
Resource allocation accounts for the large variability of

rate-yield phenotypes across bacterial strains

Valentina Baldazzi,1,2,∗ Delphine Ropers,3 Jean-Luc Gouzé,1

Tomas Gedeon,4 Hidde de Jong3,∗

1 Université Côte d'Azur, Inria, INRAE, CNRS, UPMC Univ Paris 06,

06902 Sophia Antipolis, France
2 INRAE, Institut Sophia-Agrobiotech, 06903 Sophia Antipolis, France

3 Université Grenoble Alpes, Inria, 38000 Grenoble, France
4 Montana State University, Bozeman, MT 59717, USA

∗ Corresponding authors: valentina.baldazzi@inria.fr, hidde.de-jong@inria.fr

January 23, 2023

Abstract

Di�erent strains of a microorganism growing in the same environment display a wide variety
of growth rates and growth yields. We developed a coarse-grained model to test the hy-
pothesis that di�erent resource allocation strategies, corresponding to di�erent compositions
of the proteome, can account for the observed rate-yield variability. The model predictions
were veri�ed by means of a database of hundreds of published rate-yield and uptake-secretion
phenotypes of Escherichia coli strains grown in standard laboratory conditions. We found a
very good quantitative agreement between the range of predicted and observed growth rates,
growth yields, and glucose uptake and acetate secretion rates. These results support the
hypothesis that resource allocation is a major explanatory factor of the observed variability
of growth rates and growth yields across di�erent bacterial strains. The model also predicts
resource allocation strategies allowing an E. coli strain to grow, at the same time, rapidly
and e�ciently. A number of salient features of these strategies agree with the experimental
data, but in order to exactly reproduce the observed strategies, di�erences in enzyme activity
need to be taken into account as well. Our model allows a fundamental understanding of
quantitative bounds on rate and yield in E. coli and other microorganisms. It may also be
useful for the rapid screening of strains in metabolic engineering and synthetic biology.

1 Introduction

Microbial growth consists of the conversion of nutrients from the environment into biomass. This
�ux of material is coupled with a �ux of energy from the substrate to small energy cofactors
(ATP, NADH, NADPH, ...) driving biomass synthesis forward and releasing energy in the process
(Schaechter et al., 2006). The growth of microorganisms has been pro�tably analyzed from the
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perspective of resource allocation, that is, the assignment of limiting cellular resources to the
di�erent biochemical processes underlying growth (Scott et al., 2010, 2014; Molenaar et al., 2009;
Giordano et al., 2016; Weiÿe et al., 2015; Reimers et al., 2017; Bosdriesz et al., 2015; Towbin
et al., 2017; Maitra and Dill, 2015; Dourado and Lercher, 2020; Metzl-Raz et al., 2017). It is
often considered that proteins, the main component of biomass, are also the bottleneck resource
for growth. Proteins function as enzymes in carbon and energy metabolism and they constitute
the molecular machines responsible for the synthesis of macromolecules, in particular proteins
themselves. The composition of the proteome in a given growth condition can therefore be
interpreted as the resource allocation strategy adopted by the cells to exploit available nutrients.

Two macroscopic criteria for characterizing microbial growth are growth rate and growth
yield. The former refers to the rate of conversion of substrate into biomass, and the latter to the
e�ciency of the process, that is, the fraction of substrate taken up by the cells that is converted
into biomass. Several empirical relations between proteome composition on the one hand, and
growth rate and growth yield on the other, have been established. A linear relation between
growth rate and the ribosomal protein fraction of the proteome holds over a large range of growth
rates and for a variety of microbial species (Scott et al., 2010; Neidhardt and Magasanik, 1960;
Forchhammer and Lindahl, 1971; Bremer and Dennis, 1996). Variants of this so-called growth
law have been found for cases of reduced translation capacities (Scott et al., 2010) or di�erent
temperatures (Herendeen et al., 1979; Mairet et al., 2021). While the ribosomal protein fraction
increases with the growth rate, the proteome fraction allocated to energy metabolism decreases
(Basan et al., 2015a; Schmidt et al., 2016). Moreover, within this decreasing fraction, Escherichia
coli and other microorganisms move resources from respiration to fermentation pathways (Basan
et al., 2015a). Simple mathematical models have been proposed to account for the above relations
in terms of the requirements of self-replication of the proteome and the relative protein costs and
ATP yields of respiration and fermentation (Scott et al., 2010; Molenaar et al., 2009; Giordano
et al., 2016; Weiÿe et al., 2015; Bosdriesz et al., 2015; Dourado and Lercher, 2020; Mairet et al.,
2021; Basan et al., 2015a; Mori et al., 2019).

Most of these relations have been studied in experiments in which the same strain exhibits
a range of growth rates in di�erent environments, with di�erent carbon sources. Even for a
�xed environment, however, di�erent strains of the same species may grow at very di�erent rates
and yields. For example, in a comparative study of seven E. coli strains, growth rates ranging
from 0.61 to 0.97 h−1, and (carbon) growth yields between 0.52 and 0.66, were observed during
aerobic growth on glucose (Monk et al., 2016). Since the genes encoding enzymes in central
carbon and energy metabolism are largely shared across the strains (Monk et al., 2016), the
yield di�erences are not due to di�erent metabolic capacities but rather to di�erent regulatory
strategies, that is, di�erent usages of the metabolic pathways of the cell. As another example,
evolution experiments with E. coli have given rise to evolved strains that grow more than 40%
faster, sometimes with higher growth yields, than the ancestor strain in the same environment
(LaCroix et al., 2015). Analysis of the underlying mutations reveals that the higher rates and
yields of the evolved strains are not due to new metabolic capacities, but rather to modi�ed
regulatory strategies (LaCroix et al., 2015; Utrilla et al., 2016).

Can the large variability of rate-yield phenotypes observed across di�erent strains of the same
species be explained by di�erent resource allocation strategies, that is, di�erent compositions of
the proteome? In order to answer this question, we developed a coarse-grained resource allocation
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model that couples the �uxes of carbon and energy underlying microbial growth. The model
was calibrated by means of existing data in the literature, without any parameter �tting, and its
predictions were compared with a database of several hundreds of pairs of rates and yields of E.
coli strains reported in the literature. The database includes wild-type strains as well as mutant
strains obtained through directed mutagenesis or adaptive laboratory evolution (ALE).

We found that, in di�erent growth conditions, the predicted variability of rate-yield phe-
notypes corresponds very well with the observed range of phenotypes. This also holds for the
variability of substrate uptake and acetate secretion rates. The model predicts that strains grow-
ing at a high rate and a high yield require resource allocation strategies that increase metabolite
concentrations in order to allow for the more e�cient utilization of proteomic resources, in par-
ticular enzymes in metabolism and ribosomes in protein synthesis. This prediction is con�rmed
by experimental data for a high-rate, high-yield strain E. coli. A resource allocation strategy
matching the observed strategy could only be found, however, when taking into account enzyme
activities in addition to enzyme concentrations.

These results are interesting for both fundamental research and biotechnological applications.
They show that the application of coarse-grained models can be used to predict multivariate
phenotypes, without making any assumptions on optimality criteria, and reveal unexpected
relations con�rmed by the experimental data. The model is capable of predicting quantitative
bounds on growth rates and yields within a speci�c environment, which can be exploited for
rapidly screening performance limits of strains developed in synthetic biology and metabolic
engineering.

2 Results

2.1 Coarse-grained model with coupled carbon and energy �uxes

Coarse-grained resource allocation models describe microbial growth by means of a limited num-
ber of macroreactions converting nutrients from the environment into proteins and other macro-
molecules. Several such models have been proposed, usually focusing on either carbon or energy
�uxes (Scott et al., 2010; Molenaar et al., 2009; Giordano et al., 2016; Weiÿe et al., 2015; Maitra
and Dill, 2015; Bosdriesz et al., 2015; Towbin et al., 2017; Mairet et al., 2021). Few models have
taken into account both, that is, the use of substrate as a carbon source for macromolecules
and as a source of free energy to fuel the synthesis of macromolecules. This coupling of car-
bon and energy �uxes is essential, however, for understanding the relation between growth rate
and growth yield. Among the notable exceptions, we cite the model of Basan et al. (Basan
et al., 2015a; Mori et al., 2019), which couples carbon and energy �uxes while abstracting from
the reaction kinetics, and the model of Zav°el et al. (2019), which does provide such a kinetic
view but ignores macromolecules other than proteins and focuses on photosynthetic growth (see
Appendix 1 for a discussion of existing coarse-grained resource allocation models).

Figure 1 presents a coarse-grained kinetic model that takes inspiration from and generalizes
this previous work. While the model is generic, it has been instantiated for aerobic growth of
E. coli in minimal medium with glucose or glycerol as the limiting carbon source. The model
variables are intensive quantities corresponding to cellular concentrations of proteins (p) and
other macromolecules (DNA, RNA, and lipids forming cell membranes) (u) as well as central
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Figure 1: Coarse-grained model of microbial growth with coupled carbon and energy �uxes.

Upper left �gure: schematic outline of the model, showing the biomass constituents and the macroreac-
tions, as well as the growth and degradation of biomass. Green boxes: system of di�erential equations
describing the carbon and energy balances, growth rate and growth yield, and resource allocation. The
kinetic expressions for the reaction rates can be found in Appendix 1. The growth rate and growth yield
are de�ned in terms of the �uxes of the macroreactions. Lower right �gure: biomass composition, in-
cluding the protein categories considered in resource allocation. The �uxes vr, vmu, vmc, vmer, vmef , vd
[Cmmol or mmol gDW−1 h−1], the variables p, r, mu, mc, mer, mef , c, u, a

∗ [Cmmol or mmol gDW−1],
the resource allocation parameters χu, χr, χc, χer, χef [dimensionless], the degradation rate constant
γ [h−1], the biomass density β [Cmmol gDW−1], the ATP yield and cost factors nmer, nmef , nr, nmu

[mmol Cmmol−1], and the correction factors for CO2 loss ρmef , ρru [dimensionless] are formally de�ned
in Appendix 1. The values of the parameters are derived in Appendix 2.
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carbon metabolites (c) and ATP (a∗). The central carbon metabolites notably comprise the
thirteen precursor metabolites from which the building blocks for macromolecules (amino acids,
nucleotides, ...) are produced (Schaechter et al., 2006). All concentrations have units Cmmol
gDW−1, except for ATP [mmol gDW−1]. Five macroreactions are responsible for carbohydrate
uptake and metabolism, ATP production by aerobic respiration and fermentation, and the syn-
thesis of proteins and other macromolecules. The rates of the reactions, denoted by vmc, vmer,
vmef , vr, and vmu [Cmmol gDW−1 h−1], respectively, are de�ned by kinetic expressions involving
protein, precursor metabolite, and ATP concentrations. Details of the rate equations and the
derivation of the model from basic assumptions on microbial growth can be found in Appendix 1.
Appendix 1 Table A1 summarizes the de�nition of variables, reaction rates, and parameters.

The carbon entering the cell is included in the di�erent biomass components or released in
the form of CO2 and acetate. CO2 is produced by respiration and macromolecular synthesis,
while acetate over�ow is due to aerobic fermentation (Basan et al., 2015a; Gottschalk, 1986).
The carbon balance also includes the turnover of macromolecules, which is responsible for a large
part of cellular maintenance costs (van Bodegom (2007) and Appendix 2 ).

The energy balance is expressed in terms of the production and consumption of ATP. While
energy metabolism also involves other energy cofactors (NADP, NADPH, . . .), the latter can
be converted into ATP during aerobic growth (Basan et al., 2015a; Gottschalk, 1986). We
call the ATP fraction a∗/(a∗ + a), where a∗ and a denote the ATP and ADP concentrations,
respectively, the energy charge of the cell, by analogy with the concept of adenylate energy
charge (Atkinson, 1968). The ATP yields of respiration and fermentation (nmer and nmef )
as well as the ATP costs of the synthesis of proteins and other macromolecules (nr and nmu)
are determined by the stoichiometry of the underlying metabolic pathways and the biomass
composition (Basan et al. (2015a); Kaleta et al. (2013) and Appendix 2 ). When total ATP
production and consumption in growing microbial cells are computed from nmer vmer+nmef vmef
and nr vr+nmu vmu, respectively, the former usually largely exceeds the latter (Feist et al., 2007;
Russell and Cook, 1995). This so-called uncoupling phenomenon is explicitly accounted for by
an energy dissipation term vd in the energy balance (Appendix 1 ).

Like in other resource allocation models, the proteome is subdivided into categories (Scott
et al., 2010; Basan et al., 2015a). We distinguish ribosomes and other translation-a�liated pro-
teins, enzymes in central carbon metabolism, enzymes in respiration and fermentation metabolism,
and a residual category of other proteins, with concentrations r, mc, mer, mef , and mu, respec-
tively. The latter category includes proteins involved in the synthesis of RNA and DNA as well as
in a variety of housekeeping functions. Each category of protein catalyzes a di�erent macroreac-
tion in Figure 1: ribosomes are responsible for protein synthesis, enzymes for carbon and energy
metabolism, and residual proteins for the synthesis of macromolecules other than proteins. Note
that the proteins in the residual category may thus catalyze a macroreaction, contrary to what
is assumed in other models in the literature (Appendix 1 ).

The protein synthesis capacity of the cell, given by the total protein synthesis rate vr, is
distributed over the protein categories using �ve fractional resource allocation parameters that
sum to 1: χu, χr, χc, χer, and χef . Fixing the resource allocation parameters determines the
model dynamics and therefore the growth phenotype (Dourado and Lercher, 2020; Zav°el et al.,
2019; de Groot et al., 2020). During balanced growth, when the system is at steady state, the
resource allocation parameters equal the corresponding protein fractions, e.g., χ∗

r = r∗/p∗, where
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the asterisk (∗) denotes the steady-state value (Appendix 1 and Erickson et al. (2017)).
Contrary to most models of microbial growth, the biomass includes other cellular compo-

nents (DNA, RNA, metabolites, . . .) in addition to proteins (Appendix 1 ). The growth rate µ
[h−1] directly follows from the biomass de�nition, under the assumption that the total biomass
concentration 1/β is constant (Appendix 1 and de Jong et al. (2017)). The growth rate captures
the speci�c accumulation of biomass corrected for degradation:

µ = β (vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu))− γ, (1)

where ρmef and ρru−1 denote the fractional loss of carbon by fermentation and macromolecular
synthesis, respectively. More precisely, ρmef and ρru, both greater than 1, express that CO2 is
a by-product of the synthesis of acetate and of proteins and other macromolecules, respectively,
adding to the total �ux of carbon through these macroreactions (Basan et al., 2015a; Gottschalk,
1986). In the growth rate de�nition of Eq. 1, the total macromolecular synthesis rate vr + vmu
is multiplied with ρru − 1, because only the associated CO2 �ux is lost to biomass production
(Appendix 1 ).

The growth yield is de�ned as the ratio of the net biomass synthesis rate (µ/β) and the
substrate uptake rate vmc:

Y =
1

β

µ

vmc
. (2)

Yields are dimensionless and vary between 0 and 1. They express the fraction of carbon taken up
by the cells that is included in the biomass, a de�nition often used in ecology and biotechnology
(Morin et al., 2016; Roller and Schmidt, 2015). The de�nitions of Eqs 1-2 provide a rigorous
statement of the carbon balance and thus enable the comparison of di�erent resource allocation
strategies.

The model in Figure 1 was calibrated using data from the literature for batch or continuous
growth of E. coli in minimal medium with glucose or glycerol. In brief, for the E. coli reference
strain BW25113, we collected for each growth medium the growth rate and metabolite uptake
and secretion rates (Peebo et al., 2015; van Rijsewijk et al., 2011; Gerosa et al., 2015), as well as
protein and metabolite concentrations (Schmidt et al., 2016; Gerosa et al., 2015). Using addi-
tional assumptions based on literature data (Bennett et al., 2009; Dourado et al., 2021), we �xed
a unique set of parameters for each condition (batch vs. continuous growth, glucose vs. glyc-
erol), without parameter �tting (Appendix 2 ). The resulting set of quantitative models provides
a concise but comprehensive representation of the growth of E. coli in di�erent environments.

2.2 Predicted rate-yield phenotypes for Escherichia coli

The reference strain used for calibrating the model has, for each of the conditions considered, a
speci�c resource allocation strategy de�ned by the values of the resource allocation parameters:
(χu, χr, χc, χer, χef ). We ask the question how the growth rate and growth yield change, during
balanced growth, when the resource allocation strategy is di�erent from the one adopted by the
reference strain. In other words, we consider the range of possible rate-yield phenotypes for
strains with the same metabolic capacities as the reference strain, but di�erent regulation of the
allocation of protein resources to the macroreactions of Figure 1. The same parameter values for
the kinetic constants are used as for the reference strain. This allows us to focus on di�erences
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in growth rate and growth yield that can be unambiguously attributed to di�erences in resource
allocation.

