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Abstract:  Cognitive decline with age is associated with brain atrophy and reduced brain activations, 18 

but the underlying neurophysiological mechanisms are unclear, especially in deeper brain structures 19 

primarily affected by healthy aging or neurodegenerative processes. Here, we characterize time-20 

resolved, resting-state magnetoencephalography activity of the hippocampus and subcortical brain 21 

regions in a large cohort of healthy young and older volunteers from the Cam-CAN open repository. 22 

The data show age-related changes in both rhythmic and arrhythmic signal strength and temporal 23 

variability in multiple deeper brain regions, including the hippocampus, striatum, and thalamus. We 24 

observe a slowing of neural activity in deeper brain regions, which echoes previous reports of cortical 25 

slowing. We also report reduced occipito-parietal alpha peak associated with increased theta-band 26 

activity and signal variability in the hippocampus, an effect that may reflect compensatory processes 27 

as theta activity and variability were more strongly expressed when cognitive performances are 28 

preserved. Overall, this study advances the understanding of the biological nature of inter-individual 29 

variability in aging. The data provide new insight of how hippocampus and subcortical 30 

neurophysiological activity evolve with biological age, and highlight frequency-specific effects 31 

associated with cognitive decline vs. cognitive maintenance. 32 
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Introduction  1 

The course of healthy aging is associated with preserved daily life autonomy, although the 2 

efficiency of cognitive functions such as memory and executive control diminishes (Hinault & 3 

Lemaire, 2020). Age-related cognitive decline is heterogeneous across individuals as brain functions 4 

are affected differentially across the population from the same age group (Reuter-Lorenz & Park, 5 

2014). Cognitive decline is associated with brain atrophy and reduced task-related cortical 6 

activations relative to younger individuals (Spreng & Turner, 2019). However, the modifications of 7 

deep-brain neurophysiological activity with age are seldom investigated, despite the role of 8 

hippocampus and subcortical structures in cognitive functioning (Bourgeois et al., 2020), and their 9 

early involvement in neurodegenerative pathologies (Gulyaeva, 2019).  10 

Task-free, spontaneous fluctuations of brain activity at rest have long been considered as 11 

unwanted background noise, yet recent works highlight the potential of neurophysiological signal 12 

dynamics as useful indicators of individual cognitive performance (Uddin, 2020; Waschke et al., 13 

2021; Wiesman et al., 2021) and individual differentiation (da Silva Castanheira et al., 2021). The 14 

increased temporal variability of fMRI cortical and subcortical brain signals with biological age is 15 

negatively associated with cognitive performance (Guitart-Masip et al., 2016; Scarapicchia et al., 16 

2019). Some of the rich dynamical features of neurophysiological activity accessible with 17 

magnetoencephalography and electroencephalography (M/EEG; Buzsáki, 2019, Baillet, 2017) 18 

change with biological age (Cheng et al., 2015; Courtney & Hinault, 2021). Indeed, the aging brain 19 

expresses increased slower activity below 4 Hz (delta frequency band), and increased temporal 20 

variability, both negatively associated with cognitive performance (Kumral et al., 2020; Jauny et al., 21 

2022). Recent tools have emphasized the distinction between periodic (oscillatory) and aperiodic 22 

(background) signal components in electrophysiology (Donoghue et al., 2020; Voytek et al., 2015). 23 

The magnitude of aperiodic activity increases with aging (Merkin et al., 2021), a possible expression 24 

of increased neural noise associated with cognitive decline (Thuwal et al., 2021). However, most of 25 

these age-related electrophysiological observations so far are from neocortical activity.  26 
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Here, we sought to identify specific deep-brain neurophysiological signal features associated 1 

with the heterogeneity of cognitive aging.  A growing body of work demonstrates MEG effects 2 

stemming from deeper structures (Coffey et al., 2016; Gorina-Careta et al., 2021; Müller et al., 2019; 3 

