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Abstract

Determining seaweed protein concentration and the associated phenotype is critical for

food industries that require precise tools to moderate concentration fluctuations and

attenuate risks. Algal protein extraction and profiling have been widely investigated, but

content determination involves a costly, time-consuming, and high-energy, laboratory-based

fractionation technique. The present study examines the potential of field spectroscopy

technology as a precise, high-throughput, non-destructive tool for on-site detection of red

seaweed protein concentration. By using information from a large dataset of 144 Gracilaria

sp. specimens, studied in a land-based cultivation set-up, under six treatment regimes

during two cultivation seasons, and an artificial neural network, machine learning algorithm

and diffuse visible–near infrared reflectance spectroscopy, predicted protein concentrations

in the algae were obtained. The prediction results were highly accurate (R2 = 0.95; RMSE =

0.84), exhibiting a high correlation with the analytically determined values. External

validation of the model derived from a separate trial, exhibited even better results (R2 =

0.99; RMSE = 0.45). This model, trained to convert phenotypic spectral measurements and
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pigment intensity into accurate protein content predictions, can be adapted to include

diversified algae species and usages.

Keywords: Artificial neural network, diffuse reflectance spectroscopy, machine learning

algorithm, phycobiliprotein, protein content, seaweed

Abbreviations

ANN – artificial neural network

APC - allophycocyanin

BP - backpropagation

CV - coefficient of variation

DW - dry weight

FTIR - Fourier transform infrared

FW - fresh weight

IR - infrared

ML – machine learning

Mu - training gain in ANN

MBP - momentum factor and weight control algorithm

N-prot - nitrogen-to-protein

NIR - near infrared

PBS - phycobiliproteins

PC - phycocyanin

PE - phycoerythrin

SGR – specific growth rate

VIS-NIR – visible near infrared

1. Introduction

In the context of climate change and the degradation of natural resources, there is growing

interest in developing novel protein sources for food security. Numerous authors have
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described the potential advantages of producing protein from marine sources, particularly

algae (both micro and macro), in reducing environmental pressures derived from terrestrial

agriculture while obtaining products with high-quality nutritional properties. (EU initiative,

2022; Gephart et al.,_2021).

Seaweeds are known for their high yields of potentially edible, high-quality protein in

proportion to their dry weight (Bleakley and Hayes, 2017; Kazir et al., 2019). Seaweeds are

also regarded as an important source of nutrients, vitamins, minerals, and trace elements,

with broad commercial applications in food, feed, fertilizers, pharmaceuticals,

nutraceuticals, and cosmetics (Charoensiddhi et al., 2020) and are considered to have

potential environmental benefits (Lange et al., 2020). Numerous methods have been

developed for the optimizing algae cultivation, enhancing functional traits, and reducing

variability in the concentrations of functional traits, but all these methods are limited in that

they are time-consuming, lack precision and are dependent on laboratory measurements. In

addition, although profiling and extraction of algal proteins have been widely investigated,

there is a marked a lack of progress in advancing the protein determination technology,

which still involves a costly, time-consuming and high-energy laboratory-scale fractionation

technique (Cermeño et al., 2020). A promising research direction is based on field

spectroscopy, which has already been used successfully for diversified applications in

precision agriculture (Lee and Ehsani, 2015). In this study, we explore the potential of a field

spectroscopy technology as the basis of a precise, high-throughput, non-destructive tool for

on-site determination of the concentration of algal proteins.

Measuring algae protein concentration and its associated phenotyping (Burnett et

al., 2021) is critical for food industries that operate under strict health and environmental

regulation and safety requirements (Christaki et al., 2015). However, algal phenotypes are

highly diversified as a result of the complex interaction between algal physiology and

biochemistry and environmental conditions (Großkinsky et al., 2015). Diversification can

alter traits of interest, including quality and quantity. It is thus not surprising that very little is

known about the dynamic between algal pigmentation and the concentrations of the

associated proteins. Similarly, the recent literature is largely devoid of comprehensive

spectral interpretations of the molecular composition of seaweeds and the spatial and

temporal dynamics of their phenotypic expression as they interact with environmental

stressors. Because the correlation between the traits of interest and VIS-NIR spectra is not
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linear, especially with regard to the protein fraction where absorbance wavelengths can

overlap, linear tools may not accurately predict the content of active constituents, such as

proteins, and more powerful interpretation techniques are needed (Yang et al., 2021). For

this purpose, high-throughput, non-destructive analytical methods and phenotyping tools

are being adopted to determine the algal growth rate for purposes of breeding and

selection, and also for the study of algal physiology, biocomposition and nutrition

characteristics, (Cozzolino, 2020) where crop phenotyping may be defined as the

comprehensive assessment of complex plant traits and the basic measurements of individual

quantitative parameters (Li et al., 2019). To date, crop phenotyping has been widely used in

agriculture for determining the characteristics of leaves, fruits, and roots. Recently, it has

found application in macroalgae for the selection of species for particular end-uses and for

carbohydrate detection (Shefer et al., 2017) as well as for quantitative analysis of

polyphenols and alginates (Beratto et al., 2017).

