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Abstract 49 

Humans are strategically more prosocial when their actions are being watched than when they act 50 

alone. Using a psychopharmacogenetic approach, we investigated the computational and 51 

endocrinological mechanisms of such audience-driven prosociality. 187 participants received either a 52 

single dose of testosterone or a placebo and performed a prosocial and self-oriented reinforcement 53 

learning task. Crucially, the task was performed either in private or when being watched. 54 

Rival theories of testosterone's role in status-seeking suggest that the hormone might either strengthen 55 

or diminish audience-depended generosity. We show that exogenous testosterone strongly decreases 56 

submission to audience expectations, full eliminating strategic i.e., feigned generosity. We next 57 

performed reinforcement-learning drift-diffusion modeling to elucidate which latent aspects of 58 

decision-making testosterone acted on. Computational modeling revealed that testosterone compared 59 

to placebo did not deteriorate reinforcement learning per se, rather, in presence of the audience, the 60 

hormone impacted the expression of the learned information into behavioral choice. These results 61 

indicate that instead of deceptively increasing socially desirable behavior, testosterone boosts honest 62 

forms of status-seeking, arguably by impacting the motivational link between learned values and 63 

behavior.   64 

 65 
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Introduction 84 

Humans behave more prosocially when their actions are watched by others1. This 85 

phenomenon has been demonstrated across a variety of social behaviors, such as blood donations2, 86 

church offerings3, or monetary donations to charitable organizations4, and is often referred to as 87 

strategic prosociality5 or the audience effect6. From an evolutionary perspective, making one’s 88 

generosity visible to others has an important signaling value, in that it advertises an individual’s 89 

qualities as a potential partner or a valuable group member7. In the present study, we propose and 90 

investigate whether the steroid hormone testosterone plays a crucial role in such audience effects. 91 

Research in the past decade has demonstrated that testosterone is implicated in a wide 92 

spectrum of socially dominant behaviors8,9. Exogenous testosterone alleviates subordination to the 93 

dominance of others10-12 and reduces the physiological stress response to being evaluated by others13. 94 

Given that enhanced submission to audience expectations has been associated with increased social 95 

anxiety and an intense apprehension about social evaluation14, testosterone administration might 96 

decrease audience effects. 97 

In contrast, the hypothesis that testosterone drives status-seeking via reputation building 98 

rather than dominance15,16 would predict that based on the social context, testosterone might 99 

conditionally promote prosocial and especially socially desirable behavior to build up a reputation 100 

and increase status. The present paper is the first that aimed to distinguish between these two 101 

alternatives of boosting one’s social status that testosterone may act on. One option is that, in line with 102 

the social dominance hypothesis17, the hormone prioritizes dominant status-seeking and would hence 103 

diminish the submission to audience expectation. The other option is that testosterone primarily 104 

promotes reputable status-seeking15,16. If true, the hormone could increase strategic prosocial 105 

behavior. 106 

Through what neurobiological pathways could testosterone modulate such complex social 107 

behaviors? Previously, exogenous testosterone was found to increase dopamine levels in the rat 108 

ventral striatum18, suggesting that the hormone exerts its effects through modulation of dopaminergic 109 

activity in reward-related neural circuits. Besides this insight from animal research, testosterone and 110 

reward processing have also been linked in humans19,20. It remains to be shown, though, which 111 

specific aspects of reward processing testosterone acts on. For one, during value learning, testosterone 112 

may influence the incorporation of the so-called reward prediction errors (RPE) which track the 113 

difference between predicted and actual outcome21 and are encoded by the phasic activity of midbrain 114 

dopaminergic neurons projecting to the ventral striatum22,23. Alternatively, testosterone may impact 115 

the conversion of the learned values into choice performance, or the temporal dynamic of the 116 

evidence accumulation.  117 

The present study thus not only aimed to investigate if testosterone influences strategic 118 

prosociality, but also whether this is achieved by impacting reward-related computations. We 119 
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employed a novel modeling approach, by combining reinforcement learning with diffusion decision 120 

models (RLDDM). This provided a more comprehensive account of the latent processes involved in 121 

prosocial decision-making than previous separate RL and DDM approaches21,24. Besides describing 122 

how subjective values of the choice options are learned through RPEs (learning rate parameters) and 123 

converted to actions (choice consistency parameter), the new combination of reinforcement learning 124 

and diffusion decision modeling also enabled us to explore the temporal dynamics of these latent 125 

processes (decision threshold and drift-scaling parameters, see SI Table S3 for parameter 126 

description)24. 127 

Male participants (n = 187) underwent a double-blind, between-subject, placebo-controlled, 128 

topical testosterone (150 mg) administration and then performed a reinforcement learning task (Figure 129 

1). On each trial, participants were required to choose between one of two symbols. One symbol was 130 

associated with a high probability (75%), and one was associated with a low probability (25%) of a 131 

reward. These contingencies were not instructed but had to be learned through trial and error. While 132 

classic charitable donation tasks16 and neuroeconomic games8,9 overtly measure participants’ overall 133 

prosociality, the RL task allowed us to furthermore characterize the hidden individual steps in the 134 

process of learning about the consequences actions have for oneself and others. To compare self- and 135 

other-oriented decision-making, participants completed the task for themselves and for an NGO of 136 

their choice (within-subject condition). Critically, the task was performed either in private or when 137 

being watched (between-subject condition, see Materials and Methods).  138 

Based on previous audience-effect research2-6, we predicted that when the participants are 139 

watched, they will be relatively more prosocial (i.e., make more correct choices for the other vs self) 140 

than in private. Crucially, we expected that such an audience effect will be underpinned by relatively 141 

faster incorporation of RPEs (learning rate parameter α in RL); higher consistency in converting 142 

values to action probability, (inverse temperature parameter tau in RL, also known as value 143 

sensitivity, exploration parameter, or 1/β); and more integrated evidence necessary for making a 144 

decision (threshold parameter in DDM). In other words, participants would learn more efficiently, 145 

learned values would inform their behavior more consistently, and their decisions would be more 146 

cautious. 147 

Our main hypothesis was that the effects of being watched on other- vs. self-benefitting 148 

behavior will be modulated by testosterone administration. Given that testosterone reduces 149 

submission signals and stress response to the social evaluation, allowing for dominant status-150 

seeking10-13, we hypothesized that testosterone would reduce the audience effect expected in the 151 

placebo group. As an alternative prediction, we reasoned that if testosterone does not primarily cause 152 

dominant status-seeking, but instead, in non-threatening environments, promotes more agreeable 153 

reputable status-enhancing behaviors16,17, participants in the testosterone (vs placebo) group should 154 

show a larger audience effect. Irrespective of whether testosterone would increase or decrease 155 
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prosocial behavior under the audience effect, we also predicted that testosterone’s effects will be 156 

associated with changes in the efficiency of RPE-based value updating (α in RL), choice consistency 157 

(tau in RL), and evidence necessary for making a decision (threshold parameter in DDM). 158 

Furthermore, considering that testosterone possibly modulates social behavior through both 159 

androgenic and dopaminergic pathways25, we explored whether a CAG repeat polymorphism of the 160 

androgen receptor, as well as a DAT1 polymorphism of the dopamine transporter, interacts with 161 

testosterone administration effects. Finally, as it has been suggested that sensitivity of dopaminergic 162 

pathways is heightened among highly dominant individuals26 and that these individuals show more 163 

pronounced effects of testosterone administration25,27, we as well tested whether testosterone effects 164 

on strategic prosociality vary as a function of self-reported trait dominance28. 165 

Figure 1. Experimental design and task. (A) Timeline of the experimental session. (B) Prosocial reinforcement 166 

learning task. Participants performed the task either in private or watched by an observer introduced as an NGO 167 

association representative. The observation was signalled by a red frame. Each participant completed three 168 

blocks of 16 trials for themself and three blocks of 16 trials to benefit an NGO of his choice. (C) Schematic of 169 

the reinforcement learning drift diffusion model (RLDDM). Left panel: trial-by-trial value updates in RL; right 170 

panel: evidence accumulation in DDM. Importantly, the drift rate in DDM is calculated from the value 171 

difference between choice options in RL. 172 
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Results 173 

