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Abstract
Animals can use di�erent strategies to navigate. They may guide their move-
ments by relying on external cues in their environment or, alternatively, by
using an internal cognitive map of the space around them and their position
within it. An essential part of this representation are heading cells, neurons
whose activity depends on the heading direction of the animal. Although
those cells have been found in vertebrates, the full network has never been
observed and there is very little mechanistic understanding of how these cells
acquire their response properties. In this study, we use volumetric functional
imaging in larval zebra�sh to observe, for the �rst time in a vertebrate, a full
network that encodes allocentric heading direction. This network of approxi-
mately one hundred inhibitory neurons is arranged in an anatomical circle in
the anterior hindbrain. Its activity is driven purely by the integration of inter-
nally generated signals, indicating that a simple vertebrate brain can encode
maps of how an animal moves within its surroundings. Single cell recon-
structions of electron micrographs allow us to uncover how the connectivity
pattern of neurons within the network supports the implementation of a ring
attractor network. The neuronswe identify share featureswith neurons in the
dorsal tegmentum nucleus of rodents and the �y central complex, showing
that similar connectivity and mechanistic principles underlie the generation
of cognitive maps of heading direction across the animal kingdom.
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I� ���� �������, e�ective navigation in the world involves the use of
cognitive maps that provide a representation of position and orientation
with respect to the environment. While the position in space has been
shown to be encoded in place cells and grid cells in the mammalian hip-
pocampal and entorhinal circuits (Moser et al., ����), allocentric orienta-
tion is represented by head direction cells, neurons that are active any time
the animal faces a particular direction in space.

Head direction cells were originally described in the postsubicular cortex
(Taube et al., ����), but have since been observed in several other cortical
and subcortical areas (reviewed in (Taube, ����)). The activity in these head
direction networks can be understood in terms of ring attractor networks,
where local recurrent excitation is combined with long-range out-of-phase
inhibition to create a stable localized bump of activity that encodes direc-
tion. This model has received remarkable empirical validation with the ob-
servation of heading direction representations in the insect central complex,
where key components of a ring attractor network have been mapped onto
its neuronal architecture (Seelig and Jayaraman, ����; Green et al., ����; Kim
et al., ����; Fisher et al., ����; Suver et al., ����; Lyu et al., ����). However,
such mechanistic understanding in vertebrates is still lacking.

The lowest region of the vertebrate brain where head-direction related
signals have been found is the dorsal tegmental nucleus (DTN) (Sharp et al.,
����), a paired, ����ergic nucleus located in the brainstem, that originates
from rhombomere � (Puelles, ����). In rodents the DTN is closely associ-
ated with the interpenducular nucleus (IPN), a hindbrain structure believed
to support the DTN heading direction representations (Quina et al., ����)
that has been indirectly implicated in spatial navigation (Clark and Taube,
����; Clark et al., ����). In addition, recent studies in larval zebra�sh have
suggested an important role for the IPN in directional behavior (Dragomir
et al., ����; Cherng et al., ����). Based on this, we decided to leverage the
optical accessibility of the larval zebra�sh as a model organism to compre-
hensively image the anterior hindbrain (aHB) of this vertebrate, in order to
identify any potential network activity that could be involved in the encod-
ing of heading direction.

Using a combination of volumetric lightsheet imaging, �-photon imag-
ing and electron microscopy we uncover a circuit contained within rhom-
bomere � that represents heading direction by a persistent and localized
bump of activity. This activity pro�le smoothly translates across the neu-
ronal population as the �sh turns, mimicking the compass neurons in the
central complex of insects. Furthermore, we show that this inhibitory net-
work in the aHB forms highly organized reciprocal connections in the dor-
sal interpeduncular nucleus (dIPN). This architecture agrees with the con-
nectivity scheme required to support ring attractor models of head direction
networks (Skaggs et al., ����; Zhang, ����) and can provide the substrate for
a cognitive map in this vertebrate brain.
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Results

A population of cells with ring attractor dynamics in the �sh aHB

We performed volumetric lightsheet imaging in 7 dpf to 9 dpf zebra�sh lar-
vae expressing GCaMP�s in ����ergic neurons in the aHB (Figure �, Sup-
plementary Figure �a).
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Larvae were head-restrained but free to move their tail, and were imaged
either in darkness or while presented with a visual stimulus in either closed
or open-loop (see Visual stimuli and experimental groups).

Movie �: https://doi.org/10.6084/m9.
figshare.17871875

We observed a population of ��-��� neurons (median = 74, Q� = 48,
Q� = 115, n = 31 �sh) with a sustained bump of activity propagating ei-
ther clockwise or counterclockwise across the network in a horizontal plane
(Figure �, Movie �).
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Figure �: Circular propagation of activ-
ity. Intensity of �uorescence for all ROIs in
the course of a top, clock-wise and bottom,
counterclockwise propagation event. The
arrow shows the direction of activity prop-
agation.

These ����ergic neurons were located in rhombomere � consistently
across �sh (Supplementary Figure �b-c). In order to further characterize
the dynamics of the network, we performed principal component analysis
(PCA) and observed that the �rst two principal components (PCs) captured
over 80% of the variance (median = 0.800, Q� = 0.770, Q� = 0.836, n = 31
�sh) (Supplementary Figure �a-b). Moreover, the trajectory in the phase
space de�ned by the �rst two PCs was constrained to a circle over the whole
duration of the experiment which lasted tens of minutes (Figure �). For their
location in rhombomere �, the fact that they have an anticorrelated partner
at a πangle on the PC space, and based on their morphological features
described in a later section of the paper, we call those cells r1π neurons.

To visualize how the activity of r1π neurons and their anatomical loca-
tion was related, we projected the activity of each neuron onto a two dimen-
sional subspace, by performing a di�erent PC projection now over the time
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Time (s) Figure �: Trajectory in �� PCs phase space

of the network, color-coded by time.

axis. When projected over the �rst two principal components (variance ex-
plained: median = 0.858, Q� = 0.827, Q� = 0.868, n = 31 �sh; Supplementary
Figure �c-d), r1π neurons were organized in a circle, with the angle around
the circle, � , correlating with the neuron’s anatomical location (Fisher-Lee
circular correlation �� : median = 0.549, Q� = 0.298, Q� = 0.696, n = 31 �sh;
Figure �, Supplementary Figure �). This matches the observation from the
raw data of a bump of activity propagating across the network: the circu-
lar dynamics we observe in phase space can be seen to correspond to the
activity propagation across an anatomical circle of neurons.
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angle Figure �: Left, Projection over the �rst � ro-
tated principal components (rPCs) in time
of all the r1π neurons, color-coded by an-
gle around the circle (for rPC calculation,
see Rotated principal component calculation,
and Figure ��). Right, Anatomical distribu-
tion of the same neurons, color-coded by
angle in rPC space.

In order to describe the position of the bump of activity within the net-
work at any instance in time, we de�ned an instantaneous network phase
�(�) as the average over neurons of their angle � de�ned above, weighted
by their activity at time � (Figure �� and Movie �). This network phase �(�)
described the angle along the circular trajectory in the network phase space
(Supplementary Figure �a). We anchored � by setting it to be 0 when the
posterior part of the ring was active, and to increase with clockwise ro-
tations of activity in the horizontal plane (see Rotated principal component
calculation, Supplementary Figure �a-c).

Movie �: https://doi.org/10.6084/m9.
figshare.17871941

To visualize the evolution of the network activity over time, the traces of
neurons were sorted by their angle � (Figure � and Supplementary Figure �).
In this visualization, it can be observed how the phase marks the position
of the bump peak as it translates across the network.

To further characterize how individual neurons contributed to the net-
work activity, we computed the average over time of the network activity
pro�le (see Calculation of average activity pro�le, Figure ��). We observed
that it was close to a sine wave, with a full width at half maximum (����)
of approximately π (mean = 2.910 ± 0.115 rad, n = 31 �sh) over the circle of
neurons (Supplementary Figure �a,b). When looking at the tuning curves
of individual neurons over network phase, they had an approximately sinu-
soidal shape, with ���� of � � (Supplementary Figure �b).
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The r1π network integrates heading direction

Wenext investigated what was driving changes in the phase of the network.
We observed that the phase was stable in epochs when the �sh was not
moving, and was changing the most during sequences of left or right swims
(Figure �).
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Moreover, sequences of left or right turns were accompanied by clock-
wise or counterclockwise rotations respectively of the network phase (activ-
ity), irrespective of the starting phase position (Figure � and Supplementary
Figure �a).
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left, Trajectory in phase space during a se-
quence of left swims (see tail angle in the
insert). Bottom, left, State of activation of
the network before and after the sequence.
Right, The same plots for a sequence of right
swims.

