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Abstract

This work proposes initial refinements of data from tracking single cells in video from many experiments
and at a scale assumed large enough to be meaningful for big data analyses. The present examples of
data processing are for illustration only, and caution must be exercised not to consider this contribution
as a stand-alone laboratory study. The main intention is to illustrate prototypes of data refinement to
help initiation of fault-tolerant big data analyses to search for causal relations in possible future large
amounts of data of varying quality. The authors conjecture that computer assisted comparison between
cellular behavior in many and diverse experiments can constitute a new source of information. Diversity
of data sources is an argument to utilize methods employing simplicity, transparency, low-cost and sensor
independence as well as independence of software or alternative online services. Indicating the potential
value of simple cell positional observations (tracks), can pave the way towards contributions to already
established biological databases. This will presumably help to accumulate experience from a variety of
data sources and facilitate big data analyses to search for new phenotypic signatures. Data can be spin-off
from special analyses. Simple perturbation of the raw data can help to check for robustness of parameters
derived from it. The present example data are from tracking clonal (A549) cells during several cycles
while they grow in two-dimensional (2D) monolayers. The results from its processing reflect heterogeneity
among the cells as well as inheritance in their response to treatments. The present illustrations include
parametrization of population growth curves, aimed to simplify computerized search for similarities in
large sets of single-cell tracking data. Other types of statistics, which can promote synergy between
experiments, are from temporal development of cell speed in family trees with and without cell death,
correlations between sister cells, development of single cell average displacements and the tendency of
clustering. These are examples of parameters for further development to utilize information in large
collections of data from cell behavior.

Keywords: single-cell tracking, phenotypic signature, big data, cancer diagnostic methods, daughter cells

1 Introduction

Particle tracking is developing as a tool to study cellular and intercellular processes (Meijering et al., 2012;
Loeffler and Schroeder, 2019). Recent advances in single-cell research make it more interesting to follow
individual cells over time to gain dynamic information from them at the individual level (Skylaki et al., 2016).
Data from such observations can reflect various processes and signalling pathways inside cells and between
them. Tracking single cells in video aspires to provide this type of information, which can already be lost
when working on fixed dead cells. Such tracking can also contribute to characterize phenotypic states and
quantify them, as permanent or temporary (Tata and Rajagopal, 2016; Gupta et al., 2019). It can provide
data on lineage relationships between cells and their descendants, contributing to trace population dynamics
and insight into possible pathological outcomes (Woodworth et al., 2017).
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Single-cell tracking is especially relevant to study cancer cells, which often appear to be moving targets
during treatments. Cancer cells can change behavior and identity to adapt to new microenvironments
by reprogramming their gene expression pool (Lüönd et al., 2021). This ability resides in their high
plasticity (Lüönd et al., 2021). They can fuse during close cellular interactions, generating hybrid cancer cell
subpopulations with enhance tumorigenicity and metastatic capacity (Melzer et al., 2018; Shabo et al., 2020;
Hass et al., 2020). They can also display heterogeneous phenotypes within genetically identical populations as a
result from expression of unique transcriptomes and proteomes (Chang et al., 2008). Heterogeneous phenotypes
in cancer cells bearing epigenetic alterations are a bottleneck when guiding personalized treatments (Wakita
et al., 2013; Bheda and Schneider, 2014; Shinjo and Kondo, 2015; Bintu et al., 2016).

Several authors emphasize that single-cell tracking from video has broadened the spectrum in mammalian
signalling networks, drug development and cancer research (Regot et al., 2014; Suman et al., 2016; Van Valen
et al., 2016; Koh et al., 2017; DuChez, 2018; Korsnes and Korsnes, 2018; Emami et al., 2020; Fujimoto et al.,
2020; Fazeli et al., 2020; Ghannoum et al., 2021). Korsnes and Korsnes (2015, 2017, 2018) showed statistics
from systematic single-cell tracking during several days, elucidating heterogeneous cell response and induction
of cell death mechanisms. This tracking also allowed detection of inheritable traits, such as vacuolar transfer
from mother to daughter cells. Inheritance may here be significant for the interpretation of observations
related to autophagy signalling (Korsnes et al., 2016; Klionsky et al., 2021).

