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Abstract

Many bioimage analysis projects produce quantitative descriptors of regions of interest in 

images. Associating these descriptors with visual characteristics of the objects they describe 

is a key step in understanding the data at hand. However, as many bioimage data and their 

analysis workflows are moving to the cloud, addressing interactive data exploration in remote

environments has become a pressing issue. To address it, we developed the Image Data 

Explorer (IDE) as a web application that integrates interactive linked visualization of images 

and derived data points with exploratory data analysis methods, annotation, classification and

feature selection functionalities. The IDE is written in R using the shiny framework. It can be 

easily deployed on a remote server or on a local computer. The IDE is available at 

https://git.embl.de/heriche/image-data-explorer and a cloud deployment is accessible at 

https://shiny-portal.embl.de/shinyapps/app/01_image-data-explorer.

Introduction

A typical bioimage informatics workflow for cellular phenotyping [1] involves segmentation 

(the identification of objects of interest in images, e.g. cells or nuclei) and feature extraction 

(the computation of measurements for each object) often followed by the application of a 

classifier to annotate the objects into biologically relevant classes. The use of a classifier 

requires the availability of already annotated objects to form the training set out of which the 

classifier algorithm will build a model. However, the generation of such a training set is often

an iterative process that requires prior understanding of several aspects of the data. Such 

understanding is usually gained through the use of exploratory data analysis techniques such 

as plotting, dimensionality reduction and clustering. In addition, exploratory techniques are 

also useful for quality control (e.g. outliers identification) and curation of the data (e.g. 

identification of mis-annotated data points). Many image analysis software are available to 

perform segmentation and feature extraction with some also allowing annotation and 

classification [2]. Exploratory analysis of image-derived data is however generally left out of 

such software. Combinations of plugins for the popular image analysis software ImageJ [3] 

can be used for exploratory analysis. For example, the BAR plugin [4] contains routines for 

coloring regions of interests according to measurements. More extensive data exploration 
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tools were developed in the context of high content screening. Phaedra [5] and CellProfiler 

Analyst [6] are desktop-based applications that address exploratory needs by drawing 

interactive plots allowing visualization of images associated with data points. In addition, 

CellProfiler Analyst offers dimensionality reduction and classification functionalities while 

Phaedra can delegate machine learning functionalities to external scripts and workflow 

management systems.

Similarly, the Image Data Explorer (IDE) integrates linked visualization of images and data 

points with additional exploratory methods such as dimensionality reduction and clustering as

well as classification and feature selection. Its light requirements on data input allows 

flexibility in data provenance. Another distinguishing feature is the possibility of deploying it

as an online service as well as a desktop application.

Design and implementation

The Image Data Explorer is written in the R programming language [7] using the shiny 

framework [8]. This choice was motivated by two considerations. First, R gives access to a 

wide range of powerful statistical and machine learning methods with which the IDE 

functionalities could be extended should the need arise. Second, the shiny framework allows 

building web applications in R which, compared to desktop-bound applications, facilitates 

deployment and accessibility in a remote environment while still allowing easy installation 

for local use. The IDE is written using a modular architecture to facilitate addition of new 

functionalities.

The application requires two types of input: a set of images and a character-delimited text file

of tabular data derived from the images. When the IDE runs on a user’s computer (or a 

server), the images can be on any file system the user has access to from that computer, the 

only requirement is that the images must be under one common top-level directory (as 

opposed for example to being distributed across multiple file systems). Alternatively, the 

images can be put in an S3-compatible object store for remote access. The IDE can in 

principle read all image formats supported by the Bio-Formats library [9] but has only been 

extensively tested using multi-page TIFF files. The IDE can currently display images of at 

most 3 dimensions with the third dimension typically representing either depth (z coordinate) 

or time or channel. Images of higher dimensions are supported but in this case, the IDE 

merges the channels and the user has to decide which of  depth or time should be displayed.  
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In the tabular data, rows represent either images or regions of interest (ROIs) in images and 

columns represent features and other associated data such as annotations of class 

membership. For the application to link data points to the corresponding images, the table 

should include at least one column with the path to image files relative to the image root 

directory or bucket of an S3-compatible object storage. ROIs are identified by the coordinates

of an anchor point (e.g. the ROI centre) therefore there should also be a column for each of 

the relevant coordinates.

