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Abstract 7 

Sterility testing is a laborious and slow process to detect contaminants present in drug products. Raman 8 

spectroscopy is a promising label-free tool to detect microorganisms and thus gaining relevance as future 9 

alternative culture-free method for sterility testing in pharmaceutical industry. However, reaching detection limits 10 

similar to standard procedures while keeping a high accuracy remains challenging, due to weak bacterial Raman 11 

signal. In this work, we show a new non-invasive approach focusing on detect different bacteria in concentrations 12 

below 100 CFU/ml within drug product containers using Raman spectroscopy and multivariate data analysis. Even 13 

though Raman spectra form drug product with and without bacteria are similar, a partial least squared discriminant 14 

analysis (PLS-DA) model shows great performance to distinguish samples with bacteria contaminants in limits below 15 

10 CFU/ml. We use spiked samples with bacteria spores for independent validation achieving a detection accuracy 16 

of 99%. Our results indicate a great potential of this rapid, and cost-effective approach to be use in quality control 17 

of pharmaceutical industry. 18 

Introduction 19 

Testing for microbial contamination is a crucial step in quality control of pharmaceutical drug products (DP) before 20 

their commercial release 1, 2. Standard procedures for bioburden testing are highly time-consuming, costly and are 21 

limited in terms of sensitivity and specificity given that they depend on growing conditions. 3, 4. Hence, the pharma 22 

industry needs to develop and implement faster and cost-effective novel technology for this purpose. Bacterial 23 

contamination criteria vary depending on the type of pharmaceutical formulations and administration route 5, 6. 24 

The complete absence of micro-organisms is required for quality control tests of drug products required to be sterile 25 
7. For this reason, novel biotechnological approaches for contamination tests must secure detection of all 26 

microorganisms potentially present in the final product 2, 8, 9.  Analyzing for absence of all micro-organisms by 27 

traditional growth based microbiological methods presents a further challenge for the laboratory environment to 28 

minimize the risk of false positive test results caused by laboratory contaminations during sample handling 6. Within 29 

the last decades new set ups involving spectroscopic technology have been studied for faster and simpler microbial 30 

detection and quantification in drug products 9-12.  31 
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Raman spectroscopy (RS) is a non-invasive method based on inelastic scattering of monochromatic light upon 32 

interaction with chemical bonds present in the sample. Each molecule gives a specific Raman spectrum (fingerprint) 33 

depending on their chemical environment, and chemical and biophysical properties 13. In combination with 34 

chemometrics, RS has been gaining significant consideration in the pharmaceutical industry given its reduced cost, 35 

faster quantitative analysis, and real-time monitoring of various processes that involve changes of the molecules 36 

and/or their chemical environments 14, 15. Concerning microbial contamination, RS has shown great performance 37 

detecting a wide range of bacterial components i.e., lipids, proteins, amino acids, nucleic acids 16. This technique is 38 

even able to distinguish among several bacterial strains present in water-based formulations and in solid drugs with 39 

high accuracy 17, 18. However, studies with RS showing high robustness while retaining the ability to distinguish even 40 

bacterial strains lack sensitivity and do not reach a sufficiently low limit of detection (LOD) of bacteria cell number 41 

for bioburden test acceptance 19, 20. Contrary, more sophisticated RS set ups with LOD below 103 CFU/ml have 42 

demonstrated drawbacks in terms of reproducibility, data analysis and expensive technology making these methods 43 

inconsistent and difficult to scale up for pharmaceutical industry application 21, 22.  44 

Even though advances with RS are promising, new approaches must improve its accuracy and reproducibility to be 45 

suitable for pharmaceutical industry quality control, and act as simpler, faster, and more cost-effective applications. 46 

Remanent challenges when detecting bacteria with RS in pharma products are (i) discrimination between Raman 47 

spectra from organic molecules present in the formula and bacterial ones, (ii) detection at low contamination given 48 

the weak signal from the bacteria in comparison with the product volume (iii) contribution to the Raman signal 49 

from other sources such as product packaging, fluorescent compounds, and (iv) correct data processing and 50 

statistical analysis model 14. In this study, we present a novel approach to up-concentrate and detect ≤10 CFU/ml 51 

of relevant bacteria with RS and multivariate analysis without breaching the primary DP package. The outcomes of 52 

this project support RS as non-invasive and non-destructive method to detect bacterial contamination in DP as 53 

alternative to the pharmacopeial 7 destructive method susceptible to laboratory contaminations. Furthermore, the 54 

developed method has the potential to enable real-time monitoring of the contaminations in pharmaceutical 55 

processing. 56 

Experimental  57 

Reagents and bacteria strain. 58 

The pharmaceutical product (DP) contains 3 ml of solution with 100 U/ml insulin, glycerol, 1.80 mg/ml phenol (CAS 59 