Important tools in crop phenotyping are imaging techniques that provide

quantitative measurements characterizing the phenotype and biophysical crop parameters

by utilizing the interaction between light and biomass reflectance, transmittance, and

absorbance wavelength properties (Brook et al. 2020). Methods for collecting imagery data

include remote sensing via commercial satellites and/or tools mounted on aircraft, which

can yield different sections of the electromagnetic spectrum. However, for all these

methodologies there is a tradeoff between the temporal resolution and the spatial

resolution. Remote sensing for crop phenotyping that use multispectral and hyperspectral

tools, are usually applied for determining nutrient status, growth rate, yield, and biomass

mapping (Ohana-Levi et al., 2019; Paz-Kagan et al., 2020). For instance, the remote-sensing

spectral tools developed for crop measurements have been applied for the management of

forest diversity (Asner and Martin, 2016), and for crop management through determining

crop nitrogen status (Elvanidi et al., 2018; Polinova et al., 2018), moderating field variability,

or managing nitrogen fertilization (Ohana-Levi et al., 2019; Paz-Kagan et al., 2020). Remote

sensing tools based on near-infrared reflectance spectroscopy (NIRS) have been broadly

adopted by the agricultural and industrial sectors (Foley et al., 1998) as a means to rapidly

identify important traits of interest in order to improve nutritive values. In that sense,

diffuse reflectance is the internal reflected light attenuated by absorption of specific

wavelengths, that scatters backward to external thallus and so constitutes a measurable
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expression of the phenotype pigmentation (Duppeti et al., 2017). The remote-sensing tools

used in agriculture exploit the absorbance of particular wavelengths by specific functional

groups as the biomass is exposed to light within the visible and near-infrared range (VIS-NIR;

400-1000 nm) (Yang et al., 2021). A few examples of the use of these tools may be cited. Beć

et al. (2020) recognized the advantage of deep sample penetration by NIR radiation for in

vivo examination in comparison to IR or Raman spectroscopy. Some studies demonstrated a

correlation between light attenuation in the presence of chromophores and biomass traits

associated with the nature of the C-N ratio and status in leaves (Ely et al., 2019). However,

that study did not examine the correlation of absorption area with specific traits

concentration. Others used this approach in microalgae for the rapid quantification of

biomass density and pigments (Duppeti et al., 2017) and carbohydrates and lipids (Laurens

and Wolfrum, 2013; Brown et al., 2014). In brown and red algae, most prior work on the

mapping of proteinic traits used vibrational spectroscopy, such as Fourier transform infrared

(FT-IR), in combination with analytical methods to identify protein-bound polysaccharides

(Sumayya and Murugan, 2017; Beratto-Ramos et al., 2020) and antioxidant capacity (Beratto

et al., 2017). These laboratory-based methodologies for testing of structural and functional

properties of proteins necessitated the use of either dried, granulated, or powdered samples

or samples recovered from precipitation (Abdollahi et al., 2019) or enzyme extraction

(Vásquez et al., 2019).

The chromophore that is often used for categorization of the seaweed phylum

(Olmedo-Masat et al., 2020), is part of a molecular complex involved in energy harvesting

from sunlight for photosynthesis (Dumay et al., 2014). Phycobiliproteins (PBS) are a family of

light-harvesting pigment-protein complexes (including phycoerythrin, phycocyanin and

allophycocyanin) that are found in red seaweeds (Rhodophyta) and cyanobacteria, and are

particularly efficient at harvesting light under low irradiance (Kannaujiya et al., 2017). PBS

may constitute as much as 20% of the red seaweed dry matter and 50% of the seaweed

water-soluble proteins. The survival of red seaweeds in diverse marine habitats ranging from

deep water under low light irradiation to intertidal zones provides evidence for the efficient

absorption of solar radiation and the high efficiency of energy transfer in these systems (Xie

et al., 2021). However, the vast phenotype variability between and within groups of

seaweeds that are affected by a complex of biotic and abiotic parameters poses an analytical

challenge whose complexity requires new analytical tools. The use of spectral features and
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in-situ non-invasive methodologies for the identification of functional groups, such as

proteins, has not yet been reported for seaweeds. Previous studies have indicated that the

way to addressing this challenge lies in the application of VIS-NIR spectroscopy and neural

networks and machine learning techniques to yield quantitative predictions of independent

traits of organic material (Xu et al., 2019; Arinichev et al., 2021). The field spectroscopy

approach measures point-by-point spectral radiance using a portable spectrometer. The

main advantages of this tool are its low cost, high temporal and spatial resolution, and wide

wavelength range across the VIS-NIR wavelengths (Polinova et al., 2018).

In this study, we thus developed and trained a novel neural network model to obtain,

by means of a machine learning algorithm, predictions of protein content from phenotypic

spectral features of the red seaweed Gracilaria sp. The seaweed was cultivated under six

treatment regimes in a coastal setting in Haifa, Israel. Gracilaria sp. is known for its high level

of essential amino acids, rapid growth rate, and commercial value. In 2018, it accounted for

10.7% of the world production of seaweeds (Chopin and Tacon, 2020). Its commercial value

derives from its use as a source of agar (Armisen, 1995; Souza et al., 2012) and sulfated

polysaccharides, which are used in pharmaceutical and biotechnology industries (Kazir et al.,

2019). Gracilaria sp. was thus used as a model species for achieving the broader objective of

this study—first to establish an accurate cultivation protocol for protein content

accumulation in algae, and then to lay down the scientific and technological framework for

predicting protein yield and moderating fluctuations in seaweed production.

2. Materials and Methods

2.1 Seaweed material, cultivation protocol and experimental design

The experimental setup was operated in two distinct seasons, summer (July) and fall

(December) in 2020 (Fig. 1) in a seaweed tank culture system at the Israel Oceanographic &

Limnological Research (IOLR) in Haifa, Israel (N 34°57'19'' E 32°33'49''). The system was

composed of 18 40-L white fiberglass tanks which were filled with seawater and supplied

with continuous aeration (Ashkenazi et al., 2020). About 100 g Fresh Weight (FW) of

Gracilaria sp. were placed in each tank, and the algae were grown for 3-4 weeks under six

treatments (n=3 tanks for each treatment protocol). The rationale for this experimental

design was to explore possible alterations in protein content and seaweed phenotype as a
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result of a abiotic changes. The treatments included nutrient supplementation with two

levels of nitrogen (added as NH4Cl) and phosphate (added as NaH2PO4). Moderate level

additions comprised 1.0 millimole NH4 and 0.1 millimole PO4
3-, and are designated (MN).

