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HIGHLIGHTS 
 
- Rhythmically expressed genes (REGs) in Young, but not Old mice, are enriched for the 
aging hallmarks across all tissues. 
- The numbers of REGs decline across all tissues with age  implicating the circadian clock 
in altered homeostasis. 
- Age- and tissue-specific differentially expressed genes (DEGs) cluster at specific times 
of the day.  
- Increase in gene expression variability over a day is a common feature of aging tissues.  
 
 
 
SUMMARY 

Cellular circadian clocks direct a daily transcriptional program that supports homeostasis 
and resilience. Emerging evidence supports age-associated changes in circadian functions. To 
define age-dependent changes at the systems level, we profiled the circadian transcriptome in 
the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in 3 age groups. We 
found age-dependent and tissue-specific clock output changes. Aging reduced the number of 
rhythmically expressed genes (REGs), indicative of weakened circadian control. Many genes 
gained rhythmicity in old tissues, reflecting an adaptive response. REGs were enriched for the 
hallmarks of aging, adding a new dimension to our understanding of aging. Differential gene 
expression analysis found that there were temporally distinct clusters of genes in tissue-specific 
manner. Increased daily gene expression variability is a common feature of aged tissues. This 
novel analysis extends the landscape of the understanding of aging and highlights the impact of 
aging on circadian clock function and temporal changes in gene expression. 
  
KEYWORDS: Circadian Clock, Aging, RNA-seq, Skeletal Muscle, Hypothalamus, Kidney, Lung, 
Heart 
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INTRODUCTION 

 Aging is characterized by a progressive loss of homeostatic control, leading to functional 
declines and decreased resilience. Over the last three decades, there have been numerous 
studies that used microarray and RNA-seq to examine age-related changes in gene expression 
across tissues (reviewed in (Frenk and Houseley, 2018). These studies contributed to the 
mechanistic understanding of aging biology, leading to defined hallmarks of aging (Kennedy et 
al., 2014; López-Otín et al., 2013). More recent comprehensive RNA-seq studies in rodents 
captured age-dependent transcriptomic changes across multiple organs and various ages and 
highlighted age-related increases in inflammation and loss of proteostasis across tissues 
(Schaum et al., 2020; Shavlakadze et al., 2019). However, these previous studies did not 
consider the time of day or the impact of aging on the circadian clock, thus overlooking a critical 
dimension of aging physiology.  

In mammals, virtually every cell in the body has a functional circadian clock. The 
circadian system consists of a network of central and peripheral oscillators that give rise to 
various rhythmic outputs largely in a tissue-specific manner (Takahashi, 2017; Zhang et al., 
2014). The suprachiasmatic nuclei (SCN) of the hypothalamus serve as the central clock that 
receives the daily light input and regulates the sleep/wake cycle (Mohawk et al., 2012). SCN 
neurons and peripheral tissue cells share a similar molecular clock mechanism which is based 
on an autoregulatory transcriptional negative feedback loop. The core feedback loop consists of 
the transcriptional activators BMAL1 and CLOCK and their negative regulators PER and CRY 
(Takahashi, 2017). The core clock also directs a daily transcriptional program that is cell type-
specific. It is this circadian transcriptional output that prepares the cell for daily environmental 
changes and underlies predictive vs. reactive homeostasis (Koronowski and Sassone-Corsi, 
2021; Moore-Ede, 1986). Recent studies have established that circadian functions decline over 
the lifespan. For example, age-related changes in the timing and amplitude of sleep/wake 
activity, body temperature, and hormone release in rodents and humans have been well 
documented (reviewed in (Hood and Amir, 2017)). Aging is also associated with a reduced 
ability to re-entrain to a new light/dark cycle, and increased mortality following repeated “jet lag” 
(Davidson et al., 2006; Inokawa et al., 2020; Sellix et al., 2012) . It can be posited that circadian 
attenuation likely contributes to increased damage accumulation (Gladyshev et al., 2021), frailty 
phenotypes (Fried et al., 2021) and decreased resilience seen with aging (Kirkland et al., 2016). 

Although age-related decline of circadian physiology and behavior has been generally 
recognized, significantly less is known about age-related changes in the circadian transcriptional 
output. A few recent aging-related circadian transcriptomic studies show that the core clock 
genes in aged tissues remain largely intact under light/dark conditions but the genes comprising 
the transcriptional output are altered (reviewed in (Welz and Benitah, 2020)). For example, the 
circadian transcriptome is reprogrammed from 3 months to 24 months in the mouse liver (Sato 
et al., 2017), and this was also apparent in stem cells from skin and muscle of 18-month-old 
mice (Solanas et al., 2017). Age-dependent circadian transcriptomic reprogramming has also 
been reported for the human prefrontal cortex (Chen et al., 2016) as well as in Drosophila 
(Kuintzle et al., 2017), demonstrating that altered circadian output is a conserved characteristic 
of aging. While these initial investigations brought attention to aging circadian clocks, there has 
been a lack of systematic design and analyses of the circadian transcriptome across organs and 
ages. We therefore carried out a 48 hour circadian transcriptomic analysis (Hughes et al., 2017) 
in male mice at 3 ages, (6, 18 and 27 months) and 6 organs and tissues (hypothalamus, lung, 
heart, kidney, skeletal muscle, and adrenal gland). We define age-related changes in the 
number and identity of the clock output. The temporal resolution of our data also offered an 
opportunity to examine the genes that were not rhythmic but displayed differential expression 
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patterns at 4 distinct time domains of the day, (e.g., active phase vs. rest phase). We suggest 
that altered circadian clock output with age should be considered a hallmark of aging that 
contributes to the changes in cell and tissue homeostasis and likely contributes to frailty and 
compromised resilience in the old. To disseminate this data, we constructed a “CircaAge'' 
database that provides investigators the ability to query the expression patterns of any gene in 
any of the organs across circadian time and age. Mechanistic insights into the interplay between 
the circadian and aging systems will offer new opportunities to enhance circadian function and 
promote healthy aging. 

