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Abstract 
 

Renal medullary carcinoma (RMC) is a highly aggressive disease associated with sickle hemoglobinopathies 

and universal loss of the tumor suppressor gene SMARCB1. RMC has a relatively low rate of incidence 

compared with other renal cell carcinomas (RCCs) that has hitherto made molecular profiling difficult. To 

probe this rare disease in detail we performed an in-depth characterization of the RMC tumor 

microenvironment using a combination of genomic, metabolic and single-cell RNA-sequencing experiments 

on tissue from a representative untreated RMC patient, complemented by retrospective analyses of archival 

tissue and existing published data. Our study of the tumor identifies a heterogenous population of malignant 

cell states originating from the thick ascending limb of the Loop of Henle within the renal medulla, displaying 

the hallmarks of increased resistance to cell death by ferroptosis and proteotoxic stress driven by MYC-induced 

proliferative signals. Specifically, genomic characterization of RMC tumors provides substantiating evidence 

for the recently proposed dependence of SMARCB1-difficient cancers on an intact CDKN2A-p53 pathway and 

we suggest increased cystine-mTORC-GPX4 signaling also plays a role within transformed RMC cells. We 

further propose that RMC has an immune landscape comparable to that of untreated RCCs, including 

heterogenous expression of the immune ligand CD70 within a sub-population of tumor cells, which could 

provide an immune-modulatory role that serves as a viable candidate for therapeutic targeting. 
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Introduction 
 

Renal medullary carcinoma (RMC) is a rare (less than 0.5% of all renal carcinomas) yet highly aggressive 

kidney malignancy among adolescents and young adults (median age of incidence of 28 years old (1)(2)), 

which is almost uniformly associated with sickle cell hemoglobinopathies such as sickle cell trait (SCT) and 

less commonly sickle cell disease (SCD), or thalassemia (3)(4). Fewer than 5% of patients with RMC survive 

longer than 36 months and the disease is highly resistant to conventional renal cell carcinoma (RCC) therapies, 

producing only a brief response in approximately 29% of cases (1)(2). A better understanding of RMC biology 

is therefore an essential prerequisite for developing effective treatment strategies, but so far progress has been 

hampered due to a paucity of molecular information about this rare disease (5).   

 

RMC is universally characterized by loss, as determined by immunohistochemistry (IHC), of protein 

SMARCB1/INI1 that forms a subunit of the SWI/SNF chromatin remodeling complex, and molecular profiling 

studies performed to date have revealed the majority of biallelic inactivation of the SMARCB1 gene occurs 

either via concurrent hemizygous loss and translocation or by homozygous loss (6)(7)(8)(9)(10)(11)(12)(13). 

Outside of SMARCB1 inactivation, there are no recurrent somatic genetic alterations and the mutational load 

of RMC appears remarkably sparse compared to other RCCs (13), suggesting that loss of SMARCB1/INI1 

protein expression is both a truncal and potent driver of disease. In addition to RMC, SMARCB1 alterations 

are found in approximately 20% of all cancers (14)(15), and biallelic inactivation of SMARCB1 is also a 

universal characterizing feature of kidney malignant rhabdoid tumor (MRT) that similarly has an extremely 

low rate of mutation and aggressive nature of onset (16). Whether parallels between RMC and kidney MRT 

extend to the molecular level remains largely unexplored. It has recently been established that bulk 

transcriptomic profiles of primary RMC tumors are closest to collecting duct carcinoma (CDC) while 

remaining relatively distinct from kidney MRT, upper tract urothelial carcinoma (UTUC) and other RCC 

subtypes including clear cell, papillary, and chromophobe RCC (ccRCC, pRCC and chRCC, respectively) 

(13).            

 

A proposed mechanism for RMC propagation is attributed to a predisposition for red blood cell (RBC) sickling 

in the renal medulla of SCT/D patients that triggers chronic hypoxia followed by DNA damage and repair-

induced loss of SMARCB1 (17)(5)(18). Indirect support for this hypothesis comes from the observation that 

SMARCB1 is localized on a fragile region of chromosome 22 (19)(20). However, the precise cellular origin 

of RMC still remains unclear. Recent bulk transcriptomic profiling of primary tumors and in vitro experiments 

with RMC-derived cell lines have also implicated the upregulation of pathways associated with c-MYC-

induced DNA replication stress (13)(21), and the same bulk transcriptomic analyses suggest that RMC 

expresses a high degree of correlation with collecting duct tissue and an immune profile distinct from ccRCC. 

ccRCC is closely associated with mutations that lead to stabilization of hypoxia inducible factors (HIF-1a 

and HIF-2a), resulting in an oncologic-metabolic shift thought to be an underlying driver for malignancy 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.28.489873doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.28.489873


(22)(23). Therefore, hypoxia might play an important yet multifaceted role across the varied tumor 

microenvironments (TMEs) of the kidney.  

 

Single-cell transcriptomic analyses complement bulk multi-omic studies by providing information on cell 

composition and heterogeneity within the TME, which are important factors for understanding the basic 

biology, treatment strategies and resistance of disease (24)(25). Unlike ccRCC (constituting 70% of all kidney 

cancers) for which several single-cell transcriptomic data from primary tumors are now available 

(26)(27)(28)(29)(30)(31), scarcity of cases and difficulties surrounding pre-operative diagnosis of RMC have 

hitherto restricted molecular characterization of this rare disease to the few bulk genomic and transcriptomic 

analyses described above. Here, we report genomic, metabolomic and single-cell transcriptomic 

characterization of the TME from a representative untreated RMC tumor. Our analysis is complemented by 

retrospective analyses of archival tissue and published data from several cohorts of RCM patients reported 

previously. Our in-depth molecular characterization of the RMC TME extends current understanding of this 

rare and devastating disease by consolidating previous findings at the single-cell level and identifying 

additional malignant, immune and diagnostic signals that may pave the way for more effective treatment 

strategies. 

