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Abstract 
Motivation: Single-cell technologies allow deep characterization of different molecular aspects of cells. 
Integrating these modalities provides a comprehensive view of cellular identity. Current integration 
methods rely on overlapping features or cells to link datasets measuring different modalities, limiting 
their application to experiments where different molecular layers are profiled in different subsets of 
cells.  
Results: We present TopoGAN, a method for unsupervised manifold alignment of single-cell datasets 
with non-overlapping cells or features. We use topological autoencoders to obtain latent representa-
tions of each modality separately. A topology-guided Generative Adversarial Network then aligns these 
latent representations into a common space. We show that TopoGAN outperforms state-of-the-art man-
ifold alignment methods in complete unsupervised settings. Interestingly, the topological autoencoder 
for individual modalities also showed better performance in preserving the original structure of the data 
in the low-dimensional representations when compared to using UMAP or a variational autoencoder. 
Taken together, we show that the concept of topology preservation might be a powerful tool to align 
multiple single modality datasets, unleashing the potential of multi-omic interpretations of cells.  
Availability and implementation: Implementation available on GitHub 
(https://github.com/AkashCiel/TopoGAN). All datasets used in this study are publicly available. 
Contact: t.r.m.abdelaal@lumc.nl  

 

1 Introduction  
A growing number of single-cell technologies allow the characterization 
of distinct molecular features of cells, such as single-cell RNA-sequencing 
(scRNA-seq) or measuring chromatin accessibility at single-cell resolu-
tion (scATAC-seq). Despite advances in multimodal technologies (Zhu et 
al., 2020), these molecular features are mostly measured from different 
subsets of cells. Sometimes the measured modalities share common fea-
tures, for example when spatial transcriptomics and scRNA-seq are ap-
plied on the same tissue. Because the datasets are not measured from the 
same cells, they have to be aligned into a common space (Argelaguet et 
al., 2021). These unimodal alignment methods are not applicable when 
distinct modalities are measured from distinct cells. Few methods, such as 

UnionCom (Cao et al., 2020), MMD-MA (Singh et al., 2020) and SCIM 
(Stark et al., 2020), have attempted to address this challenging integration 
task by assuming a similar cellular composition between unimodal da-
tasets collected from the same tissue. These multi-modal alignment meth-
ods, however, suffer from several limitations. First, UnionCom and 
MMD-MA were tested on single-cell multi-omics data, in which the mul-
tiple modalities were measured from the same cell, with perfect cell-to-
cell correspondences. Although they did not exploit this correspondence 
in their methods, the integration performance drops significantly (as we 
show later) when, more realistic, datasets lacking this correspondence are 
used. Second, SCIM is not fully unsupervised as it requires (partial) cell 
type annotations for each of the different modalities in order to align the 
data. 
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Considering different single-cell modalities measured from the same 
biological sample, the main assumption in integration is that the different 
modalities lie on the same underlying manifold (Sun et al., 2018). Preserv-
ing the topology of the datasets is crucial when constructing and integrat-
ing the different manifolds. Since the different modalities are measuring 
distinct features, it is necessary to first find a low-dimensional representa-
tion of each modality separately. Topological autoencoders have been re-
cently introduced to project high-dimensional data into a low-dimensional 
latent space while preserving the data topology (Moor et al., 2020). Next, 
these low-dimensional manifolds have to be aligned into a common space 
with minimal distortion to the original topology of each data modality. 
Generative Adversarial Networks (GANs) were successfully used in the 
computer vision field (Gui et al., 2021). GANs were previously used to 
project biological datasets onto each other (Amodio and Krishnaswamy, 
2018), however, based on correspondence information between the da-
tasets, and not in a fully unsupervised setting. 

We propose TopoGAN, a topology-preserving multi-modal alignment 
of two single-cell modalities with non-overlapping cells or features. 
TopoGAN first finds topology-preserving latent representations of the dif-
ferent modalities, which are then aligned in an unsupervised way using a 
topology-guided GAN. TopoGAN outperforms state-of-the-art methods 
and is less computationally expensive, allowing it to scale to datasets with 
a large number of cells. Moreover, TopoGAN is fully unsupervised with 
no requirement for cell type annotations.  