In order to predict the variability of rate-yield phenotypes, we uniformly sampled the space
of possible resource allocation strategies. Except for the parameter χu, expressing the fraction
of resources attributed to housekeeping and other proteins, the parameters de�ning a resource
allocation strategy were allowed to vary over the entire range from 0 to 1, subject to the constraint
that they sum to 1 (Figure 1). The allowed range of values for χu was limited to the observed
variation in the reference strain over a large variety of growth conditions (di�erent limiting
carbon sources, di�erent stresses, ...) (Schmidt et al. (2016) and Supplementary Figure S1).
For every resource allocation strategy, we numerically simulated the system until a steady state
was reached, corresponding to balanced growth of the culture (Methods). From the steady-state
values of the �uxes and concentrations, the growth rate and growth yield can then be computed
by means of Eqs 1-2 (Supplementary Figure S2).

Figure 2 shows the cloud of predicted rate-yield phenotypes for batch growth on glucose. A
�rst observation is that the possible combinations of rate and yield are bounded. The growth
rate does not exceed 1.1 h−1, and for all but the lowest growth rates, the growth yield is larger
than 0.3. The existence of an upper bound on the growth rate can be intuitively understood
from Eq. 1. The maximum growth rate is limited by the substrate uptake rate, which provides
the carbon included in the biomass. In turn, the uptake rate is bounded by the concentration
of enzymes responsible for substrate uptake and metabolism, a concentration that is ultimately
limited by the total biomass concentration. The existence of a lower bound on the biomass yield
is a direct consequence of the autocatalytic nature of microbial growth: the di�erent growth-
supporting functions are sustained by enzymes and ribosomes, which need to be continually
produced to counter the e�ect of growth dilution and degradation.

A second observation is that, for low growth rates, the maximum growth yield increases with
the rate, whereas it decreases for high growth rates, above 0.4 h−1. The initial maximum yield
increase can be attributed to the proportionally lower burden of the maintenance costs (Pirt,
1965). In particular, bearing in mind that a higher growth rate comes with a higher substrate
uptake rate (Eq. 1), the term γ/vmc appearing in the de�nition of the yield when substituting the
growth rate expression (Eq. 2), rapidly diminishes in importance when the growth rate increases
(Supplementary Figure 3A). The decrease of the maximum yield at higher growth rates re�ects
a trade-o� that has been much investigated in microbial physiology and ecology (Lipson, 2015;
Beardmore et al., 2011) and to which we return below.

Every point within the cloud of rate-yield phenotypes corresponds to a speci�c underlying
resource allocation strategy. The mapping from resource allocation strategies to rate-yield phe-
notypes is far from straightforward due to the feedback loops in the model, which entail strong
mutual dependencies between carbon and energy metabolism, protein synthesis, and growth.
A full mathematical analysis of the mapping is beyond the scope of this study, but useful in-
sights can be gained by visualizing the physiological consequences of a strategy in the form of a
pictogram showing (i) the biomass composition, (ii) the �ux map, and (iii) the energy charge.
The pictogram summarizes how the incoming carbon �ux is distributed over the biosynthesis,
respiration, and fermentation �uxes, and how the concentrations of proteins, metabolites, and
energy cofactors sustain these �uxes (Figure 2).

Due to model calibration, the �uxes, concentrations, and energy charge for the point cor-
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responding to the growth of the reference strain, labelled BW in Figure 2, agree with the ex-
perimental data. At steady state, the resource allocation parameters coincide with the protein
fractions (Erickson et al. (2017) and Appendix 1 ), so that the relative sizes of the protein concen-
trations in the pictogram correspond to the resource allocation strategy adopted by the cells. As
can be seen, the reference strain highly invests in ribosomal and other translation-oriented pro-
teins, which take up almost 50% of the proteome. The pictogram also shows that the reference
strain generates ATP by a combination of respiration and fermentation: both vmer and vmef are
non-zero, and so are the corresponding enzyme concentrations mer and mef . Although proteins
dominate the biomass, a non-negligible proportion of the latter consists of other macromolecules
(25%) and central metabolites (1%) (Appendix 2 ).

Figure 2: Predicted rate-yield phenotypes and underlying resource allocation strategies.

Predicted rate-yield phenotypes during balanced growth of E. coli on minimal medium with glucose (grey
dots). The resource allocation strategy and growth physiology underlying the rate-yield phenotypes are
shown for selected points, corresponding to the BW25113 reference strain (BW), predicted maximum
growth rate (µmax), and predicted maximum growth yield (Ymax). The pictograms show the biomass
composition, �ux distribution, and energy charge. Note that by calibration, the predicted and observed
resource allocation strategies for the reference strain are identical. We also indicate, for later reference,
the rate-yield phenotype of the NCM3722 strain (NCM).

How does the reference point compare with other notable points in the cloud of predicted
rate-yield phenotypes, in particular the points at which the growth rate and growth yield are
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maximal, denoted by µmax and Ymax? While the physiology of µmax is not radically di�erent from
that for the reference strain, it does have a number of distinctive features. The higher growth
rate comes with a higher glucose uptake rate and a higher protein synthesis rate. The total
protein concentration is lower though, due to increased growth dilution at the higher growth rate.
Investment in energy metabolism has shifted from fermentation to respiration, in order to allow
for more e�cient ATP production at a lower enzyme concentration. The energy charge is slightly
lower than in the reference strain. This is compensated for by a higher metabolite concentration,
however, which leads to a higher saturation of ribosomes and allows protein synthesis to increase
even at a lower ribosome concentration. In other words, bearing in mind the kinetic expression
for protein synthesis from Appendix 1,

vr(r, c, a
∗) = kr r

c

c+Kr

a∗

a∗ +Kar
, (3)

where kr is a catalytic constant corresponding to the maximum protein synthesis rate and
Kr,Kar half-saturation constants, vr can increase at µmax despite the decrease of r and a∗,
thanks to the increase of c.

The rate-yield phenotype corresponding to Ymax has a predicted physiology that is strikingly
di�erent from the reference strain. The high yield is obtained by a strong reduction of protein
synthesis and therefore lower concentrations of enzymes and ribosomes (Figure 2). Protein
synthesis is the principal ATP-consuming process in microbial growth, so its reduction diminishes
the need for ATP synthesis and decreases the associated loss of carbon (Figure 1). The net e�ect
is a decrease of the growth rate, but an increase of the growth yield (Eqs 1-2). The opposite
reasoning applies when moving from Ymax to µmax along the upper boundary in Figure 2: the
concentrations of enzymes and ribosomes increase at the cost of a higher loss of carbon, thus
giving rise to a lower (maximum) yield.

The strong reduction of the concentration of proteins and other macromolecules at Ymax

implies, by the assumption of constant biomass density (Appendix 1 ), that the metabolite con-
centration increases. This may correspond to the formation of glycogen, a glucose storage com-
pound, which occurs when excess glucose cannot be used for macromolecular synthesis due to
other limiting factors. Glycogen concentrations in wild-type E. coli cells are low, but there exist
mutants which accumulate high amounts of glycogen, on the order of 25-30% of biomass (Morin
et al., 2016). The biomass percentage of carbohydrates and lipids in other microorganisms, such
as microalgae, reaches even higher levels (Finkel et al., 2016; Reitan et al., 2021).

Some caution should be exercised in the biological interpretation of the points µmax and
Ymax though, as they are located on the upper boundary of the cloud of predicted rate-yield
phenotypes. They represent extreme phenotypes that may be counterselected in the environment
in which E. coli evolves or that may violate basic biophysical constraints not included in the
model. Nevertheless, the bounds do put a quantitative limit on the variability of rate-yield
phenotypes that can be confronted with the available experimental data.
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2.3 Comparison of predicted and observed rate-yield phenotypes for Es-

cherichia coli

Using the above approach, we predicted the variability of rate-yield phenotypes of E. coli during
batch growth in minimal medium with glucose or glycerol, and during continuous growth at
di�erent dilution rates in minimal medium with glucose. The resource allocation strategies
were varied in each condition with respect to the strategy observed for the BW25113 strain
used for model calibration (Figure 3A). In order to compare the predicted variability of rate-
yield phenotypes with experimental data, we compiled a database of measured rates and yields
reported in the literature (Supplementary Files 1 and 2), and plotted the measurements in the
phenotype spaces (Figure 3B-D). The database includes the reference wild-type strain, other E.
coli wild-type strains, strains with mutants in regulatory genes, and strains obtained from ALE
experiments. Apart from the rate and yield of the reference strain (van Rijsewijk et al., 2011),
none of the data points plotted in Figure 3 were used for calibration.

The variability of the measured rates and yields during batch growth on glucose corresponds
very well with the predicted variability: almost all data points fall inside the predicted cloud of
phenotypes and much of the cloud is covered by the data points (Figure 3B). Interestingly, the
highest growth rates on glucose attained in ALE experiments, just above 1 h−1 (LaCroix et al.,
2015; Monk et al., 2017), approach the highest predicted growth rates (1.1 h−1). The range of
high growth rates is enriched in data points, which may re�ect the bias that E. coli wild-type and
mutant strains grow relatively fast on glucose and glycerol, and that in most ALE experiments
the selection pressure is tilted towards growth rate.

The BW25113 strain has a low growth yield on glucose (equal to 0.50, van Rijsewijk et al.
(2011)). Many mutants of this strain with deletions of regulatory genes somewhat increase the
yield (van Rijsewijk et al., 2011), but still fall well below the maximally predicted yield. The
growth yield of some other wild-type strains is signi�cantly higher, for example the W strain
achieves a yield of 0.66 at a growth rate of 0.97 h−1 (Monk et al., 2016). The highest growth
yield is achieved by an evolved strain (0.81, Schuetz et al. (2012)), agreeing quite well with the
maximum predicted growth yield for that growth rate. The latter strain does not secrete any
acetate while growing on glucose (Schuetz et al., 2012), which contributes to the higher yield.

Similar observations can be made for growth of E. coli on glycerol, although in this case
less experimental data points are available. The model predicts that the highest growth rate on
glycerol is similar to the highest growth rate on glucose, which is con�rmed by experimental data
(Andersen and von Meyenburg, 1980). In addition to batch growth, we also considered continuous
growth in a chemostat. This required a recalibration of the model, since the environment is not
the same as for batch growth (Appendix 2 ). Figure 3D shows the predicted rate-yield phenotype
space for dilution rates around 0.2, 0.35, and 0.5 h−1, as well as the observed rates and yields.
Again, there is good correspondence between the predicted and observed variability of growth
yield. Most chemostat experiments reported in the literature have been carried out with the
BW25113 and MG1655 wild-type strains. This absence of mutants and evolved strains may lead
to an underestimation of the range of observed growth yields.

In the above comparisons of the model with the data, we made the assumption that the strains
considered have the same metabolic capacities as the reference strain. This assumption was
satis�ed by restricting the database to wild-type strains with essentially the same central carbon
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Figure 3: Predicted rate-yield phenotypes and comparison with experimental data. A.

Measured proteome fractions of the protein categories in the model, corresponding to resource allocation
strategies during balanced growth, for the BW25113 reference strain used for model calibration (Schmidt
et al. (2016) and Appendix 2 ). B. Predicted and observed combinations of growth rate and growth yield
for balanced batch growth of E. coli in minimal medium with glucose. The rate-yield phenotypes concern
the reference strain, other wild-type strains, mutant strains obtained by directed mutagenesis, and mutant
strains from ALE experiments. C. Idem for batch growth of E. coli in minimal medium with glycerol.
D. Idem for continuous growth in a chemostat in minimal medium with glucose at di�erent dilution
rates (0.2, 0.35, and 0.5 h−1). The predicted yields are shown for the indicated dilution rates ±10%.
All predictions were made using the model in Figure 1, calibrated for the di�erent growth conditions,
and varying the resource allocation parameters as described in the text (90,000-160,000 samples). The
measurements of rate and yield reported in the source literature have been converted to units h−1 (growth
rate) and a dimensionless unit corresponding to Cmmolbiomass Cmmol−1

substrate
(growth yield) (seeMethods

and Supplementary Files 1 and 2 for details).
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and energy metabolism (Monk et al., 2016), mutant strains with deletions of genes encoding
regulators instead of enzymes (van Rijsewijk et al., 2011), and short-term ALE mutants which
have not had the time to develop new metabolic capacities (Monk et al., 2017). We also made the
assumption that the parameter values are the same for all strains, so that di�erences in resource
allocation strategies are the only explanatory variable. It is remarkable that, despite these strong
assumptions, the model predicts very well the observed variability of rate-yield phenotypes in E.

coli.

2.4 Predicted and observed uptake-secretion phenotypes for Escherichia coli

Growth rate and growth yield are de�ned in terms of carbon and energy �uxes through the
population (Eqs 1-2). Like rate and yield, some of these �uxes, in particular uptake and secretion
rates, have been found to vary substantially across E. coli strains growing in minimal medium
with glucose (Monk et al., 2016; LaCroix et al., 2015). Can our model also reproduce the observed
variability of uptake-secretion phenotypes? We projected the model predictions in the space of
uptake-secretion phenotypes, and crossed the latter with rate-yield phenotypes. Moreover, we
compared the predicted variability with measurements from studies in which not only growth
rate and growth yield, but also uptake and secretion rates were measured (Supplementary File
1).

Figure 4A-B relates the predicted range of glucose uptake rates to the growth rates and
growth yields, respectively. The model predicts an overall positive correlation between growth
rate and glucose uptake rate, which is an obvious consequence of the fact that glucose provides
the carbon included in the biomass. The glucose uptake rate does not unambiguously determine
the growth rate though. Depending on the resource allocation strategy, the bacteria can grow at
di�erent yields for a given glucose uptake rate (Eq. 2 and Supplementary Figure 3B). Note that
the trade-o� between growth rate and maximum growth yield previously observed in Figure 3
reappears here in the form of a trade-o� between glucose uptake rate and maximum growth yield,
for uptake rates above 20 Cmmol gDW−1 h−1.

The predicted variability of glucose uptake rates vs growth rates and growth yields corre-
sponds to the observed variability. Almost all data points fall within the predicted cloud of
phenotypes and the data points cover much of the cloud. The strains resulting from ALE ex-
periments cluster along the predicted upper bound of not only rate but also yield, suggesting
that part of the increase in growth rate of ALE strains is obtained through the more e�cient
utilization of glucose.

Another observable �ux is the acetate secretion rate, which is an indicator of the functioning
of energy metabolism. In aerobic conditions, E. coli has two di�erent modes of ATP production:
respiration and fermentation. Glucose and glycerol are taken up by the cells and degraded in
the glycolysis pathway, eventually producing acetyl-CoA. Whereas acetyl-CoA enters the tricar-
boxylic acid (TCA) cycle in the case of respiration, it is secreted in the form of acetate during
fermentation. In both cases, NADP and other reduced compounds are produced along the way
and their recycling is coupled with the generation of a proton gradient across the membrane,
enabling the production of ATP. Respiration is the more e�cient of the two ATP production
modes: in E. coli, respiration yields 26 ATP molecules per molecule of glucose and fermentation
only 12 (Basan et al., 2015a).
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Figure 4: Predicted uptake-secretion phenotypes and comparison with experimental data.

A. Predicted and observed glucose uptake rates and growth rates for the case of batch growth of E.
coli on minimal medium with glucose. B. Idem for glucose uptake rates and growth yields. C. Idem
for acetate secretion rates and growth rates. D. Idem for acetate secretion rates and growth yields. E.
Idem for glucose uptake and acetate secretion rates. The predicted uptake-secretion phenotypes vmc and
vmef were taken from the simulations giving rise to Figure 3B. The measurements of glucose uptake and
acetate secretion rates reported in the source literature have been converted to units Cmmol gDW−1 h−1

(see Methods and Supplementary Files 1 and 2 for details). The Crooks strain, labelled in panel E, shows
an uptake-secretion phenotype deviating from the range of predicted phenotypes.
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Figure 4C-D shows the predicted relation between acetate secretion rates and growth rates
and growth yields. The plots reveal a clear trade-o� between maximum growth yield and acetate
secretion rate, due to the fact that fermentation is less e�cient than respiration in producing ATP.
The model predicts no apparent relation between growth rate and acetate secretion. In particular,
high growth rates can be attained with a continuum of ATP production modes: from pure
respiration to combinations of respiration and fermentation. Similar conclusions can be drawn
when plotting the acetate secretion rate relative to the glucose uptake rate (vmef/vmc), that
is, when considering the fraction of carbon taken up that is secreted as acetate (Supplementary
Figure 3C-D). Maximum yield requires respiration without fermentation, whereas minimum yield
is attained for maximum fermentation, where more than 50% of the carbon entering the cell is
lost due to acetate over�ow.

The measured combinations of acetate secretion rate vs growth rate or growth yield entirely
fall within the bounds predicted by the model (Figure 4C-D). The data notably show that as
the growth yield increases, fermentation phenotypes give way to respiration phenotypes. The
measurements further con�rm that it is possible for E. coli to grow fast without acetate secretion.
In particular, some of the fastest growing E. coli wild-type strains have no acetate over�ow, like
the W strain (Monk et al., 2016), and some of the evolved strains grow very fast but with little
acetate over�ow as compared to their ancestors (Schuetz et al., 2012). The observed relative
acetate secretion rates also fall almost entirely within the predicted bounds (Supplementary
Figure 3E-F).

