jones et al., 2021) 1.326 1.044 0.808

Ours 1.540 1.248 0.721
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