2 Methods 
2.1   TopoGAN overview 
TopoGAN is designed to align two datasets measuring two different single 
cell modalities, each measured on different non-matching cells. TopoGAN 
consists of two steps: 1) manifold projection, and 2) manifold alignment 
(Fig. 1).  Assuming a lower-dimensional manifold structure for single-cell 
datasets (Bac and Zinovyev, 2019), TopoGAN first finds the manifold for 
each modality separately, with explicit preservation of the data topology. 
Then, the latent space representation of the two modalities are aligned in 
a topology-preserving manner, exploiting the assumption that the topol-
ogy of the cells in the two modalities is the same. This alignment step 
should preserve relevant inter-modality correspondence such that similar 
cell types should be aligned between different modalities. 
 

 
 

Fig. 1 TopoGAN overview. TopoGAN consists of two stages: (1) Manifold projection 

using Topological autoencoders to obtain a low dimensional embedding (manifold) for each 

modality independently. (2) Manifold alignment using a GAN. Hereto, 20 different GAN 

models are trained with random initializations. Then that model is selected which has the 

minimum average topological loss. The selected model is further trained for 1000 additional 

epochs to produce the final alignment. 

2.1.1   Manifold projection 

To project each modality to a lower-dimensional latent space, TopoGAN 
uses a topological autoencoder (Moor et al., 2020), which chooses point-

pairs that are crucial in defining the topology of the manifold instead of 
trying to optimize all possible point-pairs. A topological autoencoder is 
based on the concept of persistence homology (Edelsbrunner and Harer, 
2008) which selectively considers edges connecting point-pairs below a 
certain distance threshold. These edges are used to construct local neigh-
borhoods together constituting large-scale topological features. By repeat-
ing this procedure for a wide range of distance thresholds, persistent top-
ological features are defined, where the point-pairs constituting them are 
known as persistence pairings. Preserving the distances between these 
pairings in a lower-dimensional projection of the data preserves the data 
topology. The loss function of the topological autoencoder is defined as: 

 𝐿𝐿 =  𝐿𝐿𝑟𝑟 +  𝜆𝜆𝐿𝐿𝑡𝑡 (1) 
where 𝐿𝐿𝑟𝑟 is the reconstruction loss between the input and reconstructed 
output of the autoencoder across all cells, and 𝐿𝐿𝑡𝑡 represents the topological 
loss, with 𝜆𝜆 is the weight of the topological loss. The topological loss is 
defined as: 

 𝐿𝐿𝑡𝑡 =  𝐿𝐿𝑋𝑋𝑋𝑋 + 𝐿𝐿𝑋𝑋𝑋𝑋 

𝐿𝐿𝑋𝑋𝑋𝑋 =
1
2
‖𝐴𝐴𝑋𝑋[𝜋𝜋𝑋𝑋] − 𝐴𝐴𝑋𝑋[𝜋𝜋𝑋𝑋]‖2 

𝐿𝐿𝑋𝑋𝑋𝑋 =
1
2
‖𝐴𝐴𝑋𝑋[𝜋𝜋𝑋𝑋] − 𝐴𝐴𝑋𝑋[𝜋𝜋𝑋𝑋]‖2 

(2) 

where 𝑋𝑋 is the original input data and 𝑍𝑍 is the encoded latent representa-
tion, 𝐴𝐴𝑋𝑋 and 𝐴𝐴𝑋𝑋 are the distance matrices in the original and latent spaces 
respectively, 𝜋𝜋𝑋𝑋 and 𝜋𝜋𝑋𝑋 are the persistence pairings in the original and 
latent spaces respectively. 𝐴𝐴.[𝜋𝜋 .] represent subset of distances in the space 
𝐴𝐴. defined by the topologically relevant edges in that space 𝜋𝜋 .. The term 
𝐿𝐿𝑋𝑋𝑋𝑋 ensures that persistence pairings relevant to the original manifold are 
equidistant in both the original and the latent spaces, while 𝐿𝐿𝑋𝑋𝑋𝑋 ensures 
that persistence pairings relevant to the latent manifold are equidistant in 
both spaces. 