Andrei et al. (2020) pointed out different types of observables from tracking two-dimensional (2D) cell
cultures and that might have biological relevance in cellular studies. 2D cultures have provided a wealth of
information on fundamental biological process and diseases over the past decades (Langhans, 2018). The
advantage to use these models for tracking single cells is their low cost and reproducibility as compared
to three-dimensional platforms (Nishida-Aoki and Gujral, 2019; Edlund et al., 2021; Helgadottir et al.,
2021). Two-dimensional models can easily integrate subsequent biochemical analyses and act as surrogate
measurements for the 3D situations (Capuzzo and Vigo, 2021).

Three-dimensional (3D) models are under active development to better represent the complexity of living
organisms during in vitro research (Yong et al., 2017; Finnberg et al., 2017; Puls et al., 2017; Fontana et al.,
2021). However, they still do not recapitulate micro-environmental factors, being only reductionist of the in
vivo counterpart (Langhans, 2018; Capuzzo and Vigo, 2021). 3D cell culture models are currently application
specific and experiments with them are difficult to check for repeatability (Langhans, 2018). Current 3D
platforms do not allow acquisition of cellular kinetics with a high spatial and temporal resolution over a long
period of time (Wen et al., 2021; Capuzzo and Vigo, 2021). High-content screening (HCS) platforms are
emerging, however visualization of 3D structures growing within complex geometrical structures remain still a
big challenge mainly due to optical light scattering, light absorption and poor light penetration with prolonged
imaging acquisition times (Langhans, 2018). Microfluidic devices under highly controllable environmental
conditions is a well-established operation in ongoing research Schmitz et al. (2021). However, optimal nutrient
supply and sufficient cell retention, especially for the long-term cultivation of slow growing cells as well as
motile cells still requires a reliable cell retention concept to prevent permanent cell loss, which otherwise
compromises qualitative and quantitative cell studies Schmitz et al. (2022).

This study restricts to processing data from tracking individual cells growing in two-dimensional (2D)
monolayers. The intention is to show, by simple examples, the potential utility of large collections of such
data, allowing users to compare their experiments with many previous similar experiments. Such collections
would facilitate big data analyses, taking advantage of weak correlations in large amounts of data. The
source of these data may be video recordings of various quality, assumed as by-products from experiments
worldwide. The present example data therefore, for the sake of simplicity, only represent positions (tracks) of
individual cells and their eventual division and dead during recording. They originate from previous work on
Yessotoxin (YTX) (Korsnes and Korsnes, 2018). This small molecule compound can induce different cell death
modalities (Korsnes, 2012). The broad spectrum of cellular response to YTX suits the present illustrations.
The richness of responses from it may also make the compound an interesting candidate to probe cells for
properties.

Data collections from single-cell tracking can be a resource for both experimental work and statistical
investigations, including fault-tolerant big data analyses to search for patterns of biologic relevance. The
present data processing may also have direct interest for processing videos aimed for special studies on possible
emergence of rare or resistant subpopulations among cells subject to toxic agents, potential for metastasis or
early screening for drug discovery. Another actual application is simply to check for the healthiness of cell
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populations, including testing for contamination.
The data analyses below relates cells in pedigree trees, where the initial cells are the ancestors (roots).

These trees facilitate classification of cells in subpopulations according to a combined analysis of the cells in
each tree. An example of such a combined analysis is to count the number of dying cells in each pedigree
tree. The statistics below apply this simple idea assuming that cells in pedigree trees, with no cell death,
might define a special resistant subpopulation. It reflects, for different subpopulations, variation in cell speed,
correlations between sister cells as well as relocation and tendency of clustering. The authors conjecture
that such data summaries can guide computerized search after patterns and causal relations in large sets of
single-cell tracking data. The final proof of concept depends on access to such data sets.