The user interface is a web page composed of different sections corresponding to the different

functionalities accessible from a list on the left hand side of the screen. The entry point is the 

input section where the user can upload a tabular data file and configure the application to 

locate the images (e.g. by locating the image root directory on the server or giving object 

store connection details) and provide information on the table content (e.g. specify which 

column contains the relative path to the image files or which columns contain coordinates of 

ROIs anchor points). The input configuration parameters can be saved to a file which can be 

uploaded to the application to restore the configuration in a subsequent session.

The explore section (figure 1) is where the interactive visualization takes place. This section 

is divided into three areas: a plot viewer, an image viewer and a data table. These areas are 

linked in three way interactions such that selecting an element in any area highlights the 

corresponding data point in the others. The data table can be replaced by a second image 

viewer when two images need to be visualized for a given data point (for example, the 

original image and the corresponding segmentation mask). The plot viewer can be switched 

between a scatter plot, a histogram, a bar plot and a multi-well plate representation. The 

interactive plots are implemented using the ggplot2 [10] and plotly [11] libraries.

The image viewer is a modified version of the display function from the EBImage library 

[12].

The annotate section allows users to define labels and either create a new data table column 

or select an existing one as annotation-containing column. Selected data points can then be 

batch annotated with one of the available labels using a button in the explore section.

The dimensionality reduction and clustering sections allow application of various methods 

useful for finding patterns in the data. Methods currently implemented are principal 

component analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP, 
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[13] for dimensionality reduction (including supervised metric learning with UMAP) and k-

means [14] and HDBSCAN [15] for clustering. The list is easily extensible to other methods. 

Dimensionality reduction methods add two new coordinate columns to the data table that are 

then used for plotting. Similarly, clustering methods add a column with cluster membership.

The classification and feature selection section implements gradient boosting classification 

via the XGBoost library [16]. It outputs various summary statistics on the model performance

as well as a plot of feature importance which can be used to inform feature selection. A 

column with class predictions from the model can also be added to the data table. A button 

allows users to download the data table with all modifications made to it.

The statistics section gives access to one-way ANOVA and post hoc tests. The IDE assumes 

independence of the samples but otherwise tries to validate the assumptions underlying 

ANOVA. For sample sizes less than 30, the normality assumption is tested using the Shapiro-

Wilk test and if the data is deemed not normally distributed, ANOVA is performed using the 

non-parametric Kruskal-Wallis test and post hoc tests using pairwise Wilcoxon rank sum 

tests. The homogeneity of variance is tested using Bartlett’s test and when unequal variances 

are detected, the IDE performs Welch’s ANOVA. Post hoc tests are then carried out with the 

Games-Howell test.

Results

Mitotic chromosome condensation and nucleolus formation are two processes thought to be 

driven by phase separation [17, 18]. Proteins involved in these two processes could be 

candidate regulators of phase separation. To explore this idea, we sought to analyse nucleoli 

from images of gene knockdowns known to affect chromosome condensation. To this end, 

we processed publicly available images from a published RNAi screen for chromosome 

condensation [19] with CellProfiler using a Galaxy [20] workflow to characterize nucleoli 

(workflow available on the WorkflowHub at https://workflowhub.eu/workflows/41). In brief,

chromosome condensation hits known to localize to the nucleolus were selected as well as 

NPM1, a nucleolar protein whose knockdown is known to disrupt nucleolar structure [21], 

and corresponding images were accessed from the Image Data Resource [22] 

(https://idr.openmicroscopy.org/webclient/?show=screen-102), nuclei were segmented out of 
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the DNA channel at time point 170 and nucleoli segmented as “holes” in each nucleus. 

Features were extracted for both nuclei and nucleoli and nucleoli features averaged for each 

nucleus. This resulted in a data table in which each row represents a segmented nucleus with 

summary descriptors of its nucleoli. We use the IDE to explore whether any gene knockdown

resulted in a nucleolar phenotype. 