To train the topological autoencoders, we used a learning rate of 0.001, 
batch size of 50, latent size of 8 dimensions, and an architecture of two 
hidden layers each of the size of 32 followed by batch normalization and 
ReLU activation. For the hyperparameter 𝜆𝜆, we tested values ranging from 
0.5 to 3.0 as recommended by (Moor et al., 2020). 

2.1.2 Manifold alignment    

We used a GAN (Goodfellow et al., 2014) to align one modality (source) 
to the other modality (target).  The generator part of the GAN aims to 
project the source modality onto the target modality, resulting in a com-
bined dataset. We use a single hidden layer generator network against a 
double hidden-layer discriminator network. We followed previous work 
using GANs to stabilize the training process (Radford et al., 2016) by sam-
pling discriminator weights and biases from a normal distribution 
N(0,0.02), and using a Leaky ReLU as the activation function for the dis-
criminator with an activation value of 0.2. The GAN was trained for 1000 
epochs. 

To ensure a topology-preserving alignment of the two modalities, we 
trained 20 different GANs and selected the GAN which best preserves the 
topological loss (Eq. 2) between the source data and its projection in the 
target data space. To do so, for each GAN, the topological loss is calcu-
lated from epoch 500 every 100th epoch until epoch 1000 (6 values) and 
then averaged. The topological loss was calculated for a batch size of 1000 
to balance between coverage of global structure in each batch and compute 
memory requirements. The generator network of the selected GAN is then 
loaded into a new GAN model with a new discriminator network as its 
adversary. This final model is then trained for an additional 1000 epochs 
to obtain the final aligned manifolds. For evaluation purposes, we also re-
trained the final model 10 times with different initializations to assess the 
stability of the alignment performance. 
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2.2   Datasets 
2.2.1   Peripheral blood mononuclear cells (PBMC) dataset 

The PBMC dataset consists of healthy human PBMCs, simultaneously 
profiling gene expression (RNA) and chromatin accessibility (ATAC) 
from the same cells using the 10x multiome protocol. The dataset was 
downloaded from the 10x Genomics website 
(https://www.10xgenomics.com/resources/datasets/pbmc-from-a-
healthy-donor-no-cell-sorting-10-k-1-standard-2-0-0). The Full PBMC 
dataset contained 10,412 cells, profiling 15,494 genes and 85,468 peaks, 
having one-to-one correspondence between the two modalities, and in-
cluding 8 major cell classes (CD4 T cells, CD8 T cells, Monocytes, NK 
cells, Dendritic cells, B cells, MAIT and HSPC) which are further divided 
into 19 cell subclasses. 

To simulate a realistic data in which the cell-cell correspondences do 
not exist between the two modalities, we generated the Partial PBMC da-
taset where we randomly removed 30% of the cells from both RNA and 
ATAC independently stratified across the different cell classes. This re-
sults in a total of 7,329 cells for each modality, including 2,142 cells which 
have no corresponding cells in the other modality. 

2.2.2   Bone marrow (BM) dataset 

The BM dataset consists of human bone marrow cells, simultaneously pro-
filing gene expression (RNA) and protein expression (antibody-derived 
tags, ADT) from the same cells using the CITE-seq protocol (Stoeckius et 
al., 2017). The Full BM dataset contained 30,672 cells, profiling 17,009 
genes and 25 ADT, with cell-cell correspondence between both modali-
ties, and including 5 major cell classes (T cells, B cells, Mono/DC cells, 
NK cells and Progenitor cells), further categorized into 27 different cell 
subclasses. 

Similar to the PBMC dataset, we generated the Partial BM dataset 
breaking the cell-cell correspondences across modalities. We randomly 
selected 9,053 cells from each modality in a stratified manner across the 
cell classes, in this case, such that there are no cell-cell correspondences 
between the two modalities left. 