To quantify this relationship, we computed the swim-triggered change
in phase, and we noticed that it was consistently increasing or decreasing
after left and right swims (Figure �), so that left swims (counterclockwise
rotations of the �sh) would produce clockwise rotations in the network,
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and right swims (clockwise rotations of the �sh) would produce counter-
clockwise rotations in the network; forward swims did not produce any
consistent change in the network phase.

Forward swims
Left swims
Right swims

Phase change Estimated heading change

−10 0 10 20
Time from swim (s)

-π

-π/2

0

π/2

π

−10 0 10 20
Time from swim (s)

Figure �: Left, Swim-triggered average
change in network phase for all �sh (thin
lines, n = 31 �sh) and their average
(thick lines). Right, Swim-triggered aver-
age change in estimated heading direction
for all �sh (thin lines, n = 31 �sh) and their
average (thick lines).

Importantly, we observed that the probability for the network phase to
be in any state between -π and π when a swim occurred was not di�erent
for left, right, and forward swims (Supplementary Figure �b). This indicates
that the absolute/instantaneous network phase does not correlate with spe-
ci�c behavioral outputs.

The swim-triggered changes in network phase (Figure �, left) show that
the amount of angular change elicited by a single swim after 10 s was ap-
proximately �/4 (median = 0.828 rad, Q� = 0.492, Q� = 1.28, n = 31 �sh),
comparable in size to the angle turned by a swim performed by a freely
swimming �sh (Figure �, right) (Huang et al., ����). Moreover, continuous
turning in one direction resulted in several rotations around the network
(Supplementary Figure �c). We therefore hypothesized that the network
could work as a heading direction integrator, shifting the position of its
activity with every turn and keeping track of the heading direction of the
animal in allocentric coordinates as schematized in Figure �.

Before turning A!er turning

fish turns

Network phase

Figure �: Schematic to show how the net-
work phase changes during a turn.

To understand to which degree the network could produce an estimate
of heading direction over time, we reconstructed a �ctive heading direc-
tion for the head-embedded �sh integrating the angle turned by each swim
over time (see Estimated heading calculation and correlation with phase, Fig-
ure ��). This reconstructed heading direction and the network phase were
signi�cantly anticorrelated over a period of minutes (Figure ��).

Although some errors accumulated over time, around each time point
the phase in the network could be used to read out an estimate of the
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of an experiment. Note that the axes are
di�erent, and have opposite signs. Bottom,
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current heading direction (Figure ��, enlargement). In fact, the two were
signi�cantly anticorrelated (correlation r: median = �0.723, Q� = �0.863,
Q� = �0.564, n = 31 �sh; Figure ��, Supplementary Figure �).
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The r1π network is not a�ected by visual inputs

Next, we asked whether sensory inputs are required for the observed head-
ing direction integration. As our preparationwas head restrained (Figure ��,
Figure ��), we could ascertain that vestibular sensory inputs were not re-
quired, even though these are known to contribute to the mammalian head-
ing direction system (Yoder and Taube, ����).
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Figure ��: Left, Slope of the regression
between estimated heading and network
phase in closed- and open-loop epochs (not
signi�cant di�erence, Wilcoxon test, n = 8
�sh). Right, Slope of the regression be-
tween heading and network phase in dif-
ferent gain conditions; comparison was not
signi�cant between any of the conditions
(uncorrected Wilcoxon test, n = 5 �sh).

In our experiments, we observed the integration of heading direction in
both complete darkness and in open-loop (without visual rea�erence) (Fig-
ure ��, center and Supplementary Figure �a), indicating that visual feedback
is not required for a stable heading direction representation. Furthermore,
we tested closed-loop experiments with a range of gains that provided dif-
ferent amounts of visual feedback. In these experiments, we observed no
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relationship between the representation of heading direction and the ex-
perimental gain (Figure ��, right and Supplementary Figure �b). This shows
that visual feedback not only is not required, but that it does not contribute
to the activity we observe, and suggests that e�erence copies are its main
driver.

Interestingly, the activity of left and right ����ergic clusters in rhom-
bomeres � and �, immediately caudal to the r1π neurons, show a remarkable
degree of correlation with leftward and rightward swims, respectively (Fig-
ures �� and �� and Supplementary Figure ��). These neurons might provide
the motor e�erence input to the r1π network.

r1π ROIs
mot. le" > 0.7

mot. right > 0.7
50 μm 

an
t.

rt.

Figure ��: Distribution of directional swim-
related ROIs.

The r1π network is modulated by eye movements

Subpopulations of cells in the aHB are known to represent eye-related vari-
ables such as eye position and saccade timing (Wolf et al., ����; Ramirez
and Aksay, ����). We therefore decided to understand whether eye motion
could also modulate the phase of the network. To this end, we freed the eyes
of the larvae in a subset of experiments and tracked their motion together
with that of the tail. In periods where swimming was absent, we observed
that eye motion could explain some low amplitude modulation in the net-
work phase (Figure �� and Supplementary Figure ��d), although eye motion
on its own did poorly compared to heading direction when swimming did
occur (Supplementary Figure ��a). Interestingly, the sign of the modulation

0 200 400
Time (s)

Network phase
Heading

Gaze

Tail sum

Figure ��: Network phase represented with
(�ipped) heading direction and gaze direc-
tion. The arrow highlights a period of very
sparse swimming and large saccades.

was consistent with the heading changes, with leftward saccades increasing
the network phase as leftward swims do, and rightward saccades decreasing
it as rightward swims do.
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aHB neurons arborize in the dorsal IPN

We proceeded to investigate the anatomy of neurons in the aHB. Anatom-
ical stacks of the ����ergic line we used show a prominent, bilaterally-
paired, tract of �bers that extended ventro-medially from the ����ergic
nuclei of rhombomere � towards the dorsal IPN (dIPN) (Figure ��, red arrow,
and Supplementary Figure ��a,b).
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Figure ��: Anatomical projections of a stack
from the Tg(gad�b:Gal�) line used in the ex-
periments. The lines mark the IPN and
dIPN boundaries, and the insets show the
position in the brain of the IPN mask and
the views. The arrow highlights the tract
of �bers that extend from the aHB to the
IPN. The r1π neurons from the imaging ex-
periments are shown in the same coordi-
nate space in green on the right, together
with the morphology of all neurons recon-
structed from the ���� data on the left.

To reconstruct individual neurons at high resolution, we traced neu-
rons and their projections in a serial block-face electron microscopy (����)
dataset. We identi�ed a class of neurons with the somata in the aHB that
extended a single projection that bifurcated into a dendrite and axon which
ended in the dIPN (Figure ��, Movie � and Supplementary Figure ��c).

Movie �: https://doi.org/10.6084/m9.
figshare.19608204

The small dendritic tree covered a localized compartment in the ipsilat-
eral IPN, whereas the axon projected contralaterally with minimal branch-
ing that occurred only in the terminal sections (Supplementary Figure ��).

soma

dendrite axon

midline

dIPN

Figure ��: One of the neurons from Fig-
ure ��, singled out to show the cell morphol-
ogy with a process splitting in an ipsilateral
dendrite and a contralateral axon.