 
 
RESULTS  

Profiling the aging circadian transcriptome across organs 
Our study examined the circadian transcriptome in multiple tissues at multiple time 

points across the lifespan. We obtained male C57B6/J-NIA mice at 4, 16, and 25 months old 
(mo). The mice were maintained under 12h:12h light/dark conditions until 6 mo (Young), 18 mo 
(Aged), or 27 mo (Old) of age. Prior to tissue harvest, mice were released into constant 
darkness (circadian time or CT0) to study circadian gene expression under free-running 
conditions. Tissue collections began at CT18 and continued every 4 hours for 48h, with a total 
of 12 time points, in accordance with the guidelines for analysis of circadian genome data 
(Hughes et al., 2017). Our systems-level analysis included the hypothalamus, which contains 
the central SCN clock, and 5 other peripheral tissues, lung, kidney, skeletal muscle, heart, and 
adrenal gland (Figure 1A). We obtained high-quality RNAseq data from all tissues/organs with 
the exception of the first 24h of data from the adrenal gland of aged mice due to a technical 
issue. This data was included as supplemental data (Figure S1) but excluded in our larger 
analysis.   
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Figure 1. Circadian transcriptome analysis from 6 tissues and 3 ages. (A) Simplified study design 
schematic. Heat map of z-scored rhythmically expressed genes (REGs) and a Venn diagram of the REGs 
from each age for the (B) hypothalamus, (C) lung, (D) kidney, (E) skeletal muscle, (F) heart, and (G) 
adrenal gland. Due to technical difficulties with adrenal samples, only CT38-CT62 from the Aged were 
included for circadian transcriptome analysis. 

 
Age-dependent decline in the number of circadian genes across tissues 

All RNAseq samples were sequenced to a depth of at least 40 million reads aligned to 
the mouse genome. To identify the circadian transcriptome, we deployed the cosinor model 
implemented in the diffCircadian software (Ding et al., 2021). Specifically, we defined circadian 
genes as those with 24h cosine oscillations in transcript abundance based upon a raw p-value < 
0.01. We first examined the impact of age on the circadian rhythmically expressed genes 
(REGs) in each organ and tissue (Table S1). Overall, the majority of the REGs in the Young 
were tissue-specific, consistent with previous multiorgan genomic studies using young mice 
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(Zhang et al., 2014). Across all tissues, we found an age-associated decline in the number of 
REGs. The largest REGs change was seen in the kidney with ~75% decline from Young to Old. 
The heart showed the least change with ~34% decline. The REGs within each tissue were also 
age-dependent, with less than 10% of REGs conserved across ages (Figure 1B-G and Figure 
S2). In the hypothalamus, there were 495 REGs in both the Young and Aged groups, but this 
declined to 196 in Old (Figure 1B and Table S2). We identified 793 REGs in the Young lung, 
591 in Aged, and 251 in Old (Figure 1C and Table S3). The kidney had 2,183 REGs in Young, 
1,356 in Aged, and 550 in Old (Figure 1D and Table S4). As in the hypothalamus, the kidney 
circadian transcriptome was clearly age-specific, with only 232 (8%) of the REGs shared across 
all three ages. In skeletal muscle, the number of REGs decreased from 941 in Young to 699 in 
Aged and 474 in Old (Figure 1E and Table S5). Again, there was limited overlap of the circadian 
transcriptome across ages, with just 50 (3%) of the REGs shared across all three ages. We 
identified 1,186 REGs in Young hearts, 1,068 in Aged, and 785 in Old, with 170 genes shared 
across all three ages (Figure 1F and Table S6). Finally, in the adrenal gland, we identified 476 
REGs in Young, and only 178 in Aged and 216 in Old (Figure 1G). Our analyses demonstrated 
that the number of REGs declines in all tissues in an age-dependent manner, and that few 
genes are rhythmically expressed across age.  

With such large changes in the circadian output with age, we queried the aging effects 
on the expression patterns of the core clock genes representing the three interlocking loops of 
the circadian clock (Figure S3). The expression of Bmal1 was most robust with age being 
largely rhythmic across all tissues and ages. The one exception was that the core clock genes 
in the hypothalamus were either weakly rhythmic or not rhythmic across all ages, likely due to 
the differences in circadian timing across the cell types and nuclei in this brain region (Wen et 
al., 2020; Zhang et al., 2014). Recent studies had suggested a limited impact of age on the core 
clock genes (Sato et al., 2017; Solanas et al., 2017). However, our data revealed a notable 
decline in the rhythmicity of the repressor components of the clock. We found that Per1, Per2, 
Cry1, and Cry2 were dampened from Aged to Old across all peripheral tissues (Figure S3). The 
secondary loop genes, Nr1d1 and Nr1d2, also exhibit age-related loss of rhythmicity but only in 
the skeletal muscle and hypothalamus. Thus, there are common aging effects on the negative 
limb components of the core clock mechanism across tissues. This observation is consistent 
with the slowed rate of entrainment of the circadian system with age (Sellix et al., 2012). 

 

Temporal patterns of age-associated differential gene expression  
Our time course collection also provided the opportunity to explore temporal differences 

in age-related changes in gene expression beyond circadian rhythmicity. We binned the 48h 
data over 4 time domains or phases: the rest phase (light phase in the nocturnal mice), activity 
onset (rest-active transition), active phase (dark phase), and activity offset (active-rest 
transition). We used an ordinal analysis strategy to define time domain specific genes that 
changed in the same direction from Young to Aged to Old. This approach is similar to the linear 
gene expression changes noted by Shavlakadze and colleagues (Shavlakadze et al., 2019). To 
our surprise, we found that a large number of the differentially expressed genes (DEGs) were 
detected at unique time domains but this occurred in a tissue-specific manner. These outcomes 
provide unique time of day molecular maps of tissue aging with the potential to more precisely 
target therapeutic strategies. We describe in each of the sections below the unique clusters of 
DEGs for the distinct time domain.  
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Figure 2. Age-dependent circadian transcriptomic changes in the hypothalamus. (A) Shared IPA 
pathways enriched by the REGs that cycle in 2-3 age groups. (B) Age-specific circadian oscillatory IPA 
pathways. (C-E) Peak time maps of all oscillating genes from the hypothalamus of (C) Young,  (D) Aged 
and (E) Old mice. Each dot represents the peak time of a single significantly circadian gene. Underneath 
the peak time map is a histogram of top time of day specific gene expression pathways. (F-I) Heat map of 
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z-scored age-related differentially expressed genes (DEGs) and histograms of up- or down-regulated 
pathways from the specific gene sets from the active to rest transition period (F), the rest phase (G), the 
rest to active transition period (H), and the active period (I). (J) Heat map of z-scored age-related DEGs 
from all time domains and histograms of up- or down-regulated pathways from the specific gene sets. 
 