Another view on the uptake-secretion data is obtained when plotting, for each resource al-
location strategy, the predicted glucose uptake rate against the predicted acetate secretion rate
(Figure 4E). Not surprisingly, the maximum acetate secretion rate increases with the glucose
uptake rate, since acetate is a by-product of glucose metabolism. The plot also emphasizes,
however, that the increase of acetate secretion with glucose uptake is not a necessary constraint
of the underlying growth physiology: E. coli is predicted to be able to grow without acetate
over�ow over almost the entire range of glucose uptake rates, from 0 to 65 Cmmol gDW−1 h−1.

Again, the observed variability of uptake-secretion phenotypes falls well within the predicted
bounds, although a few outliers occur. In particular, the Crooks strain has a phenotype that is
signi�cantly deviating from the predicted combinations of acetate secretion and glucose uptake
rates (Monk et al., 2017). This suggests that resource allocation alone cannot fully explain the
observed phenotype and other regulatory e�ects need to be taken into account in this case. High
acetate secretion rates, above 20 Cmmol gDW−1 h−1, are mostly absent from the database of
observed uptake-secretion phenotypes. This is another manifestation of the over-representation
of strains with a high growth rate on glucose (Figure 3B): the secretion of a large fraction of the
glucose taken up in the form of acetate does not make it possible to attain high growth rates
(Eq. 1).

Given the higher ATP yield of respiration, it is not surprising that the highest growth yields
are obtained when respiration is preferred to fermentation. What might not have been expected,
however, is that some strains achieve a growth rate on glucose close to the predicted maximum
without resorting to fermentation. It is well-known that when growing an E. coli strain in min-
imal medium with glucose at increasingly higher growth rates, the contribution of fermentation
to ATP production increases at the expense of respiration, as witnessed by the increase of ac-
etate secretion (Basan et al. (2015a); Nanchen et al. (2006); Peebo et al. (2015); Valgepea et al.
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(2010) and Supplementary Figure 4). This shift of resources from respiration to fermentation has
been explained in terms of constraints on available protein resources, trading costly but e�cient
respiration enzymes against cheap but ine�cient fermentation enzymes. The existence of strains
capable of attaining the highest growth rates without fermentation suggests that this proteome
constraint can be bypassed and raises the question which resource allocation strategies allow the
bacteria to do so.

2.5 Predicted and observed strategies enabling fast and e�cient growth of

Escherichia coli

The analysis of the model predictions in Figure 2, notably the point µmax, provided some indica-
tions of the strategies enabling high-rate, high-yield growth of E. coli. Unfortunately, no data for
µmax are available. However, the NCM3722 strain (Brown and Jun, 2015) attains a growth rate
approaching the maximally observed rate for E. coli in minimal medium with glucose (0.97 h−1),
and has a signi�cantly higher growth yield than the BW25113 reference strain (0.6) (Schmidt
et al., 2016; Cheng et al., 2019). The glucose uptake and acetate secretion rates of NCM have
been measured in the growth conditions considered here (Basan et al., 2015a; Cheng et al., 2019)
and proteomics data are available from the same experiment as used for calibration of the model
(Schmidt et al., 2016) (Figure 5A). How does the observed resource allocation strategy for NCM
compare with the strategies that, according to the model, predict the rate-yield and uptake-
secretion phenotypes of NCM? And how do these strategies enable fast and e�cient growth of
this strain?

Whereas every resource allocation strategy gives rise to a unique rate-yield phenotype, the
inverse is not true: several strategies can in principle predict an observed combination of growth
rate, growth yield, glucose uptake rate, and acetate secretion rate (Methods and Supplementary
Figure S5). The boxplots in Figure 5B show the resource allocation strategies that, according
to the model, give rise to a growth physiology consistent with that observed for NCM. That is,
every individual strategy predicts a growth rate, growth yield, glucose uptake rate, and acetate
secretion rate within 5% of the observed value. The same �gure also shows the observed resource
allocation strategy for NCM, consisting of the values of χu, χr, χc, and χe = χer + χef during
balanced growth on glucose, derived from the proteomics data (Methods).

Whereas the strategies reproducing the rate-yield and uptake-secretion phenotypes of NCM
partially overlap with the measured strategy, the predicted χc values are signi�cantly higher
than those observed. In other words, the model requires a higher protein fraction for enzymes
in central carbon metabolism (mc/p) than observed in the proteomics data. The underlying
problem is that in our model the carbon uptake and metabolization rate is directly proportional
to the enzyme concentration (Appendix 1 ):

vmc = kmcmc
S

S +Kmc
≈ emmc, , (4)

where S � Kmc during balanced growth in batch and em [h−1] is an apparent catalytic constant
(Appendix 1 ). Therefore, the high value glucose uptake rate necessary for the high growth rate
of NCM requires a high enzyme concentration, and therefore a high protein fraction mc/p. This
is contradicted by the measured protein fraction for NCM, which is slightly lower than the one
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observed for BW (0.07 as compared to 0.09 for BW), for a glucose uptake rate that is much
higher (66.0 Cmmol gDW−1 h−1 as compared to 49.6 Cmmol gDW−1 h−1 for BW). Note that
a less pronounced, but opposite divergence of model and data is seen in the case of the protein
fractions of ribosomal proteins and enzymes in energy metabolism (Figure 5B). That is, the
predicted over-investment in central metabolism comes with a corresponding under-investment
in protein synthesis and energy metabolism.

The discrepancies between predicted and observed resource allocation strategies suggest that
bacteria exploit additional regulatory factors to achieve high-rate, high-yield growth. This con-
clusion agrees with the view that the regulation of �uxes in central metabolism involves not only
enzyme concentrations, but also regulation of enzyme activity (Davidi and Milo, 2017; Donati
et al., 2018). While little is known about the mechanisms allowing NCM to grow much faster
than BW, genomic changes and their physiological impact have been identi�ed for ALE strains
(LaCroix et al., 2015; Utrilla et al., 2016; Cheng et al., 2014). In an ALE mutant evolved in
glycerol, the change in growth rate was attributed to a change in activity of the GlpK enzyme
(Cheng et al., 2014), leading to higher glycerol uptake rates. In the model, the latter mutation
would translate to an increase in the catalytic constant kmc (Appendix 1 ).

In order to verify the hypothesis that an additional layer of regulation, acting upon enzyme
activity, plays a role in high-rate, high-yield growth, we modi�ed the analysis of the model.
Instead of varying only resource allocation parameters (χu, χr, χc, χer, χef ), we also allowed the
catalytic constants (kmc, kmer, kmef ), representing the (apparent) enzyme turnover rates in cen-
tral carbon and energy metabolism (Appendix 1 ), to increase or decrease by at most a factor of 2.
The results of the simulations are shown in Figure 5B. They reveal that there now exist resource
allocation strategies capable of reproducing the observed NCM growth phenotypes within a 5%
margin. Most notably, these strategies require an increased value of kmc (Supplementary Fig-
ure 5). That is, the model predicts that glycolytic enzymes are more active in NCM as compared
to BW during growth on glucose. This allows resources to be shifted from glycolytic enzymes
to other growth-supporting functions. Whereas no experimental data exist to speci�cally test
the above prediction, it is known that the activity of pyruvate kinase, regulated by fructose-1,6-
bisphosphate (Valentini et al., 2000), increases with a higher glycolytic �ux and therefore higher
growth rate (Kochanowski et al., 2013; Kremling et al., 2007).

Our model thus allows the accurate reconstruction of resource allocation strategies underlying
high-rate, high-yield growth of the E. coli NCM strain on glucose, when the repertoire of available
strategies is enlarged from resource allocation to the regulation of enzyme activity. In addition to
the rate-yield and uptake-secretion phenotypes, the strategies also reproduce the total protein and
metabolite concentrations (Figure 5C and Basan et al. (2015b); Park et al. (2016)). Importantly
for the question how the strategies enable high-rate, high-yield growth, NCM is seen to maintain
a higher metabolite concentration than BW (Figure 5D). As a consequence, the estimated ratio
of central metabolites and half-saturation constants rises from 1.2 for BW to 3.0 for NCM
(Appendix 2 ). The resulting increased saturation of enzymes and ribosomes sustains higher
metabolic �uxes, without an additional investment in proteins (Figure 5D). This suggests that
the more e�cient utilization of proteomic resources is key to high-rate, high-yield growth of E.
coli.
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Figure 5: Resource allocation strategies underlying high-rate, high-yield phenotypes. A.

Characterization of the physiology of the NCM3722 strain in comparison with the BW25113 strain during
batch growth on glucose (data from Appendix 2-Table A3 and Appendix 2-Table A7). B. Predicted
resource allocation strategies for a strain with the NCM phenotype, in the case of the model with �xed
catalytic constants (blue boxplot) or a model variant in which catalytic constants are allowed to vary two-
fold (red boxplot). The observed resource allocation strategy for NCM (Schmidt et al. (2016), black dots)
corresponds with the strategies predicting the NCM phenotype when catalytic constants are allowed to
vary, that is, when metabolic regulation in addition to resource allocation is taken into account. The model
predictions summarized in the boxplot concern strategies with simulated rate-yield and uptake-secretion
phenotypes within 5% of the observed values for NCM. The black dots correspond to three independent
replicates of the proteomic measurements (Schmidt et al., 2016). C. Predicted and observed biomass
composition for high-rate, high-yield growth of E. coli, with data for NCM (Appendix 2-Table A7).
Regulation of enzyme activity leads to a very good match of predicted and observed total protein and
metabolite concentrations, here indicated as fractions of the total biomass (p β and c β). D. Comparison
of total protein and metabolic fractions in NCM and BW. The total protein fraction includes amino acids
(Figure 1), which is indicated by the hatched pattern.
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3 Discussion

Analysis of the resource allocation strategies adopted by microbial cells can explain a number of
phenomenological relations between growth rate, growth yield, and macromolecular composition
(Scott et al., 2010, 2014; Molenaar et al., 2009; Giordano et al., 2016; Weiÿe et al., 2015; Reimers
et al., 2017; Bosdriesz et al., 2015; Towbin et al., 2017; Maitra and Dill, 2015; Dourado and
Lercher, 2020; Metzl-Raz et al., 2017). We have generalized this perspective to account for
a striking observation: the large variability of rate-yield phenotypes across di�erent strains of
a bacterial species grown in the same environment. We constructed a coarse-grained resource
allocation model (Figure 1), which was calibrated using literature data on batch and continuous
growth of E. coli in minimal medium with glucose or glycerol. In each of the conditions, we
considered the rate-yield phenotypes predicted by the model when allowing resource allocation
to vary over the entire range of possible strategies, while keeping the kinetic parameters constant.

This approach is based on a number of strong assumptions. The coarse-grained nature of
the model reduces microbial metabolism and protein synthesis to a few macroreactions, instead
of accounting for the hundreds of enzyme-catalyzed reactions involved in these processes (Cheng
et al., 2019; Adadi et al., 2012; Mori et al., 2016; Reimers et al., 2017; Wortel et al., 2018).
Resource allocation is reduced to constraints on protein synthesis capacity, whereas other con-
straints such as limited solvent capacity and membrane space may also play a role (Adadi et al.,
2012; Beg et al., 2007; Zhuang et al., 2011; Szenk et al., 2017). All possible combinations of
resource allocation parameters were considered, limited only by the constraint that they must
sum to 1. Observed variations in protein abundance are less drastic (Schmidt et al., 2016; Hui
et al., 2015), and coupled through shared regulatory mechanisms (Scott et al., 2014; Chubukov
et al., 2014). The kinetic parameters in the model have apparent values absorbing unknown
regulatory e�ects, speci�c to each growth condition. This contrasts with strain-speci�c kinetic
models with an explicit representation of the underlying regulatory mechanisms (Weiÿe et al.,
2015; Erickson et al., 2017; Millard et al., 2017), and does not allow our model to be used for
transitions between growth conditions.

Despite these limitations, we observed a very good quantitative correspondence between the
predicted and observed variability of rate-yield phenotypes of di�erent E. coli strains grown in
the same environment (Figure 3). This correspondence also holds when the comparison with
the experimental data is extended to glucose uptake and acetate secretion rates associated with
the measured growth rates and growth yields (Figure 4). The results suggest that di�erences
in resource allocation are a major explanatory factor for the observed rate-yield variability.
We veri�ed the robustness of this conclusion by testing alternative ways to calibrate the model
(Appendix 1 and Appendix 2 ). In particular, we used data for another commonly-used laboratory
strain, MG1655, to determine the kinetic parameters, and we interpreted the proteomics data
di�erently by introducing an additional category of growth-rate-independent proteins that do
not carry a �ux (Scott et al., 2010; Hui et al., 2015). In both cases, the predicted rate-yield
variability largely overlaps with that obtained for the reference model (Supplementary Figure 7).

Many studies of microbial growth have provided evidence for a trade-o� between growth
rate and growth yield (see Lipson (2015); Beardmore et al. (2011) for reviews). One particularly
telling manifestation of this trade-o� is the relative increase of acetate over�ow, and thus decrease
of the growth yield, when an E. coli strain is grown on glucose at increasingly higher growth
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rates, by setting the dilution rate in a chemostat or by genetically modifying the glucose uptake
rate (Supplementary Figure 4). This shift of resources from respiration to fermentation has been
explained in terms of a trade-o� between energy e�ciency and protein cost (Molenaar et al.,
2009; Basan et al., 2015a; Pfei�er et al., 2001). In the experimental condition considered here,
batch growth on glucose of di�erent E. coli strains with the same metabolic capacities, we found
no straightforward relation between growth rate and growth yield. Neither the model nor the
data show a correlation between growth rate and acetate over�ow (Figure 4C and Supplementary
Figure 3), as was also previously observed by Cheng et al. (2019) for a selection of ALE mutant
strains. In particular, the data show that some of the fastest growing strains secrete little or no
acetate and therefore have a high growth yield.

These �ndings raise the question which resource allocation strategies allow E. coli to grow
on glucose both rapidly and e�ciently. We tried to answer this question by choosing the well-
characterized NCM3722 strain as a prototype for high-rate, high-yield growth. When comparing
the resource allocation strategies that predict the NCM phenotype with the strategy actually
observed (Figure 5), we found some discrepancies that cannot be solely attributed to the un-
certainty in the proteomics data. We therefore allowed the apparent catalytic constants of the
macroreactions to vary as well, contrary to the initial model assumption, in order to account
for genetic di�erences between strains or for regulatory mechanisms responding to physiological
changes. This �netuning of the adaptation repertoire made it possible to quantitatively repro-
duce the growth phenotype of NCM by means of resource allocation strategies consistent with
the proteomics data (Figure 5). In comparison with the BW reference strain, a higher value of
the catalytic constant corresponding to glucose uptake and metabolism was required, that is, a
higher activity of glycolytic enzymes (Supplementary Figure 5).

The requirement of higher enzyme activity for high rate, high-yield growth points at a more
e�cient utilization of proteomic resources. This is also implied by another prediction of the
model consistent with the experimental data, the higher concentration of metabolites in NCM
as compared to BW. The increased concentration of metabolites leads to a higher saturation
of enzymes and ribosomes, and allows an increase of biosynthetic �uxes while limiting the in-
vestment in proteins. This strategy for attaining high-rate, high-yield growth is reminiscent of
the proposed existence of a trade-o� between enzyme and metabolite concentrations in central
carbon metabolism in other recent studies (Dourado et al., 2021; Fendt et al., 2010; O'Brien
et al., 2016).

The main �nding of this study is that the observed variability of growth rates and growth
yields across di�erent strains of a bacterial species can, to a large extent, be accounted for by
a coarse-grained resource allocation model. The capability to predict the range of rates and
yields achievable by a microbial species, and the possibility to relate these to underlying resource
allocation strategies, is of great interest for a fundamental understanding of microbial growth.
In addition, by extending the model with a macroreaction for the production of a protein or
a metabolite of interest (Yegorov et al., 2019), this provides rapidly exploitable guidelines for
metabolic engineering and synthetic biology, by pointing at performance limits of speci�c strains
and suggesting improvements. While instantiated for growth of E. coli, the model equations are
su�ciently generic to apply to other microorganisms. The calibration of such model variants
can bene�t from the same hierarchical procedure as developed here, exploiting largely available
proteomics and metabolomics datasets.
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4 Methods

Simulation studies.

The resource allocation models were derived from a limited number of assumptions on the pro-
cesses underlying microbial growth, as explained in Appendix 1. The parameters in the models
were determined from literature data, as described in Appendix 2. In order to produce the
plots with rate, yield, uptake, and secretion phenotypes (Figures 2-4), we uniformly sampled
combinations of resource allocation parameters χr, χc, χer, and χef such that their sum equals
1-χu, where χu was sampled from a reduced interval determined from the data (Supplementary
Figure 1). Starting from initial conditions, the system was simulated for each combination of re-
source allocation parameters until a steady state was reached, and rate and yield were computed
from the �uxes and concentrations at steady state (Supplementary Figure 2).