108-95-2), 2.06 mg/ml m-cresol (CAS 108-39-4) (preservative), zinc acetate, glycerol, phosphate buffer, sodium 60 

chloride and water for injections. The primary package is a vial made of 2 mm borosilicate glass.  61 

Freeze-dried preparations in BioBall® MultiShot 550 of B. subtilis (NCTC 10400) and S. enterica (ACM 5080) were 62 

from bioMérieux. B. subtilis in spore form. S. haemolyticus (ATCC  29970) was kindly provided from Microbial 63 

Competence Centre, Novo Nordisk. Other reagents were Ethanol (20C184005, VRW chemicals), Phosphate buffered 64 
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saline solution (S3308, MP Biomedicals), Luria-Bertani broth agar (SLCC1516, Sigma) and Tryptic soy broth (TSB) 65 

(ICNA091010717, MP Biomedicals). Tryptic soy agar (TSA) was prepared by adding 20 g/L of agar (Sigma) to TSB 66 

solution.  67 

Bacterial culture and growth conditions. 68 

For experiments with vegetative forms of B. subtilis, one BioBall® MultiShot 550 of B. subtilis was inoculated in LB 69 

broth media and incubated at 35 °C for 18-24 hour and then sub-cultured in LB agar and incubated in aerobic 70 

conditions at 30-35 °C for 24 h. Bacterial numbers were estimated by colony harvesting, dilutions in sterile PBS and 71 

counting in chamber under the microscope, then applying dilution factor calculation. Experiments with low CFU 72 

number (50 and 10 CFU) were performed directly with dilutions from the dissolved BioBalls (550 CFU/pellet). S. 73 

enterica and S. haemolyticus were cultured using TSA plates. Experiments with low numbers of B. subtilis spores 74 

were made by dilutions from BioBall® MultiShot 550 of this bacterium and then spiking the samples with the 75 

respective amount to reach a final concentration of 50 and 10 CFU/ml. Controls of injected CFU number were made 76 

by enumeration in TSA plates and direct counting of colonies.  77 

Sample preparation and Raman spectroscopy 78 

Spiked vials for experiments with 3 x 108, 50 and ≤10 CFU/ml of bacteria were prepared using the following 79 

procedure. Briefly, in a laminar air flow (Heraguard ECO 0.9, Thermo Scientific), bacterial dilution was prepared 80 

using sterile DP solution as diluent and homogenized by vortexing.  Then the precise volume was injected into the 81 

products vials (samples) using a calibrated syringe (Hamilton® syringe 1700 series) to get the desired CFU 82 

concentration. The vials were placed in a self-built plate and centrifuged at 2500 rpm for 17 minutes. Before 83 

experiments, vials’ outer glass surface was cleaned with ethanol avoiding any Raman signal from organic material 84 

adsorbed during sample handling. Given that the DP contains preservatives, a parallel control was run covering the 85 

whole procedure time from CFU injection till last sample measurement with RS. This control was cultured along 86 

with analyzed sample to evaluate bacteria survival without exposure to laser.  87 

Raman spectra were recorded at room temperature using a multimode diode laser (FATBOY model, Ocean Insight) 88 

emitting at a wavelength of 785 nm. The laser excitation was fiber-coupled to a focusing 785 nm immersion Raman 89 

probe (Ocean Insight) with a 5 mm focal length delivering a total laser power of 350 mW at the sample. The Raman 90 

back-scattered light collected by the probe was directed through a low OH multimode fiber to the spectrometer 91 

(QE Pro Raman Series, Ocean Insight) equipped with a charge coupled device operated at -50 °C. For each sample, 92 

10 Raman spectra were acquired with an integration time of 10 seconds. Spectrometer setup, data acquisition and 93 

control were done with Ocean View 2.0.8 software (Ocean Insight). 94 

Data processing and analysis.  95 
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Raman spectra were pre-processed using MATLAB R2021a software (MathWorks, US). Data was truncated to the 96 

wavenumber region 400-3200 cm-1, baseline corrected using asymmetric least squared smoothing 23 , normalized 97 