Loss of circadian metabolic and immune homeostasis in the aging hypothalamus  
The hypothalamus controls essential homeostatic and survival-related functions. It is a 

small yet highly heterogeneous tissue, with multiple cell types and functionally distinct nuclei, 
including the SCN. Through projections to other nuclei, the central SCN clock functions to 
coordinate various circadian rhythms such as endocrine release and sleep/wake behavior 
(Acosta-Rodríguez et al., 2021; Kramer et al., 2022). The RNA-seq sensitivity enabled the 
detection of cellular markers specific to cell types and nuclei, for example, Vip and Nms (SCN), 
Agrp, Npy and Pomc (arcuate nucleus), Hcrt (lateral hypothalamic area), Gfap (astrocytes), and 
Aif1 (microglia) (Chen et al., 2017). The high-quality data provide the first systems-level view of 
circadian transcripts across ages in the hypothalamus. Circadian rhythmicity analysis uncovered 
495 REGs in Young and Aged, but significantly less (196) in Old. Overall, there were fewer 
REGs in the hypothalamus than in the peripheral tissues at the same cutoff, which is due in part 
to its cellular heterogeneity (Wen et al., 2020). While some REGs were present in all three ages, 
most of them were specific to one age group. Most REGs in Young lost rhythmicity in Old, 
whereas several genes gained rhythmicity in Old.  

We used the Ingenuity Pathway Analysis (IPA) to analyze and integrate the functional 
pathways enriched for the REGs across ages. This analysis revealed conserved pathways 
across ages as well as age-specific pathways (Figure 2A-B and Table S7). For example, the 
NRF2 oxidative response is rhythmic across the lifespan, although the genes contributing to the 
pathway were different across ages. The HIF1, adipogenesis, and neuregulin signaling 
pathways lost REG enrichment from Young and Aged to Old (Figure 2A). Strikingly, many 
pathways were enriched only in one of the three ages, with the highest number of the age-
specific pathways occurring in Young (n=80), followed by Aged (n=37) and Old (n=27) (Figure 
2B). Interestingly, many of these REG pathways in Old emerge from unique gain-of-rhythm 
genes. In general, the REG pathways overrepresented in Young were involved in circadian 
regulation, energy homeostasis, proteostasis, and cell growth and development, whereas those 
in Old were related to stress and adaptive responses and basic central nervous system 
functions such as neurogenesis, axonogenesis, and synapse formation.  

We next analyzed the REGs based on their circadian time (CT) of peak expression for 
each age group (Figure 2C-E, top panels). Strikingly, we observed an age-specific daily 
distribution of the REGs. While the REGs in the Young hypothalamus had multiple peaks across 
the circadian cycle, only two peaks were prominent in Aged, with one activity offset and the 
other at activity onset. The top enriched functional pathways reflect the time of day-dependent 
hypothalamic functions (Figure 2C-E, bottom panels and Table S8). Notably, the REGs in the 
CRY1-PER2 complex had a Peak Time between 12-16h in Young and Aged lost their rhythms 
in Old, indicative of compromised active circadian repression and weakened transcriptional 
outputs. Among the genes that were not highly rhythmic in Young or Aged but gained robust 
rhythms in Old were vasoactive intestinal polypeptide (Vip) and neuromedin S (Nms). These two 
neuropeptides play key roles in photic entrainment, neuronal coupling, and SCN 
synchronization. Other examples include the corticotropin-releasing hormone (Crh) in the 
hypothalamus-pituitary-adrenocortical (HPA) axis and factors involved in neuropeptide signaling 
(e.g., Auts2, Drd2, Chrm3, and Adora2a), which became highly rhythmic in Old, likely as an 
adaptive response to homeostatic stress.  
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In addition to the REGs, we found a large number of DEGs in the hypothalamus that 
exhibited unique expression patterns across the 4 time domains of the day (Figure 2F-J and 
Table S9). There were 604 DEGs that were either up-regulated (514) or down-regulated (90) 
across ages at all time domains (Figure 2J). Pathway analysis revealed that the upregulated 
DEGs had an overrepresentation for the immune and inflammatory responses in Aged and Old 
tissues (e.g., Gfap, Aif1, Trem2, Adgre1, and Ptgs1), whereas active transcription-related genes 
were significantly downregulated. The shift from the metabolically active and proliferative state 
in Young to an inflammatory state in Old is consistent with findings from genomic studies in both 
mice (Hammond et al., 2019; Schaum et al., 2020) and in rats (Shavlakadze et al., 2019). The 
DEGs at activity offset were enriched in neurotransmitter synthesis and neuron differentiation 
and those at activity onset were in stress and immune responses. Also of note, during the rest 
phase, genes related to protein transport (e.g., Vps35, Vps39, Vps45) and autophagy (e.g., 
Atg3) were significantly upregulated with age (Figure 2G), whereas those involved in vesicular 
transport (e.g., Srebf1, Slc2a8, Tbc1d17) were upregulated during the active phase (Figure 2I). 
Taken together, our findings from both the REGs and the DEGs highlight the importance of 
considering the time of day when exploring age-related changes in gene expression and 
functions.  
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Figure 3. Age-associated changes in the lung circadian transcriptional output and time of day 
dependent interpretations of age-related changes in gene expression. (A) Shared IPA pathways 
enriched by the REGs that cycle in 2-3 age groups. (B) Age-specific circadian oscillatory IPA pathways. 
(C-E) Peak time maps of all oscillating genes from the lungs of Young (C), Aged (D) and Old mice (E). 
Each dot represents the peak time of a single significantly circadian gene. Underneath the peak time map 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.489594doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489594
http://creativecommons.org/licenses/by/4.0/


 
11 

is a histogram of top time of day specific gene expression pathways. (F-I) Heat map of z-scored age-
related differentially expressed genes (DEGs) and histograms of up- or down-regulated pathways from 
the specific gene sets from the active to rest transition period (F), the rest phase (G), the rest to active 
transition period (H), and the active period (I). (J) Heat map of z-scored age-related DEGs from all time 
domains and histograms of up- or down-regulated pathways from the specific gene sets. 
 
 
Inflammation is a major feature of aging in the lung 

Broadly speaking the lung functions primarily for gas exchange, however, the organ also 
serves as a first-line site for defense against pathogenic microbial species (Eddens and Kolls, 
2012; Skloot, 2017). Therefore, time of day responses to stressors are critical for maintaining 
healthy pulmonary and organismal function. The lung REGs were enriched for several stress-
related pathways that were maintained across the lifespan, including the unfolded protein 
response and xenobiotic metabolism (Figure 3A and Table S10). However, immune-related 
pathways, such as CXCR4 signaling and the hypoxia pathway, HIF1a, lost rhythmicity in the Old 
(Figure 3B). For example, Tmem173/Sting1 and Unc93b1 were robustly rhythmic in the Young 
but lost rhythmicity with age. The REG pathways that gained rhythmicity in Old were enriched 
for amino acid metabolism and amino acid hormone synthesis (Figure 3B). 