When sampling the space of initial conditions for a given resource allocation strategy, the
system was found to always reach the same steady state. Whereas every strategy thus gives rise
to a unique rate-yield phenotype, the inverse is not true: di�erent strategies can account for a
given growth rate and growth yield. An intuitive explanation can be obtained from inspection
of Eqs. 1-2. A given rate-yield phenotype �xes the substrate uptake rate vmc and the sum
vmer + ρmef vmef + (ρru − 1) (vr + vmu)), representing the loss of carbon due to CO2 out�ow
and acetate secretion. Di�erent resource allocation strategies, and hence di�erent protein and
metabolite concentrations, can lead to �uxes that add up to the latter sum, and thus enable
the cells to grow at the speci�ed rate and yield (Supplementary Figure 4). The same argument
generalizes to combined rate-yield and uptake-secretion phenotypes.

All simulations were carried out by means of Matlab R2020b.

Computation of rates and yields from published experimental data.

The rate-yield database was compiled from the experimental literature (Supplementary Files 1
and 2). Growth rates have unit h−1 and growth yields were converted to the dimensionless
quantity Cmmolsubstrate Cmmol−1

biomass by means of appropriate conversion constants. Most pub-
lications report yields with unit gDW mmol−1

substrate, that is, as the ratio of the growth rate with
unit h−1 and the substrate uptake rate with unit mmolsubstrate gDW−1 h−1. If yields are not
explicitly reported, then they were computed in this way from the reported growth rate and
substrate uptake rate. In order to convert mmolsubstrate to Cmmolsubstrate, we multiplied the
former with the number of carbon atoms in the substrate molecule (6 for glucose, 3 for glyc-
erol). In order to convert gDW to Cmmolbiomass, we used the consensus value for the biomass
density 1/β, 40.65 Cmmolbiomass gDW−1, determined in Appendix 2. Some substrate uptake
rates, in particular for the NMC2537 strain, were expressed in units mMsubstrate OD−1 h−1.
We used strain-speci�c and when possible laboratory-speci�c conversion constants from optical
density (OD) to gDW L−1, notably the value 0.49 gDW L−1 OD−1 for NMC2537 (Basan et al.,
2015b). Acetate secretion rates reported in mmolacetate gDW−1 h−1 or mMacetate OD−1 h−1 were
converted to unit Cmmol gDW−1 h−1 using the same procedure.
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Computation of resource allocation strategies from proteomics data.

The observed resource allocation strategies for the BW25113, MG1655 and NCM3722 strains were
computed by means of the proteomics data in Table S11 of Schmidt et al. (2016). We computed
the mass fraction for each protein category distinguished in the model by associating the latter
with speci�c COG groups (r/p → Amino acid transport and metabolism and Translation; mc/p
→ Carbohydrate transport and metabolism; (mer+mef )/p→ Energy production and conversion;
mu/p→ All other COG groups). The mass fraction of enzymes in energy metabolism was further
subdivided into fractions attributed to respiration and fermentation, mer/p and mef/p, in the
same way as for model calibration, by distinguishing enzymes speci�c to fermentation, enzymes
speci�c to respiration, and enzymes shared between respiration and fermentation ((Basan et al.,
2015a) and Supplementary File 4). The resource allocation strategy during balanced growth
(χu, χr, χc, χer, χef ) was equated with the corresponding mass fractions.

5 Supporting information

Supplementary File 1. Database with reported rate-yield pairs for E. coli grown

on glucose minimal medium (excel �le).

Supplementary File 2. Database with reported rate-yield pairs for E. coli grown

on glycerol minimal medium (excel �le).

Supplementary File 3. Half-saturation constants for reactions in central carbon

metabolism of E. coli (excel �le).

Supplementary File 4. Classi�cation of energy proteins (excel �le).

6 Supplementary �gures

Supplementary Figure 1 Observed allocation of resources to the category of resid-

ual proteins in di�erent growth conditions. Using data for the E. coli BW25113 reference
strain (Schmidt et al., 2016), we computed for a large variety of growth conditions the fraction of
the proteome consisting of proteins other than ribosomes and translation-a�liated proteins, en-
zymes in central carbon metabolism, and enzymes in energy metabolism (mu/p). The considered
conditions concern growth on di�erent limiting carbon sources, di�erent temperatures, di�erent
pH, ... The computations were carried out in the same way as for model calibration (Methods).
The solid line corresponds to the mean of the value for mu/p over the di�erent conditions and
the broken lines to the upper and lower bound of the variation from the mean. In the simulations
underlying Figures 2-4 in the main text, the value of χu was sampled from the interval between
the upper and lower bound, [0.32, 0.41].
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Supplementary Figure 2 Schematic overview of the computation of growth rate and

growth yield from resource allocation strategies. The computational procedure takes a
resource allocation strategy as input and simulates microbial growth until steady state is reached.
The �uxes and concentrations at steady state are used to compute the growth rate and growth
yield as output.

Supplementary Figure 3 Additional model predictions of rate-yield and uptake-

secretion phenotypes and their comparison with experimental data. All predictions
concern the case of E. coli growing on minimal medium with glucose. A. Relative weight of
maintenance costs due to degradation of macromolecules (γ/vmc) for predicted rate-yield phe-
notypes. B. Glucose uptake rates vmc corresponding to predicted rate-yield phenotypes. C.

Predicted and observed relative acetate secretion rates vmef/vmc vs growth rates. D. Predicted
and observed relative acetate secretion rates vmef/vmc vs growth yields.

Supplementary Figure 4 Variation of normalized acetate secretion rate with growth

rate in experiments with a single E. coli strain growing in di�erent environments.

The plot shows data from Basan et al. (2015a) and Cheng et al. (2019) concerning batch growth
of an NCM strain with a modi�ed, titrable uptake system in minimal medium with glucose,
data from Nanchen et al. (2006) concerning continuous growth in a chemostat of the MG1655
strain in minimal medium with glucose, data from Holms (1996) concerning batch growth of the
ML308 strain in minimal medium with various carbon sources, data from Gerosa et al. (2015)
concerning batch growth of the BW25113 strain in minimal medium with various carbon sources,
and data from Valgepea et al. (2010) and Peebo et al. (2015) concerning continuous growth in a
chemostat of the MG1655 and BW25113 strains, respectively, in minimal medium with glucose.
The relative acetate uptake rate, de�ned as the ratio of the acetate secretion rate (in unit Cmmol
gDW−1 h−1) and the glucose uptake rate (in the same unit), has a tendency to increase with
the growth rate. This indicates a proportionally higher loss of carbon, and therefore lower yield,
corresponding to a gradual shift of ATP production from respiration to fermentation.

Supplementary Figure 5 Relative changes in kinetic parameters for resource alloca-

tion strategies reproducing the observed phenotypes of the NCM3722 strain during

minimal growth on glucose. We repeated the sampling procedure explained in the Meth-

ods section while allowing the values of the catalytic constants kmc, kmer, and kmer to vary by
maximally two-fold (higher or lower). A total of 200,000 simulations were run. The plot shows
the combinations of parameter values, relative to the values for the BW25113 reference strain
(Appendix 2 ), that allow growth rate µ, growth yield Y , glucose uptake rate vmc, and acetate
secretion rate vmef of the NCM3722 strain to be reproduced (within a 5% margin) by resource al-
location strategies that are close to those observed for NCM (within a 5% margin). The resource
allocation strategy of NCM was computed from the data from Schmidt et al. (2016) (Methods)
and the phenotype data are shown in Figure 5A. Agreement between resource allocation strate-
gies allowing the NCM growth phenotype to be reproduced and the observed strategy is obtained
for an increased value of kmc (higher activity of glycolytic enzymes). The increase in enzyme
activity allows resources to be liberated for augmenting the concentrations of other proteins and
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central carbon metabolites (c), thus increasing growth rate and growth yield. Changes in kmer
and kmef may �netune these e�ects, but are not necessary.

Supplementary Figure 6 Relation between resource allocation strategies and rate-

yield phenotypes. A. Predicted dependence of the growth rate on values for (χu, χr, χc, χer, χef )
for batch growth in minimal medium with glucose. χu was set to the constant value of 0.37 for
the BW25113 reference strain (Appendix 2 ), while three di�erent values for χer were explored
(0.02, 0.1, 0.2). Note that each combination (χu, χr, χc, χer) �xes the remaining value of χef
due to the constraint that the resource allocation parameters sum to 1 (Appendix 1 ). B. Idem
for the growth yield. Each resource allocation strategy leads to a unique rate-yield phenotype.
C. Rate and yield isoclines in the (χr, χc)-space for �xed values of χu and χer. In particular,
the isoclines correspond to a growth rate of 0.61 h−1 and a growth yield of 0.50, the BW25113
phenotype, for a value of χer set to 0.062 (Appendix 2 ). The two isoclines have four intersection
points, that is, the speci�ed growth rate and growth yield can be reached for four combinations
of values of χr and χc. The growth physiology obtained at two of the intersection points is quite
di�erent, as illustrated by the two pictograms (see Figure 2 for legend). When allowing χer to
continuously vary over a range of values, an in�nite number of resource allocation strategies can
account for the speci�ed rate and yield.

Supplementary Figure 7 Robustness of rate-yield predictions for alternative model

calibration and alternative model assumption. A. Rate-yield predictions (grey) for the
same model as in Figure 1, but calibrated by means of experimental data for the MG1655 instead
of BW25113 strain, in the case of minimal growth on glucose (see Appendix 2 for details). The
blue dots correspond to the predictions for the model calibrated by means of data for the BW
reference strain. B. Comparison of the rate-yield predictions from the alternative model in panel
A with the experimental data from Figure 3B. The rate-yield variability predicted by the model
calibrated with the MG data agrees with both the predicted variability of the reference model
and the observed rate-yield phenotypes. C. Rate-yield predictions (grey) for a model variant
having a growth-rate-independent protein category with �xed resource allocation parameter χq
(see Appendix 1 for details). The model was calibrated using data for the BW strain (Appendix 2-
Table A3), in the case of batch growth on glucose. The blue dots correspond to the predictions
for the reference model in Figure 1. D. Idem, when the value of χq is allowed to vary by 10%,
corresponding to the observed di�erence between the BW25113 and NCM3722 strains. In both
cases the clouds of blue and grey dots largely overlap, indicating that the model predictions are
robust for an alternative model hypothesis and an alternative model calibration.

Supplementary Figure 8 Growth-rate-dependency of proteome fractions. Using the
data from Schmidt et al. Schmidt et al. (2016), the proteome fractions over a large variety of
growth conditions (growth on di�erent limiting carbon sources, di�erent temperatures, di�erent
pH, . . .) are plotted for the categories: A. Ribosomes and translation-a�liated proteins (R), B.
Enzymes in central carbon metabolism (Mc), C. Enzymes in energy metabolism (Mer +Mef ),
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and D. Other proteins (Mu). A linear regression is performed, giving rise to slopes (A) 0.31 ±
0.04, (B)-0.03 ± 0.02, (C) -0.34 ± 0.04, and (D) 0.06 ± 0.03, showing that only the fraction r/p
signi�cantly increases with the growth rate.
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Appendix 1: Model equations

A1.1 Modeling assumptions

The coarse-grained resource allocation model of coupled carbon and energy �uxes generalizes and
elaborates upon previous models of microbial growth (Scott et al., 2010; Giordano et al., 2016;
Basan et al., 2015a; Zav°el et al., 2019). It is based on a partitioning of the cellular proteome
into �ve major categories:

Ribosomes and translation-a�liated proteins, including enzymes in amino acid metabolism,
that are necessary for protein synthesis.

Enzymes in central carbon metabolism that are responsible for carbohydrate uptake and
metabolism, leading to central carbon metabolites that fuel biosynthesis and ATP produc-
tion pathways.
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Enzymes in energy metabolism that are responsible for transferring (free) energy from car-
bohydrate substrates to small energy cofactors like ATP, NADH, and NADPH. This cat-
egory is further subdivided into enzymes for aerobic respiration and fermentation,
respectively.

Other proteins that do not fall within one of the above-mentioned categories. This category
includes, for example, proteins involved in the synthesis of RNA and DNA, cell-cycle pro-
teins, and a variety of housekeeping functions.

This partitioning is di�erent from that found in some other coarse-grained models of microbial
growth, as discussed in the section Model variant with an additional growth-rate-independent

protein category below.
In addition to the above proteins, we distinguish two intracellular metabolite categories:

Central carbon metabolites, that is, catabolic products of the carbohydrate substrate (glu-
cose, glycerol, . . .) taken up from the medium. Central carbon metabolites include inter-
mediates of the glycolysis pathway, the tricarboxylic acid cycle, and the pentose phosphate
pathway, notably the thirteen precursor metabolites from which the building blocks for
macromolecules (amino acids, nucleotides, ...) are produced (Schaechter et al., 2006).
Central carbon metabolites can be stored in the form of glycogen or other storage com-
pounds.

Energy cofactors driving the synthesis of proteins and other macromolecules, occurring both in
their higher-energy form (ATP, NADH, NADPH, . . .) and lower-energy form (ADP, NAD+,
NADP+, . . .). Here, we restrict ourselves to the principal energy cofactors ATP and ADP,
exploiting the fact that in aerobic conditions NADH and NADPH can be converted to ATP
(Basan et al., 2015a; Gottschalk, 1986).

In addition to proteins and metabolites, we have

Other macromolecules, notably including RNA, DNA, and lipids forming the cell membrane.

The cellular biomass consists of the sum of the above categories, that is, it includes proteins,
metabolites, and other macromolecules, contrary to most other models which equate biomass
with proteins. For reasons of simplicity, energy cofactors are not included as a separate category
in the biomass. This is motivated by the fact that the total biomass fraction of ATP, ADP,
NADH, NAD+, . . . is negligible (< 1%, Appendix 2 ). As a consequence, the model does not
explicitly account for their synthesis from central carbon intermediates, but only represents their
role in the �ow of energy through the di�erent macroreactions.

The following macroreactions interconverting the above biomass categories are distinguished
in the model:

Carbon uptake and central carbon metabolism, responsible for the uptake of the carbo-
hydrate substrate from the medium and its conversion into metabolic precursors for amino
acid biosynthesis and energy metabolism.
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Energy metabolism for the regeneration of energy cofactors (conversion of ADP into ATP)
through the respiration or fermentation of central carbon intermediates. In the former case,
carbon leaves the cell in the form of CO2, whereas both acetate and CO2 are produced in
the second case.

Protein synthesis involving the biosynthesis and polymerization of amino acids, a process
driven by ATP and releasing CO2.

Synthesis of other macromolecules, like RNA and DNA, which consumes precursors from
central metabolism and ATP, and releases CO2.

The total protein synthesis rate is divided over the di�erent protein categories enumerated
above, according to fractional resource allocation parameters. Together, these parameters de�ne
the resource allocation strategy of the cell and determine the growth rate and growth yield in a
given environmental condition.

The model includes two macroreactions producing ATP (respiration and fermentation) and
two macroreactions consuming ATP (synthesis of proteins and other macromolecules). The ATP
produced and consumed in central carbon metabolism is accounted for in the ATP balance of the
other macroreactions. For example, the net ATP consumption attributed to protein synthesis
does not only include the ATP costs of amino acid polymerization, but also ATP consumption
and production required for amino acid synthesis (Kaleta et al., 2013). The same holds for the
production of ATP by energy metabolism (Basan et al., 2015a).

Much of the carbon taken up and the ATP produced by microbial cells does not directly
contribute to growth but is used for maintenance. Maintenance is a broad concept that includes,
among other things, the turnover of macromolecules, osmoregulation, motility, and energy spilling
(van Bodegom, 2007). The �rst type of maintenance costs we distinguish in the model are the
resources needed to compensate for the degradation of biomass, in particular macromolecules.
As a consequence of biomass degradation, cells require a minimal substrate uptake rate above
which net growth of the population starts. In Appendix 2, we show that biomass degradation in
our model is structurally equivalent to the so-called maintenance coe�cient in the Pirt model
(Pirt, 1965). The second form of maintenance considered is energy dissipation. This refers to
the sizable fraction of ATP that is not consumed for macromolecular synthesis but invested in
other cellular processes that are not explicitly modeled, such as motility and the regulation of
osmotic pressure, or that is apparently spilled (Russell and Cook, 1995).

A1.2 Derivation of model equations

A schematic representation of microbial growth is shown in Appendix 1-Figure A1, illustrating
the modeling assumptions discussed above. Here, we derive a mathematical model from these
assumptions following a number of basic steps outlined previously (de Jong et al., 2017). We
�rst de�ne extensive variables for quantities and rates, then normalize these with respect to the
mass of the growing microbial population, assuming that the biomass density is constant (Basan
et al., 2015b). This will lead to intensive variables denoting concentrations and speci�c reaction
rates, as well as matching expressions of growth rate and growth yield in terms of these rates.
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Figure A1: Resource allocation model of coupled carbon and energy �uxes in microor-

ganisms. The �gure shows the biomass categories and macroreactions, together with the concentration
variables, reaction rates, and growth and degradation rates.