 

Results 

 
Genomic characterization of RMC.  

 

We performed whole exome sequencing (WES) on tumor tissue from the untreated primary nephrectomy of 

an RMC patient (hereafter referred to as Patient 1) in parallel with a matched normal blood sample to 

characterize somatic genomic variation within the tumor (Materials and Methods). Contrasted retrospectively 

against a background of primary tumors from RMC patients previously treated at Memorial Sloan Kettering 

Cancer Center and for which genomic characterization is available (10), Patient 1 displayed the conventional 

hallmarks of RMC including SCT diagnosis, right kidney as tissue of origin (approximately 2/3 cases), and 

loss of SMARCB1/INI1 expression as revealed by IHC (Figure 1A)(1)(2). Allele-specific copy number and 

clonal heterogeneity analysis performed using FACETS (32) estimated a tumor purity of 0.18 and loss of 

heterozygosity (LOH) via deletion of chromosomes 4, 13, 15, and 22, the latter of which includes the 

SMARCB1 gene locus (Figure 1B). Figure 1B also shows that FACETS estimated copy-neutral LOH (loss of 

one parental allele coupled to duplication of the second) within a large region of chromosome 17 and the 

entirety of chromosome 18. Analysis of somatic nucleotide variants using WES and MSK-IMPACT 

(Integrated Mutation Profiling of Actionable Cancer Targets) (33) revealed the tumor contained missense 

mutations in PRDM1 (residue 352) and SLX4 (residue 154) that, although potentially oncogenic are not 

reported within the NCBI ClinVar database, and an indel mutation of SMARCB1 at the genomic position 

corresponding to residue 203 (Figure 1C). The indel results in a frameshift mutation that, combined with LOH 
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of chromosome 22, likely explains biallelic inactivation of SMARCB1 and loss of expression at the protein 

level. Searching for gene fusion events in RNA transcripts from bulk tumor and normal tissue (Materials and 

Methods) did not reveal any evidence of further inactivation via translocation for the mutated SMARCB1 

allele. Outside of these events the mutational landscape of the tumor from Patient 1 was relatively sparse 

compared with other cancer types, as has previously been reported for RMC (13).      

 

Analysis of normal DNA revealed that Patient 1 inherited a G>C germ line variant allele at position 1025 of 

the reference TP53 gene, encoding a missense mutation that replaces arginine 342 with a proline residue and 

consequently results in a physiochemical alteration of p53 at the protein level. This single nucleotide 

polymorphism (NCBI ClinVar Variation ID 215996) has been annotated as a (likely) pathogenic TP53 variant 

segregating with Li Fraumeni syndrome cancers (34) and experimental studies have shown the missense 

change results in an inactive p53 protein that is defective at both tetramerization and transcriptional 

transactivation (35). TP53 is encoded on the region of chromosome 17 that underwent copy-neutral LOH in 

RMC tissue (Figure 1B), and analysis of the variant allele frequency (VAF) was found to be consistent with 

loss of the germ line variant allele and duplication of the reference allele within the tumor (Figure 1D). This 

suggests that the (likely) pathogenic germ line TP53 variant possibly conferred a selective disadvantage to 

tumor cells, which implies negative selection against inactivation of TP53 in RMC. In support of this 

hypothesis we note that, although the most frequently mutated gene in The Cancer Genome Atlas (TCGA) 

Pan-Cancer cohort (42% of samples) (36), no somatic TP53 genetic alteration was observed in any of the 

RMC tumor samples from Figure 1 nor the 31 RMC patients molecularly profiled in (13). Furthermore, our 

review of the literature did not reveal any reported case of a primary RMC tumor harboring an oncogenic 

TP53 mutation other than Case 10 from (10) (although in that case no detectable structural or copy number 

alterations involving the SMARCB1 locus could be detected), and a recent search also previously failed to 

identify any somatic mutation at the TP53 locus in MRT (37).  

   

Heterogenous nature of transformed cell states in RMC. 

 

To characterize the cellular composition of the TME in RMC, we performed single-cell RNA sequencing 

(scRNA-seq) and analysis using the package Seurat (38) on a primary tumor specimen from Patient 1 

(Materials and Methods). Our final scRNA-seq dataset included 5610 cells that were parsimoniously 

annotated by cell type based on the expression of the established cell markers EPCAM (epithelial-like cells), 

FAP (fibroblast cells), CD14 (monocyte/macrophage cells), CD79A (B cells), SDC1 (plasma cells), CD3D (T 

cells), or CD8A (CD8+ T cells) (Figure 2A and Supplementary Table 1). We identified proportionally few 

epithelial-like cells (105 out of 5610), likely reflecting low tumor purity and prominent desmoplasia that is 

characteristic of RMC (39). Epithelial-like cells further separated into three distinct sub-clusters on the basis 

of genes identified by differential gene expression analysis (Supplementary Table 2), reflecting their putative 

role in the malignancy of RMC. Specifically, one sub-cluster (CXCL14+ EPCAM+ cells) exclusively 
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contained cells expressing the breast and kidney-expressed chemokine CXCL14 (third top-scoring 

differentially expressed gene, as ranked by adjusted p-value = 1.566e-9) that is reduced or absent from most 

cancer cells and used to distinguish normal tissue (40)(41). This finding, together with the observation that 

the CXCL14+ EPCAM+ cells retained expression of SMARCB1 (27.6 % of cells), strongly suggests that the 

CXCL14+ EPCAM+ cluster contained either untransformed epithelial cells or those in the early stages of 

transformation (Figure 2B). When using the top 50 markers as gene sets for cell types identified spatially 

distributed across the mature human nephron (Figure 2C)(42) to score clusters using the Seurat functions 

ModuleScore and FindAllMarkers, the top-ranking (by log fold change) gene set for the CXCL14+ EPCAM+ 

cluster corresponded to epithelial progenitor cells (adjusted p-value = 3.621e-17) (Figure 2D).  