High level additions comprised 2.0 millimole NH4 and 0.2 millimole PO4
3- and are designated

(H). An additional set of six tanks containing as-received seawater (without ammonium or

phosphate supplementation) were used as control (CON). According to Kress et al. (2014),

the maximum nitrate and phosphate concentration in the Levantine Basin (Eastern

Mediterranean Sea) is NO3
- ~ 5.5 μmol kg−1, PO4

3- ~ 0.21 μmol kg−1 respectively. Nitrogen and

phosphate feedings were conducted every 4 days, and after each nutrient addition,

seawater inflow was stopped for 24 h to allow maximal uptake by the seaweeds. To reduce

excessive sunlight, nine tanks (three of each of the above mentioned groups, MN, H and

CON, that were assigned to the different nutritional concentrations) were covered with two

layers of a 5 mm mesh nets (hereafter designated low light; LI: A1, B1, C1: n=9) and nine

others (again, three of each of the above mentioned nutritional concentration groups, MN,

H and CON) with one layer (hereafter designated moderate light; MI : A2, B2, C2: n=9),

yielding cutoffs of 75% and 50% of the incident sunlight, respectively. (See Fig. 1)

Light intensity and seawater temperature were measured continuously by placing HOBO®

Pendant® data loggers (ONSET UA-002-64, USA) in the tanks. Average light intensities during

the summer were 298 and 155 μmol m–2 s–1 (depending on the light stress procedure), and

44 and 25 μmol m–2 s–1 during the fall. The average seawater temperature was around 28.5

°C during the summer, for all pools with no differentiation between trails. While during the

fall season the average seawater temperature was 16.2 to 18.5 °C depending on one or two

mesh net layers covering respectively. The biomass from each tank was harvested and

weighed on a weekly basis for growth rate determinations. About 100 g FW of biomass were

returned to the tanks. Algal chromophore reflectance properties from each tank were

measured on a weekly basis with a field-portable spectrometer (Ocean Optics USB4000),

acquiring data from seaweed thallus across the visible and near-infrared (VIS-NIR) range

(400 to 1000 nm, with a resolution of 0.5 nm and an accuracy of 1 nm). The measured

samples were retained for protein assessment using CHNS elemental analysis.
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Put Figure 1 here

2.2 Seaweed growth analysis

The seaweed growth rate was determined on a weekly basis. After every harvest, the fresh

seaweed biomass was drained of excess seawater and weighed, and specific growth rates

(SGR, %FW per day) were calculated according to Neori et al., (2000), using the following

formula:

(1)𝑆𝐺𝑅 (%) =  (𝑙𝑛 (𝑊
𝑡
/𝑊

0
) × 100)/𝑡

where W0 (in grams) is the initial wet weight of biomass and Wt (in grams) is the weight of

biomass after t culture days.

2.3 In-situ spectral measurements of fresh seaweed thallus

To study the relation between protein concentration and seaweed phenotype, diffuse

reflectance measurements were taken in-situ on a weekly basis in both seasons using a

portable spectrometer. Randomly selected biomass thallus samples (FW) were taken out of

the water from each of the 18 containers, 24 h after nutrient supplementation. These

samples were measured in the visible and near-infrared (VIS-NIR) region of the

electromagnetic spectrum (400-1000 nm, Fig. 2 ) on a fully sunny day. The spectrometer was

calibrated according to Jackson et al. (1992) against a white Spectralon plate (Labsphere Inc.,

North Sutton, NH, USA). Bare fiber optic with 25° field-of-view positions was used for

repeated collection of detailed spectra (Polinova et al., 2018). Reflectance measurements

were conducted on various thallus areas that were usually cylindrical, blade-shaped

branches. About 144 seaweed specimens were spectrally measured during the summer and

fall trials, with 10-15 spectra repetitions for each sample.

Put Figure 2 here
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2.4 Elemental analysis and determination of seaweed protein content

Following spectral measurements, fresh seaweed specimens were taken on a weekly basis to

the laboratory and stored in sealed plastic bags at -70 °C. Prior to elemental analyses,

seaweed thalli were rinsed with tap water to remove salt, dried at 60 °C for 48 h, and milled

to a fine particle size using a coffee grinder. The nitrogen content of the dried samples was

measured using a Flash 2000 Organic elemental analyzer (Thermo Scientific, USA). About 2-3

mg of the dried and milled material from each specimen (n=144) were combusted at 960 °C

according to manufacturer's protocol. The nitrogen content of the dried samples was used

to determine protein content, assuming a nitrogen-to-protein (N-prot) conversion factor of

5.0, which has been shown to be appropriate for marine seaweeds (Angell et al., 2016).

2.5 Spectral wavelength selection and data pre-processing

Spectral measurements were obtained for phycobiliproteins, which are the main

light-harvesting proteinic pigments in Rhodophyta. For these chromophores, namely,

pink/purple-colored phycoerythrin (PE), blue colored phycocyanin (PC), and bluish-green

colored allophycocyanin (APC) (see Fig. 3), light energy is transmitted from those absorbing

at green wavelengths to those absorbing at red wavelengths (Dumay et al., 2014; Dumay

and Morançais, 2016; Kannaujiya et al., 2017). In our case absorption was observed mainly

in the wavelength range 560-680 nm. To overcome the low selectivity of VIS-NIR spectral

information due to the texture, size, and geometry of the seaweed thallus, we used the

Kubelka-Munk model for the diffuse reflection scattering coefficient, using the following

equation which is an analog to absorbance transformation in transmission (Ma et al., 1987):

(2)
𝐾
𝑆  = 100−𝑅( )2

2* 𝑅

where reflectance R of seaweed thallus pigment is related to the ratio of the absorption

coefficient of seaweed chromophore K and the scattering coefficient S (Militký 2011). The
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ratio of the coefficients is proportional to the pigment concentration (Ma et al., 1987).