The peak time distribution of the REGs in the lung showed similarities across ages. 
However, there were significant age-specific changes in the temporal distribution of the REG 
functions (Figure 3C-E and Table S11). For example, in the early rest phase (Peak Time 0-8h), 
the REGs in the Young contribute to the immune response and antigen processing pathways 
but these pathways were lost in the Aged and Old lungs. This would implicate the diminished 
ability of the lungs to best defend against the immune challenges with age. In the Old, the 
pathways over-represented in the active part of the day (Peak Time 20-24h) include response to 
corticosterone and redox state suggesting a more reactive set of REG functions related to 
stress responses.  

The lung exhibited large differences in the magnitude of the DEGs across the 4 time 
domains. Specifically, activity onset had the largest number of DEGs (1,557) while the rest 
phase showed the smallest number (100) (Figure 3F-I and Table S12). Oxidative metabolic 
pathways were up-regulated in the activity onset as well as the rest phase while immune-related 
DEGs were up-regulated in the active phase and activity offset. The up-regulation of immune 
response DEGs in the active phase suggests compensation for the loss of immune REGs in the 
Young. Overall, this reinforces a decrease in the anticipatory nature of the pulmonary response 
to pathogens, resulting in a time of day vulnerability to pulmonary disease. Thus, the aging-
associated loss of circadian functions likely potentiates the inflammatory response in the lung, 
potentially contributing to loss of organismal resilience.  
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Figure 4. Age-associated changes in the kidney circadian transcriptional output and time of day 
dependent interpretations of age-related changes in gene expression. (A) Shared IPA pathways 
enriched by the REGs that cycle in 2-3 age groups. (B) Age-specific circadian oscillatory IPA pathways. 
(C-E) Peak time maps of all oscillating genes from the kidneys of Young (C), Aged (D) and Old mice (E). 
Each dot represents the peak time of a single significantly circadian gene. Underneath the peak time map 
is a histogram of top time of day specific gene expression pathways. (F-I) Heat map of z-scored age-
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related differentially expressed genes (DEGs) and histograms of up- or down-regulated pathways from 
the specific gene sets from the active to rest transition period (F), the rest phase (G), the rest to active 
transition period (H), and the active period (I). (J) Heat map of z-scored age-related DEGs from all time 
domains and histograms of up- or down-regulated pathways from the specific gene sets. 
 
 
Aging blunted the oscillatory expression patterns of ion transporters in the kidney  

The kidney is critical for several aspects of systemic homeostasis (Seifter, 2019; 
Verschuren et al., 2020). One of its primary functions is to maintain electrolyte balance through 
ion transport. Relative to the other tissues, the kidney had the most REGs at Young (2,183) and 
Aged (1,356) but REG numbers decreased to 550 in Old. Functional cluster analysis of the 
REGs revealed that many pathways were maintained across age including the unfolded protein 
response and fibroblast growth factor (FGF) signaling (Figure 4A and Table S13). However, the 
aldosterone signaling pathway was enriched in the Young and Aged but lost in the Old (Figure 
4A). Notably, the two key REGs unique to kidney function, Scnn1a (a subunit of the sodium 
channel) and Atp1a1 (a subunit of the Na+/K+ -ATPases) were highly rhythmic in the Young but 
attenuated in the Old. The REG pathways were representative of the hallmarks of aging, 
including AMPK signaling and ubiquitination, lost oscillations in Old (Figure 4A). Of the 
pathways enriched solely in Aged, eNOS signaling likely reflects daily maintenance and 
homeostasis of the epithelium as well as renal hemodynamics (Nishimura et al., 2021) (Figure 
4B). Finally, NAD+ salvage pathways and acute immune responses were unique to Old, possibly 
as an adaptive mechanism to maintain homeostasis.  

The overall peak time distribution of the REGs in the kidney did not change dramatically 
with age. However, pathway analysis highlighted age-specific changes in the temporal 
distribution of the REG functions (Figures 4C-E  and Table S14). For instance, in the Young and 
Aged kidneys, genes related to pH homeostasis were oscillating with a Peak Time between 8-
12h, but not in Old. While ion transport processes remained rhythmic in the Old, they peaked at 
different times compared to Young and Aged. Another notable example was proteostasis-
related pathways that were enriched across the circadian cycle in Young and Aged but limited to 
the late active phase in Old. While pH homeostasis and proteostasis related genes were 
rhythmic in the Young and Aged kidney, the daily timing becomes out of phase with age. These 
age-dependent changes in temporal alignment between key physiological processes may 
exacerbate aging kidney phenotypes.  

There were profound age-related changes in the DEGs, with 2,438 genes differentially 
regulated with age at all times, in addition to the DEGs that were specific to different time 
domains (Figure 4F-J and Table S15). We observed downregulation of mitochondrial genes and 
an increase in stress fiber assembly at activity onset. Moreover, the upregulated genes at 
activity onset were enriched for primary focal segmental glomerulosclerosis, highlighting kidney-
specific changes in gene expression with age (Figure 4H). As in the lung and hypothalamus, 
there was a significant upregulation of immune-related pathways with age at all time domains, 
accompanied by a decrease in proteolysis and lipid metabolism (Figure 4J). Additionally, the 
decreased proteostasis REGs in Old were paralleled by the decreases in the DEGs (Figure 4F-
J; bottom panels). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.489594doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489594
http://creativecommons.org/licenses/by/4.0/


 
14 

 
Figure 5. Age-associated changes in the muscle circadian transcriptional output and time of day 
dependent interpretations of age-related changes in gene expression. A) Shared IPA pathways 
enriched by the REGs that cycle in 2-3 age groups. (B) Age-specific circadian oscillatory IPA pathways. 
(C-E) Peak time maps of all oscillating genes from the skeletal muscle of Young (C), Aged (D) and Old 
mice (E). Each dot represents the peak time of a single significantly circadian gene. Underneath the peak 
time map is a histogram of top time of day specific gene expression pathways. (F-I) Heat map of z-scored 
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age-related differentially expressed genes (DEGs) and histograms of up- or down-regulated pathways 
from the specific gene sets from the active to rest transition period (F), the rest phase (G), the rest to 
active transition period (H), and the active period (I). (J) Heat map of z-scored age-related DEGs from all 
time domains and histograms of up- or down-regulated pathways from the specific gene sets. 
 
 
Skeletal muscle circadian transcriptome changes with age highlight autophagy and 
myogenic programs.  