A variety of relatively low-cost equipment apply to perform video-based single-cell tracking in 2D cellular
models. Researchers can now in their most cost-effective way produce videos of living cells for subsequent
analyses by remote (Internet/cloud based) services, as recently developed by Korsnes Biocomputing (KoBio)1.
They may also do similar analyses/tracking using their own favorite tools, such as Image J/ TrackMate Tinevez
et al. (2017). The supplementary data illustrates the potential transparency and software/equipment
independence of such data production 2 facilitating sample inspection. Data perturbation can reveal if
analysis results are sensitive to measurement errors. These factors make such data relevant for contribution
to biological databases as proposed by Zou et al. (2015), Haniffa et al. (2021) and Osumi-Sutherland et al.
(2021). The main intention here is taking advantage of opportunities to utilize data from simple and low cost
recordings to create synergistic value from sharing data. The actual video recording time is therefore here
assumed to be, say, less than 4-5 days without need to change media.

2 Materials and Methods

2.1 Toxin

Yessotoxin (YTX) was obtained from the Cawthron institute (Nelson, New Zealand). YTX was dissolved in
methanol as a 50µm stock solution. The stock solution was after diluted in RPMI medium (Lonza, Norway),
achieving a final concentration of 2 µm YTX in 0.2 % methanol. Treated cells were incubated with 200 nm,
500 nm and 1000 nm YTX and control cells were incubated with 0.2 % methanol as vehicle.

2.2 Cell culture

A549 cell lines were provided by Dr. Yvonne Andersson and Dr. Gunhild Mari Mœlandsmo from the Institute
of Cancer Research at the Norwegian Radium Hospital. Cells were cultured in RPMI 1640 (Lonza, Norway),
supplemented with 9 % heat inactivated fetal calf serum (FCS, Bionordika, Norway), 0.02 M Hepes buffer 1M
in 0.85 % NaCl (Cambrex no 0750, #BE17-737G) and 10 ml 1X Glutamax (100X, Gibco #35050-038), 5 ml
in 500 ml medium. Cells were maintained at 37 °C in a humidified 5 % CO2 atmosphere.

2.3 Single live-cell imaging and tracking

A549 cells were plated onto 96 multi-well black microplates (Greiner Bio-One GmbH, Germany) for time-lapse
imaging. Cells were imaged into Cytation 5 Cell Imaging Reader (Biotek, USA), with temperature and gas
control set to 37 °C and 5 % CO2 atmosphere, respectively. Sequential imaging of each well was taken using
10× objective.

The bright and the phase contrast imaging channel was used for image recording. Two times, two partly
overlapping images were stitched together to form images of appropriate size. A continuous kinetic procedure
was chosen where imaging was carried out with each designated well within an interval of 6 min for an 94 h
incubation period. Exposed cells were recorded simultaneously subject to three different concentrations of
YTX 200 nm, 500 nm and 1000 nm.

The single-cell tracking in this work was performed using the in-house computer program Kobio Celltrack3.
The present data derives from previous work on YTX (Korsnes and Korsnes, 2018).

1https://www.korsnesbiocomputing.no/
2Supplementary data are available via https://user.korsnesbiocomputing.no (user iniref 2022, password korsnes1)
3https://www.korsnesbiocomputing.no/
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3 Results

3.1 Single-cell tracking

The snapshots of Figure 1 illustrate production of input data for the present analyses. These data represent

Figure 1: Snapshots illustrating tracking individual cells from video of A549 lung cancer cells. Left: at start,
center: after 40 h, right: 80 h. Cells were in this case exposed to 200 nm YTX. The actual recording instrument
was Cytation 5 with 10× magnification. Each image consists of 2× 2 stitched (approximately) simultaneous
images. The supplementary data shows video demonstrations of the actual tracking2.

individual cell positions, their division, and dead during 94 h of recording. The process and tools for tracking
are outside the scope of this study, which in principle could rely on data from any functional tracking system.