 

We observed an unequal distribution of EPCAM expression among epithelial-like cells identified above: a 

moderate proportion (62.1%) of cells from the CXCL14+ EPCAM+ cluster expressed EPCAM compared with 

high (84.6%) and low (12.5%) proportions of cells from the remaining second and third clusters of epithelial-

like cells, respectively (Figure 2B). Differential gene expression analysis (Supplementary Table 2) revealed 

the top-scoring differentially expressed gene of the low EPCAM cluster to be CD70 (adjusted p-value = 

1.002e-14)(Figure 2B), which was previously suggested as a target for RCC (43), and also top-scoring 

differentially expressed genes proposed to be associated with cancer stem cells (e.g. CD34, adjusted p-value 

= 3.163e-14 (44)(45); CD90/THY1, adjusted p-value = 3.247e-11 (46)). Conversely, top-scoring differentially 

expressed genes of the high EPCAM cluster contain a large number of ribosomal protein genes, and genes 

aberrantly expressed in a selection of cancers (e.g., KRT18, adjusted p-value = 0.003 (47)(48)) including RCC 

(e.g., NAPSA, adjusted p-value = 4.038e-5 (49)) and RMC (POU5F1 also known as OCT3/4, adjusted p-value 

= 0.028 (50)) (Figure 2B and Supplementary Table 2). The long non-coding RNA (lncRNA) urothelial cancer 

associated 1 (UCA1) was also identified among the top-scoring differentially expressed genes of the high 

EPCAM cluster (adjusted p-value = 3.062e-6) (Figure 2B), substantiating previous findings that this lncRNA 

shows dramatic upregulation in bulk RMC transcriptome profiles compared to those from adjacent normal 

tissue (13). Taken in context, this suggests that the UCA1+ EPCAM+ cluster contained transformed epithelial-

like cells further along the RMC oncogenic program. Using the same methodology described above, the top-

ranking gene signature for the UCA1+ EPCAM+ cluster corresponded to the thick ascending limb (TAL) of 

the Loop of Henle (adjusted p-value = 6.348e-33) (Figure 2D), implicating the TAL as a putative site-of-

origin for RMC.     

 

We next customized a version of hallmark gene set analysis (Materials and Methods) to compare differential 

pathway expression between CXCL14+ EPCAM+ and UCA1+ EPCAM+ clusters representing different stages 

of transformed populations in RMC (Figure 2E). We contrasted single-cell gene set analysis results with the 

previously reported differential pathway analysis for bulk RMC tumor and adjacent normal tissue (13). 

Reinforcing the finding that, in bulk, DNA replication stress is a hallmark of RMC, we discovered that the 

top-five-scoring MSigDB hallmark gene sets representing pathways enriched in the UCA1+ EPCAM+ cluster 
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to include both sets of c-MYC signaling targets (adjusted p-values = 3.096e-6 and 6.434e-5 for target sets V1 

and V2, respectively), DNA repair (adjusted p-value = 5.519e-3) and E2F targets (adjusted p-value = 1.990e-

2) (Figure 2E). Notably, these results provide new evidence that, at the single-cell level, increased c-MYC 

activity and DNA replication stress can be mapped to transformed epithelial-like cells within the RMC TME. 

Figure 2E also shows that the mTORC signaling pathway (adjusted p-value = 1.778e-2) was among the top-

five-scoring hallmark gene sets upregulated in the UCA1+ EPCAM+ cells. Taken together, these findings are 

indicative of increased proliferative and biosynthetic activity following loss of SMARCB1 within transformed 

RMC cells.  

 

Epithelial-like cells from the CD70+ cluster with low EPCAM expression levels were enriched for gene set 

signatures of the interferon gamma and alpha (adjusted p-values = 2.480e-6 and 7.140e-6, respectively), 

hypoxia (adjusted p-value = 1.532e-4), and inflammatory (adjusted p-value = 2.263e-3) response pathways 

relative to cells from UCA1+ EPCAM+ and CXCL14+ EPCAM+ epithelial-like sub-clusters. To better 

understand the nature of cells from the CD70+ cell cluster, we calculated overall correlation levels between 

their averaged gene expression profiles with those from the UCA1+ EPCAM+ and CXCL14+ EPCAM+ sub-

clusters (Pearson’s correlation coefficients r = 0.888 and r = 0.831, respectively), revealing that CD70+ cells 

are more closely related to the former even though they have lost many epithelial characteristics, perhaps as a 

consequence of advanced or divergent progression along the RMC oncogenic program. This claim is further 

substantiated by the observation that, among all cells, both UCA1+ EPCAM+ and CD70+ epithelial-like cells 

exclusively express MUC16 (adjusted p-values = 3.883e-132 and 9.967e-295, respectively) (Figure 2B and 

Supplementary Table 1) as a marker (also known as cancer antigen CA-125) associated with poor prognosis 

and advanced tumor stage in RCC (51)(52)(53). In summary, our data indicate a heterogenous mixture of at 

least two or three distinct transformed cell populations within the TME, potentially capturing various stages 

of the RMC oncogenic program.       

 

Signals of cystine-dependent ferroptosis resistance in RMC. 