(area under curve) and mean centered. PLS-DA 24 was performed using the PLS-regression algorithm in MATLAB. 98 

For model calibration, we used a total of 100 spectra of sterile and 100 spectra of vegetative B. Subtilis. For 99 

experiments with S. enterica, S. haemolyticus, and B. subtilis spores a total of 80 Raman spectra from sterile and 100 

spiked samples were analyzed. To differentiate B. Subtilis, S. haemolyticus and S. enterica from sterile conditions a 101 

10-fold cross validated PLS-DA model was applied to each case with 50 and 10 CFU/ml. For B. Subtilis spores, S. 102 

haemolyticus and S. enterica four, three and three components were used in the model respectively based on the 103 

results of the cross validation (see Table 1). An independent validation set of spectra from B. Subtilis spores was 104 

tested against the corresponding model calibration to obtain the specificity and sensitivity of the model.  105 

Results and discussion 106 

Proof-of-concept  107 

We aimed to generate a novel approach using dispersive RS associated with partial least squares discriminant 108 

analysis (PLS-DA) to detect bacteria within the DP primary packaging. The first goal was to analyze if the Raman 109 

spectra from the bacteria could be distinguished from those related to molecules present in the DP. A proof-of-110 

concept was designed to up-concentrate bacteria in a smaller area of the DP container and thus increasing the 111 

chance for the laser to find the contaminants. For this purpose, the samples were centrifuged in special plates 112 

holding the vials in an inclined upside-down position. This method was efficient in localizing the bacteria along the 113 

upper part of one side of the product vial, i.e., close to the neck. To obtain a clearer bacterial spectrum for model 114 

training vegetative form of B. subtilis were injected into five DP samples with a final concentration of 3 x 108 CFU/ml.  115 

Raman spectra from spiked samples with vegetative B. subtilis (SS-vBS) and non-injected negative controls (NC) 116 

were taken covering the whole area within the vials where the bacterial pellet was localized after centrifugation. 117 

Raman spectra after baseline correction and normalization of each group are presented in Fig. 1A. Both groups 118 

presented similar spectra but with small variations in intensity in peaks related to bacterial-associated organic 119 

molecules observed in the wavenumber ranges 700-1800 and 2800-3200 cm-1 (Fig. 1A). PLS-DA model was selected 120 

due to its power to maximize the inter-class variation and its prediction capacity among samples with unknown 121 

degree of within-group variability 17, 24, 25. Considering up-till ten components, analysis of variance explanation (Fig. 122 

1B), indicated that three components represented 86.4% of the variation on the dataset. A smaller variation was 123 

enclosed in components four and five. Afterwards, any extra component added did not solely explain a significant 124 

part of the remaining variation (Fig. 1B). PLS-DA classification plot (Fig. 1c) showed that a three-component model 125 

was sufficient to discriminate the Raman spectra from SS-vBs and NC. Variation observed among samples, mainly 126 

on SS-vBS, could be related to measurements from different locations from these vials. Closer inspection of the 127 

loading vectors (LV) showed distinct bacteria-associated peaks, which weighted positively for SS-vBS on the score 128 

plot (Fig. 1d-e). SS-vBs received positive scores for peaks on the wavenumbers 786, 814-850  and 1090 cm-1 (nucleic 129 
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acid region), 1000 cm-1 (aromatic amino acids), 1060 -1200 cm-1 (fatty acids C—C stretching), 1440 cm-1 (C—H 130 

vibration), and 1656 cm-1 (amide I vibration) among the most relevant (Fig. 1d-e) 19, 22, 26, 27. Some bands located in 131 

regions 703-760 and 820-840 cm-1 indicating aromatic amino acids can also be related to preservatives (m-cresol 132 

and phenol), present in the product formula 28, 29 . The high wavenumber region 2800-3200 cm-1 (C—H stretching 133 

region) was kept in the analysis since it has previously been related to major bacterial macromolecules 26, 30 that are 134 

not present in the DP. LV1 and LV2 presented peaks with negative intensity amplitude in the Raman shift 746, 1000, 135 