Testosterone eliminates the audience effect  174 

After having confirmed that the testosterone administration produced a clear increase in the salivary 175 

testosterone levels of the treatment compared to the placebo group (drug treatment x time: 176 

F(3,522.59) = 47.82, p < .001, η2p =.423, see SI: Supplementary analysis of hormone data), we 177 

analyzed the effects of drug treatment (P/T), visibility (private/observed), and type of recipient 178 

(self/other) on the number of correct choices (i.e., options that have higher reward probability). The 179 

three-way interaction of these factors was found to predict the number of correct choices (OR = 1.06, 180 

CI = [1.00, 1.13], p = .046; Figure 2A). Follow-up analysis using treatment contrasts showed that 181 

participants in the placebo group showed more prosocial behavior, as indicated by relatively more 182 

correct prosocial choices, when being watched compared to the private setting in which they were not 183 

watched (recipient x visibility interaction in placebo group: OR = 1.44, CI = [1.02, 2.02], p = .039). 184 

Supporting our prediction based on the social dominance hypothesis, this audience effect was absent 185 

in the testosterone group (recipient x visibility interaction in testosterone group: OR = 0.88, CI = 186 

[0.63, 1.23], p = .461). Specifically, when partciapnts were observed, testosterone, compared to 187 

placebo, reduced the number of correct choices made for another (OR = 0.67, CI = [0.49, 0.91], p 188 

= .011, Figure 2C). The number of correct choices made for self, however, was not influenced by the 189 

drug treatment (OR = 1.12, CI = [0.87, 1.45], p = .384), visibility (OR = 0.98, CI = [0.75, 1.27], p 190 

= .861, or their interaction (OR = 0.91, CI = [0.63, 1.33], p = .638, (Figure 2B).  191 

 192 

Figure 2. The differences in the number of correct choices. (A) Participants in the placebo group behaved more 193 
prosocially (as measured by prosociality index = correct choices for other – correct choices for self) when being 194 
observed than in privacy. Exogenous testosterone eliminated this audience effect. (B) Pairwise comparisons 195 
showed that there was no significant effect of the experimental groups on the number of correct choices made 196 
for oneself. (C) Testosterone, compared to placebo, decreased the number of correct choices made for the NGO 197 
when being observed. Dots represent the data of individual participants, lines represent mean values per group, 198 
and bands 95% confidence intervals.  199 
 200 
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Behavior is best explained by a reinforcement learning drift diffusion model with positive and 201 

negative learning rates  202 

Next, we sought to uncover the computational mechanisms underlying the experiment-condition-203 

specific behavioral differences on a trial-by-trial basis. The winning model (winning over five other 204 

candidate models; see Materials and Methods and SI: Model selection and validation) entailed 205 

combined RL and DDM component, thus simultaneously predicted individuals’ choices and RTs (see 206 

SI: Table S3 for a complete list of parameters and their description). The RL component section 207 

predicted participants’ learning behavior via the value updates through the computation of RPEs with 208 

separate positive and negative learning rates (i.e., αpos and αneg Equation (1)). In other words, the 209 

model that best accounted for the data assumed a differential speed of learning with and without 210 

positive feedback:  211 

.  (1) 212 

where 𝑂  denotes the outcome, and 𝑉 ,  the subjective value of choice 𝑐 at trial 𝑡 − 1. 213 

In addition, the DDM component predicted RTs by assuming an evidence accumulation process (as 214 

quantified by the drift rate; decisions were made when the evidence reached a certain threshold29). 215 

Importantly, the marriage between RL and DDM allowed a fine-grained investigation into how the 216 

drift rate (vt) was shaped by the value difference between two symbols at the trial-by-trial level 217 

(Equation (2); S, a non-linear transformation function; vscaling, a weight parameter that maps accuracy-218 

coded value difference into the drift rate24).   219 

, (2) 220 

We fitted all candidate models (see Materials and Methods and SI: Supplementary information on 221 

computational modeling) under the hierarchical Bayesian estimation scheme30 to incorporate both 222 

group-level commonality and individual differences, according to our task design (effects of drug 223 

treatment (P/T), visibility (private/observed), and type of recipient (self/other).  224 

 225 

Testosterone’s impact on strategic prosocial behavior is associated with choice consistency  226 

Next, we investigated which RLDDM parameters of our validated winning model are associated with 227 

the effects found in the behavioral analysis of the correct choice. As a first step, we tested the 228 

parameters for the 3-way interaction effect of drug treatment, visibility, and type of recipient.  229 

In the second step, we examined whether the parameters that showed a three-way interaction effect of 230 

our experimental manipulation predict behavioral prosociality. Behavioral prosociality was measured 231 

by the difference between correct choices made for others and self. 232 

Out of the five parameters (positive and negative learning rate, choice consistency, threshold, drift-233 

scaling parameter) only choice consistency showed the three-way interaction of our experimental 234 
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manipulations (B = 0.98, CI = [0.97, 0.99], p < .001), and at the same time significantly predicted 235 

behavioral prosociality (Bonferroni correction for multiple comparisons, B = 5.45, CI = [3.71, 7.19], p 236 

< .001; Figure 3D). Specifically, the placebo group participants had relatively higher consistency in 237 

choices made for the other (vs. self) when being observed than in privacy (recipient x visibility 238 

interaction in the placebo group: B = 1.08, CI = [1.05, 1.10], p < .001). On the contrary, in the 239 

testosterone group, observation, compared to privacy, decreased the consistency of choices made for 240 

the other (vs. self) (recipient x visibility interaction in testosterone group: B = 0.94, CI = [0.92, 0.97], 241 

p < .001; Figure 3B). When participants were observed, testosterone, compared to placebo, 242 

diminished the relative consistency of prosocial choices (recipient x treatment interaction in observed 243 

condition: OR = 0.87, CI = [0.85, 0.89], p = .001). In the private condition, there was no evidence for 244 

such an effect (recipient x treatment interaction in private condition: OR = 0.99, CI = [0.97, 1.02], p 245 

= .605; for analysis of all RLDDM parameters, see SI: Analysis of the RLDDM parameters and their 246 

association with prosocial behavior). 247 

Altogether, these results suggest that testosterone eliminates audience-dependent prosocial behavior 248 

by affecting choice consistency. 249 

 250 

Interaction of testosterone effects with trait dominance and genetic polymorphisms 251 

In further support of the social dominance hypothesis, trait dominance interacted with testosterone’s 252 

effects on correct choice (recipient x drug treatment x visibility x trait dominance: OR = 1.04, CI = 253 

[1.01, 1.09], p = .026). Decomposition of this four-way interaction revealed that testosterone reduced 254 

the number of correct choices made for others during observation specifically among men with high 255 

trait dominance (OR = 0.60, CI = [0.42, 0.87], p = .008) and this effect was weaker and non-256 

significant among those with low dominance (OR = 0.74, CI = [0.52, 1.04], p = .084). Trait 257 

dominance did not significantly interact with the RLDDM parameters (all ps>.220 see SI: Interaction 258 

of trait dominance with testosterone effects on RLDDM parameters). 259 

CAG-repeat and DAT1 polymorphisms did not interact with the effects of testosterone on correct 260 

choice or RLDDM parameters (all ps>.090, see SI: Supplementary information on the analysis of 261 

genetic data). 262 

 263 

Learning parameters in relation to optimal learning rates  264 

To gain a deeper understanding of how the learning parameters were related to the task performance 265 

in our experimental design, we performed a simulation study to identify optimal learning rates31 (see 266 