Skeletal muscle is critical for health through its role in regulating movement and 
metabolism and it is emerging as a source of circulating factors such as myokines (Cartee et al., 
2016; Wolfe, 2006). In the context of aging, epidemiological studies have shown strong 
correlations between loss of muscle strength and increased morbidity and mortality (REF?). As 
with other tissues, there was a significant decline in the number of REGs with age. Across the 
REGs there was a preservation of functional groups including insulin receptor and HIF1 
signaling, but pathways such as AMPK, PI3K/AKT and unfolded protein response lost 
rhythmicity with age (Figure 5A and Table S16). The functional categories that gained 
rhythmicity with age include dilated cardiomyopathy and IL-1 signaling (Figure 5B). 

The distribution of the peak times for the REGs in muscle was similar to that in the 
hypothalamus. In the Young the REGs were distributed across the day, but in the Aged the 
REGs were largely bimodal with clusters at activity onset and offset (Figure 5C-E  and Table 
S17). Of note, the REGs that contribute to autophagy peaked at activity offset in Young and 
Tfeb, considered a key upstream regulator of autophagy (Napolitano and Ballabio, 2016; 
Settembre et al., 2011), is one of the REGs in that temporal cluster. In the Aged, Tfeb is no 
longer circadian and the autophagy cluster is centered toward the middle of the rest phase 
(Figure 5D). Recent studies have implicated changes in the timing of autophagy as a contributor 
to aging in flies and mice (Juste et al., 2021; Ulgherait et al., 2021). The REGs in the Old 
muscle were largely unimodal, peaking at activity offset. This cluster includes myofibril assembly 
and VEGF pathway suggesting enrichment of muscle tissue maintenance functions in the Old 
(Figure 5E).  

Analysis of the muscle DEGs revealed significant differences across the 4 different time 
domains. The largest cluster of DEGs was found in the active phase (833 DEGs) with only 47 
DEGs in the rest phase and 136 DEGs were found in all time domains (Figure 5F-J and Table 
S18). In the active phase, the down-regulated DEGs contributing to RNA processing, 
transcription, and genome maintenance were overrepresented, whereas autophagy and 
mitophagy pathways were up-regulated DEGs with age. The increase in autophagy DEGs may 
compensate for the loss of rhythmic control of autophagy with age. Among the DEG pathways 
that were common across all time domains was the up-regulated NF-kB signaling, which is 
consistent with inflammation being a common issue that all tissues are responding to with age 
(Figure 5J). The other up-regulated cluster across all time domains was related to skeletal 
muscle contraction and sarcoplasmic reticulum (SR) calcium transport. The age-related change 
in the myogenic program is consistent with an increased, albeit noisy, expression of the 
myogenic regulatory factor Myf6 seen with age.  
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Figure 6. Age-associated changes in the heart circadian transcriptional output and time of day 
dependent interpretations of age-related changes in gene expression. A) Shared IPA pathways 
enriched by the REGs that cycle in 2-3 age groups. (B) Age-specific circadian oscillatory IPA pathways. 
(C-E) Peak time maps of all oscillating genes from the heart of Young (C), Aged (D) and Old mice (E). 
Each dot represents the peak time of a single significantly circadian gene. Underneath the peak time map 
is a histogram of top time of day specific gene expression pathways. (F-I) Heat map of z-scored age-

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.489594doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489594
http://creativecommons.org/licenses/by/4.0/


 
17 

related differentially expressed genes (DEGs) and histograms of up- or down-regulated pathways from 
the specific gene sets from the active to rest transition period (F), the rest phase (G), the rest to active 
transition period (H), and the active period (I). (J) Heat map of z-scored age-related DEGs from all time 
domains and histograms of up- or down-regulated pathways from the specific gene sets. 
 
 
Limited impact of age on circadian and steady-state mRNA expression in mouse hearts 

The heart is required for maintenance of gas and nutrient delivery as well as cellular 
waste removal through the circulation (Pittman, 2013; Rana et al., 2020). The heart is unique 
among all the tissues in that the core clock components exhibit very little change with age and 
the REG pathways were largely conserved across age. These include many pathways linked to 
the hallmarks of aging such as protein homeostasis and senescence (Figure 6A and Table 
S19). There were some pathways enriched only in the Young and Aged, including some 
essential processes like p53 and iNOS signaling that were no longer enriched in the Old. In 
contrast to the other tissues, the heart does not have new REG pathways unique to the Old. 
(Figure 6B).  

The peak time distribution of the REGs showed little change, consistent with very little 
apparent cardiac-specific circadian disruption. Across the three ages, the REGs were evenly 
distributed throughout the 24h day (Figure 6C-E and Table S20) similar to the kidney and lung 
tissues. In addition to maintaining this daily distribution of genes, pathways related to circulatory 
maintenance (e.g., angiogenesis and circulatory system development) were consistently 
peaking at the activity offset across all ages. Despite this pathway conservation with age, there 
were age-related changes in the heart REGs at the activity onset, where the Young and Aged 
hearts were enriched for metabolic processes, while the Old were enriched for stress 
responses. 

While aging had a limited impact on the REGs in the heart, it had the highest number of 
unique DEGs at activity offset (891; Figure 6F). During this transition period, we observed age-
related decreases in ribosome biogenesis, RNA processing, and translation processes, 
suggesting reduced proteostasis in the Old. Relevant to cardiac function, calcium signaling 
pathways were up-regulated at activity offset with age. In contrast, DEGs enriched for 
mitochondria and fatty acid oxidation were decreased at all time domains, supporting the 
concept of age-related decrements in metabolic capacity in the Aged and Old (Barton et al., 
2016). Additionally, cytokine-related genes were upregulated with age across all time domains 
in the heart (Figure 6F-J and Table S21). 
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Figure 7. Age-related changes in variably expressed genes across tissues and summary of age-
related changes in circadian gene expression. (A) Tissue-specific table of age-related changes in 
variable gene expression. (B) Hypothalamic variably expressed genes. “Change in Variability” means 
“change in variability (measured by absolute deviance) per unit change in age group (Young -> Aged or 
Aged -> Old)”. Change in Variability above 0 indicates genes that are more variably expressed with age, 
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notated by the red arrow. (C) Lung variable gene dispersion plot (D) Kidney variable gene dispersion plot 
(E) Skeletal muscle variable gene dispersion plot (F) Heart variable dispersion plot (G) Venn diagram of 
overlapping variable genes across tissues (H) Top biological processes enriched by overlapping variable 
genes in the muscle, kidney, and lung and (I) Summary figure highlighting the age-related changes in 
circadian clock output (number of REGs) and a conceptual model demonstrating the age-related loss of 
predictive homeostatic control, likely contributing to frailty phenotypes. 