1029, 1090, 1 cm-1 (Fig. 1e). The latter were important in the NC samples, which received negative scores specially 136 

in LV1 (Fig. 1d-e) possibly related to the absence of bacterial structures. The negative bump observed in the region 137 

at 1300-1450 cm-1 in LV1 (Fig. 1e) is mainly associated to BO4 and SiO4 bonds from the primary packaging made of 138 

borosilicate glass 31.  139 

A 10-fold cross-validation was performed to analyze the number of components needed in order to obtain the best 140 

performance of classification through the root mean squared error of cross-validation (RMSECV) and comparing 141 

with the overall fitting by RMSE of calibration (RMESC) (Fig. 1f). Based on RMSECV (Fig. 1f – orange line), five 142 

components were the limit for error reduction and onwards we had a diminishing in return. However, three 143 

components were enough to perform without misclassification reducing the risk of overfitting and making the 144 

model more robust in terms of classifying future samples that are different to the training dataset. In the Table 1 145 

are summarized all RMSEC and RMSECV values obtained for each experiment as well as their respective number of 146 

components considered, and the outcome of samples misclassified. 147 

 148 

 In our system we used 785 nm visible light, since water has a relatively low absorption at this wavelength while 149 

obtaining a relatively strong signal from bacteria in comparison to other wavelengths 14. In addition, the 785 nm 150 

Table 1: Values of root-mean squared error of calibration (RMSEC) and cross-validation (RMSECV) of each 
experimental model considering level of detection of each bacterium and the number of components included.  
Misclassified samples outcome after PLS-DA analysis. 

Experiment 
Detection level 

(CFU/ml) 

Number of 

components 
RMSEC RMSECV 

Misclassified 

samples 

B. subtilis (V) 3 x 108 3 0.28 0.31 None 

S. enterica 
50 3 0.058 0.066 None 

≤10 3 0.062 0.073 None 

S. haemolyticus 
50 3 0.18 0.2 None 

≤10 3 0.29 0.33 None 

B. subtilis (S) 
50 4 0.29 0.45 None 

≤10 4 0.28 0.63 None 
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laser presented less fluorescence interference and improved signal-to-noise ratio compared to other visible light 151 

spectra, such as a 532 nm laser 32-34. Supporting this choice, previous studies have shown great robustness of 785 152 

nm in detecting wide spectrum of both Gram-positive and Gram-negative bacteria 35. In summary, this concept 153 

adding a special centrifugation of vials could improve the bacterial detection with RS in DP. Moreover, the PLS-DA 154 

approach allowed us to maximize the inter-class differences and therefore discriminate the Raman signal of bacteria 155 

suspended in DP from the DP alone within the primary packaging.  156 

Detecting low number of vegetative bacteria within primary package. 157 

Major challenges encountered when reaching low CFU detection limits with RS are: (i) to discriminate bacterial 158 

signal from other organic compounds present in the DP without compromising the model accuracy, (ii) to detect 159 

bacteria in concentrations lower than 100 CFU/ml keeping the cells viability for future identification procedures, 160 

and (iii) to detect bacteria and discard the primary packaging signal while keeping the integrity of the DP primary 161 

container 14, 36-38. Therefore, we challenged our RS-PLS-DA model to detect vials containing below 100 CFU/ml of 162 

two important yet different bacteria: Salmonella enterica (rod-shaped gram-negative) and Staphylococcus 163 

haemolyticus (coconut-shaped gram-positive). It is important to mention that we did not focus on distinguishing 164 

between the bacterial species but on confirming the presence or absence of contaminants with high reproducibility.  165 

Following the same procedure of spiking and centrifugating as explained before, we prepared samples with each 166 

species reaching a final concentration of 50 CFU/ml and ≤10 CFU/ml. Raman spectra were obtained from SS 167 

containing 50 CFU S. enterica (50-SE), ≤10 CFU S. enterica (10-SE), 50 CFU S. haemolyticus (50-SH) and ≤10 CFU S. 168 

haemolyticus (10-SH) and compared against NC (Fig. 2). In SS, given the inclined centrifugation of the vials we 169 

expected to obtain a mixture of positive bacterial signal from the first half of the vial and negative onwards. After 170 