Samuelsson et al., 2021). We retrieved MEG data from younger and older individuals from the Cam-4 

CAN (Cambridge Centre for Ageing and Neuroscience) repository to investigate time-resolved 5 

resting state neurophysiological fluctuations in the hippocampus, striatum and thalamus. Because 6 

these structures are associated with age-related alterations of short-term and working memory 7 

functions (O’Shea et al., 2016; Valdés Hernández et al., 2020), we expected that they expressed 8 

slower, reduced or more variable neurophysiological activity in older adults. We  also hypothesized 9 

that preserved cognitive performances in healthy older adults, would also be associated with 10 

increased deep-brain activity.  11 

Results  12 

Behavioral differences between age groups: The younger and older adults’ groups had 13 

similar biological sex ratios and showed normal general cognitive performance (above the MMSE > 14 

27/30 cutoff; see Table 1).  15 

Variables Young adults Older adults F p 

N  47 47 - - 
Females/males  30/17 30/17 - - 
Age in years 26 (2.0) 73 (2.7) - - 
Years of Education 16 (2.8) 13 (4.5) 12.45 0.001 
Mini Mental State Evaluation (MMSE) 29.51 (0.9) 28.43 (1.2) 25.65 <0.001 
Visual short-term memory (accuracy) 0.49 (0.1) 0.42 (0.1) 21.19 <0.001 
Individual Alpha Frequency (IAF, in Hz) 10.10 (0.9) 9.21 (0.7) 24.73 <0.001 

Table 1. Demographic and cognitive characteristics [average (standard deviation)] of the study 16 
participants retrieved from the Cam-CAN dataset. 17 

Between-group differences in neurophysiological activity: IAF, recorded over parieto-18 

occipital sensors, was lower in older adults relative to younger adults (Table 1). We found steeper 19 

slopes of arrhythmic activity in older adults relative to younger adults, in all ROIs. That is, delta-band 20 

activity was larger, with reduced gamma-band activity, in older adults (Figure 1A-B), in line with the 21 

slowing of the dominant activity reported at the sensor/cortical level. A similar pattern was observed 22 

regarding the signal temporal variability (Figure 1C-D). Larger offsets were also observed in bilateral 23 
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striatum and hippocampus (Figure 2A-B). Importantly, in the right hippocampus only, theta-band 1 

activity and variability were stronger in older adults. Beta-band activity was also reduced in older 2 

adults, bilaterally in nucleus accumbens, and in the right putamen. Control analyses replicated 3 

previously reported effects of cortical increases of delta-band activity and reduced gamma-band 4 

activity at rest across cortical regions. Increased theta-band activity and variability, however, were 5 

not significant in cortical regions, suggesting that the changes observed in the hippocampus are 6 

specific to that structure. 7 

No correlation between neurophysiological activity measures was observed in young adults. 8 

In older adults, a lower occipito-parietal IAF was associated with stronger deep-brain delta-band 9 

activity (all p<0.009), and temporal variability in all ROIs (all p<0.005; Figure 2C-D). Importantly, a 10 

lower surface IAF was also associated with a stronger right hippocampus theta activity (r=-34, 11 

p=0.021).  12 

Associations of deep-brain neurophysiological activity with cognition in older adults: 13 

Stronger right hippocampus theta activity was associated with higher VSTM performance in older 14 

adults (r=0.49, p<0.001, respectively). VSTM performance was also positively associated with 15 

temporal variability in the theta band in the right hippocampus and left thalamus (r=0,46, p=0.001, 16 

and r=0,52, p<0.001, respectively). We also found a positive association between the slopes of 17 

arrhythmic activity in the right hippocampus and VSTM performances (r=0.62, p<0.001; Figure 2E).  18 
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Figure 1 – Bilaterally in all tested ROIs of older adults relative to younger adults: A) Delta-band activity was stronger; B) Gamma-band 