 

Increased daily transcriptional variability is conserved across tissues 

Most recently, studies have identified consistent age-associated increases in the 
variability of gene expression (Bahar et al., 2006; Enge et al., 2017). We queried the non-
circadian genes and found that there was an increase in the variability of gene expression with 
aging in all tissues except the heart. For example, the hypothalamus and lung had 2,516 and 
2,452 genes with high variation, respectively. Surprisingly, we found that even common 
housekeeping genes, including Gapdh and Rplp0, were significantly more variable with age 
across tissues (Table S22). Comparing the variable genes across tissues identified that 3 
peripheral tissues, lung, kidney and skeletal muscle, shared 212 genes suggesting common age 
associated changes in transcriptional control (Figure 7G). Functional cluster analysis of those 
212 variable genes identified protein transport and ubiquitination, chromatin organization, and 
immune system processes (Figure 7H and Table S22). The increased variability in gene 
expression is consistent with the concept that the physiology underlying frailty with age occurs 
through increased dysregulation (Fried et al., 2021).  

 
CircaAge: Database of Age-Dependent Changes in Circadian and Non-Circadian Gene 
Expression Patterns 

Genome-wide age-dependent changes in gene expression, circadian or not, are difficult 
to visualize. To disseminate this data, we developed a web-application database, “CircaAge” 
(https://circaage.shinyapps.io/circaage/). This publicly accessible resource allows the user to 
query any gene(s) of their interest and visualize transcript expression patterns across 2 
circadian days and 3 age groups in 1 central and 5 peripheral tissues. This database also 
provides model fitness parameters and significance levels of circadian rhythmicity. Users may 
specify (1) single or batch entry of genes of interest, (2) 1-3 ages of interest, and (3) 1-6 tissue 
types of interest. Data can be conveniently exported as *.csv files with statistical outputs 
including peak time, amplitude, basal expression (i.e., MESOR), phase, R2, and p-values (Ding 
et al., 2021).  

 
DISCUSSION 
  

Aging is characterized by declines in physiological functions and a reduced capacity to 
maintain homeostasis (Kennedy et al., 2014; López-Otín et al., 2013; Pomatto and Davies, 
2017). Aging is also characterized by declines in circadian functions, such as sleep/wake 
cycles, (Fonseca Costa and Ripperger, 2015; Hood and Amir, 2017; Zhao et al., 2019). The 
circadian clock within each cell directs a daily transcription program that temporally segregates 
important cell functions to support homeostasis and resilience. This clock function underlies 
what is known as predictive homeostasis as the changes within the cell and system occur prior 
to, and not in reaction to, known changes in the environment linked with the light/dark and rest/ 
activity cycles (Dibner and Schibler, 2015; Kim et al., 2019; Moore-Ede, 1986). Previous studies 
of circadian transcriptomes with age have been limited to the liver and stem cells and they were 
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done in only two age groups (Sato et al., 2017; Solanas et al., 2017). Our goal was to obtain a 
systems-level understanding of the aging circadian transcriptome through analysis of 6 tissues 
and across 3 ages. In the present work, we identified significant changes in the circadian 
transcriptomes (i.e. REGs) with age and across all tissues. While there is conservation of some 
functional pathways, we found that key age-related pathways either lost rhythmicity or showed 
significant changes in their timing or phase of expression. Our observations identify age-
associated changes in circadian gene expression as well as temporal shifts in gene expression. 
We propose that the age-associated changes in circadian clock output leads to reduced 
predictive homeostasis and an increased reliance on reactive pathways in response to 
stressors. This loss of predictive homeostasis pathways is part of a new concept in aging that 
will contribute to decreased resilience and frailty (Figure 7I). We suggest that circadian clock 
output be considered as a new hallmark of aging and that the circadian clock and its 
transcriptional program may serve as a new therapeutic target for improving tissue and systemic 
health across the lifespan. 

 
Age-related changes in gene expression have been providing significant insights into the 

understanding of the etiology of aging (Aging Atlas Consortium, 2021; Schaum et al., 2020; 
Shavlakadze et al., 2019; Tacutu et al., 2018; Zahn et al., 2007). Interestingly, clock genes were 
among the most differentially expressed across tissues with age (Schaum et al., 2020). We 
leveraged our time course data to ask whether there are clusters of aging genes and pathways 
that are unique to specific phases of the day. The discovery that there are tissue-specific and 
time-domain aging clusters is novel and includes many aging hallmark pathways. One example 
is that genes related to autophagy were upregulated with age in the rest phase in the 
hypothalamus but in the active phase in skeletal muscle. The increase in autophagy-related 
DEGs occurred as the circadian regulation of autophagy-related genes was lost, consistent with 
emerging evidence highlighting the importance of the circadian control of autophagy in healthy 
aging (Ulgherait et al., 2021). By considering the time of day, the DEGs provide a new, more 
precise insight into the complexity of aging.  

The age-dependent circadian decline can result from internal and external factors. A 
better understanding of the role of the circadian clock in aging physiology can offer new 
strategies for interventions. As environmental factors such as light, food intake, and physical 
activity are known to influence the circadian system, lifestyles that conform to circadian rhythms 
may represent an attractive non-pharmacologic regimen to slow down aging and improve 
healthspan. For example, time-restricted feeding regimen extends healthspan at least in part by 
improving the circadian transcriptome (Chaix et al., 2019; Lundell et al., 2020). It should be 
noted that our data demonstrated a rapid decline from Aged to Old. Thus, the middle age period 
may represent a window of opportunity for early intervention that considers circadian concepts 
in healthy lifestyle choices. Mechanistically, enhanced circadian function improves cell and 
systemic homeostasis which in turn can delay and mitigate damage accumulation, frailty 
phenotypes, increase resilience, and extend healthspan. 

In summary, this aging circadian Resource provides a rich dataset highlighting the 
impact of both age and time of day on the transcriptome in multiple tissues. We suggest that the 
age-related changes in clock output are linked to a loss of resilience. This dataset will help 
foster collaborations across multiple disciplines. We recognize the potential for sex differences 
in the circadian transcriptome, especially given known sex differences in aging (Austad and 
Fischer, 2016; Lemaître et al., 2020) warranting additional work in female mice. Future work to 
determine if the age-related changes in circadian clock output and function can be reversed by 
known pro-longevity interventions should be explored.` 
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STAR METHODS 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS  
 

Animal Care and Use 
 

6 month, 18 month, and 27 month old C57BL/6Nia male mice (n=24/age) were used to 
assess circadian robustness and molecular clock transcriptional output. All procedures were 
approved by the University of Florida Institutional Animal Care and use Committee, in 
accordance with AAALAC guidelines. Mice were ordered from the National Institute on Aging 
(NIA) colony 2 months prior to collections. Following a two week quarantine, animals were 
allowed a two week acclimation period to ensure entrainment to the 12h:12h light/dark cycle 
(lights on: 6am). Prior to tissue collection, animals were released into constant darkness in light-
tight circadian cabinets (Actimetrics, Wilmette, IL, USA). To assess the circadian transcriptome 
in each age, collections occurred every 4h for 48h, starting at CT18. Mice were euthanized by 
cervical dislocation under dim red light. 2 animals for each age were collected at each time 
point.  