2.3   Data preprocessing  
We performed all data preprocessing using the Seurat v4.0 R package 
(Hao et al., 2021). For the PBMC dataset, we filtered out cells with RNA 
count below 1,000 or above 25,000, cells with ATAC count below 5,000 
or above 70,000, and cells with mitochondrial percentage above 20%. Fur-
ther, the RNA modality is normalized using SCTransform (Hafemeister 
and Satija, 2019), selecting the top 3000 variable genes. The ATAC mo-
dality was normalized using the RunTFIDF function using a scaling factor 
of 10,000, followed by finding the top peaks using the FindTopFeatures 
function with min.cutoff = q0. Next, we reduced the dimensionality of the 
RNA and ATAC data to 50 dimensions using Principal Component Anal-
ysis (PCA) and Latent Semantic Indexing (LSI), respectively. These 50-
dimensional datasets are used as input to the TopoGAN workflow. 

For the BM dataset, the RNA modality was normalized using a scaling 
factor of 10,000 followed by log-transformation. The top 2000 variable 
genes were selected, next the data was scaled and centered. The ADT mo-
dality was centered log-ratio (CLR) normalized. The RNA data was re-
duced to 50 dimensions using PCA, while dimensionality reduction was 
not necessary for the ADT modality which only had 25 features. 
 

 
Fig. 2 Qualitative comparison of the manifold projection. Plots showing two-dimen-
sional tSNE embeddings of the 8-dimensional manifolds obtained using  (A,D) topological 
autoencoder, (B,E) VAE, and (C,F) 2-dimensional embedding obtained using UMAP, for 
the RNA modality and the ATAC modality of the PBMC dataset, respectively. All plots 
are colored according to the cell classes.   

2.4   Benchmarking methods 
For the manifold projection step, we compared the performance of the top-
ological autoencoder with a standard variational autoencoder (VAE) 
(Kingma and Welling, 2014), which is used for manifold projection in 
SCIM (Stark et al., 2020). Further, we used UMAP (McInnes et al., 2018) 
as a base-line for the manifold projection evaluation. Next, we compared 
the alignment performance of TopoGAN with the state-of-the-art methods 
UnionCom and MMD-MA. Default hyperparameter settings were used for 
both methods, and UnionCom was trained for 1000 epochs. 

2.5   Evaluation metrics 
To evaluated the manifold projection, we used the Silhouette score 
(Rousseeuw, 1987) which  assesses the separation between the cell clas-
ses. The Silhouette score ranges from -1 to 1, where a higher value indi-
cates better separable classes. Additionally, we calculated the Kullback-
Leibler divergence 𝐾𝐾𝐿𝐿𝜎𝜎 between the density estimates of the input data 
and the it’s latent space representation (Moor et al., 2020). The 𝐾𝐾𝐿𝐿𝜎𝜎 value 
quantifies the dissimilarity between the density estimates, thus lower val-
ues (≈ 0) indicate better manifold projection performance. We chose a 𝜎𝜎 
of 0.01, which represents the length scale of the Gaussian kernel. 
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Fig. 3 GAN alignment vs superposition. Plots show tSNE embeddings of the final align-
ment of two GAN models, showing (A,C) the RNA modality (target) and (B,D) the ATAC 
modality (source) after being projected and aligned in the RNA space. (A,B) Worst GAN 
model performing good superposition of the two manifolds, but bad alignment in terms of 
cell classes (6.1% Celltype matching score). (B) Best GAN model with good alignment 
projecting the correct cell classes across the two modalities (75.6% Celltype matching 
score). 

To evaluate the manifold alignment, for each cell in one modality, we 
determine its k-neighboring cells from the other modality in the final 
aligned common space (k=5, Euclidean distance). Next, we compare the 
class/subclass annotation of that cell with the majority vote of its neigh-
bors and check whether it is a match or not. We report the percentage of 
cells with matching cell class/subclass donated as the Celltype matching 
and the Subcelltype matching scores, respectively.  

3 Results 
3.1 Topological autoencoder produced better manifold pro-

jections compared to VAE and UMAP 
Before integrating different data modalities, it is crucial to acquire a proper 
low-dimensional embedding of each modality separately. For this mani-
fold projection task, we used a topological autoencoder which has been 
shown to produce reliable topology approximations (Moor et al., 2020). 
To the best of our knowledge, topological autoencoders have not been ap-
plied on biological datasets which, compared to classical datasets used in 
machine learning, contain continuous topological structures (Rizvi et al., 
2017). Using both RNA and ATAC modalities of the Full PBMC dataset 
(see Methods), we compared the manifold projection performance of the 
topological autoencoder with VAE and UMAP methods (Table 1). All 
three methods were used to reduce the 50-dimensional (PCA or LSI) data 
to 8 dimensions, additionally UMAP was used to produce 2-dimensional 
embedding for visualization purpose. Furthermore, we tested different set-
tings for the topological loss weight 𝜆𝜆 of the topological autoencoder, and 
the KL weight of the VAE. Results show that the topological autoencoder 
is the best method in preserving the original data density estimates having 

overall the lowest 𝐾𝐾𝐿𝐿0.01 value. However, UMAP obtained the highest 
Silhouette score producing better separation between different cell classes. 