 

RBC sickling within the renal medulla is believed to promote chronic hypoxia in RMC (17)(5)(18). Hypoxia 

and/or  ischemia is also thought to increase the susceptibility to cell death via the ferroptosis pathway within 

transformed epithelial cells, which must therefore ramp up protective mechanisms for their survival 

(54)(55)(56). In our scRNA-seq analysis we found that among the genes strongly overexpressed in UCA1+ 

EPCAM+ versus CXCL14+ EPCAM+  epithelial-like RMC cell clusters were also those encoding the ferritin 

light chain (FTL, p-value = 8.987e-12), glutathione peroxidase 4 (GPX4, p-value = 7.931e-10), and nuclear 

protein 1 (NUPR1, p-value = 0.012), which each play a role in resistance to ferroptosis-induced cell death by 

sequestering intracellular iron, inhibiting the formation of lipid peroxidases, and transcriptional regulation of 

iron metabolism, respectively (57)(58)(59).  
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Overexpression of FTL, GPX4 and NUPR1 in UCA1+ EPCAM+ cells suggests these key genes may be 

upregulated further along the RMC oncogenic program to increase protection of the tumor against cell death 

induced by ferroptosis. Correspondingly, the mTORC signaling pathway, which is also upregulated in UCA1+ 

EPCAM+ cells (Figure 2D), has recently been shown to couple cystine availability with GPX4 protein 

synthesis and regulation of ferroptosis (60). The mTORC signaling mechanism responsible for increasing 

GPX4 protein synthesis is dependent on SLC7A11-mediated cystine uptake from the extracellular 

environment, and in bulk RNA-seq data from (13) we found that the cystine transporter SLC7A11 is expressed 

at significantly higher levels in RMC tumor versus normal tissue (log2 fold change = 5.267, p-value = 5.386e-

14). Although only a handful of epithelial-like RMC cells contain detectable levels of SLC7A11 transcripts 

the single-cell level, we also noted that these cells are found exclusively within the UCA1+ EPCAM+ cluster 

(data not shown). Taken together, these observations suggest that key components of the newly identified 

cystine-mTORC-GPX4 signaling cascade may be mobilized at later stages of the RMC oncogenic 

transformation program to increase the tumor’s resistance to ferroptosis. This hypothesis would imply that 

RMC cells are dependent on the uptake of cystine from the extracellular tumor environment. 

 

To probe the metabolic composition of the TME in RMC, we generated bulk metabolomic data from tumor 

and adjacent normal renal medullary tissue from Patient 1. Due to the absence of statistical power in such a 

single case study, we analyzed bulk RMC metabolomic data against a background of 140 ccRCC bulk 

metabolomic data sets (with 71 additional samples from adjacent normal renal cortical tissue) generated and 

processed using identical protocols (Materials and Methods). To identify individual metabolites found at 

differential levels of abundance in RMC compared to ccRCC we used the Crawford-Howell test (61) that 

revealed just two compounds: cystine (Metabolon ID M00056; adjusted p-value = 0.037) and S-

Methylcysteine (MeCys) (Metabolon ID M39592; adjusted p-value = 0.038), are found at significantly higher 

and lower abundance levels, respectively, in the TME of RMC compared to that of ccRCC (Figure 3A and 

Supplementary Table 3). The same analysis performed on normal samples shows that MeCys, an 

unconventional amino acid excreted in urine (62), is also found at higher abundance levels in tumor adjacent 

normal tissue from the renal medulla compared to renal cortex (adjusted p-value = 0.010) (Figure 3B and 

Supplementary Table 4). Parsimonious interpretation of these results implies that the only significant 

difference in metabolite abundances attributable to tumor type and not differences in renal site of origin are 

the significantly lower abundance levels of cystine found in RMC compared to ccRCC. This result could be 

explained by a relatively higher rate of cystine uptake in RMC, possibly required to support cystine-dependent 

resistance to ferroptosis. 

    

Immune composition and crosstalk within the RMC microenvironment.  

 

RCCs (and ccRCC in particular) are known to be among the most immune and vascular infiltrated cancer 

types (63) and can consequently be responsive to various forms of advanced immunotherapy (64). RMC has 
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recently been proposed to have a distinct immune profile compared to other RCCs, based on using bulk RNA-

seq deconvolution methods to show that RMC includes an abundance of myeloid and B linage cells compared 

to ccRCC while retaining a comparably high level of infiltrating T cells and cytotoxic lymphocytes (13). Our 

scRNA-seq analysis of RMC revealed that the TME was dominated by immune cells from the monocytic 

lineage (Figure 2A) alongside a complete absence of transcripts for the immune checkpoint ligands PD-L1/2 

(programmed cell death ligands) and CD80/86 (cytotoxic T-lymphocyte-associated protein 4 ligands) within 

transformed epithelial-like cells.  

 

Leveraging the fact that multiple single-cell datasets characterizing the immune landscape of ccRCC across 

various disease stages and with therapy are now publicly available (29)(30)(31), we developed a correlation-

based method to further compare immune cell cluster compositions from RMC to those from ccRCC 

(Materials and Methods). Using a ccRCC scRNA-seq data set from (31), we evaluated the correlation between 

average gene expression profiles for each annotated CD45-postive cluster from that study with those for each 

CD45-postive cluster from our single-cell RMC dataset (Figure 4A). We found relatively consistent levels of 

correlation between average immune cell gene expression profiles across clusters of lymphoid lineages from 

both RCC types, while the RMC Monocyte/Macrophage cluster displayed a graded correlation signature with 

cell types from the myeloid linages detected in ccRCC. Specifically, Figure 4A shows that the RMC 

Monocyte/Macrophage cell cluster was most enriched for a transcriptional profile associated with tumor 

associated macrophages (TAMs) expressing high levels of GPNMB that was shown to be associated with the 

anti-inflammatory M2 macrophage polarization signature found predominantly in untreated ccRCC (31). 

Concordantly, lower levels of correlation between the RMC Monocyte/Macrophage cell cluster and remaining 

ccRCC TAM clusters is consistent with the shift towards the pro-inflammatory M1 macrophage polarization 

signature in treated tumors (29)(30)(31). It remains unclear whether a shift to pro-inflammatory states would 

similarly be observed within TAM populations from RMC tumors treated using immunotherapy targeting the 

classical PD-L1/2 or CD80/86 immune checkpoint regulators, which appear relatively absent in this cancer 

type.           