Figure 2 shows visual representations of a lineage derived from the present tracking of cells. The right
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Figure 2: Example of data from tracking a cell and its descendants during about 94 h. Left: “flat” temporal
representation of a pedigree tree showing cell tags/names for reference in communications. Cell division
appears as ovals, where their color depends on generation. Rectangles represent cell death (blue: apoptosis-like,
red: necrosis-like). Right: 3D illustration of the same pedigree tree, providing information on motion of the
cells. The start position of the initial cell is inside the red frame, which in the present analyses is large enough
to contain 99 other equivalent root cells (in total 100 root cells).

part of this figure illustrates the positions of the actual cells during recording. The horizontal positions (x-y
coordinates) here represent spatial location and the vertical axis (z-coordinate) represents time. The red frame
in the figure is just large enough to contain 100 root cells at the start of recording. The present examples of
statistical analyses are for the cells belonging to these pedigree trees (starting inside the red frame).

Figure 3 shows spatially located pedigree trees for cells exposed to YTX at three different concentrations.
Cells in pedigree trees surviving at the highest YTX concentration (1000 nm) may appear to behave similar
to cells subject to the lowest YTX (200 nm) concentration. It might reflect a resistant subpopulation.
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Pedigree trees without cell death

Pedigree trees surviving during recording

Pedigree trees dying out during recording

200 nm 500 nm 1000 nm

Figure 3: “Forest” of pedigree trees from tracking A549 cells exposed to YTX at concentrations 200 nm,
500 nm and 1000 nm. The upper row shows trajectories for cells in lineages without death (“resistant cells”).
The middle row is for trajectories of cells in lineages where at least one cell live at the end of recording
(“surviving pedigree trees”). The lower row shows trajectories for cells in lineages dying out during recording.
Red and black dots represent cell division and cell death respectively. Note that single-cell tracking can
provide more precise information on cell viability as compared to traditional bulk assays. These type of
measurements are prone to overestimate cell survival due to prior apoptotic cell clearance and disintegration.
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3.2 Single-cell viability

Figure 4 shows the change in size of various cell subpopulations during video recording. The graphs show

No additional restriction:

200 nm

0
100
200
300
400
500
600
700
800

0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

Time (h)

all

no death

survivors

500 nm

0
100
200
300
400
500
600
700
800

0 10 20 30 40 50 60 70 80 90

Time (h)

all

no death

survivors

1000 nm

0
100
200
300
400
500
600
700
800

0 10 20 30 40 50 60 70 80 90

Time (h)

all

no death

survivors

Analysis restricted to the 30 largest pedigree trees:

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

Time (h)

all

no death

survivors

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90

Time (h)

all

no death

survivors

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90

Time (h)

all

no death

survivors

Figure 4: Growth of initial cell subpopulations starting inside the red frame just large enough to contain
100 individuals. “all”: all cells; “no death”: cells in pedigree trees with no death; “survivors”: cells in
pedigree trees where at least one cell lives at the end of recording. The upper row is for no additional
restriction, whereas the lower row is for the 30 largest pedigree trees. The sum of recorded lifespan durations
for cells in a pedigree tree here defines its “size”. Note the smoothness of the graphs, enabling possible simple
parametrization (“data compression”).

the development of number of cells in pedigree trees with roots (initial ancestors) inside a frame centered in
the video and just large enough to contain 100 cells at the start of recording (see Figure 3). The population
of cells belonging to the largest pedigree trees naturally grows faster than the total population. These cells
potentially dominate in number after some time, if they inherit their tendency of cell division and survival.
Correlations between proliferation and survival of descendants of sister cells (see Figure 5) can indicate such
inheritance. The lower row in Figure 4 illustrates that cell “viability analyses” based on single-cell tracking
can provide information beyond results from traditional bulk analyses.

The black solid lines in Figure 4 represent a third degree polynomial model fit to the data:

P3(t) = 100 + at+ bt2 + ct3 (1)

where a, b and c are the (model) parameters and t represents time. Polynomials (or Taylor expansions) are
generally a convenient way to represent smooth (”simple”) functions and to compress data (representing it
by three parameters). Parameters from fitting a complex biologically justified model may not necessarily
represent more biological relevant information if they are less effective to compress data.