To qualitatively compare the low-dimensional manifolds produced by 
each method, we generated two-dimensional t-distributed stochastic 
neighbor embedding (tSNE) maps  (van der Maaten and Hinton, 2008) of 
the 8-dimensional manifolds of the topological autoencoder (Fig. 2A,D) 
and VAE (Fig. 2B,E), in comparison with the 2-dimensional UMAP em-
beddings (Fig. 2C,F). We observed that the topological autoencoder and 
UMAP produced good separation between different cell classes, while 
VAE mixes CD4 and CD8 T cells in the RNA modality, and mixes most 
of the classes in the ATAC modality. The topological autoencoder mimics 
the densities in the original data better than UMAP. Taken together, the 
topological autoencoder showed better performance in producing low-di-
mensional manifolds preserving the original structure of the data. 

Table 1. Manifold projection evaluation using the Full PBMC dataset 

Dataset Method 
Silhouette 

score 
𝐾𝐾𝐿𝐿0.01 

RNA 

Topological Autoencoder (𝜆𝜆 = 2.0) 0.175 0.007 
Topological Autoencoder (𝜆𝜆 = 3.0) 0.061 0.007 
VAE (KL weight = 1e-4) -0.030 0.020 
VAE (KL weight = 1e-5) -0.123 0.020 
VAE (KL weight = 1e-6) -0.200 0.026 
UMAP (8 dimensions) 0.229 0.330 
UMAP (2 dimensions) 0.172 0.312 

ATAC 

Topological Autoencoder (𝜆𝜆 = 0.5) 0.061 0.001 
Topological Autoencoder (𝜆𝜆 = 1.0) 0.091 0.001 
VAE (KL weight = 1e-5) -0.160 0.012 
VAE (KL weight = 5e-5) -0.124 0.021 
VAE (KL weight = 1e-6) -0.099 0.020 
UMAP (8 dimensions) 0.275 0.200 
UMAP (2 dimensions) 0.229 0.173 

3.2 Minimum topological loss ensured manifold alignment 
instead of superposition and stabilized alignment per-
formance using GAN 

After obtaining the lower-dimensional manifold of each modality using 
topological autoencoders, these manifolds are integrated into one common 
space. We applied the TopoGAN manifold alignment on the Full PBMC 
dataset, aligning the ATAC modality (source) to the RNA space (target). 
We observed an inconsistency in the alignment performance when train-
ing multiple GANs initialized with different weights. Although their dif-
ferent losses were more or less equal, the Celltype matching score (see 
Methods) of 40 different GANs was 41.4  ± 20.6% (mean ± standard de-
viation).  We visualized the resulting alignments for the best and the worst 
models (Fig. 3). Both GANs achieve a good superposition of the ATAC 
manifold onto the RNA manifold, aligning the ATAC data to match the 
shape of the RNA data. However, the worst GAN produced a poor align-
ment of cell classes, e.g. projecting CD4 T cells to Monocytes (Fig. 3A). 
Whereas, the best GAN correctly aligns most cell classes (Fig. 3B). 

To quantify how distorted the source manifold is after projection to the 
target space, we inspected the topological loss between the source data and 
the projected source. Using the Full PBMC dataset, we performed 40 ex-
periments using identical GAN architectures but different random initial-
izations, trained for 1000 epochs. GAN training showed that the generator 
and discriminator losses stabilized around 400 epochs. Therefore, we cal-
culated the topological loss from epoch 500 to 1000 every 100 epochs, 
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between the input ATAC (source) manifold and the output ATAC mani-
fold projected onto the RNA space. To interpret the topological losses, we 
correlated them with the Celltype and the Subcelltype matching scores at 
the same epochs, resulting in a negative Pearson correlation of -0.73 and 
-0.67, respectively. This negative correlation indicates that GANs with 
low topological loss (i.e. preserving the topology of the source data after 
alignment) tend to produce better manifold alignment. This observation 
promoted us to train 20 different GANs and select the model with the min-
imum average topological loss (see Methods) as the final TopoGAN 
model. We chose to train 20 base GANs as that showed to cover a wide 
range of alignment scores. 