SI: Simulations of optimal learning rates). In all conditions, both the posterior positive and negative 267 

learning rates were smaller with respect to the optimal ones (see Figure 4A, 4C). Crucially, to validate 268 

whether the choice accuracy corresponding to the posterior parameters in our winning model could 269 

capture key patterns in our behavior findings (i.e., posterior predictive check), we let our winning 270 
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model generate synthetic data and analyzed the generated prosocial behavior (i.e., choice accuracy for 271 

other minus choice accuracy for self) in the same way as we analyzed the observed data. We found 272 

that results from the generated data (Figure 4B, 4D) greatly resembled the behavioral patterns 273 

reported in Figure 2A. 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

Figure 3. The differences in the parameters estimated by the reinforcement learning drift diffusion model 298 
(RLDDM). (A) In the placebo group, observation compared to privacy relatively decreased the prosocial 299 
negative learning rate (i.e., the difference between negative learning rates in the other condition and the self 300 
condition). Testosterone administration reversed the observation effect. The results suggest that for better 301 
performance in the task, a lower negative learning rate is more suitable. (B) In the placebo group, observation 302 
compared to privacy, relatively increased the consistency of the prosocial choices. Testosterone administration 303 
reversed this audience effect. (C) In the placebo group, observation compared to privacy, relatively increased 304 
the DDM threshold for prosocial choices. Testosterone administration reversed the audience effect. (D) Inverse 305 
temperature parameter tau that captures choice consistency significantly predicted prosociality. Dots represent 306 
the data of individual participants, lines represent mean values per group, and bands 95% confidence intervals.  307 
 308 

 309 
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 310 
Figure 4. Optimal learning rates and posterior predictive checks. Posterior learning rates in relation to the 311 
optimal learning rates in the private (A) and observed (C) conditions. Orange dots represent the optimal 312 
combination between positive and negative learning rates identified via simulation; red crosses indicate the 313 
posterior means of learning rates. The posterior learning rates were employed to perform posterior predictive 314 
checks for the main behavioral findings for the private (B) and observed (D) conditions. Simulated data from 315 
posteriors were analyzed in the similar fashion as the real data and the model prediction largely matched our 316 
main behavioral effect (cf. Figure 2A).  317 
 318 

Discussion  319 

Using pharmacological manipulation and a novel computational model integrating 320 

reinforcement learning with the drift diffusion modeling (RLDDM) framework, we tested and 321 

characterized testosterone’s role in the audience-dependent prosocial behavior. The results show that 322 

testosterone diminishes the typical audience effect present in the placebo condition. Computational 323 

modeling pinpoints this effect to a reduction in the extent to which the performance of prosocial (vs. 324 

selfish) choices are consistent with learned reward values. Moreover, the effects are more pronounced 325 

in participants with higher trait dominance. Taken together, these findings are in line with the social 326 

dominance hypothesis, and are thus consistent with the notion that testosterone decreases submission 327 

to audience expectations, rather than promoting the strategic display of socially pleasing behavior32,33. 328 
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A growing body of evidence suggests that testosterone exerts its behavioral effects through 329 

the modulation of reward-related processes19,20. However, to our knowledge, no study investigated the 330 

computational mechanisms underlying such effects. Using joint RLDDMs, we found that in the 331 

placebo group, observation (vs privacy) increased the relative consistency of prosocial choices. 332 

Testosterone administration eliminated this audience effect, making the performance of prosocial (vs. 333 

self) choices less consistent with value computations. Low choice consistency means that individuals 334 

select options with non-maximal expected values, which is often referred to as exploratory behavior34. 335 

In environments with static reward probabilities, participants can maximize their reward by initially 336 

exploring which option tends to be more fruitful. Once learners discover the better option, exploration 337 

yields no benefit. One possible explanation of the present effect could therefore be that testosterone 338 

impaired individuals’ ability to adapt and control the amount of exploration. However, our data do not 339 

indicate that testosterone affects exploration in general, as we did not find any testosterone influence 340 

on choice consistency in the private setting.  341 

Rather, the present testosterone’s effect appears to be dependent on the social context and 342 

manifests only in the environment where one is watched by others. What processes could channel the 343 

context-specific effects of testosterone? We propose that testosterone’s elimination of the audience 344 

effect stems from the hormone’s ability to reduce fear in social situations. Indeed, earlier research 345 

shows that exogenous testosterone diminishes the physiological stress response to the presence of an 346 

observer12 and has anxiolytic-like properties in humans and across species 10,35,36. Importantly, anxiety 347 

and stress were reported to inversely correlate with exploratory behavior37,38. Moreover, social anxiety 348 

levels positively predict prosocial behavior performed while being watched14. It is thus plausible that 349 

the participants in the testosterone condition who were watched were, compared to the placebo group, 350 

less motivated to exert increased prosocial effort necessary to fulfill the audience expectations. 351 

Instead, they engaged in less demanding exploratory behavior. 352 

Drawing on the distinction between social dominance and favorable reputation as two 353 

evolutionarily grounded routes for attaining status in social systems across species28,  354 

our study suggests that although socially desirable behavior may be a road to leadership in human 355 

democratic societies, testosterone does not promote such pleasing strategies32. Consistent with this, 356 

our analysis shows that testosterone eliminates strategic prosociality particularly among individuals 357 

with high trait dominance. Variability in dominance and cultural differences in social status 358 

attaintment can also account for the results of another recent study, which was conducted among 359 

Chinese students and showed that testosterone enhanced audience effects16. Indeed, contrary to 360 

western society, in eastern cultures, high social status is associated with increased other-orientation, 361 

including generosity and benevolence to those with lower status39. These cultural differences have 362 

been linked to polymorphisms in the dopamine D4 receptor gene40, implying a putative biological 363 

mechanism that could explain cultural differences in testosterone effects. 364 
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Our results are, furthermore, in line with studies showing that testosterone decreases 365 

deception41-43. Further research is, however, needed to determine whether testosterone reduces lying 366 

per se, or only in the situations, in which dishonest behavior may be considered “cheap”, dishonorable 367 

and lower the subject’s feelings of pride and self-image41. 368 

There are also some limitations inherent to the methodology of our study. Due to the sex 369 

differences in testosterone metabolism and unknown pharmacokinetics following the topical 370 

administration of testosterone in women44, the study included only male participants. Hence, the 371 

generalization of these findings to females requires further investigation.  372 

Crucial for advancing our understanding of the relationship between testosterone, dominance, 373 

and status-seeking is the investigation of the pathways through which testosterone exerts its effects. 374 

We conducted a multifaceted examination of the computational, endocrinological, and genetic 375 

mechanisms underlying audience effect and showed that testosterone reduced strategic prosocial 376 

learning through impairment of choice consistency. These findings provide the first evidence that in 377 

the Western student sample, testosterone abolishes audience effects, and therefore does not foster 378 

seeking of social leadership by reputational politics. Furthermore, this study reveals that testosterone 379 

impacts status-seeking by influencing how the learned values are expressed in behavior. 380 

 381 
Materials and Methods 382 
 383 
Participants  384 

The study sample consisted of 192 healthy adult men aged between 18 and 40 years (M = 24.89, SD = 385 

4.08). The sample size was determined based on previous testosterone administration studies (8, 32) 386 

and our pilot study. Our sample size gave us 90% power to detect relatively small effects of size f ≥ 387 

0.15, for the main analyses of interest (i.e., interaction effects of the factors drug treatment, visibility, 388 

and type of recipient on the RLDDM parameters). Participants were recruited via flyers placed around 389 

university campuses and online advertisements. The volunteers, who replied to these advertisements, 390 

were screened via an online questionnaire and a telephone interview. The exclusion criteria comprised 391 

a history of neurological or psychiatric disorders, endocrine or other internal diseases, obesity, 392 

substance dependence, and the use of steroids. Only male participants were included as testosterone 393 

metabolism is subject to sex differences and the pharmacokinetics of topical administration of 394 

testosterone are unclear in women44. Three participants were excluded because of an unreliable 395 

change in hormone levels (see SI: Supplementary analysis of hormone data) and two participants 396 

were excluded because they continually clicked on the same response key irrespective of changing 397 

stimuli and reward probabilities for more than 80% of the block trials, and thus were classified as 398 

non-compliant. All participants gave written consent and received a financial reward for their 399 

participation consisting of a flat fee and a bonus based on their task performance. All procedures were 400 

approved by the local research ethics board and conducted following the latest revision of the 401 