 

CD70 has recently been proposed as an emerging target in cancer immunotherapy (65), particularly in the 

case of RCC where its overexpression in ccRCC is thought to be driven by stabilization of hypoxia inducible 

factors (43)(66). Using bulk RNA-seq data from (13), we observed that CD70 mRNA is highly overexpressed 

in RMC tumor compared with adjacent normal tissue (log2 fold change = 7.724, p-value = 3.269e-23). We 

rationalized that increased CD70 expression in RMC could be explained by the presence of CD70+ epithelial-

like cells or an increase in tumor infiltrating B cells, since CD70 was identified as a top-scoring differentially 

expressed gene for both clusters in our scRNA-seq analysis (Supplementary Table 1). Indeed, custom-built 

gene sets generated using the top 50 scoring differentially expressed genes from both B cell and CD70+ cell 

clusters found in our scRNA-seq data demonstrated comparable gene set enrichment analysis (GSEA) scores 

in bulk RMC tumor (normalized enrichment score (NES) = 2.382, p-value = 3.461e-8 and NES = 2.002, p-
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value = 2.798e-5 for gene sets of B and CD70+ cells, respectively), suggesting both types of CD70-expressing 

cells are overrepresented in malignant tissue. 

 

To further explore the relevance of CD70 expression in RMC, we performed IHC staining on primary RMC 

tumor tissue sections from Patient 1 and four other RMC patients previously treated at MSKCC. Heterogenous 

intra-tumor CD70 protein expression on carcinoma (or RMC tumor) cells was found in 80% (4/5; including 

Patient 1) of the primary tumors tested (as quantified by H-score, Materials and Methods) (Figure 4B), 

substantiating the discovery that CD70 is expressed in a sub-population of transformed RMC cells. CD70 is 

the only known ligand for the immune receptor CD27, and it is therefore conceivable that a sub-population of 

transformed RMC cells expressing CD70 performs an immuno-modulatory role by co-stimulation of 

lymphocytes via the CD27 receptor. Concordantly, our scRNA-seq data reveal that CD27 is expressed at 

moderate levels within T cells (22.65 % of cells), CD8+ T cells (32.30 % of cells), B cells (17.28 % of cells), 

and substantially higher levels within the MitoLo plasma cells (60.45 % of cells) (Figure 4C), suggesting 

significant levels of CD27-CD70-mediated cross-talk are possible between different cell populations within 

the RMC TME. In addition to an abnormally low level of mitochondria-encoded transcripts found within the 

MitoLo plasma cell population (Materials and Methods), the top-scoring hallmark gene set for this cluster 

corresponds to the unfolded protein response (UPR) pathway (adjusted p-value = 7.320e-29), indicative of a 

stimulated cell state associated with a dramatic increase in antibody synthesis.  

 

Discussion 
 

RMC is a rare yet devastating disease uniquely associated with sickle hemoglobinopathies and SMARCB1 

inactivation, whose mechanistic origin still remains largely unexplained because a relative shortage of cases 

has made molecular profiling difficult. In light of this, our study has presented an in-depth molecular 

characterization of the TME from an untreated RMC patient carrying a (likely) pathogenic TP53 germ line 

allele that was somatically lost in the tumor. Other than this unique case of germ line mutant allele LOH, the 

genomic landscape of the RMC tumor was generally representative of disease, including biallelic inactivation 

of SMARCB1 with a low mutational burden otherwise.  

 

We have mapped transcriptional signals from differentially expressed genes that are characteristic of RMC 

(13)(21) to distinct sub-populations of transformed renal epithelial cells originating from the TAL. We 

therefore tentatively put forward the TAL as a putative site-of-origin for RMC. Our single-cell analyses 

suggest that the transformed RMC cell state expressing lncRNA UCA1 is associated with increased c-MYC 

activity, DNA replication stress and mTORC signaling compared to untransformed epithelial cells. Although 

UCA1 was originally believed to be a highly-specific marker for urothelial cancer (67), subsequent studies 

revealed its overexpression in a variety of human malignancies where it is understood to promote proliferation, 

migration and immune escape (68). Our findings provide additional evidence that UCA1 could serve as a 
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marker gene for RMC malignancy as was previously suggested based on bulk RMC transcriptome data (13). 

Likewise, bulk transcriptome data and in-vitro cell line experiments also support the increase in c-MYC 

activity and DNA repair stress following SMARCB1 inactivation in both RMC (13)(21) and MRT (37). The 

authors of the latter study concluded that a genetically-intact CDKN2A-p53 pathway is necessary for 

regulating the UPR pathway to buffer transformed cells against dramatic elevation of proteotoxic stress that 

results from activation of c-MYC (37). 

 

Our observation that a (likely) pathogenic TP53 germ line allele was somatically lost in the RMC tumor could 

be explained by assuming a functional CDKN2A-p53 signaling axis protects against cellular stress associated 

with SMARCB1 inactivation, as proposed in a previous study (37). In this scenario, high levels of ER stress 

and proteotoxicity levels requiring modulation by the CDKN2A-p53 signaling may have provided a selective 

advantage to tumor cells that had lost the (likely) pathogenic TP53 allele. Concordantly, the previous study 

(37) failed to identify any somatic mutation at the TP53 locus in MRT and we were likewise unable to find 

any instance of somatic TP53 inactivation in RMC tumors that were confirmed SMARCB1-defficient at the 

genomic level. It is therefore possible that engagement of the CDKN2A-p53 pathway confers a survival benefit 

to SMARCB1-defficient RMC tumors following elevated c-MYC signaling, as previously suggested for MRT 

(37). We note that this proposal could also explain why CDKN2A is only expressed in epithelial-like cell 

clusters lacking SMARCB1 transcripts in RMC (Figure 2B). We furthermore presented evidence that 

resistance to ferroptosis-- mediated by the cystine-mTORC-GPX4 signaling pathway (60)-- is an additional 

trait of the transformed RMC cell state, which could be explained physiologically given the relevance of tissue 

ischemia and hypoxia for disease. Whether the CDKN2A-p53 and cystine-mTORC-GPX4 signaling axes 

complement or antagonize one another remains to be explored (69)(70).  