Carbohydrates in the medium are taken up and metabolized by the cellular population at
a rate Vmc, a macroreaction that is controlled by enzymes with a total quantity equal to Mc.
The resulting central carbon metabolites having a quantity C are used to produce ATP and to
synthesize proteins and other macromolecules. More speci�cally, two alternative ATP-producing
pathways are considered: respiration at a rate Vmer, catalysed by enzymes with a quantity
Mer, and fermentation at a rate Vmef , catalyzed by enzymes with a quantity Mef . Synthesis of
proteins and other macromolecules occurs at rates Vr and Vmu, respectively, and are catalyzed by
ribosomes and other proteins with quantities R andMu, respectively. The protein and metabolite
quantities are expressed in units mmol of carbon (Cmmol) and the rates in units Cmmol h−1.

ADP and ATP, at total quantities A and A∗ [mmol], respectively, are permanently recycled
through the ATP production and the biosynthesis pathways. CO2 is released by the cell through
respiration, but also as a by-product of the biosynthetic reactions and fermentation. The latter
CO2 out�ux is accounted for in the carbon balance through the (dimensionless) correction factors
ρru and ρmef , respectively. The correction factors express that CO2 is a by-product of the
synthesis of proteins and other macromolecules (ρru) and acetate (ρmef ). The production of
CO2 adds to the total �ux of carbon through these macroreactions, which makes ρru > 1 and
ρmef > 1. All biomass components are subjected to degradation at a rate γ [h−1].

The time evolution of the total quantity of each biomass component in the growing population
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can now be written as follows:

dC

dt
= Vmc − Vmer − ρmef Vmef − ρru (Vr + Vmu)− γ C, (5)

dU

dt
= Vmu − γ U, (6)

dMu

dt
= χuVr − γMu, (7)

dR

dt
= χr Vr − γ R, (8)

dMc

dt
= χc Vr − γMc, (9)

dMer

dt
= χer Vr − γMer, (10)

dMef

dt
= χef Vr − γMef , (11)

where χu, χr, χc, χer, χef are dimensionless resource allocation parameters, such that

χu + χr + χc + χer + χef = 1. (12)

The time evolution of the total quantity of protein P =Mu +R+Mc +Mer +Mef is obtained
by summing the di�erential equations for the di�erent protein categories:

dP

dt
= Vr − γ P. (13)

We de�ne the total cellular biomass B [gDW] as

B = β (Mu +R+Mc +Mer +Mef + C + U), (14)

where 1/β is the biomass carbon content [Cmmol gDW−1]. Recall that ATP and ADP are not
included in the biomass.

Assuming that the volume of the growing microbial population is proportional to the biomass
(Basan et al., 2015b), we transform the above quantities into concentrations by dividing by the
total biomass B: mu = Mu/B, mc = Mc/B, mer = Mer/B, mef = Mef/B, r = R/B, c =
C/B, u = U/B. Accordingly, the concentration variables have units Cmmol gDW−1 and the
total biomass concentration is given by 1/β.

The dynamics of the concentration variables is described by the following system of di�erential
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equations:

dc

dt
=
Vmc
B
− Vmer

B
− ρmef

Vmef
B
− ρru (

Vr
B

+
Vmu
B

)− γ c− 1

B

dB

dt
c, (15)

du

dt
=
Vmu
B
− γ u− 1

B

dB

dt
u, (16)

dmu

dt
= χu

Vr
B
− γ q − 1

B

dB

dt
mu, (17)

dr

dt
= χr

Vr
B
− γ r − 1

B

dB

dt
r, (18)

dmc

dt
= χc

Vr
B
− γ mc −

1

B

dB

dt
mc, (19)

dmer

dt
= χer

Vr
B
− γ mer −

1

B

dB

dt
mer, (20)

dmef

dt
= χef

Vr
B
− γ mef −

1

B

dB

dt
mef , (21)

The (speci�c) growth rate µ [h−1] is de�ned as the relative biomass increase of the cell,

µ =
1

B

dB

dt
, (22)

so that the last term in the preceding equations describes dilution by growth. Furthermore,
de�ning vmc = Vmc/B, vme = Vme/B, vr = Vr/B and vmu = Vmu/B as the reaction rates per
unit of biomass (volume) [Cmmol h−1 gDW−1], we obtain

dc

dt
= vmc − vmer − ρmef vmef − ρru (vr + vmu)− (µ+ γ) c, (23)

du

dt
= vmu − (µ+ γ)u, (24)

dmu

dt
= χu vr − (µ+ γ)mu, (25)

dr

dt
= χr vr − (µ+ γ) r, (26)

dmc

dt
= χc vr − (µ+ γ)mc, (27)

dmer

dt
= χer vr − (µ+ γ)mer, (28)

dmef

dt
= χef vr − (µ+ γ)mef . (29)

In addition to the �ow of carbon through the system, two equations describe energy transfer
due to the production and consumption of ATP. We de�ne, analogously to the other concentration
variables, a∗ = A∗/B and a = A/B, with units mmol gDW−1. The energy and mass �ows are
coupled via the following balance equations

da∗

dt
= nmer vmer + nmef vmef − nr vr − nmu vmu − vd, (30)

da

dt
= −nmer vmer − nmef vmef + nr vr + nmu vmu + vd, (31)
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where nmer and nmef represent the ATP yield of the two ATP production pathways (with
nmer > nmef , that is, respiration has a higher yield than fermentation), and nmu and nr the
ATP costs of biomass and protein synthesis, respectively. The reaction rate vd accounts for
energy dissipation, that is, the fact that around half of the ATP produced is not utilized for
macromolecular synthesis but dissipated in other cellular processes (Russell and Cook, 1995;
Feist et al., 2007).

Since da∗/dt = −da/dt, the total concentration of the energy cofactors (pool of a and a∗) is
equal to some constant a0 [mmol gDW−1],

a0 = a+ a∗, (32)

in agreement with experiments in which usually little variation in the concentration of energy
cofactors is observed (Petersen and Møller, 2000; Schneider and Gourse, 2004). Given the de-
pendency between a∗ and a, we omit the di�erential equation of the latter.

The model variables and rates are summarized in Appendix 1-Table A1.

Model Description Unit

Macromolecule concentrations

p total proteins Cmmol gDW−1

r ribosomes Cmmol gDW−1

mc enzymes in central carbon metabolism Cmmol gDW−1

mer enzymes in energy metabolism (respiration) Cmmol gDW−1

mef enzymes in energy metabolism (fermentation) Cmmol gDW−1

mu other proteins Cmmol gDW−1

u other macromolecules Cmmol gDW−1

Metabolite concentrations

c central carbon metabolites Cmmol gDW−1

a ADP mmol gDW−1

a∗ ATP mmol gDW−1

Reaction rates

vmc carbon uptake and central metabolism Cmmol gDW−1 h−1

vmer energy metabolism (respiration) Cmmol gDW−1 h−1

vmef energy metabolism (fermentation) Cmmol gDW−1 h−1

vr protein synthesis Cmmol gDW−1 h−1

vmu synthesis of other macromolecules Cmmol gDW−1 h−1

vd energy dissipation mmol gDW−1 h−1

Other rates and yield

µ growth rate h−1

γ degradation rate h−1

Y growth yield -

Table A1: Model variables and rates. The units Cmmol and gDW refer to mmol carbon and gram
dry weight, respectively.
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Model Description Unit

Resource allocation parameters

χr fraction of ribosomal proteins -
χc fraction of enzymes in central carbon metabolism -
χer fraction of enzymes in respiratory energy metabolism -
χef fraction of enzymes in fermentation energy metabolism -
χu fraction of other proteins -

ATP factors

nmer ATP yield from respiration mmol Cmmol−1

nmef ATP yield from fermentation mmol Cmmol−1

nr ATP cost of protein synthesis mmol Cmmol−1

nmu ATP cost of synthesis of other macromolecules mmol Cmmol−1

Correction factors

ρmef correction for CO2 loss during fermentation -
ρru correction for CO2 loss during biosynthesis -
1/β Total biomass concentration Cmmol gDW−1

Table A2: Model parameters.

Using the de�nition of total biomass (Eq. 14), we can express the growth rate µ as a function of
the reaction rates as follows:

µ =
1

B

dB

dt
= β

1

B

d(Mu +R+Mc +Mer +Mef + C + U)

dt
=β (vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu))− γ. (33)

Note that the total macromolecular synthesis rate is multiplied by ρru − 1 rather than ρru,
expressing that only the additional CO2 out�ux is lost to biomass synthesis.
The nondimensional growth yield is de�ned as the ratio between the net biomass synthesis rate
(µ/β) and the carbon uptake rate vmc, which leads to the following expression:

Y =
1

β

µ

vmc
=
vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu)− γ/β

vmc
. (34)

We use Michaelis-Menten kinetics to de�ne the rates of the macroreactions:

vmc(mc, S) = mc kmc
S

S +Kmc
, (35)

vr(r, c, a
∗) = r fr(c, a

∗) = r kr
c

c+Kr

a∗

a∗ +Kar
, (36)

vmu(mu, c, a
∗) = mu fmu(c, a

∗) = mu kmu
c

c+Kmu

a∗

a∗ +Kamu
, (37)

vmer(mer, c, a) = mer fmer(c, a) = mer kmer
c

c+Kmer

a

a+Kamer
, (38)

vmef (mef , c, a) = mef fmef (c, a) = mef kmef
c

c+Kmef

a

a+Kamef
, (39)
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where S denotes the concentration of the substrate in the medium [Cmmol L−1], Kmc, Kr,
Kar, Kmu, Kamu, Kmer,Kamer,Kmef ,Kamef half-saturation constants [Cmmol gDW−1] and
[mmol gDW−1], and kmc, kr, kmu, kmer, kmef maximum catalytic rate constants [h−1]. As can
be seen, rates are proportional to enzyme concentrations, but depend nonlinearly on metabolite
concentrations. During balanced growth in batch, the external substrate concentration S is much
higher than the half-saturation constant Kmc (S � Kmc), so that Eq. 35 can be approximated
by vmc(mc) = mc es, where es = kmc [h−1]. During continuous growth, the external substrate
concentration S is approximately constant, with the parameter es now de�ned as

es = kmc
S

S +Kmc
.

The energy dissipation rate is de�ned by �rst-order mass-action kinetics:

vd(a
∗) = kd a

∗, (40)

where kd [h−1] is a catalytic rate constant.
The resource allocation model of microbial growth thus becomes

dc

dt
= vmc(mc)− vmer(mer, c, a)− ρmef vmef (mef , c, a)−

− ρru (vr(r, c, a∗) + vmu(mu, c, a
∗))− (µ+ γ) c, (41)

du

dt
= vmu(mu, c, a

∗)− (µ+ γ)u, (42)

dmu

dt
= χu vr(r, c, a

∗)− (µ+ γ)mu, (43)

dr

dt
= χr vr(r, c, a

∗)− (µ+ γ) r, (44)

dmc

dt
= χc vr(r, c, a

∗)− (µ+ γ)mc, (45)

dmer

dt
= χer vr(r, c, a

∗)− (µ+ γ)mer, (46)

dmef

dt
= χef vr(r, c, a

∗)− (µ+ γ)mef , (47)

da∗

dt
= nmer vmer(mer, c, a) + nmef vmef (mef , c, a)

− nr vr(r, c, a∗)− nmu vmu(mu, c, a
∗)− vd(a∗), (48)

with

µ = β (vmc(mc)− vmer(mer, c, a)− ρmef vmef (mef , c, a)

− (ρru − 1) (vr(r, c, a
∗) + vmu(mu, c, a

∗)))− γ. (49)

Since it holds that

1/β = u+ c+mc +mer +mef + r +mu, (50)
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we can omit the di�erential equations for one of the variables in the right-hand side. Given that
u is not playing a role in any of the kinetic rates, we usually eliminate Eq. 42.
Note that in the above model, like in other resource allocation models (Erickson et al., 2017),
resource allocation parameters and proteome fractions coincide at steady state. For example,
from the steady-state equation for ribosomes, φr vr = (µ + γ) r, and the steady-state equation
for total proteins, vr = (µ+ γ) p, it follows that φr = r/p.

A1.3 Model variant with an additional growth-rate-independent protein cat-

egory

The model described above includes a residual category of proteins other than ribosomes and
translation-a�liated proteins (R), enzymes in central carbon metabolism (Mc), or enzymes in
energy metabolism (Mer and Mef ). This category Mu carries a �ux, because it includes the
machinery for the synthesis of macromolecules other than proteins, in particular RNA and DNA.
Moreover, we allow the fraction of the proteome occupied by this category to vary with the
particular resource allocation strategy adopted, and therefore with the growth rate.
The fact that the proteome fraction of Mu may change with the growth rate and that it carries
a �ux distinguishes it from a residual category of housekeeping proteins that is found in other
models of microbial growth (Scott et al., 2010; Mori et al., 2016). The latter protein category
(usually indicated by Q) is not accessible to growth-rate-dependent proteome adjustments and
carries no �ux. Its size can be determined in di�erent ways, most rigorously as the sum of the
o�sets of the linear relation between growth rate and proteome fraction of the individual protein
categories (Hui et al., 2015).
We developed a variant of the model used in this study that includes such a growth-rate-
independent category Q. First of all, for each of the other protein categories, we distinguished a
growth-rate-independent and dependent part, indicated by the superscripts 0 and µ, respectively.
For example, for ribosomes and translation-a�liated proteins, we have R = R0 + Rµ. Second,
we de�ned Q as consisting of the growth-rate-independent parts of the other protein categories:

Q = R0 +M0
c +M0

er +M0
ef +M0

u . (51)

Following these notations, the total cellular biomass B [gDW] is now de�ned as

B = β (Q+Rµ +Mµ
c +Mµ

er +Mµ
ef +Mµ

u + C + U), (52)

where in what follows we drop the superscripts for the growth-rate-dependent parts of the protein
categories. Notice that, like in the reference model, ATP and ADP are not included in the
biomass.
Following the same steps as for the reference model, a system of ordinary di�erential equations
can be derived. The only di�erences with Eqs 41-49 are that an additional equation for the
category Q is added:

dq

dt
= χq vr(r, c, a

∗)− (µ+ γ) q. (53)

Moreover, the sum of biomass components is given by

1/β = q +mc +mer +mef + r +mu + u+ c, (54)
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and the sum of resource allocation parameters is extended with χq:

χq + χr + χc + χer + χef + χu = 1. (55)

Note that, while the model has a very similar structure as the reference model of Eqs 41-49,
the interpretation of the protein concentrations mc, r, mer, mef , and mu has changed: instead
of denoting the total enzyme and ribosome concentrations, they now refer to the growth-rate-
dependent part of these concentrations.