Declaration of Helsinki45. 402 
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Procedure and experimental conditions  403 

Testing took place in groups of three to five participants, who were seated individually in small 404 

cubicles within the same testing room. All experimental sessions started between 01:00 and 02:30 405 

p.m. First, a buccal smear sample for CAG repeat and DAT1 polymorphisms analysis was taken (See 406 

SI: Supplementary information on the analysis of genetic data). 20 min after arrival, participants were 407 

asked to drool 2 mL of saliva into a polyethylene collection tube. All salivary samples were frozen 408 

on-site and stored at - 30 °C until analysis. Afterward, participants were administered topical 409 

testosterone or placebo gel in a double-blind between-subjects design with random group allocation. 410 

Those allocated to the testosterone group received a single dose of testosterone gel, containing 150 411 

mg testosterone [Androgel®]; participants in the placebo group received an equivalent amount of 412 

placebo gel. The only difference between the testosterone and placebo gel was that the placebo gel did 413 

not contain testosterone. Participants rubbed the gel onto their upper arms and shoulders using 414 

disposable latex gloves. Gel administration was followed by a 2-hour waiting period, during which 415 

participants remained in the laboratory premises, completed the Dominance-Prestige Scale28 and 416 

demographic questionnaires, and were offered leisure-time reading materials. One hour and 50 417 

minutes after the gel application, participants provided a second saliva sample and subsequently 418 

began the experimental task (see Figure 1). Two more saliva samples were taken during the course of 419 

the study: 20 and 60 minutes after the end of the experimental task. After data collection was 420 

complete, saliva samples were analyzed by liquid chromatography-tandem mass spectrometry in 421 

Dresden LabService GmbH, Germany.  422 

Participants performed the task under one of the two randomly assigned between-subject conditions, 423 

either in private or when being observed. In the private condition, participants were informed that 424 

their task performance is completely anonymous and no one (including the experimenter) would know 425 

how much money they would earn for themselves and the charitable organization. In the observed 426 

condition, two female observers, introduced as NGO association representatives entered the room and 427 

watched participants perform the task. The observers were seated at a desk with a laptop and had an 428 

equal view of all the participants. In addition, when participants were observed, a red frame was 429 

shown on their computer´s screen and the displays of the participants' computers were transmitted 430 

onto the observers´ laptop screens.  431 

Participants were thus randomly assigned into four experimental groups corresponding to the levels of 432 

two between-subject factors: (1) treatment (testosterone/placebo) and (2) visibility (observed/private). 433 

These groups did not differ in age, trait dominance, basal hormone levels, or distribution of AR CAG 434 

and DAT1 genotype (see SI: Table S1).  435 

Prosocial learning task 436 

Participants performed a probabilistic reinforcement learning task46, where they could earn rewards 437 

either for themselves (self condition) or for an NGO of their choice (other condition). On each trial, 438 

participants were presented with two abstract symbols, one associated with a high (75%) and the other 439 
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with a low (25%) reward probability. These contingencies were not instructed but had to be learned 440 

through trial and error. Participants selected a symbol by a button press and then received feedback on 441 

whether they obtained points or not. This way participants learned which symbol to choose to 442 

maximize the rewards in the long run. The points were converted to monetary rewards at the end of 443 

the experiment. Participants completed 6 blocks, 3 blocks in self and 3 blocks in the other condition. 444 

Each block started with a new pair of symbols and consisted of 16 trials/choices. Block with the same 445 

recipient did not occur twice in a row. In self condition, the blocks started with “YOU” displayed and 446 

had the word “YOU” at the top of each screen. In the other condition, the blocks started with “NGO” 447 

displayed and had the word “NGO” at the top of each screen. At the end of the experimental task, 448 

participants could choose the recipient of the money they earned in the other condition from a list of 6 449 

different charities.  450 

Statistical analysis of correct choices 451 

Statistical analysis was performed using R statistical language47. We analyzed the treatment 452 

(testosterone/placebo) x visibility (observed/private) x recipient (self/other) interaction effect on 453 

correct choice using generalized linear mixed models (GzLMM) with binomial distribution and logit 454 

link function48. The correct choice was defined as choosing the symbol with a higher reward 455 

probability. Participant’s identity was modeled as a random intercept effect and the within-subject 456 

factor recipient (self/other) was entered as a random slope.  457 

To examine whether the effects of testosterone on correct choice varied as a function of trait 458 

dominance, CAG repeat, and DAT1 polymorphism, we added these variables separately as predictors 459 

in interaction with the other factors specified in the above GzLMM. In case of the significant 460 

interaction of trait dominance with testosterone effects on the correct choice, we conducted a follow-461 

up analysis, where the continuous measure of dominance was replaced by a categorical variable with 462 

levels of high and low dominance, based on the median split of dominance scores (Med = 3.875). 463 

P-values were based on Type III Wald chi-square tests from the R car package, post-hoc tests of 464 

significant three-way interactions were conducted with the R sjPlot package that provided reported 465 

odds ratios (ORs) together with 95% confidence intervals (95%CIs). Plots were created using yarrr 466 

and ggplot2 R packages (See SI for references). 467 

Reinforcement learning drift-diffusion modeling 468 

To uncover the cognitive computational processes underlying our learning task, we performed 469 

modeling analysis under the joint reinforcement learning drift diffusion model (RLDDM) 470 

framework24,29. In essence, RLDDM bridges RL, which typically models choices, and DDM, which 471 

commonly models response times (RT). This approach has been proven to provide more granularity 472 

than using RL or DDM alone24. We tested 6 candidate RLDDM models and the winning model is 473 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.489681doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489681
http://creativecommons.org/licenses/by-nc-nd/4.0/


described below (see SI: Supplementary information on computational modeling for full model 474 

description, estimation, and comparison procedures). 475 

The RL part of the winning RLDDM model was implemented with a reward-punishment simple 476 

reinforcement learning model, where both a positive learning rate and a negative learning rate were 477 

employed to update values (i.e., V(A) and V(B) for two-choice options) through the computation of 478 

RPEs49 (Equation (1); see also SI: Supplementary information on computational modeling). 479 

The DDM part of the winning RLDDM model was implemented via a non-linear transformation of 480 

the accuracy-codded value differences computed from the RL counterpart, to construct the trial-by-481 

trial drift rates24 (Equation (2); see also SI: Supplementary information on computational modeling). 482 

The winning model contained 14 parameters: 7 separate parameters for each between-subject 483 

condition (i.e., placebo/testosterone, private/observed), and differential parameters for the within-484 

subject condition (i.e. other/self; see SI: Table S3 for the parameter list and description).  485 

Statistical analysis of model parameters 486 

The drug treatment (testosterone/placebo) x visibility (observed/private) x recipient (other/self) effect 487 

on the extracted free parameters was analyzed using GzLMMs analogous to the analysis of the correct 488 

choice. Due to the non-normal distribution of residuals, gamma distribution with a log link function 489 

was used for the parameter analyses. Finally, we tested whether the RLDDM parameter estimates, that 490 

were affected by the interaction of the drug treatment, visibility, and recipient could explain the 491 

differences observed in the behavioral prosociality measure. To do so, we conducted multiple linear 492 

regressions with the difference in the number of correct choices made for another and self 493 

(prosociality index) as a dependent variable and the differences in the RLDDM parameter estimates 494 

(αnegother- αnegself, τother – τself, thresholdother -thresholdself, drift-scalingother-drift-scalingself) as separate 495 

predictors. Bonferroni correction for multiple comparisons was used. 496 

 497 
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Supplementary information on the use of statistical software and functions 783 

Statistical analysis was performed using the R statistical language1 and the packages: lme42 for 784 

construction of general linear mixed models (GLMM) and generalized linear mixed model  785 