Pre-processing of spectral data that used as an input to the Artificial Neural Network (ANN)

also included identification of minimum values, baseline correction to smooth and normalize

the scatter spectra measurements (Engel et al. 2013; Cozzolino 2020), and absorption depth

calculation. To further improve the model, as a first step spectral measurements repetitions

of each specimen were averaged. However, due to variations in the chromophore phenotype

in the samples derived from seaweed subjected to different environmental stressors

(nutrient supplementation and subtraction of incident light) and the spectral expression of

these fluctuations in the same measured sample, all spectral measurements were

considered.

Put Figure 3 here

2.6 Data processing

A backpropagation artificial neural network (BP-ANN) that has a solid theoretical basis and is

widely used in various fields (Huang and Foo, 2002), was applied to process the spectral

data. The BP algorithm is, in general, the most common learning algorithm used to construct

nonlinear models. BP-ANN is a multilayered network based on the generalized

Woodward-Hoffmann learning rule and weight-trained differentiable nonlinear functions

with a strong learning ability. The BP-ANN method was improved by introducing the

momentum factor and the weight control algorithm (MBP-ANN). The MBP-ANN was

conducted on the MATLAB platform. BP-ANN model-building and precision validation were

implemented using the Neural Network Toolbox. The structure of the MBP-ANN was

composed of three layers: input, hidden, and output layer. The pre-processed spectral data

(as described in Section 2.5) was used as the input to MBP-ANN for the development of a

protein content prediction algorithm. In estimating the dependency function (Polinova et al.,

2019), we found a non-linear correlation between seaweed specimen reflectance properties

and the measurements of protein content for the same specimen obtained from nitrogen

elemental analysis (converted to protein content by N-prot factorial multiplication). An input

layer with pigment intensity per wavelength was propagated from input to output through

neurons, random weights and bias, and trained, validated, and tested. The input of one layer

consisting of 10 neurons of the red wavelength absorbance spectral area (670-680 nm) was
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broadened to 114 neurons in 1-nm intervals to include the absorbance area of the

chromophores (560-674 nm). Training methods included backpropagation to fine tune the

weights and bias of the model parameters and the Bayesian regularization technique

(Foresee and Hagan, 1997) for better generalization. Since the weight and bias of the model,

which vary depending on the hyperparameter values, can affect the model performance, the

model performance was analyzed by changing the model structure and hyperparameters to

ensure optimal outcomes. Therefore, the performance of the initial MBP-ANN model was

optimized by changing its hyperparameters, and structural Bayesian optimization was

employed to determine the optimal combination of hyperparameters to enhance the

prediction performance. Based on the Bayes Theorem, a surrogate model, which is a

probabilistic model of the objective function, searches for specific hyperparameters yielding

the maximum or minimum performance. A rectified linear unit (ReLU) propagated backward

computed errors to update the model parameters, and then the predicted normalized

means were compared to the actual protein content results obtained from the CHNS

elemental analytical analysis.

MBP-ANN training, testing, and validation of the seaweed thallus phenotype were

conducted on data obtained from the field measurements for the two seasons, normalized

and processed using the Kubelka-Munk equation (Eq. 3) with 1000 iterations, until fully

connected.

The loss function used for model optimization to reduce overfitting and large weights

was given by the following equation:

(3)𝑋 =  
𝑗=1

𝑛

∑ ‖𝑊𝑗‖
2( ) λ

2𝑚

where 𝑛 - the number of layers, 𝑊 - the weight matrix for the j layer; 𝑚 - the number

of inputs and λ - the regularization parameter.

The input data set for the MBP-ANN consisted of 164,160 spectral measurements of

which 70% were used for training, 15% for testing, and 15% for validation. The output data

was the prediction of protein content (% DW) that fully connected with pigment intensity

per wavelength within the VIS-NIR area (560-674 nm).

2.7 Post-processing
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To further validate the model, we performed an external validation trial for four consecutive

weeks during the fall of 2021 for six cultivation regimes (including control). To smooth

specimen variability due to abiotic stress, the trial setting was narrowed to six containers,

and three replicates of Gracilaria. sp. were taken randomly from each container (i.e., 18

samples). To assess the ability of MBP-ANN to automatically extract useful patterns and

predict protein content from a data set that was not previously used, Fifty-four samples of

the cultivated fresh biomass were classified in-situ via reflectance spectral features

measurements (560-680 nm) using absorption depth. The input data included field

measurements on seaweed thallus phenotype, normalized and processed using the

Kubelka-Munk equation. The predicted normalized means were compared to the actual

protein content results obtained from N content elemental analysis of the dried samples,

which were converted to protein content (% DW) using the same N-prot factor of 5.0. Model

performances were assessed in terms of the regression coefficient R2, the mean square

error (MSE) and the root mean square error (RMSE) for the validation results, according to

the following equation:

(4)𝑅𝑀𝑆𝐸 =  1
𝑛  

𝑖=1

𝑛

∑ (ŷ𝑖 − 𝑦
𝑖
) 2

where 𝑦𝑖 , ŷ𝑖 - measured and predicted values of protein content, and 𝑛 - the number of

samples.

3. Results

3.1 Seaweed growth performance and protein content

A large variation in SGR was observed among and within groups of seaweed and between

seasons ( Fig. 4; Table 1). During the summer, SGR ranged between 3.55% and 10.45% per

day, which was much higher than the Gracilaria sp. SGR during the fall (between 0.55% and

4.23% per day). However, in both seasons the lowest growth rate was observed for the

control group (A2) under conditions of moderate light stress and no nutrient

supplementation (3.55–7.0% per day during the summer and 0.55–2.41% per day during the

fall). The maximum SGRs of 10.45% and 4.23% per day were observed for low light intensity

and high nutrient enrichment (group of containers C1) during summer and fall, respectively.
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Analysis also revealed a large variation in protein concentration across seaweed samples. In

general, during the fall, Gracilaria sp. exhibited much higher protein content consistently in

all treatments in comparison to protein content measured during the summer (7.43–17.43 %

DW; 1.56–6.05 % DW, respectively). As anticipated, nutrient supplementation and light

stress contributed to protein accumulation in the seaweed biomass. The highest protein

content was observed during the fall under exposure to moderate incident light and a high

level of nutrient supplementation (17.43% DW, group C2). During the summer, the seaweed

exhibited the highest protein content under exposure to low incident light and high nutrient

enrichment (6.05 % DW, B1). No correlation was found between SGR and protein content.