To con�rm that r1π neurons project to the dIPN, we imaged the same
����ergic line under a two-photon microscope to investigate neuropil ac-
tivity. Performing the same analysis as for the r1π neurons presented in
Figures �, � and �� uncovered a set of ROIs that were mostly restricted to
the dIPN, showed stable circular dynamics and displayed the same relation-
ship to heading direction (Figure �� and Supplementary Figure ��).

aHB projections map linearly the functional topology of the ring
in the dIPN

It has been suggested that heading directions systems are neuronal imple-
mentations of ring-attractor networks, where excitatory activity between
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neighboring cells is stabilized and localized by long-range inhibitory con-
nections. We therefore wanted to investigate whether there is any evidence
that the morphology and projections of the ����ergic r1π neurons could
implement such a structure. To this end, we turned back to the ���� re-
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projecting aHB neurons, color-coded by po-
sition of the dendrite on the coronal axis
(lateral-medial). Inset: scatterplot of the
distance from the midline of dendrite and
axon for each neuron (R = �0.90, n =
n = 19 neurons). Right, Horizontal view
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nal axis (lateral-medial). Inset: scatterplot
of the distance from the midline of den-
drite and position of the soma of the antero-
posterior axis for each neuron (r = �0.65,
n = 19 neurons).

constructions. We observed that the projections of di�erent neurons occupy
di�erent locations in the medio-lateral axis and appear to cover the whole
dIPN (Figure ��, Movie � and Supplementary Figure ��). Moreover, the dis-
tance of the dendrite from the midline anticorrelated with the distance of
the axon from the midline (r = �0.9, n = 19 neurons), meaning that a neuron
with a lateral dendrite would extend a medial axon and vice-versa (Figure ��
left, Supplementary Figure ��a). In addition, given the anatomical organiza-
tion of the activity we observed in the aHB, we would expect a correlation
between the antero-posterior position of a cell’s soma and the distance of
its dendrites from the midline. This is in fact what we observed (r = �0.65,
n = 19 neurons) (Figure �� right, Supplementary Figure ��).

Such an organization would predict that in the activity recorded from the
dIPN, pixels that are the most correlated with each other are at a �xed dis-
tance on the medio-lateral axis, as their signal comes from the dendrites and
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axons of the same neurons. Indeed, we found this type of pattern when ex-
amining data from single �sh (Figure ��) and across all �sh (Figure �� top,
Supplementary Figure ��). The distance of the side lobes observed in the
functional correlation correlated with the distance of each neuron’s axon
from its dendrite (Figure ��, bottom, Supplementary Figure ��c). These
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observations suggest that a circular functional structure in the aHB, cor-
responding to angles from �� to � , is coupled to a linear structure in the
dIPN (Figure ��, left). Neurons whose soma are at opposite sides of the cir-
cular organization of aHB target with their axons their respective dendrites
(Figure ��, right). In this way, a neuron is ideally placed to inhibit its corre-
sponding out-of-phase neurons. This projection pattern could stabilize and
localize the heading direction activity we observed in the aHB network by
providing long range inhibition.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.489672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489672
http://creativecommons.org/licenses/by-nc-nd/4.0/


���������� ��

le! aHB right aHB

somas

dendrites

axons

le! aHB right aHB

IPN

IPN

1
2

3 4
5

6

1
2

3 4
5

6

1
2

34
5

6
IPN

IPN

Figure ��: Left, Schematics of the organiza-
tion of aHB neuron somata (top) and their
dendritic (middle) and axonal (bottom) pro-
jections in the IPN. Right, The same but
with actual reconstructed EM neurons that
have beenmirrored on both sides. The color
code is based on the position of the den-
drite.

Discussion

I� ���� �����, we describe a network of ����ergic neurons in rhom-
bomere � of the larval zebra�sh hindbrain that encodes the heading direc-
tion of the �sh in external (allocentric) coordinates. As this representation
persists even in the absence of external landmarks and salient sensory stim-
uli, it is likely generated by the integration of e�erence copies. We show
that motor-related activity exists nearby that may be serving this purpose,
in agreement with previous reports (Dunn et al., ����; Chen et al., ����).
This observation con�rms the existence of an internal model of turning in
the zebra�sh brain.

Remarkably, the heading direction is represented by a bump of activity
that propagates clockwise and counter-clockwise in the horizontal plane
with leftward and rightward movements of the �sh. This is the �rst evi-
dence of an anatomical organization for the heading direction system in a
vertebrate, and suggests the existence of simple topographical principles in
the wiring of the network. Indeed, our electron microscopy reconstructions
suggest that heading direction neurons of the aHB connect to each other in
a precise way, with neurons whose functional activation is in complete an-
tiphase making reciprocal connections in the dIPN. Based on their location,
on their consistent antiphase projection pattern, we term those cells r1π
heading direction neurons.

In mammals, the ����ergic (Allen and Hopkins, ����; Wirtshafter and
Stratford, ����) dorsal tegmental nucleus is considered to be one of the ear-
liest subcortical structures within the heading direction pathway, and trac-
ing studies have identi�ed reciprocal connections between the DTN and the
IPN (Contestabile and Flumerfelt, ����; Groenewegen et al., ����; Liu et al.,
����). The heading direction neurons that have been observed in the DTN
are broadly tuned (Sharp et al., ����), similarly to the neurons we report in
the �sh aHB. Moreover, tegmental a�erents to the mammalian (rostral) IPN
form highly compartmentalized arborizations (Herrick, ����; Iwahori et al.,
����), like we observe in the reconstructions of aHB �bers.

Theoretical studies (Skaggs et al., ����; Zhang, ����; Hansel and Som-
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polinsky, ����; Hulse and Jayaraman, ����) proposed the notion of ring at-
tractor networks as a mechanism to encode heading direction information,
and evidence of ring attractor-like dynamics has been found in the rodent
heading direction system (Chaudhuri et al., ����; Clark et al., ����). How-
ever, a mechanistic understanding based on the neuronal connectivity that
underlies such dynamics is still missing in vertebrates.

This link between function and structure exists in the insect central com-
plex, where elegant studies have described networks that encode heading
direction and constitute a neuronal implementation of a ring attractor net-
work (Seelig and Jayaraman, ����; Green et al., ����; Kim et al., ����; Fisher
et al., ����; Suver et al., ����; Lyu et al., ����). The level of detail being
uncovered in these circuits allows for a mechanistic understanding of how
a brain can integrate external and internal sensory cues, e�erence copies
and carry out coordinate transformations that are important for behavior.
The network we observe bears intriguing similarities with this system and
a detailed comparative analysis of both may uncover important theoreti-
cal insights into persistent neuronal representations in general and head-
direction systems and ring attractors in particular (Hulse and Jayaraman,
����).

We still need to address how external cues in�uence this network ac-
tivity to determine whether the “North” of the representation points in a
behaviorally relevant direction in space. Previous work has shown that ze-
bra�sh larvae might use an internal representation of heading direction to
e�ciently reorient in a phototaxis task (Chen and Engert, ����), and the in-
terpeduncular nucleus can be implicated in zebra�sh directional behavior
(Dragomir et al., ����; Cherng et al., ����). Information from external cues,
as well as strong excitatory drive could be provided by the dense projections
from excitatory habenular neurons (Hong et al., ����), which could form
synapses with an all-to-all connectivity with the dendrites of the heading
direction neurons (Bianco and Wilson, ����). Although previously over-
looked, the aHB-IPN circuit could provide an inroad to understanding the
mechanisms underpinning cognitive maps in vertebrates.
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Materials and Methods

Zebra�sh husbandry

All procedures related to animal handling were conducted following proto-
cols approved by the Technische Universität München and the Regierung
von Oberbayern. Adult zebra�sh (Danio rerio) from Tüpfel long �n (TL)
strain were kept at 27.5 �C to 28 �C on a 14 /10 light cycle, and hosted in a
�sh facility that provided full recirculation of water with carbon-, bio- and
UV �ltering and a daily exchange of 12% of water. Water pH was kept at
7.0 to 7.5 and conductivity at 750 �Sv to 800 �Sv. Fish were hosted in 3.5 l
tanks in groups of 7 to 10 animals. Adults were fed with Gemmamicron ���
(Skretting) and live food (Artemia salina) twice per day and the larvae were
fed with Sera micron Nature (Sera) and ��-� (Aquaschwarz) three times a
day.

All experiments were conducted on 6 dpf to 9 dpf larvae of yet undeter-
mined sex. The week before the experiment, one male and one female or
three male and three female animals were left breeding overnight in a Slop-
ing Breeding Tank or breeding tank (Tecniplast). The day after, eggs were
collected in the morning, rinsed with water from the facility water system,
and then kept in groups of 20 to 40 in 90 cm Petri dishes �lled with 0.3×
Danieau’s solution (17.4mM NaCl, 0.21mM KCl, 0.12mMMgSO�, 0.18mM
Ca(NO�)�, 1.5mM �����, reagents from Sigma-Aldrich) until hatching and
in water from the �sh facility afterwards. Larvae were kept in an incuba-
tor that maintained temperature at 28.5 �C and a 14 /10 light/dark cycle, and
their solution was changed daily. At 4 dpf to 5 dpf, animals were lightly
anesthetized with Tricaine mesylate (Sigma-Aldrich) and screened for �uo-
rescence under an epi�uorescencemicroscope. Animals positive for GCaMP�s,
Dendra ormCherry �uorescencewere selected for the imaging experiments.