(GzLMM); car package3 for construction of general linear models and computation of p-values based 786 

on Type III Wald chi-square tests; sjPlot package4 for post-hoc tests of significant three-way 787 

interactions including odds ratios (ORs) and 95% confidence intervals (95%CIs); yarrr 5 and ggplot26 788 

packages for construction of plots. 789 

Computational modeling was performed using Markov chain Monte Carlo with the statistical 790 

computing language Stan7 while following the hBayesDM package8. Model comparison and 791 

evaluation were performed using the LOO package9.  792 

 793 

Supplementary analysis of hormone data 794 

The effect of drug treatment on hormone levels. 795 

After data collection was complete, saliva samples were shipped on dry ice to Dresden LabService 796 

GmbH led by Clemens Kirschbaum, Germany. Liquid chromatography-tandem mass spectrometry 797 

was used to determine the hormonal levels. To examine the change of the hormonal levels throughout 798 

the experimental session, testosterone, cortisol, and estradiol levels were analyzed using GLMMs with 799 

the fixed factors drug treatment (testosterone/placebo), visibility (observed/private), time (baseline/1 h 800 

50 min after drug treatment/20 min after the end of the task/60 min after the end of the task), and 801 

participant’s identity as a random intercept. Due to the non-normal distribution of residuals, hormonal 802 

data were log-transformed. Baseline hormonal levels did not significantly differ across experimental 803 

groups (all ps > .263, see Table S1). As expected, 1h 50 min after gel administration, we observed 804 

higher testosterone levels in the testosterone group (MSample2 = 5014.10 pg/mL, 95%CI [3866.10, 805 

6502.88]) compared to the placebo group (MSample2 = 134.30, 95%CI [103.54, 175.92]; drug treatment 806 

x time: F(3,522.59) = 47.82, p < .001, η2 =.423), a difference that remained stable until the end of the 807 

experiment (see Figure S1). 808 

Testosterone levels of two participants in the testosterone group decreased after the drug 809 

administration (Sample 1/Sample 2: 629.29/308.95 pg/mL and 350.76/294.76 pg/mL), while 810 

testosterone levels of one participant in the placebo group increased considerably (Sample 1/Sample 811 

2: 546.133/1099.08 pg/mL). These three participants were excluded from the analyses. 812 

There were no effects of drug treatment on cortisol (drug treatment x time: F(3,550.23) = 0.149, p 813 

= .930) or estradiol levels (drug treatment x time: F(3,551.12) = 1.420, p = .236). 814 

The observation condition did not significantly influence any hormonal levles (testosterone: visibility 815 

x time: F(3,520.88) = 1.528, p = .206; cortisol: visibility x time: F(3,520.6) = 0.9, p = 441; estradiol: 816 

visibility x time: F(3,521.37) = 1.699, p = .166).  817 
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Contamination of salivary samples. 818 

Out of a total of 192 baseline samples, we noted that 34 contained above normal testosterone levels, 819 

atypical for normal young men (> 2000 pg/mL). All other baseline values were hormonally typical. 820 

The samples with abnormally high testosterone values appeared only in the participants, who later 821 

received testosterone treatment, not in the placebo group. Previous research10,11 described similar 822 

abnormally high testosterone levels and attributed it to the testosterone contamination of the common 823 

surfaces (e.g., doorknobs, keyboards), excluding the option of physiological contamination. Based on 824 

their recommendation, we implemented a cleaning protocol that included the wearing of disposable 825 

sterile gloves, cleaning of keyboards, computer mice, tables, and doorknobs with an alcohol-based 826 

solution after each session. Although these precautions successfully prevented between-session 827 

contamination, we suspect that they still did not reliably impede within-session contamination of the 828 

saliva containers. For future studies, we, therefore, recommend even stricter sanitizing protocols and 829 

more careful handling of the saliva collection tubes and boxes, before, during, and also after sample 830 

collection.  831 

In our sample, the abnormally high values were present only in the sessions where testosterone was 832 

administered, and this notwithstanding, the testosterone group showed a reliable testosterone increase 833 

after the drug administration in comparison to the placebo group. We, therefore, decided to retain the 834 

participants with contaminated baseline samples for the behavioral analyses, except for the analysis 835 

that includes baseline testosterone levels. 836 

Interaction of baseline cortisol with testosterone effects on the correct choice and RLDDM 837 

parameters. 838 

Previous research has shown that exogenous testosterone influences status-seeking behavior more 839 

strongly in individuals with low endogenous cortisol levels12,13. To examine whether cortisol 840 

interacted with testosterone´s effect on correct choice and reinforcement learning drift diffusion 841 

model (RLDDM) parameters, we added log-transformed, mean-centered baseline cortisol values as a 842 

predictor in interaction with the other factors (recipient, drug treatment, visibility) to the GzLMM of 843 

correct choice and the GzLMMs of the RLDDM parameters (see Method in the main text). The 844 

analysis revealed no significant interaction of baseline cortisol levels with testosterone effect on 845 

correct choice (recipient x drug treatment x visibility x baseline cortisol: OR = 1.05, CI = [0.98, 1.13], 846 

p = .202), positive learning rate (recipient x drug treatment x visibility x baseline cortisol: OR = 1.10, 847 

CI = [0.76, 1.59], p = .614), negative learning rate (recipient x drug treatment x visibility x baseline 848 

cortisol: OR = 1.01, CI = [0.97, 1.06], p = .550), choice consistency (recipient x drug treatment x 849 

visibility x baseline cortisol: OR = 1.00, CI = [1.00, 1.01], p = .213) or decision threshold (recipient x 850 

drug treatment x visibility x baseline cortisol: OR = 1.01, CI = [1.00, 1.02], p = .122). 851 

 852 

 853 

 854 
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Supplementary information on computational modeling 855 

Rescorla-Wagner (RW) model. 856 

We started with the simple Rescorla-Wagner14 model as our baseline model. On each trial, the value 857 

(Vc,t) of the chosen option was updated with the reward prediction error (RPE): 858 

, (1) 859 

where Ot-1 was the received outcome, and α (0 < α < 1) denoted the learning rate. 860 

Reward-punishment (RP) model. 861 

Studies have suggested that individuals may have separate updates for positive and negative 862 

feedback15. Hence, we tested a reward-punishment model on top of the RW model:  863 

, (2) 864 

where αpos and αneg were the learning rates for positive and negative RPEs, respectively. 865 

In both RW and RP, action values were converted to action probabilities using the softmax function. 866 

Let A and B be the choice symbols per trial, the probability of choosing A was computed via the 867 

difference between V(A) and V(B): 868 

, (3) 869 

where β (β > 0) was the inverse temperature that represented choice consistency. Higher β indicated 870 

that individuals’ choices were more consistent with their value computation, where lower β indicated 871 

that individuals behaved more randomly. The action probability was then used to model participants’ 872 

choice data with a categorical distribution: 873 

 (4) 874 

 875 

Drift diffusion model (DDM). 876 

The drift diffusion model (a.k.a., diffusion decision model16) was a widely used computational 877 

framework to model individuals’ response times (RTs). In its canonical expression, DDM contained 878 

four parameters, namely, the drift rate (v; v > 0), the initial bias (z; z > 0), non-decision time (T; 0 < T 879 

min(RT)), as well as the decision threshold (a). For simplicity in learning tasks with abstract symbols, 880 

the initial bias z was fixed at 0.5. Trial-by-trial RTs was distributed according to the Wiener first 881 

passage time (WFPT17): 882 

. (5) 883 

 884 

 885 
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Reinforcement learning drift diffusion model (RLDDM). 886 

In value-based decision-making, individuals’ RTs may vary as the function of trial-by-trial valuation, 887 

such that the larger the value difference between choice alternatives, the faster the RT. Therefore, a 888 

joint reinforcement learning drift diffusion model (RLDDM) framework has been proposed18,19, 889 

bridging RL and DDM. This approach provides more granularity than using RL or DDM alone19. In 890 

essence, the drift rate in DDM was characterized by the accuracy-coded value differences computed 891 

from the RL counterpart. This way, the drift rate was no more a constant parameter throughout the 892 

entire experiment, instead, it varied across trials (i.e., vt, instead of v) according to the values 893 

computed from RL updates (in the present study, RW or RP). In the simplest RLDDM, trial-by-trial 894 

drift rates were constructed via a linear function of value difference:  895 

, (6) 896 

where vscaling (vscaling >0) was the scaling parameter that quantified the impact of value difference. Note 897 

that we employed stimulus coding in our RLDDM, so that in Equation (6), the drift rate was always a 898 

function of the value difference between the correct (i.e., more rewarding, 75% reward probability) 899 

and the incorrect options (i.e., less rewarding, 25% reward probability), rather than between the 900 

chosen and unchosen options.  901 

 902 

Reinforcement learning drift diffusion model with non-linear transformation (RLDDM-nonlin). 903 