 

RNA Isolation and Library Preparation  
RNA was isolated from the hypothalamus, kidney, lung, gastrocnemius, adrenal glands, 

and heart using a modified TRIzol extraction procedure as previously described (Hodge et al., 
2019; Terry et al., 2018). Briefly, frozen tissues were lightly ground in a mortar and pestle 
constantly submerged in liquid nitrogen. Frozen tissue between 10 and 100 mg was placed into 
RNase-free tubes containing TRIzol and RNase-free stainless-steel beads ranging in diameter 
from 0.9 to 2.0mm (NextAdvance, Troy, NY, USA). Tissues were homogenized using a bullet 
blender at 4ºC. Chloroform was used to separate the phases, and the RNA-containing aqueous 
phase was subjected to a modified column purification kit using RNeasy Mini RNA extraction kit 
for all tissues except the hypothalamus, prepared with RNesay Micro RNA extraction kit 
(Qiagen, Germantown, MD, USA). RNA was DNase treated, and purified RNA was checked for 
integrity using an Agilent Bioanalyzer, all samples had an RNA integrity number above 8.0. 
Poly-A selected RNAseq libraries were prepared using Illumina mRNA Prep kit (Illumina, San 
Diego, CA, USA). Libraries were pooled to equal molarity and sequenced on an Illumina 
NovaSeq (2x100bp) to achieve a minimum of 40M reads per sample. FastQ files were 
downloaded to the University of Florida HiPerGator computing cluster. Raw FastQ files, counts, 
and normalized counts per million data were uploaded to GEO: GSE201207. 
 
QUANTIFICATION AND STATISTICAL ANALYSIS  

Bioinformatics and data preprocessing for RNA-Sequencing data 
Reads from the RNA-Sequencing data were aligned to the Mus musculus genome 

assembly GRCm38 (mm10) using the HISAT2 software. Duplicated aligned reads were marked 
and removed using the Picardtools software. The gene expression count data were extracted 
using the HTseq software. The raw count data were normalized to cpm (counts per million 
reads), followed by log2 transformation (i.e., log2(cpm+1) where 1 is the pseudo count to avoid 
log2(0)). For each tissue, we filtered out genes with mean log2(cpm+1) < 1. These non-
expressed genes were likely to be false positives, and thus removing them could help reduce 
the multiple testing burden in the later statistical analysis. All data preprocessing was performed 
using R software. 
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Circadian rhythmicity analysis 
To identify genes showing circadian rhythmicity patterns for each age group within each 

tissue type, we deployed the cosinor model implemented in the diffCircadian software. To be 
specific, the cosinor model assumes the following relationship between the expression level and  
 

𝑦! = 𝐴 × 𝑠𝑖𝑛 (
2𝜋
24
(𝑡! + 𝜙)/ +𝑀	 

 

 
Where 𝑖 (1 ≤ 𝑖 ≤ 𝑛) is the sample index; 𝑛 is number of samples in each age group within each 
tissue type; 𝑦! is the log2 transformed cpm value for sample 𝑖; 𝑡! is the circadian time for sample 
𝑖; 𝐴, 𝜙, and 𝑀 denote the amplitude, phase, and MESOR (Midline Estimating Statistic of 
Rhythm) of the sinusoidal curve; the period was fixed at 24-hour. The goodness of fit of the 
cosinor model was accessed via the coefficient of determination (R2), and the p-value was 
determined by the finite-sample-corrected likelihood ratio test [cite]. Raw p-value<0.01 was 
used as the statistical significance cutoff to declare rhythmically expressed genes (REGs). To 
further compare the phase concordance between age groups, the Watson's Two-Sample Test 
of Homogeneity was adopted. This comparison was performed for each pair of age groups, and 
for each tissue, respectively. 
 

Differential expression analysis associated with aging 
We first created 4 time domain of day groups: including (i) Active Phase: CT18,22,42,46; 

(ii) Activity Offset: CT22,26,46,50; (iii) Rest Phase: CT30,34,54,58; and (iv) Activity Onset: 
CT34,38,58,62. To detect genes showing increasing/decreasing expression values with respect 
to the ordinal age groups (Young to Aged to Old), we employed negative binomial models 
implemented in R software edgeR package, which is specifically designed for RNA-Sequencing 
count data. In this model, the expression value of a gene was the outcome variable, the ordinal 
age groups were coded as the continuous predictor (0: Young group; 1: Aged group; 2: Old 
group). Multiple testing was corrected by the Benjamini-Hochberg method, in which the raw p-
values were converted to q-values (FDR-adjusted p-values), where FDR stands for the false 
discovery rate. This analysis was performed for each time of day group within each tissue, 
respectively. Q-value<0.05 was used as the statistical significance cutoff to declare differentially 
expressed genes (DEGs). 
 

Variability analysis associated with aging 
To identify genes showing increasing/decreasing variability in expression values with respect to 
the ordinal age groups (Young to Aged to Old), we used DiffVar function in the missMethyl 
package (Phipson and Oshlack, 2014). The variability for each sample of a gene in one age 
group was calculated using absolute deviations. A linear model with empirical Bayes shrinkage 
was then fitted, where the variability was the outcome variable, the ordinal age groups were 
coded as the continuous predictor (0: Young group; 1: Aged group; 2: Old group). P-value<0.01 
was used as the statistical significance to declare variably expressed genes. 
 

Pathway analysis 
To examine the function annotation of the putative REGs (raw p-value < 0.01), DEGs (q-

value < 0.05), and variably expressed genes (raw p-value < 0.01), pathway enrichment 
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analyses were performed using Ingenuity Pathway Analysis software (REGs), and both 
g:Profiler (Raudvere et al., 2019) and DAVIDv6.9 (Huang et al., 2009) for the DEGs.  