We start by generating a scatterplot of nucleus size vs nucleoli number. This reveals that 

larger nuclei tend to have more nucleoli. Selecting outlying points allows for visual 

inspection of the corresponding nuclei in the original image as well as in the segmentation 

mask (figure 2) and reveals that although nuclei have generally been adequately segmented, 

very large nuclei correspond to segmentation artefacts. Selecting the siRNA column as group 

variable and switching to a box plot representation of nucleoli count (figure 3A) shows that 

control cells typically have 1-3 nucleoli with a median of 2 nucleoli while some knockdowns 

seem to increase the proportion of cells with 0 or 1 nucleolus. Among these are the two 

siRNAs targeting NPM1. Nuclei with a high number of nucleoli are consistent with the larger

number of nucleoli observed after mitosis [23]. We next asked if other features could prove 

useful to detect nuclei with nucleolar phenotypes. To explore this, we switch to the annotate 

section and create an annotation column with two labels: control and phenotype, then back in 

the explore section, we select NPM1 nuclei from the siRNA with the strongest effect on 

nucleoli number and annotate them as phenotype. To find negative controls from 

neighbouring wells, we make use of the table search functions to filter the rows by plate, well

and/or siRNA ID and annotate negative control nuclei as control. We then switch to the 

classification and feature selection section to train a XGboost classifier on all features to 

produce a plot of relative feature importance (figure 3B) where the values over all features 

sum to 1. The feature importance reported by the IDE is the gain which is a measure of the 

improvement in accuracy contributed by a feature [16]. When comparing two features, the 

one with the highest value is more important for the classifier performance. However, before 

checking feature importance, we ensure that the classes can be distinguished. For this, the 

IDE reports several statistics on the classifier performance. In this case, the resulting 

classifier has an accuracy of 74% which can be compared to the no information rate which is 

the fraction of the most abundant class and corresponds to the best performance that can be 

obtained by a naive classifier always assigning the most common label to samples.  

Confidence in the accuracy being above the no information rate is given by the low 
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associated p-value of 8e-9. Here, the most significant feature corresponds to nucleolus size. A 

box plot of nucleolus size distribution by siRNA confirms this as negative controls and some 

siRNAs show a median nucleolus size around 40 pixels with some siRNAs, including those 

targeting NPM1, having a median around 20.

Our quick exploration with the IDE thus indicates that images from this data set contain 

relevant information and already identifies a few knockdowns that may warrant further 

analysis. However, it also suggests that derived features such as the fraction of nuclei with 

certain properties (e.g. nucleolar size above or below some threshold) could be useful to more

robustly identify nucleolar phenotypes.

Discussion

The IDE couples exploratory data analysis methods with interactive visualization of images 

and associated data. The light input requirements make it ideally suited for quick exploration 

of image data from different sources because many image analysis tools can produce 

character-delimited tabular data. In its current implementation, it is particularly suitable for 

small to medium-sized data sets (up to hundreds of thousands of data points). The modular 

architecture makes it easy to add new tools and its implementation as a web application 

makes it easily deployable in cloud environments for remote access.

Availability and future directions

The IDE is licensed under the GNU General Public License v3.0. The code is managed with a

GitLab instance at https://git.embl.de  /heriche/image-data-explorer   from which it can be 

downloaded and where documentation can be found in the wiki section. A cloud-based 

deployment is available here: https://shiny-portal.embl.de/shinyapps/app/01_image-data-

explorer. Future work will include support for images in OME-NGFF, the next-generation 

file format for bioimaging [24] to improve interoperability and facilitate more flexible data 

access, for example by allowing direct access to images from repositories such as the IDR or 

the BioImage Archive [25]. With a foreseen increase in the use of the Galaxy platform for 

image analysis, we plan to deploy the IDE as a Galaxy interactive environment to give it 

direct access to data produced by Galaxy workflows.
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Supporting information

S1 contains the IDs of images retrieved from the IDR.

S2 contains the table with data on nuclei and nucleoli used as input to the IDE to produce 

figures 2 and 3.

S3 contains an example of saved input parameters including connection to the image object 

storage. Alternatively, the associated images can be accessed by the IDE by manually 

selecting as image root directory the S3 bucket named screens at end point s3.embl.de.
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Figure legends

Figure 1: The explore workspace. The top left panel is used for plotting, the top right panel is 

an interactive image viewer and the bottom section shows the interactive data table with a tab

to access a second image viewer. The red dot in the image viewer indicate the position of the 

segmented object corresponding to the selected data point shown in black in the scatter plot 

and highlighted in the data table.

Figure 2: Use of a second image viewer to simultaneously visualize the original image and 

the segmentation mask corresponding to a selected data point.

Figure 3: A - Box plot of nucleolar number per siRNA as produced by the IDE. Each colour 

corresponds to data from one siRNA. B - Output of the XGBoost classifier. Left panel: Plot 

of relative feature importance, colours are used to indicate clusters of features with similar 

importance. Right panel: Information to assess performance of the trained classifier.
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