Therefore, SGR was not used as a proxy in ANN training.

Put Figure 4 here

3.2 Algal thallus phenotype and ANN training results

Significant variability was observed in algal phenotypes in all containers throughout

the trials, including at the specimen level. Thallus phenotype pigment ranged from light

yellow and yellowish-brown to pink and dark red (Fig. 5).

The MBP-ANN trained with 1000 iterations to connect pigment intensity with protein

absorption in a narrow zone of the red wavelength 670-680 nm resulted in relatively low

prediction accuracy of R2 = 0.74. Broadening the absorption area to include chromophores at

560-674 nm for data training produced much higher values of the correlation coefficient (R2).

The initial optimal value of mu was 0.9899, and the optimal number of hidden neurons,

which are structural variables for the model, was 10 (Table 2). The optimized model

performances for the training and test data were compared with the performance of the

initial model (Table 3). The R2 for the test data was 0.95 (p < 0.01) for the optimized model

(see also Fig. 6). Moreover, the RMSE for the optimized model was 0.84 indicating a higher

accuracy than for the initial model (RMSE = 4.6,  Table 3).

Put Figure 5 here

Put Figure 6 here

Put Figure 7 here
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3.3 MBP-ANN external validation results

The robustness of the model was demonstrated by the highly accurate prediction of protein

content (% DW), which used the input data of spectral features that were collected during

the external validation trial in fall 2021, without any training iteration (see: Fig. 7; Table 4).

The R2 value of the external validation trial was 0.916, the MSE was 0.24, and the RMSE

equal to 0.44.

4. Discussion

This paper evaluates for the first time the accuracy of the MBP-ANN algorithm in using

in-situ-acquired diffuse reflectance measurements in the VIS-NIR spectrum to predict the

protein content in the red seaweed Gracilaria sp. We found that when using data from wide

spectral features of phycobiliproteins absorbance area (560-674 nm, R2=0.993) rather than

the narrow spectral window of the red wavelength absorbance area at 670-780 nm

(R2=0.74), the algal pigment phenotype is a reliable predictor of the analyzed nitrogen

concentration. The high pigment phenotype diversity that was observed throughout the

trials (Fig. 5; Fig. 8) is a manifestation of alterations in protein concentration (Barth, 2007) as

changes occur in response to the environmental conditions. The pigment intensity of the

algal thallus does not only change temporally for a given group of seaweeds and between

treatment regimes, but also varies among different parts of the same specimen. For

instance, the blade tissue has a higher pigment concentration than the branches, which

manifest as differences in the wavelengths of unabsorbed diffuse reflectance scattering.

Olmedo-Masat et al. (2020) also recognized pigment phenotype concentration

differentiation across different parts of the brown seaweed Macrocystis pyrifera. It is evident

that seasonality (Khairy and El-Shafay, 2013), incident light intensity, and nutrient

enrichment affect protein accumulation in the algal biomass (Fig. 8). These findings confirm

previous studies, in which the pigment phenotype confers on Gracilaria species, like other

rhodophytes, an evolutionary advantage in adaptation to environments of low light intensity

(Saluri et al., 2020; Xie et al., 2021) by transferring excitation light energy of PE to PC to APC

(Grabowski and Gantt, 1978; Dumay and Morançais, 2016). This acclimation mechanism,

which determines seaweed thallus pigmentation (Fig. 3; Fig. 5; Fig. 8), can be predicted

(Duppeti et al., 2017) and therefore it can be partially controlled. However, phenotypic
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expression is not linearly correlated to environmental conditions. Furthermore, overlapping

bands in the spectrum, which are also due to the complex three-dimensional composition of

protein molecules, can hide spectral information relating to the concentration of a particular

trait (Barth, 2007; Yang et al. 2021). As a consequence, popular multivariate regression

techniques for the identification of absorption bands and their correlation with a trait of

interest for content prediction, such as multiple linear regression, partial least squares

regression (PLSR), principal component regression (Beratto et al., 2017; Duppeti et al. 2017;

Ely et al., 2019) were not applicable in our study. We used the physical and biochemical

features of the absorption depth in diffuse reflectance spectroscopy of the phycobiliproteins

and the Kubelka-Munk equation as inputs to MBP-ANN and ML algorithms. These algorithms

were able to generate highly accurate semi-quantitative prediction of protein content

through an iterative process in which pigment intensity as a function of the wavelength

within the VIS-NIR area (560-674 nm) and protein concentration (% DW) were fully

connected. The performance accuracy of the model (see Table 4) also served to validate the

reliability and accuracy of the N-prot conversion factor of 5.0 (Angell et al., 2016) as a

quantitative method to determine the protein content of red seaweeds (Table 5). Since not

all the nitrogen is contained in proteins, and other nitrogen-containing molecules are

present in the algae (such as inorganic nitrogen and free amino acids), previous studies that

suggested average conversion factors of 4.59 (Lourenço et al., 2002; Kazir et al. 2019) 4.92

(Mæhre et al. 2014), or 6.25 (Tabarsa et al. 2012) for red seaweeds would lead to under- or

over-estimation of protein content.

Put Figure 8 here

4.1 Growth rate versus protein accumulation

In most of the previous studies that sought to assess the prevalence of traits of interest in

seaweed and their physiological reaction to the influence of environmental factors, the daily

growth rate of biomass was also addressed (Pliego-Cortés et al., 2017; Shefer et al., 2017;

Bermejo et al., 2020; Zepeda et al., 2020) but without assessing the effect of the growth rate

on the accumulation of the desired trait. Saluri et al., (2020), for instance, found a weak

correlation between biomass density and yields of phycobiliproteins. Our study showed that

SGR was affected by seasonality (Fig. 4), and culture conditions and duration. A comparison
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between SGR and protein concentration (Fig. 9) did not reveal any significant patterns.