Raman analysis the samples were cultured to compare results with the ones obtained from RS. Explorative analysis 171 

of the training dataset was performed using the same PLS-DA model and corroborate if consistent output variables 172 

were obtained i.e., discrimination between samples with and without bacteria. PLS-DA classification and score plots 173 

of loading vectors are shown in Fig. 2a-h. A three-component model showed a well separation of samples with 174 

bacteria and NC of both concentrations of S. enterica and S. haemolyticus (Fig. 2a,c,e,g) . Both experiments with S. 175 

enterica, 50-SE and 10-SE, received a better discrimination in terms of inter-class distance (Y-axis) from NC group 176 

in comparison to S. haemolyticus samples (Fig. 2a, c). However, score plots of LV1 and LV2 showed a correct 177 

discrimination of SS and NC training dataset clusters even at two-component model for all bacterial specie and 178 

concentration analyzed (Fig. 2 b,d,f,h). On the score plots, groups representing SS with 50-SE and 10-SE appeared 179 

as two separated subclusters with different weight scores for LV1 and LV2 (Fig. 2b,d). This intra-group gap reflected 180 

the measurements from areas with bacterial signal and without bacteria from centrifuged samples bearing bacteria. 181 

Concerning S. haemolyticus, in both 50-SH and 10-SH groups the inter-class separation was less prominent 182 

compared to Salmonella and observations from the negative areas appeared closer to the sterile group (Fig. 2e,g). 183 

This was also demonstrated in the score plot where three sub-clusters were defined for SS with 50-SH and 10-SH, 184 
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indicating more variability among these observations (Fig. 2f,h). In these plots it is also observed that some 185 

observations from SS at both concentrations scored similar to sterile groups. Despite that, no misclassification of 186 

training dataset was obtained (Table 1). The difference observed in term of greater discrimination for SS with S. 187 

enterica in comparison to S. haemolyticus could be related to bacterial composition, size and shape being reflected 188 

in Raman spectra peaks intensity 35. Supporting this idea, experiments detecting both 50-SE and 10-SE the RMSECV 189 

obtained was remarkable lower under three-components compared to detection of 50-SH and 10-SH (Table 1). 190 

Bacteria culture was representative of Raman results obtaining growth of bacteria colonies for all SS evaluated and 191 

no growth on the NC (data not shown)  192 

Low LOD of bacterial spore detection  193 

Some bacteria relevant for pharmaceutical production have the ability to produce spores as a survival mechanism 194 

in a hostile environment. A method used for quality control of pharmaceutical presentations required to be sterile 195 

should also be able to detect spores, especially given the increased likelihood of bacteria in spore form surviving 196 

unfavorable conditions for extended time periods and reaching the patient. Hence, we challenged our RS-PLS-DA 197 

model to detect low concentrations of B. subtilis spores (BSs). We spiked vials with 50 CFU and ≤10 CFU/vial of B. 198 

subtilis spores (50-BSs and 10-BSs respectively) and then analyzed with RS and compared to NC. In Figures 3a and 199 

3c is presented the PLS-DA classification for both 50-BSs and 10-BSs respectively. The model correctly discriminated 200 

the samples even though in both concentrations the variation between classes was less prominent in comparison 201 

to the case with vegetative cells (Fig. 2). The less prominent discrimination was supported by the intra-sample 202 

variation as well as the limited inter-class separation observed on the Y-axis (Fig. 3a, c). 203 

For spore detection at very low cell numbers, four components were needed to reach a complete group separation 204 

instead of the two-component needed for vegetative cells. This was observed on the score plots were overlapping 205 

among the observation was remanent when comparing LV2 vs LV3 (Fig 3b, d). In addition, in the RMSECV plot an 206 

evident improving step in error reduction could be seen when jumping from three components to four (Fig. 3e). In 207 

a general perspective it is clearly observed that RMSEC and RMSECV obtained in both spore concentrations were 208 

higher compared to the errors observed in vegetative bacterial forms (Table 1). Loading plot of LV1-4 showed weak 209 

but clear Raman signal related to spores which was mainly supported by the peaks at 786, 814-850 and 1090 cm-1 210 

(nucleic acid), 1464 (lipids), 1579, 1665 cm-1 (proteins) and 2800-3200 cm-1 (C—H) 30, 39, 40 (Fig. 3f). At this spore 211 

concentration, previously reported specific peaks related to Bacillus sp. spores in the wavenumbers 824, 1017 1395 212 

and 1579 cm-1 30, 39, 41, 42 were difficult to spot given their weak signal in comparison to other peaks. (Fig. 3f). The 213 

latter is possibly related to different factors, first that the model was built and trained based on vegetative forms 214 

which are phenotypically different to spore form 19, 26. The second reason could be associated to the low working 215 

concentration making it more difficult to visualize spore-specific peaks in comparison to larger and more 216 

predominant macromolecules, which already had a weak signal in the LVs. Spores are around one-third of the size 217 