A1.4 Comparison with other coarse-grained resource allocation models

The model of Figure 1 di�ers in several assumptions from previously proposed resource allocation
models of microbial growth. We summarize these di�erences below, focusing the comparison on
coarse-grained models. That is, we do not consider �ne-grained models on the genome scale used
in constraint-based analysis (Cheng et al., 2019; Adadi et al., 2012; Mori et al., 2016; Reimers
et al., 2017; Wortel et al., 2018).
A �rst class of models takes into account either the carbon or energy balance, but not both
(Molenaar et al., 2009; Scott et al., 2010, 2014; Maitra and Dill, 2015; Giordano et al., 2016;
Weiÿe et al., 2015; Bosdriesz et al., 2015; Erickson et al., 2017; Towbin et al., 2017; Dourado
and Lercher, 2020; Mairet et al., 2021). Typical examples are the classical model of Scott et al.
(2010), which describes mass �ow from substrate to di�erent categories of proteins, and the model
of Maitra and Dill (2015), which provides a balance of ATP produced from the substrate and
ATP consumed for protein synthesis. These models have successfully reproduced the ribosomal
growth law, i.e., the linear relation between growth rate and the ribosomal protein fraction, and
other empirical regularities. However, apart from the presence of an occasional dissipation term,
all substrate is used for biomass synthesis. Therefore, the growth yield as de�ned by Eq. 2 does
not vary with resource allocation. For our purpose, we need to be able to take into account that
the use of substrate for ATP production is accompanied by the out�ow of CO2 and the secretion
of acetate, thus lowering the growth yield.
A second class of models takes into account the coupling of the carbon and energy balances, but
describes the latter as �uxes of carbon and energy without specifying the underlying reaction
kinetics (Basan et al., 2015a; Mori et al., 2019). For example, in the model of Basan et al.
(2015a), �uxes in energy metabolism are modeled as the product of the proteome fraction of
enzymes in respiration or fermentation multiplied by a corresponding e�ciency coe�cient. The
energy coe�cients express the ATP yield per unit of protein in the respiration and fermentation
pathways, respectively. The coe�cients are constant and therefore cannot express di�erences in
the utilization of enzymes depending on the concentrations of central carbon metabolites and
energy cofactors. These concentrations may change with the resource allocation strategy and
lead to a higher saturation of enzymes, which we hypothesized as an explanation for high-rate,
high-yield growth of E. coli. In addition, this category of models equates biomass with proteins,
like the other models cited above. This does not allow the total protein concentration to vary
and a trade-o� between protein and metabolite concentrations to occur.
A third class of models does provide a kinetic description of all �uxes in the model and does
include metabolites in the biomass de�nition, although ignoring other macromolecules (Zav°el
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et al., 2019; Faizi et al., 2018). The model of Zav°el et al. (2019) is closest to our model, but since
it describes growth of cyanobacteria, it does not include alternative ATP production pathways
and therefore does not account for di�erences in growth yield depending on the investment of
cellular resources in respiration or fermentation. Moreover, the analysis of this model is focused
on accounting for the experimentally observed growth rate of cyanobacteria under di�erent light
intensities. This has motivated the choice to look for resource allocation strategies optimizing the
growth rate for each light intensity rather than scanning the space of possible resource allocation
strategies in order to predict the variability of rate-yield phenotypes.
The model presented in this work could be further extended by taking into account additional
features of some of the models cited above. For example, instead of treating resource allocation
strategies as an input to the model (Supplementary Figure 2), they could be de�ned as a function
of the bacterial physiology, e.g., translation activity (Scott et al., 2014; Maitra and Dill, 2015;
Giordano et al., 2016; Weiÿe et al., 2015; Bosdriesz et al., 2015; Erickson et al., 2017; Towbin
et al., 2017). This would allow, among other things, to account for the adaptation of resource
allocation during dynamic transitions between states of balanced growth. As another example,
our model could be extended to allow the uptake of alternative carbon sources (Erickson et al.,
2017; Towbin et al., 2017), which would allow the modeling of diauxic growth behavior.
The short summary in this section describes the main di�erences between the model of Figure 1
and some major previous work, but cannot do complete justice to the rich diversity of results in
the literature. We refer to article-length reviews on coarse-grained resource allocation models and
microbial growth for more extensive information (Scott et al., 2014; Kafri et al., 2016; de Jong
et al., 2017; Bruggeman et al., 2020).

Appendix 2: Model calibration

A2.1 Reference datasets and model calibration strategy

Model calibration was performed using published reference datasets with measurements of growth
rates and �uxes (van Rijsewijk et al., 2011; Gerosa et al., 2015; Peebo et al., 2015), protein
concentrations (Schmidt et al., 2016), and metabolite concentrations (Gerosa et al., 2015; Bennett
et al., 2009; Park et al., 2016). The datasets concern the E. coli BW25113 strain: either batch
growth in minimal medium with glucose or glycerol, or continuous growth in minimal medium
with glucose. We also used auxiliary data for other strains at comparable growth rates, when
necessary. Moreover, we adopted a top-down model calibration procedure, in order to enforce
consistency across di�erent data types.

Step 1 We used the total biomass density and measured biomass proportions of proteins and
metabolites to derive total protein and metabolite concentrations.

Step 2 We used proteomics and metabolomics data to derive the concentrations of the di�erent
protein and metabolite categories distinguished in the model.

Step 3 We used published data to reconstruct the biomass degradation rate for growth on
glucose and glycerol.
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Step 4 We used the measured substrate uptake and acetate secretion rates, the growth rate,
and the derived protein and metabolite concentrations to reconstruct the other metabolic
�uxes from the carbon mass balance.

Step 5 We derived the kinetic parameters from literature data and from the �uxes and the
concentrations obtained in the previous steps.

The above procedure does not require computational parameter �tting, since all parameters are
unambiguously �xed by the data, literature information, and suitable hypotheses motivated by
experimental results. We explain the procedure in detail for batch growth of the reference strain,
and then summarize the results for continuous growth and for an alternative strain. In what
follows, observed �uxes, growth rates, and concentrations, as well as kinetic parameters derived
from this information, are denoted by a hat .̂ symbol.

A2.2 Reconstruction of concentrations, rates, and �uxes for batch growth

A2.2.1 Total biomass concentration 1/β

The total concentration of biomass in the cell, in units Cmmol gDW−1, is referred to in our
model as 1/β. Using the de�nition of yield (Eq. 2 in the main text), we have 1/β = Y vmc/µ.
With the values reported by Morin et al. (2016) for the MG1655 strain, we estimate

1/β̂ = 40.65 Cmmol gDW−1. (56)

This value is close to the theoretical value obtained from the fact that the carbon mass fraction
of biomass is approximately 0.5 (Folsom and Carlson, 2015):

1 gDW = 0.5 CgDW =
0.5

12.01 · 10−3
= 41.6 Cmmol, (57)

where CgDW refers to Cgram dry weight and the molecular weight of C equals 12.01 g mol−1.
Another way to determine the total biomass concentration is to use the estimated elementary
biomass composition of E. coli. von Stockar and Liu (1999) report CH1.77O0.49N0.24, which with
the molecular weights of H, O, and N yields an estimate of 40.03 Cmmol gDW−1, again close to
the value proposed above.

A2.2.2 Metabolite concentrations c, a, a∗, and a0

A recent quanti�cation of 43 abundant metabolites in the E. coli BW25113 strain growing in
minimal medium with glucose or glycerol learns that these metabolites sum up to a concentration
of 0.89 Cmmol gDW−1 and 0.69 Cmmol gDW−1, respectively (Gerosa et al., 2015). When
comparing the metabolites quanti�ed by Gerosa et al. with those measured in a broader screen
carried out by Park et al. (2016), we conclude that 56% of the metabolite mass is covered by
the study of Gerosa et al. As a consequence, we estimate the total metabolite concentrations in
growth on glucose and glycerol to be 1.6 Cmmol gDW−1 and 1.2 Cmmol gDW−1, respectively.
With the biomass density value of Eq. 56, these concentrations correspond to 3.9% and 3.0%
of the total biomass. The estimates correspond well to the older estimate that metabolites
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constitute 3.5% of the total biomass, obtained for the E. coli B/r strain growing at a rate of
around 1 h−1 (Neidhardt, 1996), and a more recent estimate of 2.9% (Feist et al., 2007).

Analysis of the data of Gerosa et al. (2015) shows that central carbon metabolites account for
22% of the total free metabolite concentration during growth in minimal medium with glucose.
We therefore estimate the concentration of the pool of central metabolites in this condition as

ĉ = 0.22 · 1.6 = 0.35 Cmmol gDW−1. (58)

For growth on glycerol, the fraction of central metabolites is 17%, so that

ĉ = 0.17 · 0.92 = 0.20 Cmmol gDW−1. (59)

As explained in Appendix 1, we consider pools of charged and discharged energy cofactors
expressed as ATP equivalents. Following the arguments of Basan et al. (2015b), 1 NADH or
1 NADPH molecule can be converted into 2 ATP molecules. With these conversion factors,
we obtain from the ATP/ADP, NADH/NAD+, NADPH/NADP+ concentrations reported by
Gerosa et al. (2015), the following estimates of the concentrations of energy cofactors during
growth on glucose:

â∗ = 0.009 mmol gDW−1, â = 0.011 mmol gDW−1. (60)

The values for growth on glycerol are

â∗ = 0.005 mmol gDW−1, â = 0.010 mmol gDW−1. (61)

Accordingly, â0 = 0.020 mmol gDW−1 for growth on glucose, and â0 = 0.015 mmol gDW−1 for
growth on glycerol. Recall that ATP and ADP are not included in the mass balance (Appendix 1 ).

A2.2.3 Protein concentrations q, r, mc, and mer +mef

Estimates of the total protein concentration of E. coli reported in the literature vary signi�cantly
(Milo, 2013). For example, older values for the B/r strain indicate a mass fraction of 0.55
(Neidhardt, 1996), for cells growing with a doubling time of 40 min (µ = 1.04 h−1). In their
quanti�cation of the NCM3722 strain, Basan et al. (2015b) report a value of 0.67 for the protein
fraction of dry biomass of cells growing in batch in minimal medium with glucose at a rate of
0.99 h−1. For growth on other carbon sources at rates of 0.42-0.43, this fraction increases to
0.73-0.76. Valgepea et al. (2013) �nd that for glucose-limited growth in a bioreactor at a rate of
0.4 h−1, the MG1655 strain, another K-12 descendant, has a protein dry biomass fraction equal
to 0.53. Milo (2013) cites an old reference value of 0.24 g mL−1, which with an estimated total
(dry) biomass concentration of 0.33 g mL−1 yields a protein mass fraction of 0.73, in agreement
with the values of Basan et al.

We based our estimates on the data from Basan et al. (2015b), who report protein dry mass
fractions for batch growth in di�erent media at di�erent growth rates. From within the range of
reported values, we chose the dry mass fractions for growth rates corresponding to the observed
growth rates of the BW25113 strain in minimal medium with glucose or glycerol (Appendix 2-
Figure A2). This resulted in protein dry mass fractions of 0.72 (glucose) and 0.73 (glycerol).
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Like the carbon mass fraction of biomass, the carbon mass fraction of protein is approximately
0.5 (Supplementary table 3 in Feist et al. (2007)). As a consequence, the above protein dry mass
fractions also denote the protein fractions of the total biomass concentration expressed in units
Cmmol gDW−1.

Figure A2: Protein dry mass fraction for di�erent growth rates of E. coli. The protein dry
mass fraction (g gDW−1) as a function of the steady-state growth rate was computed from data for the
NCM3722 wild-type strain grown in di�erent media (red dots) or for a strain carrying a plasmid for
the gratuitous overexpression of a protein (blue dots) (Appendix Table S4 in Basan et al. (2015b)). We
interpolated the data (black line) to provide an estimate of the protein dry mass fractions at the growth
rates corresponding to batch growth of the BW25113 strain in minimal medium with either glucose or
glycerol (µ = 0.61 h−1 or µ = 0.49 h−1, respectively).

In our model, the process of protein synthesis includes the synthesis of amino acids from
central metabolites (Appendix 1 ). For reasons of consistency, we therefore add the concentrations
of free amino acids to the total protein concentration. Given that amino acids account for around
50% of metabolites (Bennett et al., 2009), and the total metabolite concentrations were estimated
to take up 3.9% and 3.0% of the total biomass during growth on glucose and glycerol, respectively,
the total protein concentrations amount to a fraction of 0.74 of the total biomass density, for
both glucose and glycerol.

The proteomics data of Schmidt et al. (2016) provide information on the mass fractions of
each of the protein categories distinguished in the model. This information, together with the
total protein concentration established above, allows us to compute the concentrations mu, r,
mc, and mer+mef (in units Cmmol gDW−1). The use of mass fractions, instead of the absolute
values also reported by Schmidt et al., has the advantage of ensuring the consistency of the
protein concentrations with the uptake, secretion, and growth rates reconstructed below. In the
case of growth in minimal medium with glucose, we thus estimate that
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m̂u = 0.37 · 0.74 · 1/β̂ = 11.1 Cmmol gDW−1, (62)

r̂ = 0.44 · 0.74 · 1/β̂ = 13.2 Cmmol gDW−1, (63)

m̂c = 0.09 · 0.74 · 1/β̂ = 2.7 Cmmol gDW−1, (64)

m̂er + m̂ef = 0.10 · 0.74 · 1/β̂ = 3.0 Cmmol gDW−1. (65)

while for minimal medium with glycerol we obtain

m̂u = 0.36 · 0.74 · 1/β̂ = 10.9 Cmmol gDW−1, (66)

r̂ = 0.38 · 0.74 · 1/β̂ = 11.5 Cmmol gDW−1, (67)

m̂c = 0.10 · 0.74 · 1/β̂ = 3.0 Cmmol gDW−1, (68)

m̂er + m̂ef = 0.16 · 0.74 · 1/β̂ = 4.8 Cmmol gDW−1, (69)

The above mass fractions correspond to the following resource allocation parameters for the cases
of growth on glucose:

χ̂u = 0.37, χ̂r = 0.44, χ̂c = 0.09, (70)

and growth on glycerol:
χ̂u = 0.36, χ̂r = 0.38, χ̂c = 0.10. (71)

We will discuss in a later section how to distribute the total concentration m̂er + m̂ef over the
respiration and fermentation proteins that compose it (and thus determine the resource allocation
parameters χer and χef ).

A2.2.4 Concentration of other macromolecules u

The biomass de�nition in the model enforces the concentration u of other macromolecules (RNA,
DNA, lipids in cell membrane) to equal the di�erence between the total biomass concentration
and the sum of the total protein and metabolite concentrations. For growth on glucose, we thus
�nd that

û = 10.2 Cmmol gDW−1, (72)

whereas for growth on glycerol, we obtain

û = 10.2 Cmmol gDW−1. (73)

The estimated values, and all other concentration values derived above, are summarized in Ap-
pendix 2-Table A3.
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A2.2.5 Degradation rate γ

The model includes a degradation constant γ that accounts for one of the main causes of so-called
maintenance costs of the cell, the turnover of macromolecules and other biomass components.
We show that the biomass degradation constant can be determined by means of the well-known
Pirt model for maintenance, de�ned by

vmc =
µ

Y max
+ km, (74)

where vmc [Cmmol gDW−1 h−1] is the substrate uptake rate, Y max [gDW Cmmol−1] the maxi-
mum biomass yield without maintenance, and km [Cmmol gDW−1 h−1] the so-called maintenance
coe�cient (Pirt, 1965).

By substituting expressions for Y max and µ from our model (Appendix 1 ) into Eq. 74, we
obtain

vmc =
β (vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu)− γ/β)

β (vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu))
· vmc + km

= vmc −
γ

Y max
+ km, (75)

or
γ = km · Y max. (76)

Data for growth of the E. coli MG1655 strain in minimal medium with glucose, by Esquerré
et al. (2014), indicate a maintenance coe�cient of km = 0.35 mmolglc gDW−1 h−1 and a maximal
yield Ymax = 76.2 gDW mol−1

glc , practically identical to the values reported for the same strain in
the same medium by Nanchen et al. (2006) (km = 0.37 mmolglc gDW−1 h−1, Ymax = 76 gDW
mol−1

glc). Using the values from Esquerré et al. (2014), we �nd γ̂ = 0.027 h−1. By the same
reasoning as above, the maintenance rate for growth in minimal medium with glycerol can be
obtained. Classical experiments indicate that the rate is 1.2 times the rate for glucose (Farmer
and Jones, 1976), so γ̂ = 0.032 h−1.