To further compare and integrate the REGs’ pathway information (i.e., p-values) across 
all three age groups, an adaptively weighted Fisher’s method was adopted, which is a meta-
analysis to examine whether a pathway is enriched in at least one age group. Unlike the regular 
Fisher’s method that assigns equal weight for all three age groups, the adaptively weighted 
method searches for the optimal binary adaptive weight (1 for enriched and 0 for not enriched) 
for each age group (Young/Aged/Old) given a pathway. These binary adaptive weights can 
capture the similarities across the three age groups. For instance, an adaptive weight of (1,1,1) 
indicates a pathway is enriched in all three age groups; and an adaptive weight of (1,0,0) 
indicates a pathway is enriched only in the young group. A meta-analyzed p-value was also 
reported, followed by multiple comparison correction using the Benjamini-Hochberg method. 
This analysis was performed for each tissue type, respectively.  
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Supplemental Information Title and legends 
 
Supplemental Table 1: Circadian F-test output data. One tab for each tissue, all genes passing 
filter criteria are included. Amp – circadian amplitude; phase time of gene peak plus 6h; 
peakTime circadian time at which the gene has highest expression; basal mean expression 
level across all 12 time points ; R2 – R2 goodness of fit value for cosine curve ; p value 
significance of goodness of. fit ; qvalue multiple comparison adjusted p value for significance of 
fit. Rhythmically expressed genes were those with a raw p-value <0.01. 
 
Supplemental Table 2: Age-specific and shared REGs across ages in the hypothalamus. Genes 
with a raw p-value <0.01 were considered rhythmic for a given age and genes with a raw p-
value >0.10 were considered non-rhythmic (red shading). 
 
Supplemental Table 3: Age-specific and shared REGs across ages in the lung. Genes with a 
raw p-value <0.01 were considered rhythmic for a given age and genes with a raw p-value 
>0.10 were considered non-rhythmic (red shading). 
 
Supplemental Table 4: Age-specific and shared REGs across ages in the kidney. Genes with a 
raw p-value <0.01 were considered rhythmic for a given age and genes with a raw p-value 
>0.10 were considered non-rhythmic (red shading). 
 
Supplemental Table 5: Age-specific and shared REGs across ages in the skeletal muscle. 
Genes with a raw p-value <0.01 were considered rhythmic for a given age and genes with a raw 
p-value >0.10 were considered non-rhythmic (red shading). 
 
Supplemental Table 6: Age-specific and shared REGs across ages in the heart. Genes with a 
raw p-value <0.01 were considered rhythmic for a given age and genes with a raw p-value 
>0.10 were considered non-rhythmic (red shading). 
 
Supplemental Table 7: AW-Fisher analysis of significantly enriched pathways across ages from 
the rhythmically expressed genes in the hypothalamus. A value of 1 denotes significant 
enrichment for an age and 0 denotes no significant enrichment. Full pathway data from each 
age is also included as individual tabs. 
 
Supplemental Table 8: Gene lists and accompanying gene ontology data for the REGs within a 
4h window of the day from the hypothalamus. One tab for each 4h window from each age. 
Correspond with Panels C-E from Figure 2. 
 
Supplemental Table 9: DEGs from the hypothalamus at each time domain with ordinal slope, p-
value, and q-value. Accompanying biological processes are also included on each tab for each 
gene list. 
 
Supplemental Table 10: AW-Fisher analysis of significantly enriched pathways across ages 
from the rhythmically expressed genes in the lung. A value of 1 denotes significant enrichment 
for an age and 0 denotes no significant enrichment. Full pathway data from each age is also 
included as individual tabs. 
 
Supplemental Table 11: Gene lists and accompanying gene ontology data for the REGs within a 
4h window of the day from the lung. One tab for each 4h window from each age. Correspond 
with Panels C-E from Figure 3. 
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Supplemental Table 12: DEGs from the lung at each time domain with ordinal slope, p-value, 
and q-value. Accompanying biological processes are also included on each tab for each gene 
list.  
 
Supplemental Table 13: AW-Fisher analysis of significantly enriched pathways across ages 
from the rhythmically expressed genes in the kidney. A value of 1 denotes significant 
enrichment for an age and 0 denotes no significant enrichment. Full pathway data from each 
age is also included as individual tabs. 
 
Supplemental Table 14: Gene lists and accompanying gene ontology data for the REGs within a 
4h window of the day from the kidney. One tab for each 4h window from each age. Correspond 
with Panels C-E from Figure 4. 
 
Supplemental Table 15: DEGs from the kidney at each time domain with ordinal slope, p-value, 
and q-value. Accompanying biological processes are also included on each tab for each gene 
list.  
 
Supplemental Table 16: AW-Fisher analysis of significantly enriched pathways across ages 
from the rhythmically expressed genes in the skeletal muscle. A value of 1 denotes significant 
enrichment for an age and 0 denotes no significant enrichment. Full pathway data from each 
age is also included as individual tabs. 
 
Supplemental Table 17: Gene lists and accompanying gene ontology data for the REGs within a 
4h window of the day from the skeletal muscle. One tab for each 4h window from each age. 
Correspond with Panels C-E from Figure 5. 
 
Supplemental Table 18: DEGs from the skeletal at each time domain with ordinal slope, p-value, 
and q-value. Accompanying biological processes are also included on each tab for each gene 
list.  
Supplemental Table 19: AW-Fisher analysis of significantly enriched pathways across ages 
from the rhythmically expressed genes in the heart. A value of 1 denotes significant enrichment 
for an age and 0 denotes no significant enrichment. Full pathway data from each age is also 
included as individual tabs. 
 
Supplemental Table 20: Gene lists and accompanying gene ontology data for the REGs within a 
4h window of the day from the heart. One tab for each 4h window from each age. Correspond 
with Panels C-E from Figure 6. 
 
Supplemental Table 21: DEGs from the heart at each time domain with ordinal slope, p-value, 
and q-value. Accompanying biological processes are also included on each tab for each gene 
list.  
 
Supplemental Table 22: Lists of Variably Expressed Genes in each tissue with age. Change in 
variability and accompanying raw p or multiple comparison adjusted q values. Accompanying 
biological process output for each gene list is presented as well. 
 
FIGURES 
 
Supplemental figure 1: Age-related changes in circadian transcriptome and non-circadian gene 
expression in the adrenal gland.  
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Supplemental figure 2: Age-specific REGs. Heatmaps demonstrating REGs unique to each age 
within a tissue. 
 
Supplemental figure 3: Core clock gene expression. Circadian F-test p values were negative log 
transformed and presented for each core clock gene at each age and for each tissue. A 
horizontal line is present for each gene at Y=2, our chosen cut off for significant circadian 
rhythmicity.  
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