of a vegetative cell 43, 44, so it is more difficult to obtain a clear Raman signal from them and thus also to detect low 218 
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numbers of spores. Is important to highlight that even if most authors consider wavenumbers from 400 to 1800 219 

cm-1 as the most active region for bacterial Raman signal, with the spores we should also consider the high 220 

wavenumber region 2800-3000 cm-1. The latter region is related to predominant spore components such as fatty 221 

acids, carbohydrates, and proteins, which are packed together with the genetic material 19, 26 . These results 222 

together demonstrate that our RS-PLS-DA model is not affected by bacterial phenotypic features but instead 223 

focuses on common components of them.  224 

Model validation 225 

Cross-validation of independent samples is crucial to demonstrate the ability of the model to discriminate new 226 

samples with unknown contamination. For this purpose, we performed a 10-fold leave-one-out cross-validation 227 

analysis using our RS-PLS-DA model and a new independent set of samples. Contamination with B. subtilis spores 228 

were used given they were the most challenging case concerning detection of low numbers. Two datasets were 229 

used for cross-validation: (i) a training data set using samples from Fig. 3c and (ii) an independent (validation) set 230 

with 20 new samples comprising ten vials with ≤10 CFU-BSs and ten sterile vials. After Raman analysis, samples 231 

were cultured to compare results with the ones obtained by RS-PLS-DA. Classification of training (stars) and 232 

validation (triangles) datasets from cross-validated data are presented in Fig. 4a.  Both sterile (blue triangles) and 233 

contaminated (red triangles) validation groups were discriminated with 99% specificity and 98.3% sensitivity, 234 

establishing a hard decision cut-off in zero (dotted line) (Fig 4a). Validation samples dataset presented larger intra-235 

group variations compared to the training group. This represented a realistic scenario of new samples being 236 

compared with the training dataset building the PLS-DA model. RMSE of validation groups (RMSEV) (Fig. 4b, blue 237 

line) showed that an improvement could be obtained up till five components considered. This reduction was not 238 

seen by analyzing RMSECV of the independent validation (black line) where after the third component any 239 

additional component did not reduce the prediction error (Fig 4b). The latter is important when we take into count 240 

that the results showed in Fig. 3, indicated that four components were needed in order to discriminate 50 and 10 241 

CFU of BSs from NC without misclassification (Table 1). Therefore, using less components some samples crossed 242 

the decision line generating some false positive and false negative observation which impacted on the accuracy 243 

obtained (Fig 4a).  244 

In this work, we obtained similar values in terms of accuracy in comparison to previous reports showing sensitivities 245 

and specificities around 95-99% using RS coupled with multivariate analysis models. However, some  approaches 246 

do not specify the limit of detection reached 45 or they presented theoretical detection limits below 100 CFU/ml 247 

based on RMSECV values obtained on the calibration and not in physical measurements 9. Another common 248 

drawback is to ensure reproducibility of the results using a single model to detect samples with less than 10 CFU/ml 249 

or when cross-comparing among different species 22, 26, 35, 37. In addition, our results showed a great performance 250 

about the grade of robustness including three highly different bacteria species and bacterial spores. Another 251 

important feature is that we used a non-invasive method to reach low LOD which allowed us to test the DP within 252 
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its container. The latter is an improvement of previous concepts involving complex RS systems to obtain low LOD 253 

involving procedures breaching the integrity of the DP samples such as needing external amplifier particles and/or 254 

dried samples on metallic surfaces 37, 46. In this sense, sample handling that requires breaching of the barrier 255 

presented by the original container also poses a risk of obtaining secondary sample contaminations thereby giving 256 

a false positive result. Time consumption is also a drawback when analyzing samples with RS concepts involving 257 

several steps, especially if the final application is in pharmaceutical industry. Even though LOD below 103 CFU/ml 258 

could be secured, these kinds of multiple-step and advance systems need many hours to analyze a single small 259 

sample 37 On the contrary, we only needed around 3 minutes to evaluate each sample containing 3 ml of product 260 

with RS after centrifugation, and the evaluation is done without breaching the barrier of the original sample 261 

container. Further analyses are needed to deepen in understanding the limits of RS technique for application in 262 

contamination control such as detection of cell debris, death cells and other relevant scenarios that may cause 263 

ambiguous results. 264 

Conclusions 265 

In the present study we evaluated a fast and non-invasive approach to discriminate pharmaceutical products vials 266 

containing low numbers of bacteria from sterile ones using dispersive Raman spectroscopy in association with PLS-267 