Assume fitting a Taylor model (Equation 1) to data as above (see Figure 4). Consider the resulting
parameters as a point, P = (a, b, c), in the three-dimensional parameters space. Similar parameters from
various experiments will give a set of points in the parameter space. If these points spread out close to
for example a 2D structure (embedded in the 3D space), then there should, intuitively, be hope for finding
statistical models with two parameters (instead of three) providing a biological interpretation/understanding.
Voids in the parameter space can also represent knowledge.

Figure 6 shows percentage development of number of cells in pedigree trees as a function of time after the
first cell division. The left part of the figure is for the all 100 pedigree tress (initiating in the red frame as
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200 nm 500 nm 1000 nm

Figure 5: Results from kernel smoothing (bandwidth 1.5) of stack plots for number of descendants of first
generation (A549) sister cells within 70 h after their birth. The cells are exposed to YTX at concentrations
200 nm, 500 nm and 1000 nm. The plots are only for cells born within 20 h after start of recording. Note the
two apparent clusters in the plot for cells exposed to 200 nm YTX indicating that sister cells here inherit their
survival and tendency of division from their common mother cell (at least within the actual time frame of
70 h after their birth).
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Figure 6: Percentage development of number of cells in pedigree trees as a function of time after first division
(doubling at start). The graphs are for A549 cells exposed to YTX at concentrations 200 nm, 500 nm and
1000 nm. The graphs start at 200 percent, reflecting the doubling of number of cells immediately after the
first cell division. The sum of recorded lifespan duration for cells in a pedigree tree here defines its “size”.
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explained above), and the right part is for the 30 largest pedigree trees. The figure shows that cells exposed
to the lowest concentration of YTX (200 nm) tend to follow a regular timing for cell division, as opposed to
those subject to the highest concentration (1000 nm). This tendency is most expressed for the largest pedigree
trees (right part of the figure).

3.3 Speed

Track length for a cell during a period of time t (divided by t) can intuitively define its average speed during
that period. However, track length is not in practice directly available nor be it well-defined for imprecise and
irregular positional data, where measures of length can depend on resolution. Cell speed could (ad hoc) refer
to movements of a given defined point in a cell (for example, the mean point of the nucleus/nuclei). However,
it may principally be looked at as a spatio-temporally localized (statistical) property of a cell. Future work
may assume an ”uncertainty principle” where a positional data point is considered as a random selection
from a set of possible positions depending on the tracking method. An alternative approach is to increase the
level of sophistication and replace the concept of ”cell speed” with temporal change in the (segmented) set of
points covered by an actual cell.

Estimates of positions are, for any definition, imprecise for low quality imagery data. This work therefore,
for the sake of simplicity, demonstrates Gaussian kernel smoothing and interpolation (Wand and Jones, 1994)
to define speed. The actual bandwidth is 15 min. Perturbations of estimates of cell positions may help to
reveal how final results are sensitive to this choice of bandwidth. The authors leave out this exercise for a
separate study. Note that big data approaches may in principle automatically sort out useful definitions of
speed.

Figure 7 shows distributions of the eight hours centered moving generalized mean speed for cells in lineages
with and without dead during recording. The upper and third row are for the regular mean, whereas the
second and lower row similarly show the fourth power mean for the same data. This example illustrates a
possible data product that presumably could provide information to big data analyses. The power mean Mp

is increasingly more sensitive to the highest speeds for increased values of p. The distribution for M4, for
example, seems to be more sensitive to cell death in lineages as compared to lineages with no cell death. One
can expect that the power mean Mp for p = 1, 2, . . . , n will in a compact way reflect the distribution of speed
for a restricted value of n.

3.4 Correlation between descendants of sister cells

Figure 8 shows joint distributions for the total track length of first generation sister cells and their descendants
60 h after the birth of these (initial) sister cells. These statistics restrict to sister cells born within 30 h after
start of recording. The estimates result from using the algorithm scipy.stats.gaussian kde from SciPy4 with
defaults settings (i.e., the ’scott’ method defines the estimator bandwidth). Section 3.3 outlines the present
estimation of length from imprecise positional data (applying Gaussian kernel smoothing).