Transgenic animals

The Tg(gad�b/GAD��:Gal�-VP��)mpn��� (referred to as Tg(gad�b:Gal�)) was
used for all experiments, which drives expression in a subpopulation of
����ergic cells under gad�b regulatory elements (Förster et al., ����). The
animals for functional imaging and anatomical experiments were double
transgenicwith Tg(UAS:GCaMP�s)mpn��� (Thiele et al., ����) and Tg(UAS:Dendra-
kras)s����t (Arrenberg et al., ����), respectively. In some anatomical exper-
iments, the animals also had Tg(elavl�:H�B-mCherry), which was generated
by Tol� transposon-mediated transgenesis. All the transgenic animals were
also mitfa-/- and thus lacked melanophores (Lister et al., ����).

Lightsheet experiments

Preparation

For lightsheet experiments, animals were embedded in 2.2% low-melting
point agarose (Thermo�sher) in a custom lightsheet chamber. The cham-
ber consisted of a �� printed frame ( .stl �le link: https://github.com/
portugueslab/hardware/blob/master/chambers/lightsheet_chamber_

v3.stl) with a glass coverslip sealed on the side in the position where the
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lateral beam of the lightsheet enters the chamber, and a square of trans-
parent acrylic on the bottom, for behavioral tracking (see Lightsheet micro-
scope).

agarose

laser
beam

fish

chamber

coverslip

Figure ��: Schema of the preparation for
the lightsheet, with a �sh head-restrained
in agarose in the chamber.

The chamber was �lled with water from the �sh facility system and
agarose was removed along the optic path of the lateral laser beam (to pre-
vent scattering), and around the tail of the animal, to enable movements
of the tail (Figure ��). In some larvae, the eyes were also freed from the
agarose. After embedding, �sh were left recovering 1 h to 6 h before the
imaging session. Before starting the imaging, light tapping on the side of
the chamber was used to select the most active �sh for the experiment.

Lightsheet microscope

Imaging experiments were performed using a custom-built lightsheet mi-
croscope. A 473 nmwavelength laser source (modulated laser diodes, Cobolt)
was used to produce a ~1.5mm laser beam that was conveyed on the exci-
tation scanning arm. The arm consisted in a pair of galvanometric mirrors
that scanned vertically and horizontally; a line di�user (Edmund Optics) to
minimize stripe artifacts (Taylor et al., ����), a 2× telescope composed by a
75mm and a 150mm focal distance lens (Thorlabs) that expanded the beam
before it entered a low numerical aperture air objective (Olympus) that fo-
cused it through the lateral glass coverslip of the lightsheet chamber on the
�sh. The excitation light sheet was generated by scanning at 800Hz the

sashimi

stytra
behavioral camera

mirror

imaging
camera

piezo actuator
objective

objective

tube lens/
bandpass filter

eye protection screen

line di!usor

lateral galvo

beam splitter

laser

beam expander

frontal galvo

projector

Figure ��: Schema of the lightsheet micro-
scope described in the text. Software is indi-
cated in italics, and gray lines indicate the
parts of the setup controlled by each pro-
gram.

beam on the horizontal plane. A paper screen was positioned in the image
conjugate plane within the telescope lens pair to protect the eyes of the �sh
from the lateral scanning of the laser beam. The emitted �uorescence was
collected with a 20× water-immersion objective (Olympus), �ltered with a
525/50 band-pass �lter (AHFAnalysentechnik) and focused on a ���� cam-
era (Hamamatsu Photonics) with a tube lens (Thorlabs).

The imaging acquisition was run using sashimi, a custom Python-based
software (Štih et al., ����a) to coordinate the laser scanning, the camera
triggering and the piezo movement. The objective was moved with a saw-
tooth pro�le with a frequency of 5Hz in most experiments (frequency was
adjusted to 3Hz in experiments where a larger vertical span was scanned).
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TTL pulses locked with the scanning pro�le of the piezo were sent to the
camera to trigger the acquisition of each plane at a �xed vertical position
during the scanning. No pulse was sent during the descending phase of
the scanning, when the objective would cover a large vertical span in a
short time. In most experiments a total of � planes were acquired over a
range of approximately 80 �m to 100 �m, slightly adjusted for every �sh.
The resulting imaging data had a voxel size of ~10 �m ◊ 0.6 �m ◊ 0.6 �m, and
a temporal resolution of 3Hz to 5Hz.

Tail/eyes tracking and stimulus presentation

To monitor tail movements during the imaging session, an infrared LED
source (RS Components) was used to illuminate the larvae from above. A
camera (Ximea) with a macro objective (Navitar) was aimed at the animal
through the transparent bottom of the lightsheet chamber with the help of
a mirror placed at 45° below the imaging stage. A longpass �lter (Thorlabs)
was placed in front of the camera. A projector (Optoma) with a red long-
pass �lter (Kodak Wratten No.��) was used to display visual stimuli; light
from the projector was conveyed to the stage through a cold mirror that
re�ected the projected image on the 45°mirror placed below the stage. The
stimuli were projected on a white paper screen positioned below the �sh,
with a triangular hole that kept the �sh visible from the camera. The be-
havior tracking part of the rig was very similar to the setup for restrained
�sh tracking described in (Štih et al., ����).

Frames from the behavioral camera were acquired at 400Hz and tail
movements were tracked online using Stytra (Štih et al., ����) with Stytra’s
default algorithm to �t to the tail � segments. The tail angle quantity used
for controlling the closed-loop was computed online during the experiment
in the Stytra application as the di�erence between the average angle of the
�rst two and last two segments of the tail and saved with the rest of the log
from Stytra. For eye tracking, a video of the entire acquisition was saved to
be analyzed o�ine (see below).

The stimulus presentation and the behavior tracking were synchronized
with the imaging acquisition with a ZMQ-based trigger signal supported
natively by Stytra.

brunoise

stytra

behavioral camera

projectormirror

infrared laser

polarizer 
power adjustment

galvo pair

scan lens

tube lens

dichroic
filter

objective

photomultiplier tube

stage

Figure ��: Schema of the two photonmicro-
scope described in the text. Software is indi-
cated in italics, and gray lines indicate the
parts of the setup controlled by each pro-
gram.

Two photon experiments

For two photon experiments, animals were embedded in 2% low-melting
point agarose (Thermo�sher) in 30mm petri dishes. The agarose around the
tail, caudal to the pectoral �ns, was cut away with a �ne scalpel to allow for
tail movement. The dish was placed onto an acrylic support with a light-
di�using screen and imaged on a custom-built two-photon microscope pre-
viously described in (Dragomir et al., ����) (Figure ��). The custom Python
package brunoisewas used to control the microscope hardware (Štih et al.,
����).

Full frames were acquired every 334.51ms in four, 0.83 �m-spaced inter-
laced scans, which resulted in x and y pixel dimensions of 0.3 �m to 0.6 �m
(varying resolutions here depending on �eld of view covered). After ac-
quisition from one plane was done, the objective was moved downward by
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0.5 �m to 4 �m and the process was repeated.

Two photon functional experiments

Visual stimuli (see below) were generated using a custom written Python
script with the Stytra package, and were projected at 60Hz using an Asus
��� microprojector and a red long-pass �lter (Kodak Wratten No.��) to al-
low for simultaneous imaging and visual stimulation. Fish were illuminated
using infrared light-emitting diodes (850 nm wavelength) and imaged from
below at up to 200Hz using an infrared- sensitive charge-coupled device
camera (Pike �����b, Allied Vision Technologies). Tail movements were
tracked online using Stytra as described for the lightsheet experiments.