 

In probing the immune landscape of RMC, we demonstrated that heterogenous expression of CD70 by a 

distinct sub-population of malignant cells appears to be a general feature of both RMC and ccRCC (43)(66), 

and could therefore be considered as a viable target for RCC therapy (65). CD70 is the only known ligand for 

CD27, a tumor necrosis factor (TNF) receptor expressed on immune cells from the lymphoid lineage (T, B 

and Natural Killer cells) whose stimulation mediates T and B cell activation (71)(72)(73), and is also thought 

to induce differentiation of the latter into plasma cells (74). We observed a unique population of plasma cells 

within our single-cell RMC dataset, expressing high levels of CD27 and hallmarks of increased cellular stress. 

It is therefore possible that sub-populations of RMC tumor cells expressing CD70 trigger hyperstimulation of 

B cells into a tumor-promoting, imbalanced antibody-producing plasma cell state, and in that way evade an 

effective immune response (Figure 4D). In particular, this would explain why high levels of CD70 expression 

(66) as well as immunoglobulin production and active isotype switching has paradoxically been associated 

with poor prognosis in RCC (75) and, strikingly, why the top-three-scoring differentially expressed genes 

IGHG1, IGLV3-1 and IGHG3 for the MitoLow plasma cell cluster (Supplementary Table 1) serve as a strong 

negative prognostic marker for RCC (76).    
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In summary, our work has provided a detailed molecular characterization of the TME from a primary RMC 

tumor, which complements the few existing molecular profiling resources available for this rare disease. 

Limitations of the study include the recognition that scRNA-seq and metabolomic data were derived from just 

a single patient, and that the relatively low tumor purity of RMC could have masked some of the additional 

transcriptional signals not detectible in single-cell data. Whilst the problem of limited sample size applies 

generally to single-cell experiments involving primary tumor tissue, they are particularly acute for RMC given 

the extremely rare occurrence of disease and frequent absence of a pre-operative diagnosis, which makes prior 

planning of tissue acquisition and experimentation incredibly difficult. To substantiate the analysis of a single-

patient study we were careful to validate our results using retrospective analyses of archival tissue and existing 

published data where available. Further work is required to increase data coverage and firmly establish our 

initial findings, with an ultimate goal of driving advancements in diagnosis and treatment of RMC.  

 

Materials and Methods 
 

Experimental model and subject details. 

 

All research activities were pre-approved by the Institutional Ethics Review Board (IRB) at Memorial Sloan 

Kettering Cancer Center and individuals were required to provide written informed consent to participate in 

molecular profiling studies. Patient 1 was a 23-year-old female with sickle cell trait and a right kidney tumor 

who underwent radical nephrectomy prior to treatment and was found to have stage III (pT3N1) disease. Their 

RMC diagnosis was confirmed by expert genitourinary pathologists (including Y.B.C.). The patient 

experienced rapid progression of disease and succumbed to disease 14.5 months following surgery. Archival 

tissue and DNA sequencing data from previous patients with a diagnosis of RMC between 1996 and 2017 at 

Memorial Sloan Kettering Cancer Center were retrospectively  identified from the institutional databases and 

correspond to those included in a previous study (10).      

  

Sample collection, tissue dissociation and single-cell suspension. 

 

Samples were directly obtained from the operating room during nephrectomy. At the time of specimen 

extraction, samples of around 1-1.5cm were obtained by the treating surgeon (A. A. H.) from the tumor region 

and adjacent normal tissue (at least 2cm away from the tumor). Tissue samples were placed in separate 

containers containing Roswell Park Memorial Institute (RPMI) medium and transported in regular ice to the 

laboratory with overall transit time less than 1hr from specimen extraction to cell dissociation. Small tissue 

aliquots (approx. 3mm3/each) were separated from samples for bulk tissue profiling, one of each was snap 

frozen with liquid nitrogen and stored at -80°C for posterior bulk sequencing, while a second aliquot placed 

in 10% formalin. The remainder of the tumor tissue was kept fresh RPMI medium and dissociated into a cell 
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suspension by first mincing into small pieces and spun (400 g x 10 min) to obtain a pellet. The pellet was 

firmly dislodged with tapping and incubated with tumor dissociation cocktail: Liberase (Roche): 250 µg/mL, 

DNAase (Roche): 100 Units/mL (in HBSS), at 37°C for 25-45 min, until good digestion was visually apparent, 

after which cells were collected and passed through a 100 µm filter. Filtered cells in enzymatic suspension 

were diluted with cold incomplete RPMI media and spun (400 g x 10 min), repeating this procedure twice to 

completely remove the tumor dissociation cocktail. The single-cell suspension was frozen in CTL-Cryo ABC 

media kit until live cell sorting with flow cytometry. 

 

Paraffin embedding, hematoxylin-eosin (HE) staining, immunohistochemistry and histologic assessment.  

 

Samples previously placed in 10% formalin were left in this solution at room temperature for 24 hr, and then 

washed with phosphate-buffered saline (PBS) solution and placed in 70% ethanol at 4°C for dehydration. 

Following dehydration, paraffin-embedding was performed and tissue blocks precured. Formaldehyde-fixed 

paraffin-embedded (FFEP) blocks were sliced and 5 µm-thick slides obtained for staining. Hematoxylin-eosin 

(HE) staining was used for pathologic review, and morphologic features recorded. These included growth 

patterns (reticular/yolk sac-like and cribriform, tubulopapillary, infiltrating tubles/cords/individual cells, and 

solid sheets), stromal changes, rhabdoid cytology, inflammatory infiltrates, and the presence or absence of 

drepanocytes, necrosis, and mucin. As reticular or yolk sac tumor-like growth and cribriform pattern often 

overlap, these were combined as one architectural pattern group. Immunohistochemistry (IHC) was performed 

on FFEP blocks using mouse monoclonal antibodies SMARCB1/INI1 (Clone 25/BAF47, dilution 1:200, BD 

Bioscience) and CD70 (Clone 301731, R&D Systems #MAB2738). SMARCB1/INI1 staining was scored as 

retained or lost when compared to internal positive control cells (endothelial/stromal cells and lymphocytes). 