Furthermore, growth rates changed for individual specimens between and within

treatments during cultivation periods, but no correlation was found to protein content.

While SGR measurement is an important factor for yield prediction of fresh biomass, it was

an insignificant factor for prediction of protein content and was therefore not used as an

input to the MBP-ANN and ML algorithm.

Put Figure 9 here

4.2 Reduction of variability by manipulation of cultivation regime

Food industries operate under strict health and environmental regulations and safety

requirements. Therefore, knowledge of protein concentration and the associated phenotype

is critical, since phenotype diversity of pigment intensity is actually an expression of protein

trait alterations. This requirement underlies the goals of this study to identify (by means of

diffuse reflectance spectroscopy and use of the ML algorithm) optimized cultivation

conditions for protein content enhancement and to moderate fluctuations. The outdoor

cultivation setting, composed of 18 containers under six cultivation regimes during the trial,

was reduced to six containers during the external validation trial, during which three

specimens replicates were taken from each of the six containers. The highest variation in

protein content, as shown by the coefficient of variation (CV) per treatment regime during

the training trial was 47% of the laboratory analysis results and 37.87% of the results

predicted by the algorithm (Fig. 10). This variability was observed under moderate light

reduction and moderate nutrient enrichment (B2). A substantial reduction in CV was

achieved in the external validation trial, where the greatest variation was 18.45%

(measured) and 18.55% (predicted) under a low level of incident light exposure and a high

level of nutrient enrichment (C2). The more unified cultivation conditions, the smaller

variations observed in the spectral features and specimen phenotype.

Put Figure 10 here

4.3 Limitations and future directions

In this study, the generalized MBP-ANN model produced highly accurate predictions of

protein content from highly diversified spectral features of Gracilaria sp. However, it may be
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necessary to adjust both prediction accuracy of protein content and cultivation protocols

before they can be applied to other algal species and cultivation infrastructures. In this

context, additional work on the characterization of changes in the protein concentration and

its phenotype expression caused by specific cultivation parameters could result in better

estimates for the weights of environmental parameters used for stress initiation in

accordance with specific desired outcomes and yield improvement.

5. Conclusion

MBP-ANN is a powerful tool that successfully extracted useful patterns from a non-linear

dataset of diffused reflectance seaweed phenotype features and performed highly accurate

protein content prediction in a species of red seaweed without relying on chemical analysis.

The accuracy of the model was validated in an external validation trial, which improved the

prediction correlation coefficient performance (from R2 = 0.921 to R2 = 0.993). Fine-tuning of

the weights and bias of the model parameters during the training and the Bayesian

regularization technique for better generalization contributed to higher accuracy predictions

of protein content, despite the high diversification of the pigment color. The

phycobiliproteins absorption area (560-674 nm) was found to be much more informative

than the narrow spectral wavelengths of the red band only (670-680 nm; R2 = 0.74). The

non-destructive, high-throughput model developed here can support decision making for

improvement of protein yield.

Furthermore, the findings of this study can inform future research exploring the

potential of algae to become an important source of highly nutritive protein. We have shown

that the seaweed pigment phenotype is a reliable indicator for protein concentration, which

can be accurately predicted and managed using non-destructive high-throughput

capabilities, thus enabling decision-making in-situ. These capabilities can foster precision in

production, facilitate efficient use of resources, aid in compliance with regulations, reduce

risks and, in some cases, prevent economic loss. The study has also established the analytical

and technological foundations for a more generic model, in which different traits can be

identified and quantified in-situ for better exploitation of different algal components.
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Tables

Table 1. The range of specific growth rate and protein content

Gracilaria. sp. range of averages ± SD of specific growth rate (% /day) and protein content (%
DW) during the summer and fall seasons of 2020, calculated for each treatment regime
(A1-2; B1-2; C1-2) at four time sequences (T1-T4). The range describes fresh biomass
specific growth rate (% day-1 FW), and in percent of dried biomass for protein content
determination as calculated from elemental analysis.

Table 2. Hyperparameters for MBP-ANN optimization

Hyperparameter Description
Optimized
value

Neuron size
Number of neurons in the hidden
layer

10

mu Initial mu setting 0.9899
mu decrease mu decrease factor 0.8692
mu increase mu increase factor 6.8909
Min gradient Minimum performance gradient 6.45E-06

Table 3. Performance analysis for the MBP-ANN prediction model

  R2 RMSE

Initial model
Training 0.92 3.85
Test 0.89 4.6

Optimized model
Training 0.97 0.64
Test 0.95 0.84 
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Prediction accuracy for results of initial and optimized model. R2 = coefficient determination,

RMSE = root mean square error.

Table 4. Model performances for the subsequent experiment conducted during fall 2021.

ANN prediction model
performances

Protein content (% DW) R2 MSE RMSE

External validation 0.993 0.247 0.452

The values represent protein contents predicted by MBP-ANN versus CHNS elemental
analysis

Table 5. Elemental analysis of Gracilaria sp. samples from six treatment regimes

CHNS elemental analysis (%) of Gracilaria sp. obtained from six treatment regimes (CON =
control; MN and H = Moderate and High nutrient enrichment; LI and MI = Low and Medium
incident light exposure) on a dry basis (DW); C:N the ratio carbon to nitrogen and estimated
protein content. Values are means ± SD.
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Figure legends

Fig. 1. Schematic cultivation of Gracilaria sp. using treatments in a land-based outdoor
setup. A1, A2 control group (CON); B1, B2 Moderate nutrients-enriched (MN); C1, C2 High
nutrients-enriched (H). Biomass cultivated under low incident light intensity [(LI), n=9] and
moderate incident light intensity [(MI), n=9].