Using the final TopoGAN model and across 10 different experiments 
with the Full PBMC dataset, we obtained an average Celltype matching 
score of 67.5 ± 2.0%, and an average Subcelltype matching of 54.5 ± 
2.3%. Hence, incorporating the topological loss greatly helps to stabilize 
the performance of the GAN model, and ensures manifold alignment in-
stead of just superposition of datasets. 

3.3 TopoGAN outperforms state-of-the-art methods 
We benchmarked TopoGAN against UnionCom and MMD-MA. First, we 
applied the three methods to the Full PBMC dataset, and evaluated the 
results using the Celltype and Subcelltype matching scores (Table 2). Un-
ionCom outperformed both TopoGAN and MMD-MA. However, the Full 
PBMC dataset includes perfect cell-cell correspondences between the two 
modalities, since they are measured from the same cell. Although none of 
the models are explicitly using this information, it might implicitly be in-
formative for some of the models. To address this, we generated a Partial 
PBMC dataset in which the modalities are partially taken from non-over-
lapping cells (see Methods). We observed a large drop in the performance 
of UnionCom when tested on the Partial PBMC dataset (Table 2). Alt-
hough the performance of TopoGAN on the Partial PBMC dataset also 
decreased compared to the performance on the Full PBMC, TopoGAN 
outperformed other methods on the Partial PBMC data. 

These observations are replicated on the BM dataset which measures 
RNA and protein levels using the CITE-seq protocol. For the Full BM 
dataset, TopoGAN obtained an average Celltype matching score of 77.8 ± 
2.0 %, and an average Subcelltype matching score of 43.2 ± 3.4 % over 
10 different experiments. Running UnionCom and MMD-MA failed for 
the Full BM dataset, due to the large memory requirements of both meth-
ods. The memory requirements of TopoGAN are almost constant with the 
number of cells, due to the fixed batch size. For the Partial BM dataset 
with no cell-cell correspondences, TopoGAN similarly outperforms Un-
ionCom and MMD-MA (Table 2). 

Table 2. Benchmarking TopoGAN against UnionCom and MMD-MA*  

Dataset Method 
Celltype matching 

(mean ± std) % 
Subcelltype matching 

(mean ± std) % 

Full 
PBMC 

TopoGAN 67.5 ± 2.0 54.5 ± 2.3 
UnionCom 95.7 ± 0.5 90.4 ± 0.9 
MMD-MA 23.1 ± 9.5 12.4 ± 5.7 

Partial 
PBMC 

TopoGAN 59.3 ± 3.0 47.4 ± 1.4 
UnionCom 23.1 ± 6.6 13.4 ± 5.0 
MMD-MA 31.7 ± 10.9 14.5 ± 8.6 

Partial 
BM 

TopoGAN 56.6 ± 0.4 32.3 ± 7.3 
UnionCom 29.1 ± 11.8 9.9 ± 5.2 
MMD-MA 45.9 ± 10.1 15.4 ± 6.7 

*Reported results are computed over 10 different runs. 

Further, we qualitatively compared the performance of TopoGAN and 
UnionCom in order to interpret the drop in the performance. We visualized 
the final alignment results for the Full PBMC, Partial PBMC and Partial 
BM datasets (Fig. 4). For the Full PBMC dataset, both TopoGAN and Un-
ionCom showed good mixing of the RNA and ATAC modalities, while 
keeping different cell classes separable (Fig. 4A). For the Partial PBMC 
dataset, TopoGAN showed a similar behavior, while UnionCom is not 
able to properly align or mix the two modalities anymore (Fig. 4B). Sim-
ilar observation can be obtained using the Partial BM dataset (Fig. 4C). 