The joint distributions of Figure 8 show positive correlations and hence reflect inheritance from mother
cells to their daughters. The authors will not further speculate on the biological significance of these statistics,
since they only reflect results from one experiment. However, a main finding here is that such distributions
are sensitive to cell treatment. One may therefore suspect such data summaries to be relevant for big data
analyses. The regularity of such distributions enables effective parametrization (or data compression) to help
search in large databases.

4https://scipy.org/
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Figure 7: Distribution of 8 hours centered running generalized mean of speed of cells during recording. The
top and third row show regular (first order) mean, and the second and fourth row show fourth power mean
(Mp, p = 4). Note the difference between the distributions, especially at the first part of the recording.
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Figure 8: Joint distribution of total track length (x and y) for the first generation sister cells and their
descendants 60 h after the birth of these (initial) sister cells. The cells are subject to YTX exposure at
concentrations 200 nm, 500 nm and 1000 nm. The upper row shows distributions for the pedigree trees with
no cell death, and the lower one shows pedigree trees with some cell death.
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3.5 Mean square displacement (MSD) of first generation daughter cells

Figure 9 shows mean square displacement (MSD) of first generation daughter cells as function of time from
their birth. The figure is for cells in pedigree trees, with and without cell death during recording. The upper
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Figure 9: Upper row: Mean square displacement (MSD) of first generation daughter cells as a function of time
t from their birth (divided by t). Lower row: MSD of first generation daughter cells as a function of time from
their birth. “live tree”: for cells in pedigree trees with no cell dead (during recording period). “some dead”:
for cells in pedigree trees with some cell dead (during recording period). The cells are subject to exposure by
YTX at concentrations 200 nm, 500 nm and 1000 nm.

row here shows the tendency of cells to need extra time to start drifting from their place of birth. Processing
of more data may reveal if this extra time can be considered a “phenotype”.

Note that cells in lineages with dying cells here tend to move faster from their initial position as compared
to cells with no observed cell death. A possible hypothesis is that cells with the strongest (inheritable)
tendencies to move, are more vulnerable to the actual toxin (YTX) as compared to the others. One may also
relate the observation to the concept of “fight-or-flight” reaction, where many types of cells respond to a
variety of stressors in a reasonably standardized fashion, which allows them to combat the offending stimulus
or escape from it Goligorsky (2001).

A “memory-less” (Brownian type) motion for movement would give graphs as straight horizontal lines for
the upper row in Figure 9 (and straight upward tilting lines for the lower row). The present graphs reflect
that the direction of movement tend to be independent of the direction about 4 h to 6 h earlier. The period up
to about 4 h is “memory time” reflecting how long cells tend to keep their direction. It can partly correlate
with cell shape, assuming elongated cells move in their longitudinal direction.

Assume the vector r(t) represents the relocation of a cell t time units after its birth. The vector dot (inner)
product

c(t) = r(t) · r(t) (2)

then gives this distance squared (equal |r(t)|2). Figure 9 shows average values for c(t) for two subsets of cells
where t ranges from 0 to 15 h. A tempting idea is slightly to modify this elaboration and check for average
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value of
c1,2(t) = r1(t) · r2(t) (3)

where r1(t) and r2(t) each represent the positions of a couple of siblings (sister cells) t time units after their
birth. Figure 10 shows an example of results from such a numerical experiment. A motivation for this test is
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Figure 10: Average values of c1,2 = r1 · r2 for cells in pedigree trees with and without cell death. These
examples are for cells exposed to YTX at concentrations 200 nm, 500 nm and 1000 nm.

the conceptual simplicity and the pure formal similarity between the Equations 2 and 3. The authors have
no specific biological interpretations of these graphs, except that they reflect the tendency for sister cells to
follow each other after their birth. This tendency seems to depend on exposure.