There is evidence that a non-linear mapping between value difference and the drift rate could better 904 

capture individuals’ RTs as opposed to a linear transformation19. This is likely because non-linear 905 

functions may provide more sensitivity, akin to the softmax function in choice models. We thus 906 

implemented an RLDDM-nonlin following: 907 

, (7) 908 

with  909 

, (8) 910 

where S(x) was a non-linear sigmoid function centered at 0, that convert x to lie between –vmax and 911 

vmax (vmax > 0). It is worth noting that vmax only affected the maximum value of the drift rate, whereas 912 

vscaling, as in Equation 6, established the trial-by-trial mapping between value difference and the drift 913 

rate.  914 

In both RLDDM and RLDDM-nonlin, all other DDM parameters (i.e., a, T, z) were identical to the 915 

canonical DDM model, and RTs were distributed with wfpt using trial-by-trial drift rate (vt): 916 

. (9) 917 
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Note that, in all candidate models (Table S1), we introduced differential parameters for the within-918 

subject condition of our experiment, namely, all parameters were separately modeled for the “self” 919 

and the “other” conditions.  920 

 921 

Model estimation. 922 

The model estimation and model selection procedures were largely similar to20. Hence, below we 923 

echoed these procedures from20 to enhance reproducibility, with modifications that were specific to 924 

the current study.  925 

In all models, we simultaneously modeled participants’ choice and RT, separately for each between-926 

subject condition (i.e., placebo vs. testosterone; observed vs. private). Model estimations of all 927 

candidate models were performed with hierarchical Bayesian analysis (HBA)21 using the statistical 928 

computing language Stan (7) in R. Stan utilizes a Hamiltonian Monte Carlo (HMC; an efficient 929 

Markov Chain Monte Carlo, MCMC) sampling scheme to perform full Bayesian inference and obtain 930 

the actual posterior distribution. We performed HBA rather than maximum likelihood estimation 931 

(MLE) because HBA provides much more stable and accurate estimates than MLE19. Following the 932 

approach in the “hBayesDM” package (8) for using Stan in the field of reinforcement learning, we 933 

assumed, for instance, that a generic individual-level parameter  was drawn from a group-level 934 

normal distribution, namely,  ~ Normal (μ, σ), with μ  and σ. being the group-level mean and 935 

standard deviation, respectively. Both these group-level parameters were specified with weakly-936 

informative priors21 : μ  ~ Normal (0, 1) and σ.~ half-Cauchy (0, 1). This was to ensure that the 937 

MCMC sampler traveled over a sufficiently wide range to sample the entire parameter space. 938 

Appropriate parameter transformations were applied to double-bounded parameters (e.g., learning 939 

rate, [0, 1]) with the inverse probit function (i.e., cumulative distribution function of the standard 940 

normal distribution), and single-bounded parameters (e.g., drift rate, (0, +∞)) with the soft-plus 941 

function (i.e., ln(1 + e^x)), respectively.  942 

 943 

In HBA, all group-level parameters and individual-level parameters were simultaneously estimated 944 

through the Bayes’ rule by incorporating behavioral data. We fit each candidate model with four 945 

independent MCMC chains using 1,000 iterations after 1,000 iterations for the initial algorithm 946 

warmup per chain, which resulted in 4,000 valid posterior samples. The convergence of MCMC 947 

chains was assessed both visually (from the trace plot) and through the Gelman-Rubin R̂ Statistics22. 948 

R̂ values of all parameters were smaller than 1.05 in the current study), which indicated adequate 949 

convergence. 950 

 951 

 952 

 953 
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Model selection and validation. 954 

For model comparison and model selection, we computed the Leave-One-Out information criterion 955 

(LOOIC) score per candidate model23. The LOOIC score provides the point-wise estimate (using the 956 

entire posterior distribution) of out-of-sample predictive accuracy in a fully Bayesian way, which is 957 

more reliable compared to information criteria using point-estimate (e.g., Akaike information 958 

criterion, AIC; deviance information criterion, DIC). By convention, a lower LOOIC score indicates 959 

better out-of-sample prediction accuracy of the candidate model. We selected the model with the 960 

lowest LOOIC as the winning model. We additionally performed Bayesian model averaging (BMA) 961 

with Bayesian bootstrap (33) to compute the probability of each candidate model being the best 962 

model. Conventionally, BMA probability of 0.8 (or higher) is a decisive indication.  963 

Moreover, given that model comparison provided merely relative performance among candidate 964 

models23, we then tested how well our winning model’s posterior prediction was able to replicate the 965 

key features of the observed data (a.k.a., posterior predictive checks, PPCs). Since we only found an 966 

effect in choice data, we performed PPCs only for choices (excluding RTs). To this end, we applied a 967 

one-step-ahead PPC20,25 that factored in participants’ actual action and outcome sequences to generate 968 

predictions with the entire posterior MCMC samples. Specifically, we let the winning model generate 969 

choices as many times as the number of MCMC samples (i.e., 4,000 times) per trial per participant, 970 

and we analyzed the generated data the same way as we did for the observed data. We then assessed 971 

whether these analyses could reproduce the behavioral pattern in our behavioral analyses (Figure 4B, 972 

4D in the main text).  973 

 974 

Simulations of optimal learning rates. 975 

To better understand the magnitude of the posterior learning rates, we performed simulations to obtain 976 

“optimal learning rates”, and then compared the posterior parameters in relation to these optimal 977 

parameters (Figure 4A, 4C in the main text). Because there were two learning rates (αpos and αneg), to 978 

reduce complexity, we fixed the inverse temperature parameter to be the corresponding group-level 979 

posterior mean in each condition. For each simulation, we took a small grid per parameter (0:0.01:1) 980 

and computed the choice accuracy across 16 trials (identical to the main experiment) for each 981 

combination of the parameters. Each simulation was repeated 1000 times to obtain stable results. We 982 

then considered the parameters that gave the highest choice accuracy as the optimal learning rates.  983 

 984 

Analysis of the RLDDM parameters and their association with prosocial behavior. 985 

Next, we examined whether the behavioral pattern found in the analysis of the correct choice would 986 

be associated with differences in the individual model parameters.  987 

As a first step, we tested the parameters of our validated winning model for the 3-way interaction 988 

effect of drug treatment, visibility, and type of recipient. There was no significant 3-way interaction in 989 

the positive learning rate (B = 1.03, CI = [1.00, 1.06], p = .071). The analysis of the negative learning 990 
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rate revealed a three-way interaction of drug treatment, visibility, and type of recipient (B = 1.07, CI 991 

= [1.03, 1.11], p = .002) so that the participants in the placebo group had a relatively lower negative 992 

learning rate for prosocial choices when being watched than in privacy (recipient x visibility 993 

interaction in the placebo group: B = 0.77, CI = [0.61, 0.98], p = .034). Conversely, in the testosterone 994 

group, observation (vs privacy) relatively increased the negative learning rate for prosocial choices 995 

(recipient x visibility interaction in testosterone group: B = 1.31, CI = [1.04, 1.66], p = .021; Figure 996 

2A). Moreover, the analysis of the choice consistency (inverse temperature parameter tau, described 997 

also in the main text) likewise showed a three-way interaction (B = 0.98, CI = [0.97, 0.99], p < .001). 998 

Placebo group participants had relatively higher consistency in choices made for the other (vs. self) 999 

when being observed than in privacy (recipient x visibility interaction in the placebo group: B = 1.08, 1000 