A2.2.6 Substrate uptake �ux vmc, fermentation �ux vmef , and biosynthesis �uxes

vmu, vr

The data sets used from van Rijsewijk et al. (2011) and Gerosa et al. (2015) consist of measured
�uxes and the growth rate of the E. coli BW25113 strain, during exponential growth in minimal
medium with glucose and glycerol, respectively. In particular, the glucose or glycerol uptake
rate vmc [mmolglc/gal gDW−1 h−1], the acetate secretion rate vmef [mmolace gDW−1 h−1], and
the growth rate µ [h−1] were measured. The values for glucose are v̂mc = 8.26 mmolglc gDW−1

h−1, v̂mef = 4.89 mmolace gDW−1 h−1, and µ̂ = 0.61 h−1. These values are very close to those
reported by Morin et al. (2016) for the MG1655 strain. In the case of growth on glycerol, we
have v̂mc = 11.3 mmolgly gDW−1 h−1 and µ̂ = 0.49 h−1, while the acetate secretion rate was
found to be small: v̂mef = 0.60 mmolace gDW−1 h−1.1

1Gerosa et al. (2015) actually report a glycerol uptake rate of 10.14 mmolglc gDW−1 h−1, but explain that
uptake rates were computed by dividing the measured growth rates by the measured biomass yields (see Extended
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In agreement with the biomass concentration units, we express mass �uxes in terms of the
amount of carbon �owing through the system [Cmmol gDW−1 h−1]. Bearing in mind that the
carbon content of glucose is 6 C and that of acetate 2 C, we obtain the following rates:

v̂mc = 8.26 · 6 = 49.6 Cmmol gDW−1 h−1, (77)

v̂mef = 4.89 · 2 = 9.8 Cmmol gDW−1 h−1. (78)

Similarly, for growth on glycerol we have

v̂mc = 11.3 · 3 = 33.9 Cmmol gDW−1 h−1, (79)

v̂mef = 0.60 · 2 = 1.2 Cmmol gDW−1 h−1, (80)

where we have used the fact that the carbon content of glycerol is 3 C.
The measured �uxes, together with the growth and degradation rates and the total biomass

concentration, �x the biosynthesis �uxes in the model. This can be shown by rewriting the
equations in the model in the following way:

vmu = (µ+ γ)u, (81)

vr = (µ+ γ) (mu + r +mc +mer +mef ). (82)

Values for vmu and vr can be directly computed from the values for the concentrations and rates
in the right-hand sides of Eqs 81 and 82 that were derived above. This yields for growth on
glucose:

v̂mu = 6.5 Cmmol gDW−1 h−1, (83)

v̂r = 19.2 Cmmol gDW−1 h−1, (84)

and for growth on glycerol:

v̂u = 5.3 Cmmol gDW−1 h−1, (85)

v̂r = 15.8 Cmmol gDW−1 h−1. (86)

A2.2.7 Respiration �ux vmer and CO2 correction factors ρru and ρmef

In the �ux datasets mentioned above, CO2 released by the cells was not directly measured.
The CO2 �ux can be derived from the carbon mass balance, bearing in mind that almost all of
the carbon not integrated into biomass leaves the cells as CO2 or acetate (Gerosa et al., 2015;

Experimental Procedures). In the case of glycerol, the growth rate and the biomass yield were found to be
0.49 h−1 and 0.47 gDW g−1, respectively (Data S1 ), which with a molecular weight of 92.09 g mol−1 gives a value
of 0.49/(0.47 · 92.09 · 0.001) = 11.3 mmol gDW−1 h−1 for the glycerol uptake rate.
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Gottschalk, 1986). The carbon mass balance is given by the de�nition of the growth rate, which
provides an expression for the total CO2 out�ux vCO2 . We have

vCO2 = vmer + (ρmef − 1) vmef + (ρru − 1) (vr + vmu) = vmc − vmef −
µ+ γ

β
, (87)

where ρru− 1 > 0 is the correction factor accounting for the release of CO2 during the synthesis
of amino acids, proteins, and other biomass components and ρmef − 1 > 0 the correction factor
accounting for the CO2 released during the conversion of glucose to acetate (Appendix 1). That
is, the total CO2 �ux is composed of the CO2 released during respiration (vmer), fermentation
((ρmef − 1) vmef ), and the CO2 released during biomass synthesis ((ρru − 1) (vr + vmu)). Basan
et al. (2015a) argue that the latter CO2 out�ux is proportional to the growth rate over a wide
range of conditions, with a proportionality constant η:

(ρru − 1) (vr + vmu) = η µ. (88)

The value of η is estimated at 7.2 Cmmol gDW−1 (Basan et al., 2015a), so that for a growth
rate of 0.61 h−1 in the case of minimal medium with glucose, the CO2 out�ux associated to
biomass synthesis equals 4.4 Cmmol gDW−1 h−1. Moreover, with the values for vr and vmu
derived above, we �nd

ρ̂ru =
η̂ µ̂

v̂r + v̂mu
+ 1 = 1.17. (89)

That is, 17 % of the carbon �ux towards biomass synthesis is lost as CO2. The total CO2 out�ux
can be directly computed from Eq. 87, giving

v̂CO2 = 13.9 Cmmol gDW−1 h−1. (90)

For each acetate molecule, one CO2 is produced (Basan et al., 2015a), so that ρ̂mef = 1.5. The
respiration-associated CO2 out�ux can now be reconstructed as

v̂mer = v̂CO2 − (ρ̂mef − 1) vmef − (ρ̂ru − 1) (v̂r + v̂mu) = 4.6 Cmmol gDW−1 h−1. (91)

In the case of growth on glycerol, we �nd v̂CO2 = 11.5 Cmmol gDW−1 h−1 and v̂mer = 7.3 Cm-
mol gDW−1 h−1, while the value for ρru is the same as for glucose (1.17). The reconstructed
�ux measurements are summarized in Appendix 2-Table A3, whereas the �ux correction factors
for CO2 release are included in Appendix 2-Table A4.

48

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2022.04.27.489666doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489666
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rates Unit Glucose Glycerol Reference

µ̂ h−1 0.61± 0.01 0.49± 0.01 a, b
γ̂ h−1 0.027 0.032 c, d

Uptake, secretion, biosynthesis �uxes

v̂mc Cmmol gDW−1 h−1 49.6± 5 33.9± 1.0 a
v̂mer Cmmol gDW−1 h−1 4.6 7.3 Derived
v̂mef Cmmol gDW−1 h−1 9.8± 3.0 1.2± 0.4 a
v̂mu Cmmol gDW−1 h−1 6.5 5.3 Derived
v̂r Cmmol gDW−1 h−1 19.2 15.8 Derived
Total biomass concentration

1/β̂ Cmmol gDW−1 40.65± 2.0 40.65± 2.0 e

Protein concentrations

m̂u Cmmol gDW−1 11.1± 0.5 10.9± 0.5 e, f, g
r̂ Cmmol gDW−1 13.2± 0.6 11.5± 0.6 e, f, g
m̂c Cmmol gDW−1 2.7± 0.1 3.0± 0.1 e, f, g
m̂er + m̂ef Cmmol gDW−1 3.0± 0.1 4.8± 0.2 e, f, g
m̂er Cmmol gDW−1 1.9 4.4 Derived
m̂ef Cmmol gDW−1 1.1 0.47 Derived
Metabolite concentrations

ĉ Cmmol gDW−1 0.35± 0.002 0.20± 0.002 b, h
â∗ mmol gDW−1 0.009± 0.0002 0.005± 0.0003 b
â mmol gDW−1 0.011± 0.0006 0.010± 0.0005 b
â0 mmol gDW−1 0.020± 0.0008 0.015± 0.0008 b

Concentration of other biomass

û Cmmol gDW−1 10.2 10.2 Derived

Table A3: Reconstruction of growth and degradation rates, uptake, secretion and biosynthesis �uxes,
and protein and metabolite concentrations from published data sets for the case of batch growth of E. coli
in minimal medium with glucose or glycerol, as explained in the text. The uncertainty intervals for the
rates, �uxes, and metabolite concentrations are standard deviations reported in the source publications,
after unit conversion. The uncertainty interval for the total biomass concentration was obtained by
propagating the errors of the measurements in the right-hand side of 1/β = Y vmc/µ (Morin et al., 2016).
The uncertainty interval for the total protein concentration was obtained by combining the latter error
with the standard error of the mean for the total protein fraction predicted by the linear model �tted
to the data in Appendix 2-Figure A2. The resulting error was distributed over the individual protein
categories according to their mass fractions. References: a van Rijsewijk et al. (2011), b Gerosa et al.
(2015), c Esquerré et al. (2014), d Farmer and Jones (1976), e Morin et al. (2016), f Basan et al. (2015b),
g Schmidt et al. (2016), hPark et al. (2016).

A2.3 Estimation of parameter values for batch growth

The model contains 20 kinetic parameters. Estimation of all of these values from the data in
Appendix 2-Table A3 would lead to identi�ability problems. However, as shown below, mak-
ing appropriate assumptions based on experimental observations allows all parameters to be
unambiguously �xed.
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A2.3.1 Parameters in energy balance equation nme, nmer, nmef , nr, nmu, ka

We remind that the energy cofactor rate equation at steady state, or energy balance, is given by

0 = nmer vmer + nmef vmef − nr vr − nmu vmu − vd, (92)

where vd = ka a
∗.

The ATP yield coe�cients nmer and nmef describe how many energy cofactor molecules
(ATP) can be regenerated from a molecule of substrate (glucose or glycerol), in units mmolATP

Cmmol−1
glc/gly. Basan et al. (2015b) describe a procedure for deriving the yield coe�cients nmer

and nmef from the reaction stoichiometry of the metabolic pathways used during growth on
glucose. Aerobic respiration generates 4 ATP, 8 NADH, 2 NADPH, and 2 FADH2 from one
molecule of glucose, equivalent to 26 ATP, whereas aerobic fermentation (acetate over�ow) leads
to 4 ATP and 4 NADH, equivalent to 12 ATP. As a consequence,

n̂mer = 26ATP/Glc = 26/6 = 4.3 mmolCmmol−1, (93)

n̂mef = 12ATP/Glc = 12/6 = 2 mmolCmmol−1, (94)

bearing in mind that glucose contains 6 C atoms. Restricting central metabolism to the glycolysis
and TCA pathways, like Basan et al. (2015b), and focusing on the main �ux of glycerol catabolism
through the lower part of the glycolysis pathway, the ATP yield of glycerol respiration can be
determined as 2 ATP, 4 NADH, 1 NADPH, and 2 FADH2, equivalent to 14 ATP. Similarly, for
aerobic fermentation we �nd 2 ATP, 2 NADH, and 1 FADH2, equivalent to 7 ATP. This yields

n̂mer = 14ATP/Gly = 14/3 = 4.7 mmolCmmol−1, (95)

n̂mef = 7ATP/Gly = 7/3 = 2.3 mmolCmmol−1, (96)

given that glycerol contains 3 C atoms.
The coe�cient nr describes the ATP costs of protein synthesis. Kaleta et al. (2013) compute

the amount of ATP needed for the elongation of a protein by one amino acid, including the net
ATP costs of the synthesis of the amino acids from central metabolites and mRNA synthesis.
They �nd that the ATP costs of the synthesis of many amino acids are negative (that is, their
synthesis yields ATP), while the ATP costs of mRNA synthesis are negligeable in comparison
with the translation costs. For glucose, the median total ATP costs are 3.7 ATP/amino acid.
This equals 3.7/4.8 = 0.77 mmolATP Cmmol−1

aa , where the mean C content of amino acids,
weighted for the amino acid composition of biomass, is estimated at 4.8 (data from Feist et al.
(2007)). That is,

n̂r = 0.77 mmolCmmol−1. (97)

These theoretical costs are close to the value of 0.94 mmolATP Cmmol−1
aa obtained from the review

of Russell and Cook, who base their estimate on calculations by Stouthamer (Russell and Cook,
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1995).2 For glycerol, where the synthesis of many amino acids is energetically favorable (Kaleta
et al., 2013), the median total ATP costs are much lower: 0.44 ATP/amino acid. This amounts
to 0.44/4.8 = 0.09 mmolATP Cmmol−1

aa , and hence

n̂r = 0.09 mmolCmmol−1. (98)

The coe�cient nmu describes the ATP costs of the synthesis of other macromolecules (RNA,
DNA, . . .). From the review of Russell and Cook (1995), under the assumption that the average
carbon mass fraction of other macromolecules is also equal to 0.5, we �nd that these ATP costs
equal 0.65 mmolATP Cmmol−1

macromolecule, so that

n̂mu = 0.65 mmolCmmol−1. (99)

This value applies to growth on glucose, but in the absence of information speci�c to growth on
glycerol, we use the same value for the latter condition.

It has been well-established that the estimated ATP production exceeds the estimated ATP
consumption for macromolecular synthesis by a factor of 2-3 in the case of growth on minimal
medium with glucose (Feist et al., 2007; Russell and Cook, 1995). This suggests a dissipation of
energy which is also observed in our case: the ratio of n̂mer v̂mer+ n̂mef v̂mef and n̂r v̂r+ n̂mu v̂mu
equals 2.1 in the case of glucose, and increases to 7.5 in the case of glycerol. The di�erence is due
to the costs of osmoregulation, motility, and other maintenance processes (van Bodegom, 2007),
but also to energy spilling, a factor that remains little understood (Russell and Cook, 1995). As
explained in Appendix 1, we model all of the above forms of energy dissipation by a �rst-order
reaction with constant ka whose value can be computed by closing the energy balance (92):

k̂a =
n̂mer v̂mer + n̂mef v̂mef − n̂r v̂r − n̂u v̂u

â∗
. (100)

In the case of batch growth on glucose, we thus �nd an approximate value

k̂a = 2279 h−1, (101)

and for glycerol,

k̂a = 6426 h−1. (102)

A2.3.2 Parameter in rate equation for central carbon metabolism es

As explained in Appendix 1, the macroreaction for central carbon metabolism simpli�es to the
following simple rate equation:

vmc = esmc. (103)

With the value for mc derived in the previous section (Appendix 2-Table A3), we obtain the
following estimates for glucose:

2The value of 0.94 mmolATP Cmmol−1
aa is obtained by converting the value given in Table 1 of Russell and

Cook (1995), bearing in mind that the calculations were done for a protein fraction of biomass equal to 0.52 and
using a carbon mass fraction of protein equal to 0.5 (Feist et al., 2007).
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ês = 18.3 h−1, (104)

and for glycerol:

ês = 11.2 h−1. (105)

A2.3.3 Parameters in the rate equations for the synthesis of proteins and other

biomass components Kr, Kmu, Kar, Kamu, kr, and kmu

The rate equations for the macroreactions corresponding to protein synthesis and the synthesis
of other macromolecules are restated as a reminder:

vr = kr r
a∗

a∗ +Kar

c

c+Kr
, (106)

vmu = kmumu
a∗

a∗ +Kamu

c

c+Kmu
. (107)

The above reactions consume central metabolites (c) and charged energy cofactors (ATP) (a∗).
Very little information is available on the in-vivo values of half-saturation constants occurring

in the kinetic expressions of the macroreactions. However, previous metabolomics assays have
yielded general observations on enzyme saturation (the ratio of reaction substrates and half-
saturation constants) that will be exploited here (Bennett et al., 2009). These will be re�ned by
combining available measurements with a recent compilation of Km values for E. coli (Dourado
et al., 2021; Park et al., 2016).

First, in the case of central carbon metabolism, "substrate concentrations are close to Km

for many reactions" (Bennett et al., 2009). We have computed, for metabolites in central carbon
metabolism of E. coli quanti�ed by Gerosa et al. (2015), the ratio of metabolite concentrations
and values of the half-saturation constants of the reactions in which the metabolites participate
(Dourado et al., 2021). Taking the geometric mean of the ratios, we found an average value of
substrate saturation of 1.2 for glucose and 0.72 for glycerol (Supplementary File 3). Assuming
that this value is approximately valid for all reactions consuming central carbon metabolites in
our model, we estimate for glucose

K̂r = K̂mu ≈
ĉ

1.2
= 0.29 Cmmol gDW−1, (108)

and for glycerol

K̂r = K̂mu ≈
ĉ

0.72
= 0.28 Cmmol gDW−1, (109)

The values may be di�erent for growth on glucose and glycerol due to the fact that we deal
with apparent half-saturation constants that account for possible metabolic regulation.

Second, ATP and NAD+ were found to saturate their enzymes with "cofactor concentration
typically exceeding their Km value by more than tenfold" (Bennett et al., 2009). This motivates
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the following approximate values for the half-saturation constants occurring in the energy terms
of the biosynthesis rate equations:

K̂ar = K̂amu ≈ â∗/10 mmol gDW−1, (110)

with di�erent values for growth on glucose and glycerol (0.0009 vs 0.0005 mmol gDW−1).
Together with the values for the �uxes and enzyme concentrations, we can now derive values

for the unknown catalytic constants kr and kmu from Eqs 106-107. In the case of growth on
glucose, we have

k̂r = 2.9 h−1, k̂mu = 1.2 h−1, (111)

whereas for growth on glycerol we �nd

k̂r = 3.6 h−1, k̂mu = 1.3 h−1. (112)

Note that the estimates for kr are comparable to values used for the maximum translation
capacity in previous work (5.9 h−1 in Scott et al. (2010); 3.6 h−1 in Giordano et al. (2016)).