activity was reduced; C) Delta-band temporal variability was larger; D) Gamma-band temporal variability was smaller. The plots show the average 

regional activity between left and right homologous structure 
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Figure 2 – A) Parametrization of the group average power spectral density in young and older 

adults in the right hippocampus region, showing the aperiodic slope and offset across the frequency 

range. B) Steeper slopes (p<0.001) and larger offsets (p=0.007) of the aperiodic spectral component 

were observed in older adults relatively to young adults, from resting-state activity of the right 

hippocampus. C) Negative association between the individual occipito-parietal alpha peak 

frequency and deep-brain delta variability (averaged across regions) in older adults. D) Negative 

association between the individual alpha peak frequency and power of theta-band 

neurophysiological activity of the right hippocampus in older adults. E) Positive association between 

theta variability of neurophysiological activity in the right hippocampus and VSTM task performances 

of older adults. 
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Figure 3 – Summary of the reported frequency-specific and aperiodic effects found in older adults relative to young adults, across deep-

brain regions of interest. 
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Discussion 

We believe this study is first to report aging effects on human deep-brain neurophysiological 

activity and signal variability over time. We used recent methodological advances in source 

modelling of resting-state M/EEG signals (Samuelsson et al., 2021), and spectral parametrization 

of periodic and aperiodic brain neurophysiological activity (Donoghue et al., 2020). Overall, older 

adults showed stronger and more temporally-variable neurophysiological activity in the alpha and 

lower frequency bands (Figure 3). These effects were reversed in higher frequency bands. Most 

age-related changes reported in the present study are associated with cognitive decline; however, 

we also found that theta-band signal strength and temporal variability in the right hippocampus were 

positively associated with VSTM performance. Taken together, our data show that biological aging 

does impact subcortical and hippocampus neurophysiological activity, with differential 

consequences on cognitive performances. 

Our study replicates and extends previous findings of decreased IAF measured from scalp 

(Scally et al., 2018), and of cortical slowing across the typical frequency bands of electrophysiology 

with age (e.g., Courtney & Hinault, 2021). Our present results point at possible deeper brain origins 

of such overall slowing of brain activity, and are in line with fMRI findings of age-related subcortical 

changes (Daugherty et al., 2015). Our data show that with aging, subcortical signal variability is 

reduced in older adults for the fastest frequency bands. Symmetrically, temporal variability was more 

pronounced in the slower delta frequency band, in association with reduced IAF. These effects were 

associated with decreased cognitive performances.  

Our study disentangles between age-related effects on periodic vs. aperiodic deeper brain 

activity. Changes in aperiodic cortical signal power have been reported (Merkin et al., 2021; Thuwal 

et al., 2021; Voytek et al., 2015), and discussed as reflecting larger amounts of neural noise in brain 

communications with advancing age. Age-related brain noise is possibly related to alterations of the 

excitation/inhibition balance in neural circuits (Donoghue et al., 2020; Voytek & Knight, 2015), and 

would impact information processing and the efficiency of cognitive processes (Merkin et al., 2021). 
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Our data specifies how age affects the spectral slope and offset of aperiodic neurophysiological 

activity in the hippocampus and subcortical regions.  

The  hippocampus generates theta activity (e.g., Goutagny et al., 2009), in association with 

memory processes such as, encoding (Fell et al., 2011), short-term and working memory (Axmacher 

et al., 2010). Here, we found that both the spectral slope and theta-band temporal variability of 

hippocampus activity are positively associated with VSTM performance. In a similar fashion, we 

found that increased theta-band signal variability in the thalamus was also positively associated with 

VSTM performance.  