Fig. 2. A representative reflectance spectrum of Gracilaria sp. measured in-situ on wet thalli.
Measurements were conducted in the VIS-NIR region, 400–1000 nm. Absorbance at 560-680
nm was used to determine chromophores (phycobiliproteins) and protein components.

Fig. 3. Phycobiliprotein absorption area. Kubelka-Munk normalized absorbance features of
phycobiliproteins (PBS) in Gracilaria sp. PE: λmax = 560-570 nm; PCmax = 610-620 nm; APCmax

= 650-655 nm. These antenna pigments are covalently amino acids (Aryee et al., 2018)
enabling light energy to transfer through this pathway: 𝑃𝐸 →𝑃𝐶 →𝐴𝑃𝐶 →𝑐ℎ𝑙 𝑎 ( Dumay
and Morançais, 2016).

Fig. 4. Growth rate and protein content of Gracilaria sp. cultivated in the summer (July) and
fall (December) trials of 2020. Gray: Specific growth rate, by season [(SGR), % /day]; Yellow:
Protein content (% DW). Boxplots bars represent the minimum and maximum observed
values.

Fig. 5. Cultivated Gracilaria sp. specimens. A large variability in phenotype and thallus
colour were observed during the fall season, reflecting seaweed protein acclimation
mechanism to changes in nutrient supply and incident light. Cultivated specimens were
classified via reflectance spectral features across the phycobiliprotein absorption area
(560-680 nm) using absorption depth.

Fig. 6. Model prediction performances. Mean ± standard error of predicted protein content
values in the algae biomass (% DW) as obtained from the MBP-ANN model, in comparison
with laboratory results obtained from the CHNS analytical analysis of N content converged to
protein content (see Table 5). The graphs present measurements during four consecutive
weeks (hereafter designated T1-T4) conducted during the fall season of 2020. Range of R2:
0.718-0.991; Range of MSE: 2.23-0.23; Range of RMSE: 1.49-0.48.

Fig. 7. Accuracy of prediction for the external validation trial. Values of specimen protein
content (% DW) in means ± standard error, under six cultivation regime per time sequence
(T1, T3, T4), were obtained from the external validation trial during the fall season of 2021.
The model exhibited mean R2 value of 0.916, MSE of 0.24, and RMSE of 0.44. The ANN
model used the spectral features that were collected during this trial and generated a
prediction without any training iteration.

Fig. 8. Spectral, chemical and phenotyping features used for model development.
Normalized Kubelka-Munk spectral features for Gracilaria sp. for experimental treatment
regimes showing minimum (A2-2: Control group: no nutrient addition, moderate incident
light) and maximum (C1-5: high nutrient addition, low incident light) protein accumulation
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(% DW) through three weekly time sequences (T1, T3, T4) *. The measured specimens were
photographed at each time sequence.

*Weather conditions prevented spectral measurements during the second time sequence
(T2) of the fall season, 2021.

Fig. 9. A comparison of seaweed growth rate and protein content. Specific growth rate
(SGR) measured as FW (% /day) over four consecutive weeks in comparison with protein
content (% DW) for the cultivated Glacilaria sp. during fall season. Data was analyzed per
specimen per container (n=18) and figures are in average ± SD (error bars).

Fig. 10. Range of coefficient of variation (CV). CV of protein content in Glacilaria. sp. per

cultivation regime (A1-2, B1-2, C1-2) per time sequence (T1-T4) at two trail sessions: training

(A) and external validation (B). Grey columns are representing measured results of lab

analysis and colored columns are representing ANN predicted results. Numbers above

columns representing minimum and maximum figures per treatment regime (A1-2; B1-2;

C1-2).
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Figures 

 

Fig 1. Schematic cultivation of Gracilaria sp. using treatments in a land-based 
outdoor setup. A1, A2 control group (CON); B1, B2 Moderate nutrients-enriched 
(MN); C1, C2 High nutrients-enriched (H).  Biomass cultivated under low incident 
light intensity [(LI), n=9] and moderate incident light intensity [(MI), n=9].       

 
 

 

Fig. 2. A representative reflectance spectrum of Gracilaria sp. measured in-situ on 
wet thalli. Measurements were conducted in the VIS-NIR region, 400–1000 nm. 
Absorbance at 560-680 nm was used to determine chromophores (phycobiliproteins) 
and protein components. 
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Fig. 3. Phycobiliprotein absorption area. Kubelka-Munk normalized absorbance 
features of phycobiliproteins (PBS) in Gracilaria sp.  PE: λmax = 560-570 nm;  PCmax = 
610-620 nm;  APCmax = 650-655 nm. These antenna pigments are covalently amino 
acids (Aryee et al., 2018) enabling light energy to transfer through this pathway:  
→  →  → ℎ   (Dumay and Morançais, 2016). 

 

 

Fig. 4. Growth rate and protein content of Gracilaria sp.  cultivated in the summer 
(July) and fall (December) trials of 2020. Gray: Specific growth rate, by season 
[(SGR), % /day]; Yellow:  Protein content (% DW). Boxplots bars represent the 
minimum and maximum observed values. 
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Fig. 5. Cultivated Gracilaria sp. specimens.  A large variability in phenotype and 
thallus colour were observed during the fall season, reflecting seaweed protein 
acclimation mechanism to changes in nutrient supply and incident light.  Cultivated 
specimens were classified via reflectance spectral features across the 
phycobiliprotein absorption area (560-680 nm) using absorption depth. 
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Fig. 6. Model prediction performances. Mean ± standard error of predicted protein 
content values in the algae biomass (% DW) as obtained from the MBP-ANN model, 
in comparison with laboratory results obtained from the CHNS analytical analysis of 
N content converged to protein content (see Table 5). The graphs present 
measurements during four consecutive weeks (hereafter designated T1-T4) 
conducted during the fall season of 2020. Range of R2: 0.718-0.991; Range of MSE: 
2.23-0.23; Range of RMSE: 1.49-0.48. 
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Fig. 7. Accuracy of prediction for the external validation trial. Values of specimen 
protein content (% DW) in means ± standard error, under six cultivation regime per 
time sequence (T1, T3, T4), were obtained from the external validation trial during 
the fall season of 2021. The model exhibited mean R2 value of 0.916, MSE of 0.24, 
and RMSE of 0.44. The ANN model used the spectral features that were collected 
during this trial and generated a prediction without any training iteration. 
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Fig. 8. Spectral, chemical and phenotyping features used for model development. 
Normalized Kubelka-Munk spectral features for Gracilaria sp. for experimental 
treatment regimes showing minimum (A2-2: Control group: no nutrient addition, 
moderate incidGraent light) and maximum (C1-5: high nutrient addition, low incident 
light) protein accumulation (% DW) through three weekly time sequences (T1, T3, 
T4) *. The measured specimens were photographed at each time sequence.  
  