Two photon anatomical experiments

High resolution 0.5 �m ◊ 0.5 �m ◊ 0.5 �m two-photon stacks of the aHB and
IPN were acquired from �sh expressing gad�b:Gal� and UAS:Dendra-kras
transgenes (n = 7 �sh, 6 dpf to 7 dpf). The stacks were registered to one
another using the Computational Morphometry Toolkit (CMTK) (Rohl�ng
and Maurer, ����). The transformed stacks were then averaged to generate
an average brain stack showing the projections of ����ergic aHB neurons
to the IPN.

Confocal experiments

For confocal experiments, larvae were embedded in 1.5% agarose and anes-
thetized with Tricaine. Whole brain stacks of three 7 dpf �sh expressing
gad�b:Gal�, UAS:Dendra-kras and elavl�:H�B-mCherry transgenes were ac-
quired using a 20× water immersion objective (NA = 1.0) with a voxel res-
olution of 1 �m ◊ 0.6 �m ◊ 0.6 �m (LSM ���, Carl Zeiss). The stacks were
registered to one another using CMTK (Rohl�ng and Maurer, ����). The
transformed stacks were then averaged to generate an average brain stack
showing the expression pattern of the gad�b:Gal� on top of pan-neuronal
H�B-mCherry expression.

Electron microscopy experiments

serial block-face electron microscopy dataset acquisition

Details of the ���� dataset acquisition will be published elsewhere (Svara
et al., in preparation). Brie�y, a 5 dpf larval Tg(elavl�:GCaMP�G)a���� trans-
genic zebra�sh was �xed with extracellular space preservation and stained
as described previously (Svara et al., ����; Briggman et al., ����). The sample
was embedded in an epoxy mixture containing 2.5% Carbon Black (Nguyen
et al., ����). The brain was imaged at a resolution of 14 nm ◊ 14 nm and sec-
tions were cut at a thickness of 25 nm. The long axis of each image tile was
scanned by gradually moving the stage, while the short axis was scanned
with the electron beam. The shape of the tile pattern was determined based
on a 4 �m voxel size X-RaymicroCT scan (������Medical AG, Brütisellen)
of the embedded sample.
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Visual stimuli and experimental groups

The observations reported in the paper were performed in experiments
where di�erent visual stimuli were presented to the �sh:

• Darkness: in those experiments, no visual stimuli were presented,
the projector was on and a static black frame was displayed;

• Open loop: in open loop epochs, a pink noise pattern was projected
and moved in x and theta with a path that was computed from the
trajectory of a freely swimming �sh taken from a previous experi-
ment in the lab. The stimulus moved backward according to velocity
of the �sh, and rotated according to changes in its direction. As a
result, the �sh was presented with the optic �ow that it would have
perceived moving over a static pink noise pattern with that trajec-
tory.

• Closed loop: a pink noise pattern was projected below the �sh; the
pattern was static if the animal was not moved, and it translated
backward and rotated when the �sh performed spontaneous move-
ments. The stimulus moved backward according to an estimate of
the velocity of the �sh computed using vigor, and rotated according
to changes in its direction estimated using the swim bias, so that
right turns, i.e, clockwise rotations of the �sh, would be matched
with clockwise rotations of the stimulus. The gain factor that trans-
formed a given swim bias into an angular velocity was modulated
with factors 0.5, 1 and 2 to observe if the slope of the aHB network
and the estimated heading would be altered by visual feedback. An
additional control gain of �1, where �sh would receive a visual feed-
back opposite to the performed movements, was also included.

• Directionalmotion: in some experiments, the animalwas also shown
a pink noise pattern moving in � equally spaced directions on the
plane, presented one after the other�rst in clockwise sequence (start-
ing from forward) and then in counter-clockwise sequence.

n=12

n=2

n=1

n=8

n=2

n=5

n=1

0 500 1000 1500 2000 2500

Time (s)

Darkness
Natural motion
Directional motion

Closed loop (gain 0.5)
Closed loop (gain 1)
Closed loop (gain 2)
Closed loop (gain -1)

Figure ��: Sequences of visual stimuli
presented during all experiments in the
dataset.
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Visual stimuli were tried in di�erent combinations over di�erent animals
in the dataset (see Figure ��). As the activity we describe was not modulated
by the presented visual stimuli in those experiments, we pooled together
observations from di�erent experimental conditions for all the analyses that
quanti�ed the property of the r1π neurons network.

The paradigm to investigate the role of visual feedback (Figure �� and
Supplementary Figure �) consisted of an alternation of 5min of the closed
loop and 5min of the open loop condition (see Figure ��). The paradigm ad-
dressing the e�ect of changing gains (Figure �� and Supplementary Figure �)
consisted in 5min blocks of each gain condition, with two repetitions for
each condition, in the following sequence of gains: [1, 0.5, 2, 1, 0.5, 2, �1, �1].
The Stytra scripts for the control of the experimental stimuli will be shared
together with the rest of the code.

Data analysis and statistics

All parts of the data analysis were performed using Python �.�, and Python
libraries for scienti�c computing, in particular numpy (Harris et al., ����),
scipy (Virtanen et al., ����) and scikit-learn (Pedregosa et al., ����).
The Python environment required to replicate the analysis in the paper can
be found in the paper code repository. All �gures were produced using
matplotlib (Hunter, ����). All statistical tests used were non-parametric,
eitherMann-Whitney U test for unpaired comparisons (mannwhitneyu from
scipy) or Wilcoxon signed-rank test for paired comparisons (wilcoxon
from scipy). All the analysis code and the source data will be shared upon
publication.

Lightsheet imaging data preprocessing

The imaging stacks were saved in hdf5 �les and then directly fed into
suite2p, a Python package for calcium imaging data registration and ROI
extraction (Pachitariu et al., ����). We did not use suite2p algorithms for
spike deconvolution. As the planes were spaced by roughly 10 �m, we ran
the detection on individual planes and did notmerge ROIs across planes. Pa-
rameters used for registration and source extraction in suite�p can be found
in the shared analysis code. The parameter that speci�es the threshold over
noise that is used to detect ROIs (threshold_scaling) was adjusted dif-
ferently from acquisition to acquisition to compensate for the variability in
brightness that we observed from �sh to �sh. From the raw F traces saved
from suite2p ( F.npy �le), �� /� was calculated using as baseline the av-
erage �uorescence in a rolling window of 900 s, to compensate for some
small amount of bleaching that was observed in some acquisition. The sig-
nal then was smoothed with a median �lter from scipy (medfilt() from
scipy), and Z-scored so that all traces were centered on 0 and normalized
to a standard deviation of 1. The coordinate of each ROI was taken as the
centroid of its voxels. To register all lightsheet experiments to a common
coordinate system, we de�ned manually for each experiment the location
over the three axes of a point corresponding on the midline of the �sh on
the anterior-inferior limit of the aHB, and translate all coordinates so that
such point was set to 0.
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Behavior data preprocessing

The behavioral data was pre-processed to detect swims and extract their
properties using the bouter package (Štih et al., ����b). First, the tail trace
was processed with a function to reconstruct terminal tail segments that
were miss-tracked during the online tracking using an interpolation based
on an extrapolation from the reconstructed segments angles and the tail
angles at previous timepoints. Then, tail angle was re-computed, and vigor
was calculated as the standard deviation of the tail angle trace in a rolling
window of 50ms. Swims were de�ned as episodes when the vigor crossed
a threshold of 0.1 for all �sh. For all swims, we then computed the laterality
index as the average angle of the tail during the �rst 70ms of the swim
(Figure ��).
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Figure ��: Example left, right, and forward
swims, with the window that is used to
compute the laterality index.

This value has been shown to correlate well with the angle turned by
a �sh when swimming freely (Huang et al., ����; Dragomir et al., ����).
To classify right, left, and forward swims, we �t a trimodal gaussian distri-
bution to the histogram of swim laterality indexes, enforcing the two side
curves to be symmetric. Then, we used the intercept of the central and lat-
eral gaussians to determine the threshold used for the swim classi�cation
(±0.239 rad).

For eye tracking, the video recording of the entire experiment was pro-
cessed using the deeplabcut 2.0 package (Mathis et al., ����; Nath et al.,
����), a Python pose estimation package based on DeeperCut (Insafutdinov
et al., ����) to detect in every frame four points evenly spaced on each eye.
Eye angle was de�ned as the median angle of the segments that connected
the rostral-most point of the eye with all the others. Gaze direction was
de�ned as the average of the angles obtained for the two eyes.