Our data show that preserved cognitive performance with advancing age is associated with 

both the strength and variability of hippocampus theta-band rhythmic activity. This aspect is in line 

with previous fMRI work that showed an association between preserved cognitive performance in 

older adults and higher hippocampal activity (e.g., Lister & Barnes, 2009). Our data show that 

preserved cognitive performance with advancing age is associated with both the strength and 

variability of hippocampus theta-band rhythmic activity. These theta-band changes were not 

observed in control cortical regions, suggesting that these changes (but not changes in other 

frequency bands) are hippocampal-specific. We anticipate that these results contribute to future 

investigations of the inter-individual variability in cognitive performances in aging (Cabeza et al., 

2018). We emphasize though that hyper-activity is not always of a compensatory nature (Hillary & 

Grafman, 2017) and may be indicative of subsequent cognitive decline. Future longitudinal studies 

will need to clarify these aspects.  

We also discuss some identified limitations to the present study. Courtney and Hinault (2021) 

and Finn (2021) recently discussed how resting-state activity is less directly associated with 

cognitive functioning than task-related activity. Moreover, the Cam-CAN cognitive tests did not 

specifically target executive functions that are associated with frequency-specific brain activity 

(Hinault et al., 2020, 2021). Finally, the investigation of age-related changes in deep-brain activity 
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would benefit from the specification of longitudinal trajectories of brain changes, which was not 

possible with the present dataset.  

Recent fMRI work has highlighted hippocampus and subcortical brain activity in higher-order 

cognitive functions (Bourgeois et al., 2020; Chiu & Egner, 2019). Our results reveal that aging effects 

on these regions are characterized by changes in both rhythmic and arrhythmic signal strength and 

temporal variability, with an overall slowing of deeper neural activity. Individual differences were also 

observed, with specific increased theta-band activity and variability in the hippocampus associated 

with preserved short-term memory performances. Relative to healthy aging, the deep-brain regions 

investigated here are further impaired in age-related pathologies (Gulyaeva, 2019), which we 

anticipate may be associated with further alterations of their neurophysiological activity.   

Methods 

Participants’ characteristics. The structural MRI and resting-state MEG data from the Cam-

CAN repository (Shafto et al., 2014; Taylor et al., 2017) were available from http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/). The retrieved sample consisted of forty-seven young adults (20-

30 years, 30 females) and forty-seven older adults (65-75 years, 30 females; Table 1). Details on 

the demographic and behavioral data are available online (https://camcan-archive.mrc-

cbu.cam.ac.uk/dataaccess/). All older adults scored within normal range at the Mini Mental State 

Evaluation (MMSE score > 27; Folstein et al., 1975). No participants reported a history of 

neurological or cognitive disorders, traumatic brain injury, or major psychiatric disorders. 

Behavioral tasks. Because deep-brain regions are essential to short-term memory and 

working memory performance (McNab & Klingberg, 2008), we investigated age-related changes in 

the visual short-term memory (VSTM) task. In this task, participants were briefly presented 1 to 4 

colored discs on a computer screen and asked to recall the color of the target disc at a cued location. 

Participants reported their delayed response on a color wheel using a touchscreen input (further 

detail concerning the task is available online; https://camcan-archive.mrc-

cbu.cam.ac.uk/dataaccess/). 
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Neuroimaging data. The MRI data consisted of T1-weighted image volumes (field of view: 

256×240×192 mm, 1×1×1 mm voxel size, repetition time: 2250 ms, echo time: 900 ms, flip angle: 

9°). MEG data consisted of approximately 9 minutes of eyes-closed resting-state recordings 

acquired with a 306-channel Elekta Neuromag Vectorview MEG system (102 magnetometers and 

204 planar gradiometers), with 1kHz sampling rate, and a 0.03-330 Hz online bandpass filter. 

Registration of MEG and MRI used digitized anatomical landmarks (i.e., fiducial points; nasion and 

left/right preauricular points, and additional scalp points). The electro-occulogram (EOG) and 

electrocardiogram (ECG) were recorded to capture eye movements and heartbeats, respectively.  