*Weather conditions prevented spectral measurements during the second time 
sequence (T2) of the fall season, 2021 
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Fig. 8. A comparison of seaweed growth rate and protein content.  Specific growth rate (SGR) measured as FW (% /day) over four 
consecutive weeks in comparison with protein content (% DW) for the cultivated Glacilaria sp. during fall season. Data was 
analyzed per specimen per container (n=18) and figures are in average ± SD (error bars)   
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Fig. 9. Range of coefficient of variation (CV). CV of protein content in Glacilaria. 
sp. per cultivation regime (A1-2, B1-2, C1-2) per time sequence (T1-T4) at two 
trail sessions: training (A) and external validation (B). Grey columns are 
representing measured results of lab analysis and colored columns are 
representing ANN predicted results. Numbers above columns representing 
minimum and maximum figures per treatment regime (A1-2; B1-2; C1-2). 
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Figure legends 
 

Fig. 1. Schematic cultivation of Gracilaria sp. using treatments in a land-based 
outdoor setup. A1, A2 control group (CON); B1, B2 Moderate nutrients-enriched 
(MN); C1, C2 High nutrients-enriched (H).  Biomass cultivated under low incident 
light intensity [(LI), n=9] and moderate incident light intensity [(MI), n=9].       

Fig. 2. A representative reflectance spectrum of Gracilaria sp. measured in-situ on 
wet thalli. Measurements were conducted in the VIS-NIR region, 400–1000 nm. 
Absorbance at 560-680 nm was used to determine chromophores (phycobiliproteins) 
and protein components. 

Fig. 3. Phycobiliprotein absorption area. Kubelka-Munk normalized absorbance 
features of phycobiliproteins (PBS) in Gracilaria sp.  PE: λmax = 560-570 nm;  PCmax = 
610-620 nm;  APCmax = 650-655 nm. These antenna pigments are covalently amino 
acids (Aryee et al., 2018) enabling light energy to transfer through this pathway: �� 
→�� →��� →�ℎ� � ( Dumay and Morançais, 2016). 

Fig. 4. Growth rate and protein content of Gracilaria sp.  cultivated in the summer 
(July) and fall (December) trials of 2020. Gray: Specific growth rate, by season 
[(SGR), % /day]; Yellow:  Protein content (% DW). Boxplots bars represent the 
minimum and maximum observed values. 

Fig. 5. Cultivated Gracilaria sp. specimens.  A large variability in phenotype and 
thallus colour were observed during the fall season, reflecting seaweed protein 
acclimation mechanism to changes in nutrient supply and incident light.  Cultivated 
specimens were classified via reflectance spectral features across the 
phycobiliprotein absorption area (560-680 nm) using absorption depth. 

Fig. 6. Model prediction performances. Mean ± standard error of predicted protein 
content values in the algae biomass (% DW) as obtained from the MBP-ANN model, 
in comparison with laboratory results obtained from the CHNS analytical analysis of 
N content converged to protein content (see Table 5). The graphs present 
measurements during four consecutive weeks (hereafter designated T1-T4) 
conducted during the fall season of 2020. Range of R2: 0.718-0.991; Range of MSE: 
2.23-0.23; Range of RMSE: 1.49-0.48. 

Fig. 7. Accuracy of prediction for the external validation trial. Values of specimen 
protein content (% DW) in means ± standard error, under six cultivation regime per 
time sequence (T1, T3, T4), were obtained from the external validation trial during 
the fall season of 2021. The model exhibited mean R2 value of 0.916, MSE of 0.24, 
and RMSE of 0.44. The ANN model used the spectral features that were collected 
during this trial and generated a prediction without any training iteration. 

Fig.  8. Spectral, chemical and phenotyping features used for model development. 
Normalized Kubelka-Munk spectral features for Gracilaria sp. for experimental 
treatment regimes showing minimum (A2-2: Control group: no nutrient addition, 
moderate incident light) and maximum (C1-5: high nutrient addition, low incident 
light) protein accumulation (% DW) through three weekly time sequences (T1, T3, 
T4) *. The measured specimens were photographed at each time sequence.  
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*Weather conditions prevented spectral measurements during the second time 
sequence (T2) of the fall season, 2021. 
 

Fig.  9. A comparison of seaweed growth rate and protein content.  Specific growth 
rate (SGR) measured as FW (% /day) over four consecutive weeks in comparison 
with protein content (% DW) for the cultivated Glacilaria sp. during fall season. Data 
was analyzed per specimen per container (n=18) and figures are in average ± SD 
(error bars).    

Fig. 10.  Range of coefficient of variation (CV). CV of protein content in Glacilaria. 
sp. per cultivation regime (A1-2, B1-2, C1-2) per time sequence (T1-T4) at two trail 
sessions: training (A) and external validation (B). Grey columns are representing 
measured results of lab analysis and colored columns are representing ANN 
predicted results. Numbers above columns representing minimum and maximum 
figures per treatment regime (A1-2; B1-2; C1-2). 
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