Detecting r1π neurons

r1π ROIs were �rst observed to be the ones with the highest anticorrelation
with other ROIs in the dataset. Therefore, to detect them, for every exper-
iment we computed the correlation matrix of all traces and selected ROIs
that had a correlation below a given threshold with at least another ROI in
the dataset. The threshold was manually adjusted for every �sh, in order to
include as many ROIs that were part of the network as possible, while keep-
ing out other signals. For all �sh, the threshold was between �0.75 and �0.5
for both the lightsheet and the two photon experiments. To check that the
selected ROIs were convincingly part of the r1π and that we were including
enough cells from it, we performed PCA over time using only traces from
the selected ROIs and we then looked at the projection of all ROIs onto the
�rst two principal components. When a satisfactory threshold was chosen,
most included neurons formed a circular pattern in PC space (see Supple-
mentary Figure �). We note that other approaches could be

used to parse out those cells, such as re-
stricting the anatomical location where to
�nd them, or including them based on the
proximity to some ring �t in PC space. We
used just the anticorrelation and exclusion
from the correlation matrix to avoid circu-
lar reasoning in the observations reported.
Future investigations on this system might
develop more principled procedures to iso-
late the r1π neuron population from the
rest of the network by the features of their
highly constrained dynamics.

As sometimes some additional ROIs were included, an additional manual
step of selection was performed on the correlation matrix of the cells. An
optimal sorting of the traces based on their angle in PC spacewas computed,
and the correlation matrix plotted with the same sorting. Then, some traces
were excluded based on the amount of discontinuity they would produce in
the matrix.
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With our strategy, we could detect a r1π network in approximately 20%
to 30% of the imaged animals. In the rest of the �sh, sometimes behavior
was just very sparse (a few swims over the entire experiment), or not very
directional (only forward swims performed). In other �sh, even if behavior
was good the anticorrelation criterion could �nd only a handful of strongly
anticorrelated neurons. Although those neurons were likely to be of the
described network, as their activity state changed with the occurrence of
directional swims, the low number of ROIs made it impossible to properly
characterize their population dynamics. Finally, in some �sh the rotatory
dynamics was observable only in a small temporal interval of the experi-
ment, and they were not included in the dataset.

Rotated principal component calculation

We developed a way of registering PC projections from one �sh to the other
in a way that was consistent with the anatomical distribution of the cells.
After computing principal components over time for the r1π neurons, we
�t a circle to the projection of the activity of all individual r1π neurons
to the �rst two PCs using the hyper_fit() function from the circle_-

fit package, a Python implementation of the hyper least square algorithm
(Kanatani and Rangarajan, ����), and rescale and translate the PCs to have
a unit radius circle centered on (0, 0).
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Figure ��: Co-registration of PC projec-
tions. Left, Projection over the �rst two
PCs calculated over time, color-coded by
left-right location of the ROI or anterior-
posterior location. The anatomical axes
vectors computed by vector average of the
ROI projections weighted by their anatom-
ical location are also displayed. Right, The
projections in rPC space, where the angular
distances �1 and �2 between the anatomical
axes and the rPC axes were minimized. The
schematics of the �sh illustrates the orien-
tation of the rPC projections after the reg-
istration.

Then, we computed a weighted average across all the vectors represent-
ing ROIs in this two-dimensional space, weighted by their location in the
rostro-caudal and the left-right anatomical axes (Figure ��). As a result,
we got two vectors, one pointing in the direction of the most rostral ROIs,
and the other in the direction of the rightmost ROIs; we then rotated and
�ipped each �sh’s projection so that those two axes matched across �sh,
i. e. the sum of the two angular distances ���(�1) + ���(�2) was minimized
(see Figure �� for the de�nition of �1 and �2). We call the axes of this space
rotated principal components (rPCs).

After having calculated rPCs for an experiment, all ROIs were assigned
an angle �� based on their position over the circle in rPCs space. The con-
vention used for the angle was that:

• � � (�� , �]
• Caudal neurons had � = 0
• � increased when moving clockwise in the anatomical location of
the neurons

Therefore, looking from above the horizontal plane, leftmost ROIs had
� = �/2, and rightmost ROIs � = ��/2 (Figure ��).
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To test the hypothesis that the network is anatomically organized, we
used the Fisher-Lee de�nition of circular correlation coe�cient (Fisher and
Lee, ����). We also �t a sinusoidal curve to the distribution of ROIs left-right
and anterior-posterior coordinates over the ROIs angle in rPCs space, and
compared the �t residuals to the residuals computed over a shu�e com-
puted by reassigning randomly ROI coordinates (Figure ��).
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Figure ��: Left, Fit of a sinusoidal wave to
the anatomical position on the right-left po-
sition, as a function of the ROI phase in
rPC space, and distribution of square dis-
tances of ROIs from the �t (� < 0.001,
Mann-Whitney U test, n = 1330 ROIs from
n = 31 �sh). The �t was computed over 50%
of the ROIs, and the residuals calculation
over the left-out 50%. Right, The same, for
the antero-posterior axis (� < 0.001, Mann-
Whitney U test, n = 1330 ROIs from n = 31
�sh).

Network phase calculation

We derived the phase �(�) to describe which part of the circle in rPCs space
was the most active at every time point (Figure ��, Movie �). For every
frame, we computed a vector average � of all the � ROI vectors ���� in the
two-dimensional rPCs space, weighted by the state of activation of each ROI
��(�) (the �� /� at time �):

�(�) =
1
�

�
�
�=1

��(�) ����

Note that for this vector averaging, the �� /� of all ROIs at time � were
clipped to their 2% and 98% percentiles and normalized to have mean 0
across ROIs at every time point:

1
�

�
�
�=1

��(�) = 0

Where ���� is the �-dimensional vector of rPC scores for the ��� neuron,
and ��(�) its (normalized) �� /� at time � .

The network phase �(�) is then de�ned as the angle �(�) subtended by
this vector �(�) subject to the same conventions as the ��s de�ned above
Figure ��:
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Figure ��: Network phase was computed as
the angle of the vector average over all neu-
ron projections in rPC space weighted by
their (normalized) activation. Left, center,
and right panels show the rPC projections
color-coded by the state of activation of
neurons at three di�erent time points. Gray
lines show the weighted vector of each neu-
ron, and the thick line their average, color-
coded by their angle. Note how the angle
de�nition and the colors match the legend
de�ned in Figure ��.

• � = 0 corresponds to caudal neurons being active
• increments in � correspond to activity rotating clockwise, and decre-
ments of � to activity rotating counterclockwise

Therefore, � = 0 corresponded to the activation of the network in the
rostral part, � = �/2 to activation of the left part, � = ±� to activation in
the rostral part, and � = 2 to activation in the right part (Figure ��).

For all further analyses, the unwrapped or cumulative phase was used
(unwrap function from numpy), i. e. every discontinuity at π/-πwas removed
adding to parts of the trace an o�set 2�� for some integer �.

Calculation of average activity pro�le

To estimate the average activation pro�le of the network across the ring of
neurons, we started by interpolating the neuron’s traces to a matrix span-
ning the interval �� to � in 100 bins (Figure ��).

-π

-π/2

0

π/2

π

RO
I a

ng
le

0 500 1000 1500
Time (s)

Before interpolationa

0 500 1000 1500
Time (s)

A"er interpolation

− +
ΔF/F

Figure ��: Interpolation of network activity
from neuron angles. Left, Traces of individ-
ual neurons sorted and spaced in � using
their angle �� . The colors on the left map
neuron angles. Right, The same activity, af-
ter interpolating the activation between ��
and � .

Then, we circularly shifted each column of the matrix so that the phase,
and hence the network activation peak, was always positioned at the center
of the matrix (Figure ��). Finally, we calculated the average and standard
deviation of the matrix across the time axis. To make sure the result was
not the consequence of the resampling procedure, we also performed the
circular shift of the raw matrix of traces, sorted according to neurons’ �� ,
and we got consistent results (Supplementary Figure �a,b).