4 Discussion 
We present TopoGAN, a method to integrate multi-modal single-cell data 
with non-overlapping cells or features. TopoGAN is fully unsupervised 
and relies on the assumption that different single-cell modalities measured 
from the same tissue have the same underlying manifold, hence the topo-
logical structure of these modalities should be similar. To perform mani-
fold alignment, TopoGAN uses a GAN in combination with a topological 
loss guiding the selection of the best performing GAN. We would like to 
stress that although the topological loss idea was inspired based on the 
evaluation using the cell type annotations, these annotations are not at all 
used by TopoGAN (the topological loss is fully unsupervised).  

We showed that TopoGAN outperforms current state-of-the-art meth-
ods, UnionCom and MMD-MA, when tested on datasets with partial or no 
cell-cell correspondence. UnionCom was trained and optimized using sin-
gle-cell multi-omics datasets, and showed good performance on datasets 
in which the different modalities are measured from the same cell. Alt-
hough the cell-cell correspondence is not used as input, UnionCom is ap-
parently able to implicitly learn from this information as its performance 
largely dropped for more realistic scenarios where modalities are meas-
ured from different cells. MMD-MA relies heavily on hyperparameters 
tuning which needs to be done using cell annotation information to obtain 
good estimates. Hence, MMD-MA is not suitable for a fully unsupervised 
integration setting. 

For manifold projection, we used topological autoencoders and showed 
their ability to preserve the structure of the data in the low-dimensional 
embedding. Topological autoencoders showed better results compared to 
VAE and UMAP, both quantitatively and qualitatively. Additionally, it 
was previously shown that topological autoencoders have superior perfor-
mance to PCA and regular autoencoder (Moor et al., 2020). Therefore, it 
might be interesting to explore the applicability of topological autoencod-
ers in other single cell analysis tasks. One example is trajectory inference 
studying the differentiation trajectory of cells using scRNA-seq datasets 
(Saelens et al., 2019). Most trajectory inference methods rely on a lower-
dimensional representation of the data, where topological autoencoders 
can be applied to produce low-dimensional space preserving the topology 
of the inter-cellular relationships in the data. 

The main assumption of TopoGAN, different modalities measured 
from the same tissue have the same underlying manifold structure, is not 
completely true. Although this assumption is based on the fact that the cell 
pool where different modalities sample from is the same, hence similar 
cellular structure, different modalities are measuring different molecular 
features capturing different views of this cellular structure. As a result, the 
underlying manifolds of each modality are not identical, however, we ar-
gue that there is enough similarity between these manifold that can be used 
to perform the data integration. 
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Fig. 4 Qualitative comparison of TopoGAN and UnionCom. Plots show tSNE embed-
dings of the final alignment produced by TopoGAN (left column) and UnionCom (right 
column) when applied on (A) Full PBMC dataset, (B) Partial PBMC dataset, and (C) Partial 
BM dataset. Each tSNE map is plotted twice, once colored with the cell classes showing 
how well different cell classes are separated, and once colored with the modality of origin 
showing how well different modalities are mixed. 

A major limitation in the current TopoGAN workflow is the require-
ment of training multiple GAN networks in order to choose the best model 
based on the topological loss. It is evident that the quality of the alignment 
achieved is limited by the best alignment obtained in this set of GAN mod-
els. Here, we trained 20 different GAN models which is computationally 
expensive and there is no guarantee that the select GAN model is the best 
possible solution for the tested dataset. Future improvement is this direc-
tion can incorporate the topological loss as a regularization term in the 
overall loss function of the GAN. This will guide the GAN to minimize 
the topological loss during training, thus eliminating the need to train mul-
tiple GAN models. 

In all our experiments, we used the RNA modality as the target modal-
ity to which other source modalities (ATAC or ADT) were aligned. The 
choice of the target modality has an impact on the final alignment perfor-
mance. Furthermore, we did not fine-tune the hyperparameters used for 
each dataset. Optimizing these hyperparameters specifically for each da-
taset may improve the overall results. 

 In conclusion, TopoGAN opens new opportunities in studying com-
plex tissues as it enables the integration of multiple molecular views with-
out the restriction that these are measured from the same cell. 
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