3.6 Material exchange and trait inheritance

Moving cells can remain physically close for periods. This can indicate intercellular communication or
exchange of material and which can subsequently affect them. Figure 11 illustrates identification of such
events where cells stay close for periods. This type of data may have special interest for co-culture or studies

200 nm 500 nm 1000 nm

Figure 11: Forest of pedigree trees including identification of events where cells stay at the vicinity of each
other for at least 4 hours 2 hours apart from their birth (cell division). The cells were subject to YTX exposure
at concentrations 200 nm, 500 nm and 1000 nm.

on differentiation where interactions are crucial. Cells can interact through physical contact, surface receptor-
ligand interaction, cellular junctions, and secreted stimulus (Nishida-Aoki and Gujral, 2019). Understanding
these type of interactions can contribute to decipher the complex network of interaction between cells, helping
to improve therapeutics (Nishida-Aoki and Gujral, 2019).

Analyses of “forests” of pedigree trees can reflect effects from events where cells absorb debris from dead
cells and transfer it to their descendants. Figure 12 shows an example of such behavior where a cell includes
an apoptotic body from a neighboring dying cell. Such apoptotic bodies can subsequently appear as vacuoles

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.04.26.489486doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.26.489486


1

2 2 2 2 2

2 2

2

2

2

2

2

1
1

2
2

2

2 2

Figure 12: Example where an apoptotic body (green arrow) from a dying cell (1) ends up as a vacuole in a
neighboring cell (2) which subsequently divides, and the vacuole ends up in one of the daughter cells. Detailed
inspection of many cells in video can reveal such rare events and shed light on epigenetic heritage and generally
signalling downstream pedigree trees. Such signalling is an argument to study lineages as independent entities
and for example apply information on lineage relations when for example classifying cells.
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in the absorbing cell. Sets of such vacuoles in a cell are traceable throughout cell division by comparing their
size and number.

4 Discussion

This work illustrates a number of possible methods to refine (or compress) data from video-based single-cell
tracking. The intention is to provide relevant input for big data analyses (or machine learning in general) to
identify biomarkers for better diagnosis and prognosis. Well proven fault-tolerant computerized methods are
here available to search for causal relations in large data sets (Theodoridis, 2015; Kotsiantis et al., 2007; Linero,
2017). The principle of Occam’s razor (Domingos, 1998, 1999) can guide the search, favouring simplifications
and approximations. It can be considered as a contradiction to anticipate the exact result from trying big data
analysis methods, nor can one expect to anticipate what refinement methods are most effective. Successful
big data analyses are (similar to data mining) assumed beyond the reach of human brains. However, their
result may finally be understood by humans.

Big data methods go beyond assuming linear association between variables. The present examples therefore
restrict to visual/intuitive illustrations of data refinement left for further processing. Existence of several
local maxima in joint distributions (clustering) may, as an example, reflect significant biological information.
The left part of Figure 5 illustrates this point. It shows two main maxima of the joint distribution of number
of descendants of sister cells. This may indicate inheritance of robustness/viability making it likely for the
most robust cells finally to dominate in number (which could be relevant for prognoses in cancer).

The present examples of refinement methods typically show different behaviour of cells in pedigree trees
with cell death as compared to the behaviour of cells in pedigree trees without cell death (during recording).
Some of these examples also show correlations between sister cells or descendants of sister cells. This is an
argument to treat whole pedigree trees as individual entities in the initial data refinement.

Successful application of big data analyses can, in addition to sort out causal relations, give the possibility
to search for similarities between the behavior of cells in many experiments. Methods to compare experiments
can in general be an important part of a collective knowledge base of cell behavior.

Recent progress in techniques for sparse representations, compressive sensing and machine learning (see
e.g. Papyan et al., 2018; Mousavi et al., 2019) give a perspective of direct automatic identification of actual
biomarkers directly from video of cells. The present work contributes to this development by demonstrating
initial refinement of data from single-cell tracking. These data summaries may also be of direct biological
or medical interest in the conceptual frame of standalone experiments. They may in addition help the
development of formal mathematical methods applying concepts from statistical physics (Banigan, 2013).
However, note that machine search for causality in data may utilize weak correlations without any immediate
intuitive meaning.