CI = [1.05, 1.10], p < .001). On the contrary, in the testosterone group, observation, compared to 1001 

privacy, decreased the consistency of choices made for the other (vs. self) (recipient x visibility 1002 

interaction in testosterone group: B = 0.94, CI = [0.92, 0.97], p < .001). When participants were 1003 

observed, testosterone, compared to placebo, diminished the relative consistency of prosocial choices 1004 

(recipient x treatment interaction in observed condition: OR = 0.87, CI = [0.85, 0.89], p = .001). In the 1005 

private condition, there was no evidence for such an effect (recipient x treatment interaction in private 1006 

condition: OR = 0.99, CI = [0.97, 1.02], p = .605). 1007 

The analysis of the DDM threshold parameter revealed a three-way interaction as well (B= 1.01, CI = 1008 

[1.00, 1.02], p < .001; Figure 2C). Placebo group participants had a relatively higher threshold for 1009 

choices made for another (vs. self) when being observed than in privacy (recipient x visibility 1010 

interaction in placebo group: B = 1.03, CI = [1.01, 1.05], p < .001). Conversely, in the testosterone 1011 

group, observation, compared to privacy, decreased the amount of information required for choices 1012 

made for another (vs. self) (recipient x visibility interaction in testosterone group: B = 0.95, CI = 1013 

[0.92, 0.98], p < .001). When participants were observed, testosterone, compared to placebo, 1014 

decreased the relative threshold of prosocial choices (recipient x treatment interaction in observed 1015 

condition: B = 0.95, CI = [0.92, 0.98], p < . 001). The analysis of the DDM drift-scaling parameter 1016 

revealed a three-way interaction (B = 0.83, CI = [0.82, 0.84], p < .001). Participants in both placebo 1017 

(recipient x visibility interaction in placebo group B = 0.92, CI = [0.91, 0.93], p < .001) and 1018 

testosterone group (recipient x visibility interaction in placebo group B = 0.77, CI = [0.76, 0.78], p 1019 

< .001) showed relatively lower drift scaling for choices made for another (vs. self) when being 1020 

observed than in privacy (recipient x visibility interaction in placebo group B = 0.92, CI = [0.91, 1021 

0.93], p < .001). When participants were observed, testosterone, compared to placebo, decreased the 1022 

relative drift scaling of prosocial choices (recipient x treatment interaction in observed group: B = 1023 

0.93, CI = [0.92, 0.94], p < .001). 1024 

As a second step, we examined whether the RLDDM parameters that were impacted by testosterone 1025 

administration predict behavioral prosociality, measured by the difference between correct choices 1026 

made for other and self across the whole sample. Out of the five parameters, negative learning rate (B 1027 
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= -8.82, CI = [-15.89, -1.75], p < .015), choice consistency (B = 5.45, CI = [3.71, 7.19], p < .001), and 1028 

DDM threshold (B = 9.56, CI = [0.33, 18.18], p < .043) predicted prosociality, however only choice 1029 

consistency survived the Bonferroni correction for multiple comparisons (p <.01). Altogether,  as 1030 

reported in the main text, these results suggest that testosterone’s impact on strategic prosocial 1031 

behavior (i.e., audience effect) is strongly linked to testosterone’s effect on choice consistency 1032 

(inverse temperature parameter tau).  1033 

 1034 

Analysis of the drift-scaling parameter and response times. 1035 

As specified in equation (7), on each trial t, the drift rate vt was defined with a drift-scaling parameter, 1036 

vscaling that scales the value difference between the correct and incorrect symbol. Drift-scaling 1037 

parameter affects the curvature of the function: smaller values lead to a more linear mapping between 1038 

the value difference and the drift rate, and therefore less sensitivity to value differences.  1039 

Drift scaling is conceptually linked to the speed of integration and response times16, we therefore 1040 

tested whether drift-scaling parameter predicted response times and found a significant association (B 1041 

= 0.96, CI = [0.95, 0.98], p < .001). However, contrary to correct choices, response times did not 1042 

differ across experimental groups (drug treatment: B = 1.01, CI = [0.97, 1.04], p < .706; visibility: B = 1043 

1.02, CI = [0.99, 1.06], p < .211; recipient: B = 0.99, CI = [0.98, 1.01], p < .315; drug treatment x 1044 

visibility x recipient: B = 1.01, CI = [0.99, 1.01], p < .841). 1045 

  1046 
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Supplementary information on the analysis of genetic data 1047 
 1048 
Previous research suggested that testosterone may influence behavior through dopaminergic 1049 

pathways26. In humans, testosterone administration enhanced activation of the ventral striatum to 1050 

monetary rewards27 and the enhancing effects of exogenous testosterone on competitive status-1051 

seeking were more pronounced among individuals with a 9/10R compared to 10/10R genotype of the 1052 

dopamine transporter (DAT)28. The expression of DAT, which regulates striatal dopamine, is linked to 1053 

a 40 base-pair variable number tandem repeat polymorphism of the DAT1 gene29. Homozygous 1054 

10/10-repeat carriers of this polymorphism have higher DAT expression (i.e., lower striatal dopamine) 1055 

than heterozygous, 9-repeat variant, individuals30.  1056 

Testosterone’s effects on status-seeking behavior have likewise been shown to be enhanced among 1057 

individuals with fewer CAG repeats in exon 1 of the androgen-receptor gene28,31. In-vitro 1058 

experimental work suggests that increasing the number of CAG repeats within the androgen receptor 1059 

(AR) gene reduces the receptor’s transcriptional potential32. In other words, the efficiency of the 1060 

androgen receptors is negatively related to the CAG repeat33. 1061 

We, therefore, tested whether testosterone effects on strategic prosociality depended on individual 1062 

differences in striatal dopamine, assessed by DAT1 polymorphism, and efficiency of ARs, assessed 1063 

by the CAG repeat polymorphism.  1064 

 1065 
Genotyping of AR CAG repeat and DAT1 polymorphisms. 1066 

DNA was extracted from buccal swabs and isolated using a resin-based method with Chelex®100 1067 

(Sigma Aldrich, USA). For amplification of the CAG repeat polymorphism in exon 1 of the AR gene 1068 

primers forward - 5’ GCGCGAAGTGATCCAGAAC 3’ tagged with 6–carboxyfluorescein and 1069 

reverse - 5’ CTCATCCAGGACCAGGTAGC 3’, and for amplification of the DAT1-3’UTR 1070 

VNTR polymorphism primers forward - 5’ GTCCTTGTGGTGTAGGGAAC 3’ tagged with 6–1071 

carboxyfluorescein and reverse - 5’ CTGGAGGTCACGGCTCAAG 3’ were used in PCR with 20 µL 1072 

reaction using 250 nmol/L final primer molarity. As PCR masterrmix 5x Hot FIREPol Blend 1073 

Mastermix with 7.5 mM MgCl2 (Solis  Biodyne, Tartu, Estonia) was used in all amplifications.  1074 

The following PCR program was used: initial denaturation step at 95°C for 15 min, followed by 30 1075 

cycles each consisting of denaturation at 95°C for 30 s, annealing at 60°C for 30 s and polymerization 1076 

at 72°C for 1 min. The number of repeats of AR CAG STR and DAT1-3’UTR VNTR was analyzed 1077 

by fragment analysis using Sanger sequencing on ABI 3500 Genetic Analyzer (Applied Biosystems, 1078 

USA). 1079 

 1080 
Interaction of DAT1 polymorphism with testosterone effects on the correct choice and RLDDM 1081 

parameters. 1082 

There were no significant differences in the distribution of the genotype among our experimental 1083 

groups (χ2 (6, N = 187) = 6.95, p = .326). The 9/10R and the 10/10R genotypes accounted for most of 1084 
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the observed DAT1 genotypes in our sample (36% (N=66) and 56% (N=103), respectively), and we 1085 

thus used these two genotypes in the analyses by adding DAT1 polymorphisms as a predictor in 1086 

interaction with the other factors (recipient, drug treatment, visibility) to the GzLMM of correct 1087 

choice and the GzLMMs of the RLDDM parameters (see Method in main text). The analysis revealed 1088 

no significant interaction of DAT1 polymorphism with testosterone effect on correct choice (recipient 1089 

x drug treatment x visibility x DAT1: OR = 0.97, CI = [0.91, 1.03], p = .307), positive learning rate 1090 