For CD70 H-score assessment, fields were chosen at random at x 400 magnification and the staining intensity 

in malignant cells was scored as 0, 1, 2, or 3 corresponding to the presence of negative, weak, intermediate or 

strong staining, respectively. The total number of cells in each field and the number of cells stained at each 

intensity were counted and H-scores calculated using the formula H-score = (% of cells stained at intensity 

category 1 x 1) + (% of cells stained at intensity category 2 x 2) + (% of cells stained at intensity category 3 x 

3). CD70 IHC was simultaneously performed on archival tumor tissue from Patient 1 and four additional RMC 

patients reported in (10) (making five samples in total).   

 

Targeted DNA sequencing analysis. 

 

DNA was extracted from the macro-dissected tumor and matched tissue/blood normal samples using QIAmp 

DNA FFPE Tissue Kit or EZ1 Advanced XL system (Qiagen) according to the manufacturer’s instructions. 

Tumor and normal DNA was subject to whole exome sequencing (WES) and MSK-IMPACT (33), a deep 

sequencing assay for cancer-related genes to identify single nucleotide polymorphisms (SNPs) across the 

genome. Somatic mutations in tumor DNA were called after private germ line variants detected in the paired 
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normal sample were appropriately detected and filtered out. Copy number analysis and tumor purity 

estimation was conducted using FACETS (32). Variant allele frequencies (VAFs) were calculated by pooling 

aligned reads from WES and MSK-IMPACT experiments, and differences between VAFs of tumor and 

normal samples detected with a p-values and confidence intervals based on a proportionally test assuming an 

underlying binomial distribution of read counts based on allele frequencies.  

   

RNA extraction, purification and sequencing. 

 

Samples snap frozen and stored at -80°C were thawed in regular ice and pretreated using trizol, chlorophorm 

and cold centrifugation. Total RNA was extracted using the RNeasy mini extraction kit (QIAgen #74101), 

according to the manufacturer’s instructions. Bulk whole transcriptome RNA-sequencing libraries were 

prepared with TruSeq Stranded Total RNA library preparation kit (Illumina) and sequenced on a NovaSeq 

6000 S2 or S4 flow cell with a sequencing depth of approximately 200-500 million reads per sample.  

 

Processing and analysis of bulk RNA-seq data. 

 

Bulk RNA-seq data generated in this study along with those accessed from (13) were transformed to gene 

expression count matrices following the protocol outlined in (77). Briefly, RNA-seq raw read sequences were 

aligned against the human genome assembly hg19 using the HISAT2 software (version 2.2.1) (78). Aligned 

reads were then assembled and quantified using the StringTie software (version 2.1.5) (79). Differential gene 

expression analysis was performed using the R package DESeq2 (80) and the search for transcripts 

corresponding to gene fusion events was performed using the STAR-Fusion software assessed in (81). 

SAMtools (82) was used for transcript sorting, generation of files in pileup format and interconversion 

between BAM and SAM file formats.         

 

Preparation of scRNA-seq libraries. 

 

Frozen cells were thawed in prewarmed complete media (IMDMM with 10% FBS) and washed twice in 

complete media. The cell pellet was resuspended and cells stained with DAPI (Thermo Scientific, Product 

#62248, 1:1000 dilution) to exclude dead cells during cell sorting, and samples were collected in complete 

media. Sorted cells were washed and suspended in cold PBS + 0.04% BSA at optimal density before loading 

the 10X chromium controller system (10X Genomics Inc., product code 120223). Cells were barcoded using 

the 10X GenCode Technology and transcriptomes loaded onto Gel Bead-in-Emulsions (GEMs) and RT 

reactions, cDNA amplification, fragmentation, end repair and A tailing was performed as per manual 

instruction to obtain final libraries containing the P5 and P7 priming sites used in IlluminaR sequencing. High 

sensitivity DNA chips and Agilent 2100 bioanalyzer (Agilent Technologies) were used for 5’ gene expression 
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quality control and quantification, performed twice before sequencing. The 5’ gene expression library was 

sequenced on NovaSeq 6000 S1 with sequencing depth of approximately 300-500 million reads per sample.      

 

Processing and analysis of scRNA-seq libraries. 

 

Illumina sequencing output files were converted to fastq format, scRNA-seq reads aligned to the human 

genome assembly GRCh38 (release version 84), and count matrix of cell barcodes by genes generated using 

Cell Ranger version 3.0.2 (10X Genomics). Filtered count matrices generated by Cell Ranger were loaded 

directly into Seurat software version 3.2.2 (38) for initial quality control where transcripts for genes only 

detected in three or less cells and cells with 200 or less transcripts from unique genes, or greater than 15% 

transcripts derived from mitochondrial genes, were excluded from further analysis. At this stage we found a 

subset of cells, subsequently assigned to the MitoLow plasma cell cluster, could be identified as clear outliers 

with less 3% of transcripts derived from mitochondrial genes. We used Seurat to perform log-normalization 

(scale factor = 10,000), variable feature selection (number of features = 2000), principle component analysis 

(PCA) and unsupervised Louvain clustering (resolution of 0.5) with the top twenty principle components, 

resulting in fourteen initial cell clusters. Initial clusters were then parsimoniously separated into three, 

mutually-exclusive groups that together accounted for all 5610 cells, based on the expression of the cell 

markers EPCAM (epithelial cell marker), CD45 (immune cell marker) or FAP (fibroblast cell marker) by at 

least 20% of all cells within a cluster. Cells pooled from CD45 clusters then underwent a second round of 

feature selection, PCA and clustering (resolution of 1.0). To identify cell types, a custom function written in 