This work illustrates derivation of the following parameters from single-cell tracking data which represent
positions of individual live cells, their division, and dead during several cell cycles:

� Number of cells in various classes of pedigree trees during video recording (Section 3.2). It may reflect
that some pedigree trees consists of specially viable and resilient cells. This property seems to be already
written into the root (ancestor) cell. Intrusive single cell analyses after tracking, while preserving track
identities, may clarify corresponding mechanisms behind this resilience.

� Parameters from (representations of) speed distributions for various subsets of cells during tracking
(Figure 7). The regularity of these distributions allow representations by few parameters (so-called
sparse representation).

� Parameters from joint distributions of the size of (pedigree) subtrees for the first generation sister cells
where they are roots cells (Figure 8). Such distributions can be parameterized by correlation coefficients,
covariance, and shape parameters (or various sparse representations).

� “Memory” time of trajectories for cells in various subpopulations. Figure 9 reveals that cell trajectories
can have a tendency to keep their direction, typically during 2 h to 4 h. This tendency can reflect cell
shape.
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� Tendency for cells to stay close to each other for periods. Figure 11 visualizes an example where cells
tend to stay close for periods of time. Such events can potentially reflect intercellular communication
and material exchange (see Figure 12). The tendency may have special interest for studies where
communication between different cell types play a role. Tracking of cells in co-culture can in this case
help to reveal how to affect such behavior.

An intention behind the present work is, as pointed out above, to promote ideas for better and easier
comparison between different experiments. This would promote securing reproducibility of observations,
which has emerged as a main concern in life science research in recent years (Hirsch and Schildknecht, 2019).
Easy exchange of raw and refined data is paramount in such quality assurance. Experiments on cells can
include video recording of them under standard (common) conditions, and statistics from tracking the cells
can reveal differences between experiments and which can affect their reproducibility. Tracking under standard
conditions may in general reveal effects on cells and which otherwise may pass under the radar using bulk
assays. This is an example of direct use of the present type of statistics.

Large-scale sharing of data from tracking single cells in video will naturally raise questions on robustness
of results from initial analyses of them. Cells in different experiments may never be treated exactly the same
way. Cells can be sensitive to photo-toxicity as well as possible molecular probes. Type of extracellular
matrices and their proteins can also affect cellular behavior in test wells Vigilante et al. (2019). Data analyses
can reveal to what degree comparison of data from them still apply. It will be important to identify ranges
of conditions for cells in which they will behave in comparable ways. It will also be important to identify
conditions/treatments where cellular behavior is sensitive to small and uncontrollable perturbations. Data
analyses may also reveal possible probabilistic views of results from observing cellular behavior.

Further development of sensors and software will extend the above restriction to data on cell positions, divi-
sion, and dead. This will advance exploitation of its potential utility, as indicated by several authors (Van Valen
et al., 2016; Tsai et al., 2019; Moen et al., 2019; Liu et al., 2020; Ghannoum et al., 2021). Single-cell tracking
from high quality imagery allows collecting data on phenotypical changes, otherwise difficult to measure from
an end-point measurement such as single-cell RNA-sequencing (scRNA-seq) (Liu et al., 2020). Furthermore,
epigenetic states, protein expression and enzyme activity, can not only be inferred from changes in gene
expression (Liu et al., 2020; Zhang et al., 2020). Integrating single-cell tracking with RNA-seq analyses can
therefore complement characterization of biological process by combining analyses of cellular phenotypes with
gene expression profiles (Lane et al., 2017; Yuan et al., 2018). These analyses allow overlaying phenotypic cell
identity with genetic lineage information for a more comprehensive view of clonal relationships, since gene
expression alone is not sufficient to classify cell states (Woodworth et al., 2017; Gerbin et al., 2021). Integrating
such analyses into cell ontology can help to discover a large variety of novel cell populations (Osumi-Sutherland
et al., 2021). Tracking individual cells can therefore complement current cell ontology efforts.
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