DA. The RS-PLS-DA concept was challenged to detect bacterial species suspended in drug product within its primary 268 

package. Three highly different bacteria including B. subtilis spores were detected without breaching the DP vial. 269 

This rapid and simple concept innovates in its effective way to localize the contaminants in a smaller area within 270 

the product vial in order to secure laser detection. Our results showed a successful discrimination when detecting 271 

vegetative cells and spores at the very low concentration of 10 CFU/ml, even in the presence of other organic 272 

molecules from the product formula in the intact DP primary container. True independent validation showed an 273 

outstanding performance with high sensitivity and specificity. In summary, we provide a feasible approach using RS 274 

in association with PLS-DA to detect extremely low numbers of cells or spores with high accuracy and reproducibility 275 

without compromising the robustness of the method. These results support Raman spectroscopy as a promising 276 

biotechnological tool suitable for bioburden test in quality control of pharmaceutical industry.  277 
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Figure 1: Detection of bacteria in drug product primary package. Raman spectroscopy in combination with partial least squared discriminant 
analysis (PLS‐DA) to distinguish 5 spiked samples with 3 x 108 CFU/ml of vegetative B. subtilis (SS‐vBs) from 5 negative control (NC) samples. 
(A) Baselined corrected and normalized Raman spectra from SS‐vBs (magenta) and NC (blue) represented by data mean (solid line) and ±SD 
(shadow). (B) Variance explained plot of the PLS‐DA model in function of the number of components into consideration. (C) Classification 
plot after analysis with a  three‐component PLS‐DA model. Circles  represent each measurement of  the  spiked  (magenta) and NC  (blue) 
samples along  the vial.  (D) Score plot of  the samples considering scores obtained  in component 1  (X‐axis) vs components 2  (Y‐axis).  (E) 
Loading vectors (LV) extracted from the three‐component PLS‐DA analysis, colors represent each LV1 (green), LV2 (magenta) and LV3 (blue). 
(F) Plot of the estimated root‐mean‐squared error of calibration (RMSEC, black line) and cross‐validation (RMSECV, orange line) in function 
to the number of components added into the model. 
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Figure 2: Detection of low bacterial concentrations in vegetative forms. Raman spectra from 10 spiked samples (SS) and 10 negative controls 
(NC) were collected and analyzed using a three‐component partial least squared with discriminant analysis (PLS‐DA) model. Classification 
and score plots obtained in components number 1 and 2 of (A‐B) SS with 50 CFU/ml of S. enterica (SS‐50‐SE); (C‐D) SS with 10 CFU/ml of S. 
enterica (SS‐10‐SE); (E‐F) SS with 50 CFU/ml of S. haemolyticus (SS‐50‐SH); (G‐H) SS with 10 CFU/ml of S. haemolyticus (SS‐10‐SH). 
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Figure 3: Detection of spores. Raman spectra from 10 spiked samples (SS, magenta) and 10 negative controls (NC, blue) were collected and 
analyzed using a four‐component partial least squared with discriminant analysis (PLS‐DA) model. Classification and score plots obtained in 
components number 2 and 3 of (A‐B) SS with 50 CFU/ml of B. subtilis spores (SS‐50‐BSs); (C‐D) SS with 10 CFU/ml of B. subtilis spores (SS‐10‐
BSs).  (E) Plot of  the estimated root‐mean‐squared error of calibration  (RMSEC, black  line) and cross‐validation  (RMSECV, orange  line)  in 
function to the number of components added into the model. (F) Loading vectors (LV) extracted from the four‐component PLS‐DA analysis 
to visualize peaks related to spore discrimination, colors represent each LV1 (green), LV2 (magenta), LV3 (blue) and LV4 (black). 
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Figure 4: Model validation. Independent validation using partial least squared discriminant analysis (PLS‐DA) and 10‐fold cross‐validation. (A) 
Classification of 10 spiked samples with 10 CFU/ml of B. subtilis spores (SS‐10‐BSs) and 10 negative controls (NC) were used as training dataset 
(magenta and blue stars respectively). 10 new SS‐10‐BSs and 10 NC samples were used as independent test set (magenta and blue triangles 
respectively). (B) Plot of the root‐mean‐squared error of calibration (RMSEC, orange), cross‐validation (RMSECV, black line) and validation 
(RMSEV, blue line) in function to the number of components added into the model. 
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