R was used to quantify the number of cells in each cluster expressing particular marker genes, and those where 

at least 20% of cells expressing EPCAM, CD45, FAP, CD14, CD79A, SDC1, CD3D, and/or CD8A were 

annotated accordingly. All differential expression analyses were conducted using the FindMarkers function 

in Seurat that implements Wilcoxon signed-rank testing, and a customized version single-cell gene set analysis 

was performed by adapting the Seurat function AddModuleScore, sequentially applying it to the Seurat object 

with each gene set supplied as a list of features. Differential module scores (gene set scores) between clusters 

were quantified and assigned an adjusted p-value using the FindMarkers function. To correlate expression 

profiles of immune cell clusters with those from (31), the Seurat function AverageExpression was used to 

calculate the average expression profile for each immune cluster based only on genes with transcripts detected 

in both data sets. Subsequently, pairwise correlations were calculated between average expression profiles of 

each pair of clusters from each study. 

 

Metabolic profiling and analysis. 

 

Metabolic profiling was performed in collaboration with Metabolon Inc. as described in (83). Normalized 

metabolite abundances for ccRCC tumor samples, adjacent normal tissue samples and the single RMC tumor 

sample were merged together into a single data set that was pre-processed to remove measurements 
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corresponding to any metabolite that was not simultaneously observed in all samples. Abundances were then 

transformed to Z-scores by subtracting mean abundance for given metabolite and dividing by standard 

deviation prior to principle component analysis (PCA) using the R programming language. Data were 

separated into tumor and normal tissue subsets, Z-scores re-calculated for each group, and the Crawford-

Howell test was applied to each metabolite individually as implemented in the R package psycho using the 

RMC tumor or paired adjacent normal medullary tissue as a test value for tumor or normal tissue group, 

respectively. Reported p-values were adjusted using the Bonferroni Correction and metabolites with 

significantly different Z-scores (defined by an adjusted p-value cutoff value of 0.05) identified as reported in 

the Results section.   

 

Data and code availability 
 

Sequencing data will be released alongside the final published version of this article. Code for reproducing 

the analyses is available at the GitLab repository https://gitlab.com/davidtourigny/renal-medullary-carcinoma  
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Figure 1 

 

 
 

Figure 1. Genomic characterization of primary RMC tumors. (A) Oncoplot showing the clinical 

characteristics and genetic mechanisms of SMARCB1 inactivation in RMC patients molecularly profiled at 

Memorial Sloan Kettering Cancer Center. Each column represents a different patient and Patient 1 (first 

column) from this study is highlighted with an asterisk. (B) Integrated visualization of FACETS analysis for 

WES data from Patient 1. Top two panels display total copy number Log Ratio and allele-specific Log Odds 

Ratio with chromosomes alternating in blue and grey. Third panel plots the corresponding integer total (black) 

and minor allele (red) number calls. Estimated cellular fraction (CF) is plotted at bottom in blue with normal 

diploid state in tan. (C) Somatic genomic alterations found in Patient 1 (not including germ line TP53 allele 

loss) as reported by MSK-IMPACT analysis, plotted using the same color scheme as in (A). (D) Variable 

allele frequencies (VAFs) of the (likely) pathogenic germ line TP53 variant inherited by Patient 1 for tumor 

(red) and normal (black) samples. Vertical bars represent 95% confidence intervals and VAFs corresponding 

to different allelic configurations of the reference and variant copies of TP53 are shown as dotted lines. The 

VAFs of tumor and normal tissue are judged to be significantly different based on a p-value of 0.0189.          
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Figure 2 

 

 
 

Figure 2. Single-cell composition of RMC. (A) t-SNE embedding of transcriptional profiles from all cells (n 

= 5610). Each dot represents a single cell and colors represent clusters denoted by inferred cell type. (B) 

Normalized expression of genes for the three sub-clusters of epithelial-like cells. Violin plot top and bottom 

lines indicate range of normalized expression; width indicates number of cells at the indicated expression 

level. (C) Anatomy of the human nephron with site of origin for various cell types. Annotations: PT, proximal 

tubule; CNT, connecting tubule; LOH, Loop of Henle; IC, intercalated cells; PC, principle cells. (D) Module 

scores (scaled) corresponding to gene set signatures of various epithelial cell types from the mature human 

kidney for UCA1+ and CXCL14+ epithelial-like clusters. (E) Differential module scores corresponding to 

hallmark gene set signatures as calculated between UCA1+ and CXCL14+ epithelial-like clusters.   
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Figure 3 
 

 

  
Figure 3. Signals of increased cystine uptake in the RMC primary tumor. (A) Z-scores for cystine and MeCys 

from RMC tumor tissue sample (red) on a background of ccRCC tumor samples (grey).  (B) Z-scores for 

cystine and MeCys from normal tissue sample (black) adjacent to an RMC tumor on a background normal 

tissue (grey) adjacent to ccRCC tumor samples. Dotted lines represent one standard deviation away from the 

mean. 
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Figure 4 

 

 
 

Figure 4. Immune landscape and cross-talk in the RMC tumor microenvironment. (A) Correlations between 

transcriptional profiles of immune cell types identified in RMC and ccRCC, respectively. (B) CD70 

immunohistochemistry: (i) representative HE images of tumor regions from Patient 1; (ii) corresponding 

CD70 immunostaining of tumor regions from Patient 1; (iii) heterogenous CD70 immunoreactivity of tumor 

cells at high magnification; (iv) H-score for five RMC tumor samples (including Patient 1; H-score = 110) 

assayed for CD70 protein expression. (C) Violin plot displaying normalized expression of CD27 across 

immune cell clusters in RMC. (D) Cartoon schematic illustrating a putative role for the CD70-expressing 

tumor cell sub-population in co-stimulation of plasma cell differentiation via the CD27 receptor.     
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