Estimated heading calculation and correlation with phase

To compute estimated heading for the analysis reported in Figures �� and ��,
we estimated the instantaneous angular velocity as the laterality index value
for each individual swim (see Behavior data preprocessing), and we inte-
grated it over time to obtain an estimated heading direction for the head-
restrained �sh.
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Figure ��: Phase-zeroing process: for ev-
ery time point, a circular permutation
of the (interpolated) activity matrix was
computed so that the peak of activation,
mapped by the phase (left), was always in
the center of the matrix. Right, The matrix
of traces, after the interpolation.
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Figure ��: Calculation of the �sh heading
estimate. Top, Raw tail trace. Middle, Later-
ality index for each swim. bottom, Cumula-
tive sum of laterality indexes of swims.

We note that although the relationship between the laterality index and
the �sh orientation change in freely swimming animals is highly linear, the
slope of the linearity is not necessarily one; moreover, the precise extent of
the tail that is tracked, the embedding procedure, and the fact that the head
is immobilized in agarose for our head-restrained imaging experiments are
all parameters that can impact on the precise kinematic of the tail move-
ments and make a precise numerical comparison between head-restrained
and freely swimming experiments di�cult. Therefore, we did not aim at
reconstructing a fully realistic estimated heading direction, and relied on
quanti�cations that either captured just the correlation between estimated
heading changes and network phase changes, or quanti�ed the slope coef-
�cient between the two quantities in relative comparisons within one ex-
periment (for the visual feedback and gain change experiments).

For the results reported in Figure ��, we calculated for each �sh the corre-
lation between heading and phase in a rolling window of 300 s (10 overlaps
for each window), and the same correlation but using a non-overlapping
5min epoch of the heading trace for the shu�e distribution. The moments
reported in Figure �� refer to this population of intervals and shu�e inter-
vals for each �sh.

Swim-triggered and saccade-triggered analyses

For the directional swim-triggered and saccade triggered analysis of Fig-
ure � and Supplementary Figure ��, we cropped for each �sh the phase
around each event, we computed a �sh average for all curves with at least
3 cropped samples, and we subtracted the mean of the 10 s interval before
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the event.

Heading/phase slope �tting for visual feedback experiments

In the experiments reported in The r1π network is not a�ected by visual in-
puts, we wanted to quantify whether the presence of closed-loop visual
feedback or the e�ect of di�erent gain parameters of the closed loop visual
feedback had an e�ect on the relationship between the change in heading
and the phase of the network. As swims often happen in sequences and
the average network phase change seems to plateau after approx. 5 s from
the focal swim, we decided to look at the relationship between the amount
of phase changed in a window between 15 s to 20 s after the swim, and the
amount of estimated heading change in the same interval (which will po-
tentially accumulate also the e�ect of other swims in the sequence).
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Figure ��: , To quantify the e�ect of vi-
sual feedback on the network activity, we
performed a linear regression between the
amount of shift in the network phase and
in the estimated heading, between �� s
after each swim (see Materials and Meth-
ods). Left, Scatter plot of heading change
vs phase change after every swim (individ-
ual points, color-coded by �sh), and the lin-
ear �t for every �sh. Right, Comparison be-
tween the slopes in the data vs. a shu�e
over swim identity (data: (median = �1.01,
Q� = �1.36, Q� = �0.437, n = 31 �sh); shuf-
�e: (median = �0.006 47, Q� = �0.0452,
Q� = 0.0343, n = 31 �sh); � < 0.0001,
Wilcoxon test).The choice of the window was arbitrary, and all the results hold with

other intervals in the 5 s to 20 s range. To quantify this relationship, we
performed linear regression on the (�������� , ������) pairs for all swims in
each experimental condition (Figure �� shows this calculation for all �sh),
and we compared the values of the regression slope across conditions (Fig-
ure ��).

Left and right swim and gaze angle regression

To understand whether in the region there was activity related to left and
right swims, we performed a regressor-based analysis. A set of regressors
was built by convolving with an exponential decay function an array that
was zero everywhere and � in correspondence of either left or right swims
(for Supplementary Figure ��) or with the gaze direction array (for Supple-
mentary Figure ��).

The time constant used was 3 s; the value was higher than the GCaMP�s
time constant, but was chosen as it matched more closely the experimen-
tally observed curves. The exact value of the time constant was not critical
for the reported results. Each cell’s �uorescence trace was then correlated
with both regressors, and the correlation values were used for the analysis
and visualizations in Figure �� Supplementary Figure �� and Supplementary
Figure ��b,c. In the maps of Figure �� and Supplementary Figure ��b,c left-
and right- swim related cells were de�ned by including in the category cells
with a correlation with left- or right-swim regressor > 0.7, and correlation
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Figure ��: Left, Example traces for right and
left swims-selective neurons together with
the �sh tail trace, and right, their anatomi-
cal location, shown on top of a scatter plot
of all ROIs from the same �sh. The regres-
sors are shaded below the traces, and the
correlations of the traces with the regres-
sors are reported in the plot.

with the other regressor < 0.7.

Multilinear regression of eye and tail to network phase

For addressing the relationship between network phase and eye motion,
we used the gaze direction, computed as the average between the two eyes
angles. For the regression analysis, we used the gaze velocity or the instan-
taneous �sh angular velocity estimated from the swim laterality indexes
(both convolved using the same tau as in Left and right swim and gaze angle
regression), either alone or in combination to �t the temporal derivative of
the (unwrapped) network phase.

0 200 400 600
Time (s)

phase (to predict)

heading regressor

gaze_pos regressor

0 200 400 600
Time (s)

d(phase)/dt (to predict)

d(heading)/dt regressor

d(gaze_pos)/dt regressor
d /dt

Figure ��: Illustration of the procedure for
�tting heading and gaze derived regressors
to the phase (left). Linear regression or
multiple linear regression was performed
on the time derivatives of those quantities
(right).

As a multilinear regression is likely to outperform the regression us-
ing only one of the two regressors just by over�tting, we cross-validated
the analysis by �rst calculating the regression values on a randomly drawn
epoch of 5min of the experiment, and calculated the correlation of the phase
derivative and the predicted phase derivative in a test 5min epoch, drawn
randomly by making sure it did not overlap with the �t window. The ran-
dom sampling was repeated 500 times, and the plot in Supplementary Fig-
ure �� reports for each �sh the moments of the population of these draws.

���� data skeletonization

The �rst reconstructions of cells in the aHB with processes in the IPN were
observed by seeding for reconstruction dendrites or axons in the IPN and
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reaching from there somas in the aHB, in the context of a (still unpublished)
broader reconstruction e�ort. The IPN location in the ���� stackwas �rstly
inferred by the recognizable organization of the neuropil and cell somata in
the rhombomere � ventral region. Then, it was con�rmed by the tracing
of axons that could be reconstructed back to the habenulae through a long
bundle of �bers unambiguously identi�able as the fasciculus retro�exus by
its course (unpublished data). After those �rst observations, additional cells
with the soma in the aHB were seeded based on the similarity of their pro-
cesses with already reconstructed cells.

Skeletonization was performed manually by a team of annotators at ari-
adne.ai ag (Buchrain, Switzerland). Annotators were instructed to �ag dif-
�cult locations without extending the skeleton at those locations, and to
stop tracing after a total time of 2 h was reached. At that point, or when
a cell was completed, a quality check was performed by an expert annota-
tor. Di�cult locations were then decided by the expert, and sent back to
the annotator team for additional tracing if necessary. This procedure was
iterated until all cells were fully traced. The skeletons were then annotated
to distinguish the dendrite and the axon by their morphological features
(processes thickness and presence of presynaptic boutons) independently
by Ariadne expert annotators or the authors, with convergent results. All
further analyses and quanti�cation of the reconstructions were performed
using Python. To calculate the centroid position of dendrite and axon for
the analyses in Figure ��, we took the average coordinate of the coordinates
(in IPN reference space) of all the branching points of dendrites and axons.
To generate the distance plot in Figure ��, bottom we calculated for every
branching point of every neuron the distance along the frontal and sagit-
tal axis of all the other branching points (of both axons and dendrites) and
show the distribution of such distances.