MEG data analysis. The retrieved data were already partly preprocessed using the temporal 

signal space separation approach (tSSS): 0.98 correlation, 10 s window; bad channel correction: 

ON; motion correction: OFF; 50Hz+harmonics (mains) notch. We performed further artifact 

detection and attenuation (on continuous data), filtering (0.3-100 Hz bandpass, also on continuous 

data), and source estimation using Brainstorm (Tadel et al., 2011), all with default parameters, 

unless noted below. Remaining physiological artifacts (e.g., eye blinks and saccades) were 

identified and removed with bespoke signal-space projections (Uusitalo & Ilmoniemi, 1997). For 

each participant, we identified defective sensors and individual alpha peak frequencies (IAF) using 

power-spectrum density (PSD) estimates (Welch’s method) from their entire recording. We defined 

IAF as the average frequency of the PSD spectral peaks in the alpha frequency range (8-13 Hz) 

observed over occipito-parietal gradiometers and magnetometers. To account for individual brain 

atrophy and inform MEG source imaging (Baillet, 2017), we used Freesurfer (Fischl, 2012) to 

produce segmentations of head tissues, including cortex and subcortical structures, and to compute 

the intracranial volume from each participant’s MRI.  

We modeled MEG brain source activity using elementary volume current dipoles (15,000 

elementary source locations across the entire brain without orientation constraint; Baillet et al., 

2001). To that end, we used the Desikan/Kiliany atlas (aparc+aseg segmentation; Desikan et al., 

2006) of Freesurfer’s individual cortical and subcortical parcellations. We then used the overlapping-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.489652doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489652
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

sphere approach to MEG forward head modelling (Baillet et al., 2001). We could not explicitly 

account for environmental and instrumental noise, as empty-room recordings were not available in 

Cam-CAN. We derived MEG imaging kernels for each individual using the dynamic Statistical 

Parametric Mapping approach (dSPM; Dale et al., 2000; Hauk et al., 2011) to estimate the source 

time series of each region of interest (ROI; left and right hippocampus, thalamus, nucleus 

accumbens, caudate, and putamen). To determine the specificity of deep-brain effects, we 

performed control analyses on a subset of cortical regions of the aparc atlas, which were previously 

reported as showing changes in neurophysiological activity associated with age-related short-term 

and working memory performance alterations (e.g., Hinault et al., 2020). 

We performed time-frequency decompositions of MEG source time series using the Hilbert 

transform in frequency bands of interest. The width of each frequency band was based on the 

surface IAF value of each participant (Toppi et al., 2018): delta (IAF-8/IAF-6), theta (IAF-6/IAF-2), 

alpha (IAF-2/IAF+2), beta (IAF+2/IAF+14), low-gamma (IAF+15/IAF+30), and high-gamma 

(IAF+31/IAF+90). We used the first principal component of the time series within each subcortical 

ROI as a summary statistic of distributed neurophysiological activity, which reduces cross-talk 

between regions (Sato et al., 2018). Following the Hilbert transform, signals were normalized for 

group comparisons through spectrum normalization. To determine whether the temporal variability 

of resting-state activity was affected by physiological aging, we considered the standard deviation 

of time series  (Coquelet et al., 2017) of deep-brain neurophysiological activity.  

We used specparam to parametrize the time-frequency signal of each ROI (Donoghue et al., 

2020) and measure the offset and slope model parameters of aperiodic spectral components 

(Merkin et al., 2021). Offset reflects a shift of signal power across frequencies, and slope accounts 

for the steepness of the decrease of broadband background signal power with frequency. 

We used non-parametric inferential statistics based on permutation tests, false discovery rate 

(FDR) corrected (N=10,000; Maris & Oostenveld, 2007) and correlation analyses, also FDR-

corrected. To limit the number of comparisons, only regions and frequencies showing significant 
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between-group differences in permutation tests (p<0.05, FDR correction over signal, time and 

frequency dimensions) were further considered for possible association with cognitive performance. 
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