A2.3.4 Parameters in the rate equations for energy metabolism Kmer, Kmef , Kamer,

Kamef , kmer, and kmef

We repeat the rate equations for energy metabolism, for the two macroreactions (respiration and
fermentation):

vmer = kmermer
a0 − a∗

a0 − a∗ +Kamer

c

c+Kmer
, (113)

vmef = kmef mef
a0 − a∗

a0 − a∗ +Kamef

c

c+Kmef
. (114)

The arguments given in the previous section for �xing the values of the half-saturation con-
stants also apply in this case, so that we obtain

K̂mer = K̂mef = 0.29 Cmmol gDW−1, (115)

K̂amer = K̂amef = 0.0011 mmol gDW−1, (116)

for growth on glucose, and

K̂mer = K̂mef = 0.28 Cmmol gDW−1, (117)

K̂amer = K̂amef = 0.001 mmol gDW−1, (118)

for growth on glycerol.
In the previous section, we were only able to reconstruct the total concentration of enzymes

involved in energy metabolism (Appendix 2-Table A3), but not the fractions involved in aerobic

53

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2022.04.27.489666doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489666
http://creativecommons.org/licenses/by-nc-nd/4.0/


respiration or fermentation. Let m̂e = m̂er + m̂ef . In order to derive the concentrations mer

and mef , we follow approximately the same procedure as Basan et al. (2015b), but for the
proteomics data of Schmidt et al. (2016). We divide the proteins labelled as taking part in
energy metabolism into enzymes only playing a role in respiration (pyruvate decarboxylation,
TCA cycle), enzymes only playing a role in fermentation (acetate pathway), and other enzymes,
notably those constituting the electron transport chain and ATP synthases using the proton
gradient for ATP production. The latter category is involved in both (aerobic) respiration and
fermentation, and we divide the protein mass according to the ratio of the respiration and
fermentation �uxes. For growth on glucose, we �nd fractions 0.45, 0.01, and 0.54 for the three
protein categories, whereas for glycerol we �nd 0.37, 0.01, and 0.62, respectively (Supplementary
File 4). This gives rise to the following estimates for glucose,

m̂er = (0.45 + 0.54
v̂mer

v̂mer + v̂mef
) m̂e = 1.9 Cmmol gDW−1, (119)

m̂ef = (0.01 + 0.54
v̂mef

v̂mer + v̂mef
) m̂e = 1.1 Cmmol gDW−1, (120)

and for glycerol

m̂er = (0.37 + 0.62
v̂mer

v̂mer + v̂mef
) m̂e = 4.4 Cmmol gDW−1, (121)

m̂ef = (0.01 + 0.62
v̂mef

v̂mer + v̂mef
) m̂e = 0.47 Cmmol gDW−1. (122)

Together with the values for the �uxes and metabolite concentrations, we can now estimate
values for the unknown apparent catalytic constants kmer and kmef from Eqs 113-114. In the
case of growth on glucose, we have

k̂mer = 5.0 h−1, k̂mef = 17.4 h−1, (123)

and for growth on glycerol,

k̂mer = 4.4 h−1, k̂mef = 6.7 h−1. (124)

All parameter values derived in this and the previous sections are summarized in Appendix 2-
Table A4.
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Parameter Glucose Glycerol Unit

ρ̂ru 1.17 1.17 -
ρ̂mef 1.5 1.5 -
k̂r 2.9 3.6 h−1

k̂mu 1.2 1.3 h−1

ês 18.3 11.2 h−1

k̂mer 5.0 4.4 h−1

k̂mef 17.4 6.7 h−1

k̂a 2279 6426 h−1

K̂r 0.29 0.28 Cmmol gDW−1

K̂mu 0.29 0.28 Cmmol gDW−1

K̂mer 0.29 0.28 Cmmol gDW−1

K̂mef 0.29 0.28 Cmmol gDW−1

K̂ar 0.0009 0.0005 mmol gDW−1

K̂amer 0.0011 0.001 mmol gDW−1

K̂amef 0.0011 0.001 mmol gDW−1

K̂amu 0.0009 0.0005 mmol gDW−1

n̂mer 4.3 4.7 mmolCmmol−1

n̂mef 2.0 2.3 mmolCmmol−1

n̂r 0.77 0.09 mmolCmmol−1

n̂u 0.65 0.65 mmolCmmol−1

Table A4: Estimation of the values of the kinetic parameters in the model, in the case of batch growth
of E. coli in minimal medium with glucose or glycerol, as explained in the text.

A2.4 Data and parameter estimates for continuous growth

The model calibration procedure for the other conditions considered, continuous growth in a
chemostat, in minimal medium with glucose at dilution rates of 0.2 h−1, 0.35 h−1, and 0.5 h−1, is
the same as for batch growth. Not all source data used above are available for continuous growth.
In their absence, we use the corresponding data for batch growth as a proxy. In particular, total
protein and metabolite concentrations were obtained from Gerosa et al. (2015) and Basan et al.
(2015b) by selecting the (interpolated) values for batch growth at rates corresponding to the
dilution rates (Appendix 2-Figure A2). In addition, for the case of growth at a dilution rate of
0.2 h−1, where no signi�cant acetate over�ow is detected, we set the acetate secretion rate to
5% of the acetate secretion rate during continuous growth at 0.35 h−1, that is, a value below the
detection limit. This allows the same model with respiration and fermentation to be used over
all conditions.

The data used for calibration is shown in Appendix 2-Table A2.4 and the values for the
parameters obtained after calibration are listed in Appendix 2-Table A6.
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Rates Unit D0.2 D0.35 D0.5 Reference

µ̂ h−1 0.2 0.35 0.5 a
γ̂ h−1 0.027 0.027 0.027 b

Uptake, secretion, and biosynthesis �uxes

v̂mc Cmmol gDW−1 h−1 16.0 26.2 37.4 a
v̂mer Cmmol gDW−1 h−1 5.3 8.1 9.4 Derived
v̂mef Cmmol gDW−1 h−1 0.02 0.16 2.0 a
v̂u Cmmol gDW−1 h−1 1.9 3.4 5.2 Derived
v̂r Cmmol gDW−1 h−1 7.3 11.8 16.1 Derived
Total biomass concentration

1/β̂ Cmmol gDW−1 40.65± 2.0 40.65± 2.0 40.65± 2.0 c

Protein concentrations

m̂u Cmmol gDW−1 11.2± 0.6 11.2± 0.6 10.4± 0.5 c, d, e
r̂ Cmmol gDW−1 9.3± 0.5 9.4± 0.5 11.0± 0.5 c, d, e
m̂c Cmmol gDW−1 3.5± 0.2 3.4± 0.2 3.3± 0.2 c, d, e
m̂er + m̂ef Cmmol gDW−1 8.0± 0.4 7.2± 0.4 5.8± 0.3 c, d, e
m̂er Cmmol gDW−1 7.9 7.1 5.2 Derived
m̂ef Cmmol gDW−1 0.05 0.1 0.6 Derived
Metabolite concentrations

ĉ Cmmol gDW−1 0.35± 0.002 0.35± 0.002 0.35± 0.002 f, g
â∗ mmol gDW−1 0.005 0.006 0.008 f
â mmol gDW−1 0.011 0.015 0.016 f
â0 mmol gDW−1 0.016 0.021 0.024 f

Concentration of other biomass

û Cmmol gDW−1 8.2 9.0 9.8 Derived

Table A5: Reconstruction of growth and degradation rates, uptake, secretion, and biosynthesis �uxes,
and protein and metabolite concentrations from published data sets for the case of continuous growth
of E. coli in minimal medium with glucose at di�erent dilution rates (D0.2: 0.2 h−1, D0.35: 0.35 h−1,
D0.5: 0.5 h−1), as explained in the text. For the error bars, see Appendix 2-Table A3. References: a

Peebo et al. (2015), b Esquerré et al. (2014), c Morin et al. (2016), d Basan et al. (2015b), e Schmidt
et al. (2016), f Gerosa et al. (2015), g Park et al. (2016).
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Parameter D0.2 D0.35 D0.5 Unit

ρ̂ru 1.16 1.17 1.17 -
ρ̂mef 1.5 1.5 1.5 -
k̂r 1.6 2.5 2.9 h−1

k̂mu 0.33 0.61 1.0 h−1

ês 4.5 7.6 11.2 h−1

k̂mer 1.3 2.3 3.6 h−1

k̂mef 0.77 2.98 6.8 h−1

k̂a 3203 4001 3633 h−1

K̂r 0.29 0.29 0.29 Cmmol gDW−1

K̂mu 0.29 0.29 0.29 Cmmol gDW−1

K̂mer 0.29 0.29 0.29 Cmmol gDW−1

K̂mef 0.29 0.29 0.29 Cmmol gDW−1

K̂ar 0.0005 0.0006 0.0008 mmol gDW−1

K̂amer 0.0011 0.0015 0.0016 mmol gDW−1

K̂amef 0.0011 0.0015 0.0016 mmol gDW−1

K̂amu 0.0005 0.0006 0.0008 mmol gDW−1

n̂mer 4.3 4.3 4.3 mmolCmmol−1

n̂mef 2.0 2.0 2.0 mmolCmmol−1

n̂r 0.77 0.77 0.77 mmolCmmol−1

n̂u 0.65 0.65 0.65 mmolCmmol−1

Table A6: Estimation of the values of the kinetic parameters in the model, in the case of continuous
growth of E. coli in minimal medium with glucose at di�erent dilution rates (D0.2: 0.2 h−1, D0.35:
0.35 h−1, D0.5: 0.5 h−1), as explained in the text.

Data and parameter estimates for MG1655 and NCM3722 strains

In order to test the robustness of our results with respect to the calibration procedure, we
calibrated the model for a di�erent E. coli strain, MG1655, in the same way as for the reference
strain. To this aim, we used published measurements on batch growth of MG1655 in minimal
medium with glucose, including metabolite concentrations (McCloskey et al., 2018), proteomics
data (Schmidt et al., 2016), and metabolic �uxes (Monk et al., 2017).

The total biomass concentration is the same as for the reference strain (Eq. 56). The
total metabolite concentration is obtained by McCloskey et al. (2018) who reported a value of
3.7 Cmmol gDW−1, equivalent to 9.1% of the total cellular biomass. The fraction of central
metabolites is estimated to be 14% of the total metabolic concentration. The total protein
concentration is obtained from Basan et al. (2015b) who report a protein fraction of 0.71 for the
MG1655 strain, to which we add the fraction of free amino acids, estimated as 50% of the total
metabolite concentration (Bennett et al., 2009). This gives a total protein biomass fraction of
0.76.

Proteins are then distributed over our protein categories, following the mass fraction values
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reported by Schmidt et al. (2016) for the MG1655 strain. Accordingly, we estimate

m̂u = 0.37 · 0.76 · 1/β̂ = 11.4 Cmmol gDW−1, (125)

r̂ = 0.45 · 0.76 · 1/β̂ = 13.8 Cmmol gDW−1, (126)

m̂c = 0.08 · 0.76 · 1/β̂ = 2.4 Cmmol gDW−1, (127)

m̂er + m̂ef = 0.10 · 0.76 · 1/β̂ = 3.1 Cmmol gDW−1. (128)

Uptake and secretion rates were taken from Monk et al. (2017). Comparison of metabolite
concentration measurements of McCloskey et al. (2018) with Km values collected by Dourado
et al. (2021), shows that reactions in central carbon metabolism are more saturated in MG1655
than in the reference strain (2.2 vs 1.2), in agreement with its higher growth rate (Supplementary
File 3). Accordingly, the half-saturation constant of reactions consuming central metabolites are
estimated as

K̂r = K̂mu = K̂mer = K̂mef ≈
ĉ

2.2
= 0.24 Cmmol gDW−1. (129)

The data used for calibration are summarized in Appendix 2-Table A7 and the values for the
parameters obtained after calibration are listed in Appendix 2-Table A8.

We also collect in Appendix 2-Table A7 the data for batch growth of the NCM3722 strain in
minimal medium with glucose, used in the Results section of the main paper. The data concern
the growth rate and growth yield (Cheng et al., 2019), the glucose uptake and acetate secretion
rates reported by Cheng et al. (2019) from experiments carried out by Basan et al. (2015a), the
total protein concentration (Basan et al., 2015a), and the total metabolite concentration (Park
et al., 2016).
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Rates Unit MG1655 NCM3722 Reference

µ̂ h−1 0.69± 0.02 0.97± 0.05 a, b
γ̂ h−1 0.027 - c, d

Uptake, secretion, and biosynthesis �uxes

v̂mc Cmmol gDW−1 h−1 51.5± 8.5 66.1± 4 a, b, e
v̂mer Cmmol gDW−1 h−1 5.7 - Derived
v̂mef Cmmol gDW−1 h−1 7.8± 2.3 10.3± 1.8 a, b, e
v̂mu Cmmol gDW−1 h−1 7.0 - Derived
v̂r Cmmol gDW−1 h−1 21.7 - Derived
Total biomass concentration

1/β̂ Cmmol gDW−1 40.65± 2.0 - e

Protein concentrations

p̂ Cmmol gDW−1 30.7± 2.0 29.7± 1.9 e, f
m̂u Cmmol gDW−1 11.4± 0.74 - e, f, g
r̂ Cmmol gDW−1 13.8± 0.9 - e, f, g
m̂c Cmmol gDW−1 2.4± 0.2 - e, f, g
m̂er + m̂ef Cmmol gDW−1 3.1± 0.2 - e, f, g
m̂er Cmmol gDW−1 2.2± 0.1 - Derived
m̂ef Cmmol gDW−1 0.9± 0.04 - Derived
Metabolite concentrations

ĉ Cmmol gDW−1 0.5± 0.09 0.8± 0.03 h, i
â∗ mmol gDW−1 0.046 - h, i
â mmol gDW−1 0.008 - h, i
â0 mmol gDW−1 0.054 - h, i

Concentration of other biomass

û Cmmol gDW−1 9.4 - Derived

Table A7: Reconstruction of growth and degradation rates, uptake and secretion �uxes, and protein
and metabolite concentrations from published data sets for E. coli MG1655 and NCM3722 strains for
the case of batch growth in glucose minimal medium. The uncertainty intervals for the rates, �uxes,
and metabolite concentrations are standard deviations reported in the source publications, after unit
conversion. For the NCM3722 strain, as an example of a fast-growing strain with a higher growth yield
than the BW25113 reference strain, we only use a subset of observed values in the main text. References:
a Cheng et al. (2019), b Basan et al. (2015a), c Esquerré et al. (2014), d Farmer and Jones (1976), e

Monk et al. (2017), f Basan et al. (2015b), g Schmidt et al. (2016), hPark et al. (2016), iMcCloskey et al.
(2018).
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Parameter MG1655 Model variant with Q Unit

ρ̂ru 1.17 1.17 -
ρ̂mef 1.5 1.5 -
k̂r 2.5 6.1 h−1

k̂mu 0.9 2.5 h−1

ês 21.0 38.0 h−1

k̂mer 4.1 10.3 h−1

k̂mef 20.4 36.1 h−1

k̂a 412 2278 h−1

K̂r 0.24 0.29 Cmmol gDW−1

K̂mu 0.24 0.29 Cmmol gDW−1

K̂mer 0.24 0.29 Cmmol gDW−1

K̂mef 0.24 0.29 Cmmol gDW−1

K̂ar 0.005 0.0009 mmol gDW−1

K̂amer 0.0008 0.0011 mmol gDW−1

K̂amef 0.0008 0.0011 mmol gDW−1

K̂amu 0.005 0.0009 mmol gDW−1

n̂mer 4.3 4.3 mmolCmmol−1

n̂mef 2.0 2.0 mmolCmmol−1

n̂r 0.77 0.77 mmolCmmol−1

n̂u 0.65 0.65 mmolCmmol−1

Table A8: Estimation of the values of the kinetic parameters in the model for the E. coli MG1655
strain during batch growth in glucose minimal medium from data in Appendix 2 Table A7, as explained
in the text. Idem for a model variant with an additional category of growth-rate-independent proteins
(Q), using data for the BW25113 strain from Appendix 2 Table A3

A2.5 Calibration of model variant with an additional growth-rate-independent

protein category

In Appendix 1, we introduced a model variant with an additional growth-rate-independent pro-
tein category, referred to as Q (Scott et al., 2010). Estimation of the parameters for this model
variant requires the estimation, for every protein category, of the o�set of the linear relation
between growth rate and proteome fraction (Hui et al., 2015). In order to obtain results com-
parable to those for the reference model, we have used proteomics data for the BW25113 strain
(Schmidt et al., 2016). We considered 22 di�erent growth conditions, excluding stationary phase
(no balanced growth) and LB medium (addition of amino acids).

For the R category, the proteome fraction increases with the growth rate and the o�set can
be computed as χ0

r = 0.23 (Supplementary Figure 8A). Unfortunately, in the case ofMc,Me, and
Mu, the data show a decreasing or constant pattern with growth rate, which makes it impossible
to determine the o�set fraction for these protein categories (Supplementary Figure 8B-D). We
therefore followed a di�erent approach to estimate the growth-rate-independent protein fraction.
Assuming a total fraction of growth-rate-independent proteins χq = 0.52, as reported for the
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MG1655 strain by Mori et al. (2016), we split the fraction χq − χ0
r = 0.29 over the Mc, Mu, and

Me categories proportionally to their size:

χ0
u = 0.29 · 0.37

0.56
= 0.19,

χ0
c = 0.29 · 0.09

0.56
= 0.05,

χ0
e = 0.29 · 0.10

0.56
= 0.05.

Notice that the above partitioning is equivalent to assuming that all enzyme categories have the
same proportion of growth-rate-independent proteins.

The growth-rate-dependent fractions of the protein categories are then simply obtained from
the di�erence between the total proteome fractions (Schmidt et al., 2016) and the growth-rate-
independent fractions:

χu = 0.37− 0.19 = 0.18,

χr = 0.44− 0.23 = 0.21,

χc = 0.09− 0.05 = 0.04,

χe = 0.10− 0.05 = 0.05.

Further calibration of the model is then identical to the calibration of the reference model, using
published data for batch growth of BW25113 in glucose minimal medium (Appendix 2 Table A3).
In particular, from the total biomass concentration (40.65 Cmmol gDW−1) and the protein mass
fraction (0.74), we can estimate the following growth-rate-dependent protein concentrations:

q̂ = 0.52 · 0.74 · 1/β̂ = 15.9 Cmmol , gDW−1, (130)

r̂ = 0.21 · 0.74 · 1/β̂ = 6.3 Cmmol gDW−1, (131)

m̂u = 0.18 · 0.74 · 1/β̂ = 5.4 Cmmol gDW−1, (132)

m̂c = 0.04 · 0.74 · 1/β̂ = 1.2 Cmmol gDW−1, (133)

m̂er + m̂ef = 0.05 · 0.74 · 1/β̂ = 1.5 Cmmol gDW−1. (134)

Parameter values derived for this model are summarized in Appendix 2-Table A8.
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