Anatomical registrations

To work with the anatomical spaces and their annotations, we used the
BrainGlobe bg-atlasapi package (Claudi et al., ����) and either the larval
zebra�sh brain reference MapZeBrain (Kunst et al., ����), or a custom lab
reference of the aHB and IPN region that will be published together with
the data, created by morphing together stacks from di�erent lines using ei-
ther dipy (Garyfallidis et al., ����) or CMTK (Rohl�ng and Maurer, ����). To
visualize functional data in the references, an average anatomy computed
after centering all stacks with the centering point described in (Lightsheet
imaging data preprocessing), and then a manual a�ne registration was per-
formed to the IPN reference. A similar procedure was used to map the elec-
tron microscopy data. From the skeletons, a density stack was computed in
which the shape and features of the IPNwere prominently visible. An a�ne
matrix transformation was found to match this stack on the IPN reference,
and used for transforming the neuron’s coordinates. The masks delimiting
the IPN and the dIPN were drawn in the IPN reference atlas looking at the
localization of habenular axons a�erents to the region.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.489672doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489672
http://creativecommons.org/licenses/by-nc-nd/4.0/


��������� ��� ������� ��

�� auto-correlation of the neuronal activity

For the plots reported in Figures �� and ��, two-photon microscopy images
from a single plane in the IPN were aligned to the frontal and sagittal axes
of the brain. The dorsal IPN in the images were masked by manual draw-
ing. The area inside of the mask was divided into 3.5 �m ◊ 3.5 �m square
bins. The average �uorescence signal at each bin was z-scored. For each
bin, Pearson correlation of the signal traces between the focal bin and all
other bins were computed (as shown in Figure ��), and sorted in two di-
mensions by the distances between two bins in the frontal and sagittal axes
(for Figure �� and Supplementary Figure ��). The correlation coe�cients
at the same distance were averaged across bins for each animal, and then
averaged across animals.
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Supplementary Figure �: Anatomical location of r1π neurons. a, Frontal, horizontal and sagittal projection of the expression pattern of the
gad�b:Gal� used in the imaging experiments from one �sh. In the gray background, the expression pattern of elavl�:H�B-mCherry, on a second
channel in the same �sh. The blue shades indicate the slices of the stack that were averaged to obtain the views, and are centered on the location
of the imaged ����ergic nuclei in the aHB. b, The same views for the r1π neurons in the imaging experiments registered in a common anatomical
space (pink), visualized together with all the ROIs extracted from the same experiments. OT: optic tectum, mhb: midbrain/hindbrain boundary,
rh: rhombomere. c, The same views for coordinates shown in (b), now registered on the mapzebrain atlas.
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Supplementary Figure �: PCA decomposition of r1π neurons activity. a, Cumulative relative variance explained by the �rst �� principal compo-
nents from PCA decomposition over population for r1π neurons and a population of randomly drawn neurons from the same imaging experiments
matching in number the r1π neurons. Light lines: individual �sh, dark thick line: population average. b, Variance explained by the �rst two
PCs in the plot in (a), compared between r1π and control neurons (Wilcoxon test, � < 0.0001). c, Cumulative variance explained by the �rst ��
principal components of PCA decomposition over the time dimension, legend as in (a). d, Variance explained by the �rst two PCs in the plot in
(c), compared between r1π and control neurons (Wilcoxon test, � < 0.0001). e, Projections over �rst two principal components calculated over
the r1π neurons for all neurons of each �sh, for all �sh in the dataset.
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Supplementary Figure �: Network phase calculation. a, Trajectory of the network in PCA-reduced phase space, color-coded by the network
phase. b, Polar plots showing tuning curves of individual neuron activations as a function of network phase from one �sh. Each panel shows the
curve for a neuron, color coded by their angle � . The anatomical locations of the four neurons are represented in the central inset.
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Supplementary Figure �: Summary plot for all �sh. Raw data showing for each �sh of the dataset the trajectory of the network in PC space over
the entire duration of the experiment color-coded by network phase (panel on the left), and the raw traces of r1π neurons sorted by neuron angle
� and network phase in green. The scale bar in the phase space has length of 5, and the bar below the traces indicates 100 s.
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Supplementary Figure �: Network activity pro�le. a, Average activation pro�le for all �sh in the dataset (n = 31 �sh). Top, Matrix showing the
average activation pro�le for all �sh in the dataset and bottom, mean ±std over time for each �sh (shaded areas) and population average. b, Same
plots of panel (c), computed by phase-zeroing in the traces matrix without interpolation.
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Supplementary Figure �: Phase dynamics during directional swims. a, Network trajectory during sequences of left and right swims (same as
Figure �, with more examples). Top, trajectory in phase space during a sequence of left swims (see tail angle in the insert). Bottom, state of
activation of the network before and after the sequence. The four columns show four sequences of left and right turning, with the network
starting at di�erent phases. b, Probability of network phase given that a forward, left, or right swim occurred (shaded areas: individual �sh; line:
population average, n = 31 �sh). The distribution is �at, suggesting that the network phase is not instructive with respect to the direction of
swimming. c, Example of clockwise and clockwise shifts traversing multiple times the entire network during sequences of repeated directional
swims.
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Supplementary Figure �: Phase predicts �ctive heading. a, Distribution of � values from the comparison of correlation of phase and heading in
chunks of 5min in the data and a shu�e (Wilcoxon test, < 0.01 for all �sh). b, Raw estimated heading and phase for all �sh in the dataset.
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Supplementary Figure �: Visual feedback is not required for the turning integration a, Heading, phase, and the experiment condition for the
closed-loop/open-loop experiments (scale bar: 500 s). b, Heading, phase, and the experiment condition for the gain modulation experiments.
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Supplementary Figure ��: Directional-motion selective neurons in the caudal aHB. a, Correlations of all ROIs and r1π ROIs with left and right
swims regressors. b, Horizontal, sagittal and frontal view showing all ROIs that have a correlation > 0.7with a regressor for swims in one direction
and < 0.7 with the regressor for swims to the opposite side (blue: left swims; golden: right swims). c, Same plot as in a, showing also all the r1π
neurons.
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Supplementary Figure ��: Network phase and eye motion. a, Correlation of the reconstructed test phase and the actual phase when the pre-
diction was performed using only the gaze information, using only the heading information, or a combination of both (gaze: median = 0.0507,
Q� = �0.0155, Q� = 0.125, n = 7 �sh); (heading: median = 0.348, Q� = 0.139, Q� = 0.404, n = 7 �sh); (gaze + heading: median = 0.209, Q� = 0.173,
Q� = 0.391, n = 7 �sh). Comparisons: Wilcoxon test, n = 7 �sh. b, Histogram of the correlation of r1π neurons with a gaze position regressor,
compared with the distribution obtained from all ROIs. d, Anatomical view (horizontal projection) of the correlation values of neurons with a
gaze position regressor. c, Left, Saccade-triggered phase changes in the network, and right, gaze de�ections for rightward (green) and leftward
(orange) saccades.
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Supplementary Figure ��: r1π neurons form reciprocal connections in the IPN. a, Frontal, horizontal and sagittal view from gad�b:Gal�,
UAS:Dendra-kras stack in the region around the IPN. b, Same views, with a scatter plot representing the position of all r1π neurons from the
functional dataset mapped to the IPN reference space. c, Same views, with the reconstructions from all the neurons projecting to the dIPN from
the ���� dataset, shown on their original side.
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Supplementary Figure ��: Individual plots of ���� reconstructed neurons. Frontal view for all neurons presented in Figure �� and Supplementary
Figure ��.
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Supplementary Figure ��: r1π neuron-like activity in the dIPN. Three example datasets are shown. a,d,g, Traces of ROIs in the dIPN showing
r1π-like dynamics, sorted by angle in PC space, and phase of the network (green line). The tail trace is shown in gray on top. b,e,h, Estimated
heading direction (gold) and the unwrapped network phase (green). c,f,i, Top, Projection over the �rst � PCs in time of all the ROI showing
r1π-like activity, color-coded by angle around the circle. Bottom, Anatomical distribution of the same ROI, color-coded by angle in PC space. The
anatomy of the recorded plane is shown in the background.
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Supplementary Figure ��: The organization of IPN projecting neurons of the aHB. a, Complete frontal, horizontal and side view for the data
presented in Figure ��. b, The same views, now showing only the soma locations. c, Plots of node distances for each reconstructed neuron; those
data were summed to obtain the panel in Figure ��, bottom.
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Supplementary Figure ��: �� auto-correlation of the activity in the dIPN for all �sh in the dataset. Each matrix shows the mean correlation
between a focal bin and the other bins at di�erent distances in a two-photon plane for each �sh. The lines on the side show the means across
each axis.
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