(recipient x drug treatment x visibility x DAT1: B = 1.17, CI = [0.70, 1.94], p = .555), negative 1091 

learning rate (recipient x drug treatment x visibility x DAT1: B = 0.58, CI = [0.29, 1.18], p = .133), 1092 

choice consistency (recipient x drug treatment x visibility x DAT1: B = 0.96, CI = [0.89, 1.03], p 1093 

= .266) or decision threshold (recipient x drug treatment x visibility x DAT1: B = 1.00, CI = [1.00, 1094 

1.00], p = .947). 1095 

 1096 
Interaction of AR CAG repeat polymorphism with testosterone effects on the correct choice and 1097 

RLDDM parameters. 1098 

Mean-centered CAG repeat lenghts of AR gene in exone 1 were included as a predictor in interaction 1099 

with the other factors (recipient, drug treatment, visibility) to the GzLMM of correct choice and the 1100 

GzLMMs of the RLDDM parameters (see Method in the main text). The analysis revealed no 1101 

significant interaction of CAG repeat polymorphism with testosterone effect on correct choice 1102 

(recipient x drug treatment x visibility x CAG: OR = 1.00, CI = [0.99, 1.02], p = .769), positive 1103 

learning rate (recipient x drug treatment x visibility x CAG: B = 1.00, CI = [1.00, 1.01], p = .329), 1104 

negative learning rate (recipient x drug treatment x visibility x CAG: B = 1.01, CI = [1.00, 1.02], p 1105 

= .092), choice consistency (recipient x drug treatment x visibility x CAG: B = 1.00, CI = [0.99, 1106 

1.01], p = .696) or decision threshold (recipient x drug treatment x visibility x CAG: B = 1.01, CI = 1107 

[1.00, 1.02], p = .122). 1108 

 1109 

Interaction of trait dominance with testosterone effects on RLDDM parameters. 1110 

Mean-centered dominance scores34 were included as a predictor in interaction with the other factors 1111 

(recipient, drug treatment, visibility) to the GzLMM of correct choice (reported in the main text) and 1112 

the GzLMMs of the RLDDM parameters. Contrary to the former, the latter analysis revealed no 1113 

significant interaction of dominance scores with testosterone effect RLDDM parameters: positive 1114 

learning rate (recipient x drug treatment x visibility x dominance: B = 1.01, CI = [0.98, 1.04], p 1115 

= .546), negative learning rate (recipient x drug treatment x visibility x dominance: B = 1.02, CI = 1116 

[0.98, 1.07], p = .341), choice consistency (recipient x drug treatment x visibility x dominance: B = 1117 

1.00, CI = [1.00, 1.01], p = .229), or decision threshold (recipient x drug treatment x visibility x 1118 

dominance: B = 1.00, CI = [1.00, 1.00], p = .492). 1119 
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Type or paste legend here. Paste figure above the legend. 1122 
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 1137 

Figure S1. Testosterone levels during the experimental session. Error bars = Mean ± (95%CI). 1138 
  1139 
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Table S1. Summary statistics across experimental groups: Mean (95%CI), ANOVA 1140 

 1141 
 1142 
  1143 

Drug treatment Placebo Testosterone   

Visibility Private Observed Private Observed     F   p 

N 46 45 52 44   

Age 25.2 (24.0, 26.4) 
 

24.5 (23.3, 25.7) 
 

24.4 (23.3, 25.5) 
 

25.2 (24.0, 26.4) 
 

1.141 .236 

Baseline testosterone  [pg/mL] 

               log  

143 (76.7, 209) 
 
4.75 (4.52, 4.98) 

131 (64.5, 197) 
 
4.71 (4.48, 4.94) 

221 (150.2, 293) 
 
4.92 (4.67, 5.16) 

261 (172.1, 350) 
 
4.97 (4.66, 5.28) 

 
 
0.128 

 
 
.721 

Baseline cortisol [nmol/L] 2.84 (1.81, 3.87) 3.69 (2.66, 4.72) 
 

3.92 (2.96, 4.88) 
 

3.57 (2.52, 4.61) 
 

  

               log 0.77 (0.52, 1.02) 
 

1.00 (0.75, 1.25) 
 

0.91 (0.68, 1.15) 
 

0.86 (0.61, 1.11) 
 

1.260 .263 

Baseline estradiol  [pg/mL] 

               log 

3.68 (3.12, 4.23) 
 
1.23 (1.09, 1.36) 
 

3.73 (3.17, 4.29) 
 
1.19 (1.05, 1.33) 
 

3.77 (3.25, 4.30) 
 
1.21 (1.08, 1.33) 
 

3.73 (3.16, 4.29) 
 
1.22 (1.08, 1.36) 
 

 
 
0.112 
 

 
 
.739 

CAG-repeat polymorphism 19.6 (18.5, 20.7) 19.9 (18.9, 21.0) 19.4 (18.4, 20.4) 19.4 (18.3, 20.4) 0.083 .773 

Dominance 3.89 (3.62, 4.17) 
 

4.02 (3.74, 4.30) 
 

4.05 (3.79, 4.31) 
 

3.84 (3.56, 4.12) 
 

1.432 .232 
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Table S2. Model space and model evidence.  1144 

RW, Rescorla-Wagner model; RP, reward-punishment model; DDM, drift diffusion model; RLDDM, 1145 

reinforcement learning drift diffusion model; RLDDM-nonlinear, RLDDM with a non-linear 1146 

transformation function; LOOIC leave-one-out information criterion (lower LOOIC value indicates 1147 

better out-of-sample predictive accuracy); weight, model weight calculated with Bayesian model 1148 

averaging using Bayesian bootstrap (higher model weight value indicates a higher probability of the 1149 

candidate model to have generated the observed data). The winning model is highlighted in bold. 1150 

 1151 

Task condition 
 

Model space 

Placebo Observed Placebo Private 
Testosterone 

observed 
Testosterone Private 

  LOOIC Weight LOOIC Weight LOOIC Weight LOOIC Weight 

RW 

DDM 9688 0 10697 0 9991 0 12427 0 

RLDDM 8365 0 9522 0 8925 0 11170 0 

RLDDM-nonlinear 8235 0 9395 0 8782 0 10903 0 

RP 

DDM 9538 0 10493 0 9813 0 12199 0 

RLDDM 7878 0.006 8868 0.053 8444 0.002 10425 0.001 

RLDDM-nonlinear 7832 0.994 8837 0.947 8352 0.998 10261 0.999 

 1152 
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Table S3. Summary of parameters in the winning model.  1154 

Note that all parameters were further separated for “self” versus “other”, hence for each between-1155 

subject condition, the winning model contained 14 parameters. The initial bias z in DDM was fixed at 1156 

0.5. min(RT), lowest response time from observed data. 1157 

 1158 

Component Parameter Meaning Interpretation 

RL 

0 < αpos < 1 learning rate for updating 

positive reward prediction error 

 

the learning rate weighs the effect of the 

reward prediction error in the value 

update; a higher (lower) learning rate 

means a faster (slower) value update 

from the most recent outcome 

0 < αneg < 1 learning rate for updating 

negative reward prediction 

error 

 

β > 0 inverse temperature in softmax 

action selection function 

choice consistency parameter, captures 

how much choices rely on the value 

updates 

DDM 

vmax > 0 maximum value of the drift rate 

in the non-linear function 

 

defines the upper/lower boundaries in 

the sigmoid non-linear function 

vscaling > 0 drift scaling that maps value 

difference into the drift rate 

 

scales the effect of value difference 

between the choice options on the drift 

rate 

a > 0 decision threshold, i.e., the 

distance between choice 

alternatives 

 

“the endpoint” of the evidence 

accumulation process, captures the 

amount of information necessary to 

make a decision 

0 < T < min(RT) non-decision time considered to capture sensory delay 

and/or movement initiation 

 1159 
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